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COUPLING A STOCHASTIC APPROXIMATION VERSION OF EM
WITH AN MCMC PROCEDURE ∗

Estelle Kuhn
1

and Marc Lavielle
2

Abstract. The stochastic approximation version of EM (SAEM) proposed by Delyon et al. (1999) is
a powerful alternative to EM when the E-step is intractable. Convergence of SAEM toward a maximum
of the observed likelihood is established when the unobserved data are simulated at each iteration under
the conditional distribution. We show that this very restrictive assumption can be weakened. Indeed,
the results of Benveniste et al. for stochastic approximation with Markovian perturbations are used to
establish the convergence of SAEM when it is coupled with a Markov chain Monte-Carlo procedure.
This result is very useful for many practical applications. Applications to the convolution model and
the change-points model are presented to illustrate the proposed method.
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1. Introduction

A wide class of statistical problems involves observed and unobserved data. We can consider, for example,
inverse problems concerning deconvolution, source separation, change-points detection, etc. Linear and nonlin-
ear mixed effects models can also be considered incomplete-data models. Estimation of the parameters of these
models is a difficult challenge. In particular, the likelihood of the observations cannot usually be maximized in
closed form.

The expectation-maximization (EM) algorithm, proposed by Dempster, Laird and Rubin [6], is a broadly
applicable approach for the iterative computation of maximum likelihood estimates, useful in a variety of
incomplete-data (or partially-observed-data) statistical problems. The standard incomplete-data scheme con-
siders the observable incomplete data y ∼ g(y; θ) to result from partial observation of complete data (y, z) ∼
f(y, z; θ), where g and f are some known density functions. Maximum likelihood estimation of θ consists in
computing the value of θ that maximizes the observed likelihood g.

The E-step of the EM algorithm computes Q(θ|θk) = E[log f(y, z; θ)|y; θk] and the M-step determines θk+1

as maximizing Q(θ|θk). Then, the observed-data likelihood sequence (g(y; θk)) is nondecreasing along any EM
sequence, see [15] for more details. Stochastic versions of EM have been introduced from different perspectives

Keywords and phrases. EM algorithm, SAEM algorithm, stochastic approximation, MCMC algorithm, convolution model,
change-points model.
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to deal with situations where the E-step is infeasible in closed form. Monte-Carlo EM (MCEM) replaces this
step by a Monte-Carlo approximation based on a large number of independent simulations of the missing data,
see [12]. The SAEM algorithm, proposed by Delyon, Lavielle and Moulines [5], replaces the E-step by stochastic
approximation. The k-th step of SAEM generates m(k) realizations zk(j) (1 ≤ j ≤ m(k)) from p(z|y; θk) and
updates Qk−1(θ) according to

Qk(θ) = Qk−1(θ) + γk

 1
m(k)

m(k)∑
j=1

log f(y, zk(j); θ) −Qk−1(θ)

 , (1)

where (γk) is a sequence of positive step sizes decreasing to 0. It is possible to select m(k) = 1 for all k when
simulation of zk is heavy. Then the M-step consists in determining θk+1 which maximizes Qk(θ). Precise results
of convergence of SAEM are presented in [5] in the case where f(y, z; θ) belongs to a regular curved exponential
family. In this case, SAEM can be written in terms of the complete-data sufficient statistics. This leads to a
general Robbins-Monro-type scheme and the almost sure convergence of the sequence (θk) to a local maximum
of the likelihood is proved under very general assumptions.

Unfortunately, for most nonlinear models or non-Gaussian models, the unobserved data cannot be simulated
exactly under the conditional distribution. A well-known alternative consists in using a Metropolis-Hastings
algorithm: introduce a transition probability which has as unique invariant distribution the conditional distri-
bution we want to simulate. In this situation, the assumptions of [5] that ensure the convergence of SAEM are
no longer satisfied. The aim of this paper is to show that these assumptions can be weakened such that SAEM
still converges when it is coupled with a Markov chain Monte-Carlo procedure. The results of Benveniste et al.
[1] for stochastic approximation with Markovian perturbations are used to establish the convergence of this
algorithm.

The use of simulated data for estimating parameters is a powerful approach that has become popular in
recent years. In [16], Yao defines and studies an online stochastic approximation scheme. In this situation,
the number of observations goes to infinity and the sequence of estimates converges to the true value of the
parameter. In [7], Gu and Kong propose a stochastic version of a Newton-Raphson algorithm for incomplete-
data estimation. The algorithm proposed by Gu and Zhu in [8] combines an MCMC procedure with stochastic
approximation for spatial models estimation. In these two papers, the information matrix is also estimated
by stochastic approximation. In [4], Concordet and Nuñez propose a pseudo simulated maximum likelihood
method for estimating the parameters of a nonlinear mixed effects model.

Application of SAEM to the change-points model was proposed in [10] and to the convolution model in [11],
but no results of convergence of the algorithm were given. We show that the convergence results obtained for
SAEM are very general and apply to these two examples of application. A Monte-Carlo experiment illustrates
the performances of the proposed procedure with these two models. We show that the SAEM algorithm can
also be used for estimating the asymptotic covariance matrix of the Maximum Likelihood Estimate.

2. The stochastic approximation version of EM algorithm

2.1. The EM and SAEM algorithms

Let the complete data x = (y, z) ∈ R
n+l, where y ∈ R

n is observed and z ∈ R
l is missing for some n ∈ N,

l ∈ N. Throughout the sequel, the observed-data vector y is fixed but z is variable. Let µ′ be a σ-finite measure
on R

n+l and µ the restriction of µ′ to R
l generated by x �→ z. Let P = {f(y, z; θ), θ ∈ Θ} be a family of probabil-

ity densities on R
n+l w.r.t. µ′, where Θ ⊂ R

p. We consider in this paper only models for which the complete data
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likelihood f(y, z; θ) belongs to the curved exponential family. The incomplete-data likelihood (the likelihood of
the observed data y) is defined by:

g(y; θ) �
∫
R
l
f(y, z; θ)µ(dz).

Our purpose is to find the value θ̂g in Θ that maximizes the observed likelihood g.
In the sequel, p(z|y; θ) denotes the conditional distribution of the missing data z given the observed data y:

p(z|y; θ) �
{

f(y, z; θ)/g(y; θ) if g(y; θ) �= 0

0 if g(y; θ) = 0.

We shall make the following assumptions on the model, which are the same as these presented in [5]:

• (M1) The parameter space Θ is an open subset of R
p. The complete data likelihood function is given by:

f(y, z; θ) = exp
{
−ψ(θ) +

〈
S̃(y, z), φ(θ)

〉}
,

where 〈·, ·〉 denotes the scalar product, S̃ is a Borel function on R
l in the second variable taking its

values in an open subset S of R
m. Moreover, the convex hull of S̃(Rl) is included in S, and, for all θ

in Θ, ∫
R
l
|S̃(y, z)|p(z|y; θ)µ(dz) <∞.

• (M2) Define L : S × Θ → R as:

L(s; θ) � −ψ(θ) + 〈s, φ(θ)〉 .

The functions ψ and φ are twice continuously differentiable on Θ.
• (M3) The function s̄ : Θ → S defined as

s̄(θ) �
∫
R
l
S̃(y, z)p(z|y; θ)µ(dz)

is continuously differentiable on Θ.
• (M4) The function l : Θ → R defined as the observed-data log-likelihood

l(θ) � log g(y; θ) = log
∫
R
l
f(y, z; θ)µ(dz)

is continuously differentiable on Θ and

∂θ

∫
f(y, z; θ)µ(dz) =

∫
∂θf(y, z; θ)µ(dz).

• (M5) There exists a function θ̂ : S → Θ, such that:

∀s ∈ S, ∀θ ∈ Θ, L
(
s; θ̂(s)

)
≥ L(s; θ).

Moreover, the function θ̂ is continuously differentiable on S.
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Let us define
Q(θ|θ′) =

∫
R

l
log f(y, z; θ)p(z|y; θ′)µ(dz).

In cases where maximization of θ → Q(θ|θ′) is much simpler than direct maximization of θ → l(θ), it is useful
to apply the EM algorithm which maximizes l(θ) by iteratively maximizing Q(θ|θ′). Each iteration of EM can
be decomposed into two steps. At iteration k, the E-step consists in evaluating Q(θ|θk). Then, the M-step
consists in computing θk+1 by maximizing Q(θ|θk).

Using our notation, the k-th iteration of the EM algorithm may be expressed as:

Q(θ|θk) = L(s̄(θk); θ) (2)

θk+1 = T (θk) = θ̂(s̄(θk)). (3)

The convergence of this algorithm is due to the fact that increasing Q(θ|θk) generates an increase in l(θk).
This convergence has been studied by many different authors (see [6, 9, 15]) and is ensured, for example, under
(M1)–(M5) when the sequence (θk)k≥0 stays within some compact subset of Θ (see [5]).

In the SAEM algorithm, the E-step is split into a simulation step (S-step) and a stochastic approximation
integration step. At iteration k, the S-step consists in generating a realization of the missing data vector zk
under the conditional distribution p(·|y; θk) and the integration step in a stochastic averaging procedure:

sk = sk−1 + γk

(
S̃(y, zk) − sk−1

)
, (4)

which is equivalent under the assumption (M1) of a curved exponential family to the general procedure pre-
sented in (1). Then, the complete log-likelihood is maximized in the M-step by θk+1 = θ̂(sk).

Some precise results of convergence of this algorithm were obtained in [5]. First, it is assumed that the
random variables s0, z1, z2, · · · are defined on the same probability space (Ω,A, P ). We denote F = {Fk}k≥0

the increasing family of σ-algebras generated by the random variables s0, z1, z2, · · · , zk. In addition, we assume
that:

• (SAEM1) For all k in N, γk ∈ [0, 1],
∑∞

k=1 γk = ∞ and
∑∞

k=1 γ
2
k <∞.

• (SAEM2) l : Θ → R and θ̂ : S → Θ are m times differentiable, where m is the integer such that S is
an open subset of R

m.
• (SAEM3)

(1) For all positive Borel functions Φ:

E[Φ(zk+1)|Fk] =
∫

Φ(z)p(z|y; θk)µ(dz).

(2) For all θ ∈ Θ,
∫ ‖S̃(y, z)‖2p(z|y; θ)µ(dz) <∞, and the function

Γ(θ) � Covθ[S̃(y, z)] �
∫
R
l
S̃(y, z)tS̃(y, z)p(z|y; θ)µ(dz)

−
[∫

R
l
S̃(y, z)p(z|y; θ)µ(dz)

]t [∫
R
l
S̃(y, z)p(z|y; θ)µ(dz)

]
is continuous w.r.t. θ.

It was shown in [5], that the sequence (θk)k≥0 generated by SAEM converges to a stationary point of the
observed likelihood g, when (M1)–(M5) and (SAEM1)–(SAEM3) are satisfied, and when the sequence
(sk)k≥0 takes its values in a compact subset of S.

In many practical situations, it will not be possible to generate the unobserved data zk exactly under the
conditional distribution p(·|y; θk). Then, the assumption (SAEM3) will not be satisfied. Nevertheless, we will
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show that (SAEM3) can be replaced by a weaker condition that is satisfied when a Markov chain Monte-Carlo
procedure is used in the S-step of SAEM.

2.2. Coupling the SAEM algorithm with MCMC

For any θ ∈ Θ, assume that the conditional distribution p(·|y; θ) is the unique limiting distribution of a
transition probability Πθ. When the missing data zk cannot be generated under p(·|y; θk), we will use the
transition kernel Πθk

. Then, the k-th iteration of the proposed algorithm can be summarized in three steps as
follows:

• Simulation: using zk−1, generate a realization zk from the transition probability Πθk
(zk−1, ·).

• Stochastic approximation: update sk−1 according to (4).
• Maximization: update θk according to θk+1 = θ̂(sk).

Usually, Πθ will be defined as the succession of M iterations of a MCMC procedure, such as the Metropolis-
Hastings algorithm. Then, the S-step of iteration k consists in simulating zk with the transition probability
Πθk

(zk−1, dzk) = PMθk
(zk−1, dzk), where

Pθk
(z, dz′) = qθk

(z, z′)min
{
p(z′|y; θk)qθk

(z′, z)
p(z|y; θk)qθk

(z, z′)
, 1
}

dz′ (5)

for z′ �= z and Pθk
(z, {z}) = 1 − ∫

z′ �=z Pθk
(z, dz′), where qθ(z, z′) is any aperiodic recurrent transition density.

For example, we can use the marginal distribution π of zk as a proposal distribution. Then, writing f(y, z; θ) =
π(z; θ)h(y|z; θ), the acceptance probability only depends on the conditional distribution h of the observation y:

Pθk
(z, dz′) = π(z′; θk)min

{
h(y|z′; θk)
h(y|z; θk) , 1

}
dz′. (6)

2.3. Estimation of the variance of the estimates

An estimation procedure should generate a point estimate θ̂g together with the covariance of the estimate
(for instance, to enable construction of confidence sets for the true parameter value). When g is an incomplete
data likelihood function sufficiently smooth, asymptotic theory for maximum-likelihood estimation holds and

√
n
(
θ̂g − θ�

)
→n→∞ N (0, Ig(θ�)−1

)
(7)

where Ig(θ�) is the observed Fisher information matrix. Thus, an estimate of the asymptotic covariance of θ̂g
is the inverse of the observed Fisher information matrix −∂2

θ l(θ̂g).
Using the SAEM algorithm, the observed Fisher information matrix −∂2

θ l(θ̂g) can be approximated by the
sequence (−Hk) defined as follows (see [5] for more details):

∆k = ∆k−1 + γk [∂θ log f(y, zk; θk) − ∆k−1] (8)
Gk = Gk−1 + γk

(
∂2
θ log f(y, zk; θk) + ∂θ log f(y, zk; θk)∂θ log f(y, zk; θk)t −Gk−1

)
(9)

Hk = Gk − ∆k∆k
t. (10)

3. Convergence result

We will use some results that work for general Robbins-Monro type stochastic approximation procedures. So
if we write the recursion (4) into this form, it becomes:

sk = sk−1 + γkh(sk−1) + γkek (11)
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where h stands for the mean field of the algorithm and ek is a random perturbation. In our case, we obtain the
following expressions for the function h and the sequence (ek):

h(s) = Eθ̂(s)

(
S̃(y, z)

)
− s = s̄

(
θ̂(s)
)
− s

ek = S̃(zk) − E
[
S̃(zk)|Fk−1

]
= S̃(zk) − s̄

(
θ̂(sk−1)

)
where Eθ[Φ(z)] �

∫
Φ(z)p(z|y; θ)µ(dz).

The assumption (SAEM3)1. means that, given θ0, · · · , θk, the random variables z0, · · · , zk are independent.
Coupled with the assumption (SAEM3)2., it is sufficient to prove that the series

∑
γkek converges thanks to

the martingale theory. This property plays a key role in the proof of the convergence of the SAEM algorithm
in [5]. In this new version of the algorithm, we allow Markovian dependence between zk and zk+1 : we suppose
that zk+1 is obtained from zk due to a Markovian transition depending on θk+1, so that we will need some
technical tools presented in [1] to show that the series

∑
γkek still converges.

As announced above, the assumption (SAEM3) can be weakened. It is assumed that the random vari-
ables s0, z1, z2, · · · , zk, · · · are defined on the same probability space (Ω,A, P ). We denote F = {Fk}k≥0 the
increasing family of σ-algebras generated by the random variables s0, z1, z2, · · · , zk. Since we introduce the
transition probability Πθ in order to approach the conditional distribution, we have to make some assumptions
on it:

• (SAEM3’)
1. The chain (zk)k≥0 takes its values in a compact subset E of R

l.
2. For any compact subset V of Θ, there exists a real constant L such that for any (θ, θ′) in V 2

sup
(x,y)∈E2

|Πθ(x, y) − Πθ′(x, y)| ≤ L|θ − θ′|.

3. The transition probability Πθ generates a uniformly ergodic chain whose invariant probability is
the conditional distribution p(·|y; θ):

∃Kθ ∈ R
+ ∃ρθ ∈ ]0, 1[ | ∀z ∈ E ∀k ∈ N ||Πk

θ(z, ·) − p(·|y; θ)||TV ≤ Kθρ
k
θ ,

where || · ||TV denotes the total variation norm. We suppose also that:

K � sup
θ
Kθ < +∞ and ρ � sup

θ
ρθ < 1.

4. The function S̃ is bounded on E .
We obtain the following convergence result, which is analogous to Theorem 5 of Delyon et al. [5]:

Theorem 1. Assume that assumptions (M1–M5), (SAEM1-SAEM2) and (SAEM3’) hold. Assume in
addition the assumption (C): the sequence (sk)k≥0 takes its values in a compact subset of S. Then, w.p. 1,
limk→+∞ d(θk,L) = 0 where d(x,A) denotes the distance of x to the closed subset A and L = {θ ∈ Θ, ∂θl(y; θ) =
0} is the set of stationary points of l.

Remarks:
• For checking assumption (SAEM3’)3, it is possible to verify some minorization condition or Doeblin’s

condition for the transition probability Πθ (see Chap. 16 of [14]). Otherwise, we have to consider each
case individually. Consider for example an independent Metropolis-Hastings algorithm: the transition
density qθ mentioned in equation (5) defines an independence sampler:

∀(z, z′) ∈ E2 qθ(z, z′) = qθ(z′).
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Then the uniform ergodicity is ensured if the transition qθ satisfies the following inequality (see Th. 2.1
in [13]):

∃β ∈ R
+ | ∀z ∈ E qθ(z) ≥ βp(z|y; θ).

• In cases where the compactness condition (C) is not checked or is difficult to check, it is possible to
stabilize the algorithm by using the method of dynamic bounds proposed by Chen et al. in [3] and
already used in this context by Delyon et al. in [5]: if sk is outside a given compact set Kk of S, it is
reinitialized in a specific compact set K0.

• It was shown in [5] that, under reasonable conditions, SAEM a.s. avoids traps, i.e., can only converge
to a proper local maximizer of the likelihood. This result still holds in our context. Indeed, the
paragraph II.3. of [2] about little Markovian perturbations gives some sufficient conditions for avoiding
the local minima or saddle points of l:

lim inf λmin

(
E

[(
S̃(zn+1) − s�

)(
S̃(zn+1) − s�

)t ∣∣∣Fn

])
> 0 p.s. on Γ(s�)

where λmin(A) denotes the smallest eigenvalue of A and Γ(s�) is the set of the sequences (sk) which
converge to s�.

Proof of Theorem 1. Theorem 1 is an application of Theorem 2 presented in [5], which gives a general result
about convergence of Robbins-Monro type stochastic approximation procedures of the form (11):

Theorem (Th. 2 of Delyon et al. [5]). Assume that:
• (SA0) w.p.1, ∀k ≥ 0, sk ∈ S.
• (SA1) (γk)k≥0 is a decreasing sequence of positive number such that

∑∞
k=1 γk = ∞.

• (SA2) The vector field h is continuous on S and there exists a continuously differentiable function
V : S → R such that:

1. ∀s ∈ S F (s) = 〈∂sV (s), h(s)〉 ≤ 0.
2. int(V (L)) = ∅, where L � {s ∈ S, F (s) = 0}.

• (SA3) w.p.1, the closure of ({sk}k≥0) is a compact subset of S.
• (SA4) w.p.1, limn→∞

∑n
k=0 γkek exists and is finite.

Then, w.p.1, lim sup d(sk,L) = 0.

The assumptions (SA0–SA3) don’t use the dependence structure of the sequence (zk) and are checked
under (M1–M5) (SAEM1-SAEM2) like in the case where the missing data are exactly simulated under the
a posteriori distribution (see [5]). Under the assumption (SAEM3), the condition (SA4) is checked because
the sequence of the partial sum of

∑
γkek is a convergent martingale. For checking (SA4) under (SAEM3’),

we use a result presented in Proposition 7, page 228 of [1]. The general model of the algorithm considered by
Benveniste et al. is of the form:

sk = sk−1 + γkH(sk−1, zk),

where the sequence (sk)k≥0 evolves in R
m and the sequence (zk)k≥0 in R

l. In our algorithm, the function H is
equal to:

H(s, z) = S̃(y, z) − s,

where the observation y are considered as constant.

Proposition (Benveniste et al. [1]). Assume the following assumptions:
• (A1) (γk)k≥0 is a decreasing sequence of positive real numbers such that

∑
γk = +∞.

• (A2) There exists a family {Πθ̂(s), s ∈ R
m} of transition probabilities on R

l such that for any Borel
subset A of R

l, we have
P (zk ∈ A|Fk−1) = Πθ̂(sk−1)

(zk−1, A).



122 E. KUHN AND M. LAVIELLE

• (A3) For any compact subset Q of S, there exists a constant C1 depending on Q such that for all s
in Q and all z in E we have

|H(s, z)| ≤ C1.

• (A4) There exists a function h on S and for each s in S a function νs on R
l such that

1. h is locally Lipschitz on S: for all s in S, there exist a neighborhood V of s and a real constant C
such that

∀(s′, s′′) ∈ V2 |h(s′) − h(s′′)| ≤ C|s′ − s′′|.
2. (I − Πθ̂(s))νs = Hs − h(s) for all s in S, where for all z in E , Πθ̂(s)νs(z) �

∫
νs(z′)Πθ̂(s)(z, dz

′).
3. For any compact subset Q of S , there exist real constants C2, C3 and λ in ] 12 , 1], such that for all s

and s′ in Q and for all z in E

|νs(z)| ≤ C2

|Πθ̂(s)νs(z) − Πθ̂(s′)νs′(z)| ≤ C3|s− s′|λ.

• (A5) For any compact subset Q of S and any positive real q, there exists a real number µq(Q) such
that, for all n, for all z0 in R

l and all s0 in R
m

Ez0,s0

(
(1 + |zk|q)1l(sk−1 ∈ Q, k ≤ n)

)
≤ µq(Q)

where Ez0,s0 denotes the expectation under the distribution of (zk, sk)k≥0 for the initial conditions
(z0, s0).

Then, for any compact subset Q of S, denoting τ(Q) = inf{k, sk �∈ Q}, if the constant λ from (A4) verifies∑
γ1+λ
k < +∞, then, on {τ(Q) = ∞}, the series

∑
k γkek converges a.s. and in L2.

Remark. The proposition of Benveniste et al. requires
∑
γ1+λ
k ≤ 1, but we only need

∑
γ1+λ
k < +∞ to obtain

the convergence of the series
∑

k γkek.

In order to apply this proposition in our case, we have to check the assumptions (A1–A5):
• (A1) is implied by (SAEM1).
• (A2) is verified with the transition probability Πθ̂(s).

• (A3) is verified since S̃ is bounded on E .
• (A5) is verified since the sequence (zk)k≥0 takes its values in a compact subset E of R

l.
Consider now the mean field of the algorithm defined by:

h(s) � s̄
(
θ̂(s)
)
− s.

We will show that this function h satisfies (A4). The assumptions (M3) and (M5) imply that the function h
is continuously differentiable on S. So h is locally Lipschitz on S and assumption (A4)1 is checked.

We define:
νs(z) =

∑
k≥0

Πk
θ̂(s)

(H(s, z) − h(s)) =
∑
k≥0

(
Πk
θ̂(s)

S̃(y, z) − pθ̂(s)S̃
)
,

where pθ̂(s)S̃ �
∫
S̃(y, z)pθ̂(s)(z|y)dz.

Since Π
θ̂(s)

is uniformly ergodic, there exist Kθ̂(s) ∈ R
+ and ρθ̂(s) ∈ ]0, 1[, such that, for any k ∈ N, for any

z in E
sup

‖u‖≤1

∣∣∣Πk
θ̂(s)

u(z) − pθ̂(s)u
∣∣∣ ≤ Kθ̂(s)ρ

k
θ̂(s)

.
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Since S̃ is bounded on E , the series defining νs is convergent. Moreover, we have:

(I − Π
θ̂(s)

)νs = S̃ − pθ̂(s)S̃,

which proves (A4)2.
Under assumption (SAEM3’)3 and since S̃ is bounded on E , we obtain the first inequality of (A4)3. We

will now prove the second inequality of (A4)3:

Π
θ̂(s)

νs(z) − Π
θ̂(s′)

νs′(z) =
∑
k≥1

(
Πk
θ̂(s)

S̃(y, z) − pθ̂(s)S̃
)
−
∑
k≥1

(
Πk
θ̂(s′)

S̃(y, z) − pθ̂(s′)S̃
)

= νs(z) − νs′(z) + pθ̂(s)S̃ − pθ̂(s′)S̃

so we have
|Π
θ̂(s)

νs(z) − Π
θ̂(s′)

νs′(z)| ≤ |νs(z) − νs′(z)| +
∣∣∣pθ̂(s)S̃ − pθ̂(s′)S̃

∣∣∣ .
We use the following technical lemma (the proof is in the appendix) to prove the second inequality of (A4)3:

Lemma 1. If we assume (SAEM2), (SAEM3’) and (C), then for any compact subset Q of S, there exist K1

and K2 in R
+ such that, for any α ∈ ]0, 1[, for any (s, s′, z) ∈ Q2 × E,∣∣∣pθ̂(s)S̃ − pθ̂(s′)S̃

∣∣∣ ≤ K1|s− s′|α and |νs(z) − νs′(z)| ≤ K2|s− s′|α.

So we obtain finally that for any compact subset Q of S, there existsK in R
+ such that, for any (s, s′, z) ∈ Q2×E ,

|Π
θ̂(s)

νs(z) − Π
θ̂(s′)

νs′(z)| ≤ K|s− s′|,

which proves the second inequality of (A4)3 (with λ equal to 1).
So Proposition 7 of [1] can be applied to prove (SA4). Thus the assumptions of Theorem 2 of [5] are satisfied.

The continuity of θ̂ : S → Θ and Lemma 2 of [5] prove the convergence of the sequence of estimates (θk)k≥0.

4. Applications

4.1. The deconvolution problem

In a convolution model, the observation y = (yL+1, . . . , yn) is the linear convolution of an unobserved input
sequence z = (z1, . . . , zn) with additive noise ε, e.g.,

yt =
L∑
l=0

ϕlzt−l + σεt , L+ 1 ≤ t ≤ n (12)

where ϕ = (ϕ0, . . . , ϕL) is the convolution filter.
This kind of model is commonly used in seismic deconvolution, fMRI data analysis and statistical signal

analysis.
We shall make the following assumptions, concerning the random sequences z and ε: (i) (zt, 1 ≤ t ≤ n) is a

sequence of independent and identically-distributed random variables, distributed according to some distribution
function π, and taking their values in some compact subset of R. (ii) (εt, L + 1 ≤ t ≤ n) is a sequence of
independent standardized Gaussian variables; (iii) (zt, t = 1, · · · , n) and (εt, t = L+ 1, · · · , n) are independent
collections of random variables.
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These assumptions together with equation (12) specify completely the log-likelihood of the observed data
samples. Let M(z) be the (n − L) × (L + 1) matrix such that Mij(z) = zL+1+i−j . Then, the complete
log-likelihood is, up to a constant,

log f(y, z; θ) = −n− L

2
log σ2 − 1

2σ2
‖y −M(z)ϕ‖2 + log π(z). (13)

Deconvolution consists in recovering the input sequence z from the observation y. Of course, deconvolution
requires an accurate estimation of the convolution filter ϕ and the noise variance σ2. SAEM will be very useful
for estimating these parameters. Furthermore, the marginal distribution π of the input sequence z can also be
estimated, whenever it belongs to the exponential family and depends on an unknown parameter ψ:

π(z;ψ) = C(ψ) exp
{
−
〈
S̃π(z), ψ

〉}
. (14)

Here, the vector of parameters of the model is θ = (ψ,ϕ, σ2) and the minimal sufficient statistics are S̃(y, z) =
(M(z)tM(z),M(z)ty, S̃π(z)). At step k, we used the following procedure for generating zk from zk−1, using
θk = (ψk,ϕk, σ

2
k):

i) a permutation pk of {1, 2, . . . , n} is randomly chosen;
ii) for i = 1, 2, . . . , n:

1. Let j = pk(i). Set z̃t = zk−1,t for any t �= j and generate z̃j ∼ π(·;ψk).
2. Compute

α =
1

2σ2
k

(‖y −M(z̃)ϕk‖2 − ‖y −M(z)ϕk‖2
)
. (15)

3. Generate u ∼ Exp(1). Set zk = z̃ if α < u and zk = zk−1 otherwise.
We can easily show that Πθk

(zk−1, ·) is the transition probability of an ergodic Markov chain that converges uni-
formly to the conditional distribution p(·|y; θk). For estimating (ψ,ϕ, σ2), we define a sequence (sk,1, sk,2, sk,3)
according to (4):

sk,1 = sk−1,1 + γk(M(zk)tM(zk) − sk−1,1)

sk,2 = sk−1,2 + γk(M(zk)ty − sk−1,2)

sk,3 = sk−1,3 + γk(S̃π(zk) − sk−1,3).

Then, the maximization step yields

ϕk+1 = (sk,1)−1sk,2

σ2
k+1 =

1
n− L

(
yty − (sk,2)tϕk+1

)
ψk = Arg max C(ψ)e−〈sk,3,ψ〉.

All the assumptions of Theorem 1 are satisfied whenever π has bounded support, and the SAEM algorithm
converges to a stationary point of the observed likelihood. To assume that the input variables z are bounded is
not a restrictive assumption from a practical point of view. Indeed, any nonbounded distribution is truncated
in practice.

We used the convolution model described in (12) for simulating an observed series y of length n = 500. In
this example, the input sequence z are independent Beta(a, b) random variables on [0, 1] with a = b = 3. So the
statistic S̃π(z) is (S1(z), S2(z)) = (

∑
log(zj),

∑
log(1− zj)). The convolution filter is ϕ = (1,−3, 2, 6, 2,−3, 1).

We choose σ2 = 0.2286 in order to ensure a Signal to Noise ratio equal to 10dB, i.e. Var(M(z)ϕ) = 10Var(σε).
Table 1 gives the estimation of θ = (a, b,ϕ, σ2). A Monte-Carlo experiment based on 100 replications was

used for estimating the mean and the standard deviation of two estimators. First, the maximum likelihood
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Table 1. Estimation of θ = (a, b,ϕ, σ2): θ� is the true value of θ, θ0 is the initialization,
θ̂f is the estimation obtained by maximizing f(y, z; θ) and θ̂g is the estimation obtained by
maximizing g(y; θ).

θ� θ0 θ̂f std θ̂f θ̂g std θ̂g
a 3 0 3.0075 0.1846 2.8615 0.4014
b 3 0 3.0220 0.1838 2.6396 0.3712

ϕ1 1 0 1.0002 0.1020 1.0277 0.5820
ϕ2 −3 0 −3.0058 0.0997 −2.6564 0.4612
ϕ3 2 0 2.0100 0.1046 1.8809 0.8416
ϕ4 6 1 5.9810 0.0963 5.5637 0.4024
ϕ5 2 0 2.0034 0.1128 1.8963 0.7713
ϕ6 −3 0 −2.9985 0.0955 −2.7920 0.5766
ϕ7 1 0 1.0009 0.1047 0.8361 0.5523

σ2 0.2286 1 0.2266 0.0157 0.2615 0.0593

estimator θ̂f , which maximizes the complete likelihood f(y, z; θ) assuming that the input series z is known, was
computed as follows:

ϕ̂f =
(M(z)tM(z)

)−1 M(z)ty

σ̂2
f =

1
n− L

(
yty − ytM(z)ϕ̂f

)
(
âf , b̂f

)
= Arg max

a,b

1
B(a, b)

e−(a−1)S1(z)−(b−1)S2(z),

where B(a, b) = Γ(a)Γ(b)/Γ(a+ b) and Γ(a) =
∫ +∞
0 e−xxa−1dx.

On the other hand, the estimator θ̂g maximizes the incomplete likelihood g(y; θ), considering that the input
series z is unknown.

We computed θ̂g with 100 iterations of SAEM, using γk = 1 for 1 ≤ k ≤ 30 and γk = 1/(k − 29) for k ≥ 31.
The initialization is the uniform distribution for z (a0 = b0 = 0). The initial guess for the filter is a

spike located at j = 4. That ensures that the algorithm recovers the good phase of the convolution filter.
For a different initialization, the algorithm can converge to a local maximum of the likelihood that cannot
be compared with the true filter ϕ�. For example, using as initial guess a spike at j = 2, a simulation gives
ϕ̂ = (0.73, 6.65, 1.42,−3.51,−0.58, 2.54,−1.32). We remark that the phase of the true filter is not recovered, but
the estimated filter and the true filter have both almost the same transfer function. The problem of convergence
to the global maximum of the likelihood is beyond the scope of this paper (see [11] for a simulated annealing
version of this algorithm).

The results presented in Table 1 confirm that θ̂f is a more accurate estimate of θ than θ̂g. Nevertheless, we
can remark that, when z is not observed, SAEM provides a good estimation of θ.

The approximation scheme presented Section 2.3 for estimating the covariance of the estimate θ̂g requires to
compute the derivative and the second derivative of the complete log-likelihood. Unfortunately, the estimation
of the covariance of the estimate of (a, b) is very intricate in this example, since the derivative of the Gamma
function cannot be computed in a close-form. For this reason, we will only consider the estimation of the
covariance of the estimated filter ϕ̂. The other parameters are assumed to be known in this experiment.
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Table 2. Comparison of the Monte-Carlo variance VarMC(θ̂g) with the Monte-Carlo

asymptotic variance VarFi(θ̂g). The initialization θ0 is the true value θ�.

θ� θ0 VarMC(θ̂g) VarFi(θ̂g)

ϕ1 1 1 0.041 0.016

ϕ2 −3 −3 0.027 0.016

ϕ3 2 2 0.018 0.016

ϕ4 6 6 0.033 0.015

ϕ5 2 2 0.019 0.016

ϕ6 −3 −3 0.033 0.016

ϕ7 1 1 0.022 0.016

We have used the SAEM algorithm with the 100 simulated series for estimating the convolution filter ϕ. The
covariance of the estimate was estimated by the Monte-Carlo covariance VarMC(θ̂g) defined by:

VarMC(θ̂g) =
1

100

∑
i=1

(
θ̂g

(i) − θ�
)(

θ̂g
(i) − θ�

)′
(16)

where θ̂g
(i)

is the estimate of θ� obtained with the ith simulated data set.
We also estimated the asymptotic covariance Ig(θ�)−1 using the procedure presented Section 2.3. The Monte-

Carlo asymptotic covariance VarFi(θ̂g) is defined by:

VarFi(θ̂g) =
1

100

∑
i=1

VarFi(θ̂g
(i)

) (17)

where VarFi(θ̂g
(i)

) is the estimate of asymptotic covariance obtained with the ith simulated data set.

The diagonal elements of both estimates VarMC(θ̂g) and VarFi(θ̂g) are displayed Table 2. We can make the
following comments about these results:

• The estimate of the asymptotic variance fluctuates very few. Indeed, the mean value of each diagonal

component of the series (VarFi(θ̂g
(i)

); 1 ≤ i ≤ 100) is around 0.016, with a standard deviation of
only 0.001. Then we can expect that the asymptotic covariance is well estimated with only one observed
series using this procedure.

• The two estimates do not match very closely, but a confidence interval can be obtained with the SAEM
procedure. Indeed, the asymptotic standard deviations are around 0.13, while the standard deviations
of the SAEM estimate are between 0.14 and 0.20.

• The Monte-Carlo estimated variances are bigger than the asymptotic variances. Several explanations
can be proposed. First, the Central Limit Theorem proposed in (7) is an asymptotic result that does
not necessarily apply for a series of length n = 500. On the other hand, according to the initial guess the
SAEM algorithm can converge to any local maxima of the observed likelihood instead of the MLE. Thus,
if the likelihood function is very rife, with several local maxima, the variance of the SAEM estimate can
be bigger than the variance of the MLE.



COUPLING SAEM WITH MCMC 127

4.2. The change-points problem

We use the model considered in [10]. We observe a real sequence y = (yi, 1 ≤ i ≤ n), such that, for
any 1 ≤ i ≤ n,

yi = f(ti) + σεi, (18)

where (ti, 1 ≤ i ≤ n) is a sequence of known observation times and (εi, 1 ≤ i ≤ n) is a sequence of independent
zero-mean Gaussian variables with unit variance. The function f to recover is piecewise constant. Thus, there
exists a sequence of instants (τj , j ≥ 0) among the sequence (ti, 1 ≤ i ≤ n) and a sequence (mj , j ≥ 1) such
that, for any j ≥ 1,

f(t) = mj for all τj−1 < t ≤ τj , (19)

with the convention τ0 = 0.
We introduce a latent sequence of independent identically-distributed Bernoulli random variables (zi, 1 ≤

i ≤ n− 1) that take the value 1 at the change instants and 0 between two changes :

zi =
{

1 if there exists j such that ti = τj
0 otherwise. (20)

Let λ be the parameter of the Bernoulli and for any z = (zi, 1 ≤ i ≤ n−1) in Ω = {0, 1}n−1, letKz =
∑n−1
i=1 zi+1

be the number of segments (i.e. Kz − 1 is the number of change-points) defined by z. Then,

π(z;λ) = λKz−1 (1 − λ)n−Kz . (21)

Conditionally to the change-points sequence, the vector m = (mj , 1 ≤ j ≤ Kz) is assumed to be Gaussian:

π(m|z;µ, V ) =
Kz∏
j=1

(
2πV
nj

)− 1
2

exp
{
− nj

2V
(mj − µ)2

}
, (22)

where nj =
∑n

i=1 1l]τj−1,τj ](ti) is the number of observations in segment ]τj−1, τj ] (where the function f is
constant equal to mj) for 1 ≤ j ≤ Kz.

On the other hand, (εi, 1 ≤ i ≤ n) is assumed to be a sequence of independent zero-mean and unit variance
Gaussian random variables. Thus, the conditional distribution of the observations is defined by:

h(y|z,m;σ2) = (2πσ2)−
n
2 exp

− 1
2σ2

Kz∑
j=1

Nj∑
l=Nj−1+1

(yl −mj)2

 , (23)

where Nj =
∑j

l=1 nl for 1 ≤ j ≤ Kz and N0 = 0.

Remark. If the collection of observation times (ti, 1 ≤ i ≤ n) is equal to (1, · · · , n), then nj = τj − τj−1 and
Nj = τj for 1 ≤ j ≤ Kz and some expressions are quite simplified.

Let θ = (µ, λ, V, σ2) be the set of hyperparameters of the model. For any configuration of changes z, let
ȳj = n−1

j

∑Nj

l=Nj−1+1 yl, ȳ = n−1
∑n

l=1 yl and Cz =
∑Kz

j=1

∑Nj

l=Nj−1+1(yl − ȳj)2. Then, after some calculation,
it can be shown (see [10]) that the likelihood of (y, z) is defined by

f(y, z; θ) = (2πσ2)−
n
2

(
σ2 + V

σ2

)−Kz
2

λKz−1(1 − λ)n−Kz exp

{
− 1

2(V + σ2)

(
n∑
i=1

(yi − µ)2 +
V

σ2
Cz

)}
. (24)
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Table 3. Estimation of θ = (λ, V, σ2): θ� is the true value of θ, θ0 is the initialization, θ̂f is
the estimation obtained by maximizing f(y, z; θ), θ̂g is the estimation obtained by maximizing

g(y; θ), VarMC(θ̂g) is the Monte-Carlo variance and VarFi(θ̂g) is the Monte-Carlo asymptotic
variance.

θ� θ0 θ̂f std θ̂f θ̂g std θ̂g VarMC(θ̂g) VarFi(θ̂g)

λ 0.02 0.05 0.0201 0.0051 0.0235 0.0105 12.2 × 10−5 5.6 × 10−5

V 40 10 38.1 15.8 32.5 19.0 417.25 116.32

σ2 1 5 1.01 0.07 1.01 0.08 0.0065 0.0042

Here, the minimal sufficient statistics (Kz, Cz) are approximated according to (4):

sk,1 = sk−1,1 + γk(Kz − sk−1,1)
sk,2 = sk−1,2 + γk(Cz − sk−1,2).

Then, the maximization step yields

µk = ȳ

λk =
sk,1 − 1
n− 1

σ2
k =

sk,2
n− sk,1

Vk =
∑n
i=1(yi − ȳ)2 − sk,2

sk,1
− σ2

k.

Here, z takes a finite number of values. Then, any irreducible proposal kernel q can be used to generate a
geometrically ergodic kernel. In this application, we used alternatively the three following kernels: i) a new
vector z̃ is drawn independently of the current value zk−1 with the marginal distribution π(·;ψk−1); ii) a new
change-point is created, or an existing change-point is removed; iii) an existing change-point is shifted (see [10]
for more details concerning the MCMC procedure).

The maximum likelihood estimate of µ is ȳ. For estimating the other hyperparameters, the SAEM algorithm
can be used since it is easy to check that the assumptions of Theorem 1 are still satisfied.

We used the change-point model described above for simulating an observed series y of length n = 500. We
set the values of the hyperparameters to λ� = 0.02, V � = 40 and σ2� = 1.

Table 3 gives the estimation of θ = (λ, V, σ2). A Monte-Carlo experiment based on 100 replications was used
for estimating the mean and the standard deviation of θ̂f , which maximizes the complete likelihood f(y, z; θ)
and θ̂g that maximizes the incomplete likelihood g(y; θ). We computed θ̂g with 100 iterations of SAEM, using
γk = 1 for 1 ≤ k ≤ 30 and γk = 1/(k − 29) for k ≥ 31.

In this example, SAEM still produces a good estimation of θ. In particular, the noise variance σ2 is estimated
with almost the same accuracy, when the change-points are known and when they are unknown.

The Monte-Carlo variance VarMC(θ̂g) and the Monte-Carlo asymptotic variance VarFi(θ̂g) are also displayed
Table 3. We can make the same remarks as in the previous example: the variance of the SAEM estimate
is bigger than the asymptotic variance. Nevertheless, a confidence interval can be obtained using the SAEM
algorithm.
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A. Appendix

We first prove a technical lemma which will be necessary to prove Lemma 1.

Lemma 2. If we assume (SAEM2), (SAEM3’) and (C), then for any compact subset Q of S, there exists
a real constant M such that:

∀(s, s′, y, z) ∈ Q2 × Y × E ∀k ∈ N |Πk
θ̂(s)

S̃(y, z) − Πk
θ̂(s′)

S̃(y, z)| ≤Mk|s− s′|.

Proof. ∀(s, s′) ∈ Q2 ∀(y, z) ∈ Y × E ∀k ∈ N,

∣∣∣Πk
θ̂(s)

S̃(y, z)− Πk
θ̂(s′)

S̃(y, z)
∣∣∣ ≤ k−1∑

i=0

∣∣∣Πk−i
θ̂(s)

Πi
θ̂(s′)

S̃(y, z) − Πk−1−i
θ̂(s)

Πi+1

θ̂(s′)
S̃(y, z)

∣∣∣
=
k−1∑
i=0

∣∣∣Πk−1−i
θ̂(s)

(
Π
θ̂(s)

− Π
θ̂(s′)

)
Πi
θ̂(s′)

S̃(y, z)
∣∣∣

=
k−1∑
i=0

∣∣∣∣∫ ∫ ∫ Πi
θ̂(s′)

(z, u)
(
Π
θ̂(s)

(u, v) − Π
θ̂(s′)

(u, v)
)

Πk−1−i
θ̂(s)

(v, w)S̃(y, w) dudvdw
∣∣∣∣

≤ ‖S̃‖∞
k−1∑
i=0

∫ ∫ ∫
Πi
θ̂(s′)

(z, u)
∣∣∣Π

θ̂(s)
(u, v) − Π

θ̂(s′)
(u, v)

∣∣∣Πk−1−i
θ̂(s)

(v, w) dudvdw.

The assumption (SAEM2) ensures that the set θ̂(Q) is compact, so that the assumption (SAEM3’)2 ensures
the existence of real constants L and L̃ such that:∣∣∣Πk

θ̂(s)
S̃(y, z) − Πk

θ̂(s′)
S̃(y, z)

∣∣∣ ≤ ∥∥∥S̃∥∥∥
∞
L|θ̂(s) − θ̂(s′)|

k−1∑
i=0

∫ ∫ ∫
Πi
θ̂(s′)

(z, u)Πk−1−i
θ̂(s)

(v, w) dudvdw

≤
∥∥∥S̃∥∥∥

∞
L̃|s− s′|

k−1∑
i=0

∫ ∫ ∫
Πi
θ̂(s′)

(z, u)Πk−1−i
θ̂(s)

(v, w) dudvdw,

since θ̂ is continuously differentiable. Moreover E is compact, so we obtain:∣∣∣Πk
θ̂(s)

S̃(y, z) − Πk
θ̂(s′)

S̃(y, z)
∣∣∣ ≤ ∥∥∥S̃∥∥∥

∞
L̃M(E) k |s− s′|,

where M(A) denotes the Lebesgue measure of the set A. �

Proof of Lemma 1. Assumptions (SAEM3’)1 and (SAEM3’)3 imply the existence of constants K ∈ R
+

and ρ ∈ ]0, 1[ such that for all (s, s′) in Q2, for all (y, z) in Y × E and for all k in N, we have∣∣∣pθ̂(s)S̃ − pθ̂(s′)S̃
∣∣∣ ≤ ∣∣∣pθ̂(s)S̃ − Πk

θ̂(s)
S̃(y, z)

∣∣∣+ ∣∣∣Πk
θ̂(s)

S̃(y, z) − Πk
θ̂(s′)

S̃(y, z)
∣∣∣+ ∣∣∣Πk

θ̂(s′)
S̃(y, z) − pθ̂(s′)S̃

∣∣∣
≤ 2
∥∥∥S̃∥∥∥

∞
Kρk +Mk|s− s′|.

We choose k ≈ log(|s − s′|)/ log(ρ) so that the two terms have approximatively the same weight. Then, there
exist two constants K1 in R

+ and c in ]0, 1[ such that

∀(s, s′) ∈ Q2 s.t. |s− s′| < c,
∣∣∣pθ̂(s)S̃ − pθ̂(s′)S̃

∣∣∣ ≤ K1

log(ρ)
log(|s− s′|)|s− s′|.
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Since we have
∀α ∈ ]0, 1[ lim

|s−s′|→0
log(|s− s′|)|s− s′|1−α = 0,

we can deduce that ∀α ∈ ]0, 1[, ∃η > 0 s.t.

∀(s, s′) ∈ Q2 s.t. |s− s′| < η,
∣∣∣pθ̂(s)S̃ − pθ̂(s′)S̃

∣∣∣ ≤ K1|s− s′|α, (25)

which proves the first inequality of Lemma 1 for all pair (s, s′) in a compact Q such that |s− s′| < η.
Concerning the second inequality of Lemma 1, let us define

ak,s,s′(y, z) =
∣∣∣(Πk

θ̂(s)
S̃(y, z) − pθ̂(s)S̃

)
−
(
Πk
θ̂(s′)

S̃(y, z) − pθ̂(s′)S̃
)∣∣∣ .

On one hand, since S̃ is bounded and Π
θ̂(s)

is uniformly ergodic, there exist K ∈ R
+ and ρ ∈ ]0, 1[ such that,

for any k ∈ N and any (s, s′, y, z) ∈ Q2 × Y × E ,

ak,s,s′(y, z) ≤
∣∣∣Πk

θ̂(s)
S̃(y, z)− pθ̂(s)S̃

∣∣∣+ ∣∣∣Πk
θ̂(s′)

S̃(y, z) − pθ̂(s′)S̃
∣∣∣

≤ 2
∥∥∥S̃∥∥∥

∞
Kρk.

On the other hand, for any β ∈ ]0, 1[, there exists η > 0 such that, for any k ∈ N and any (s, s′, y, z) ∈ Q2×Y×E
such that |s− s′| < η,

ak,s,s′(y, z) ≤
∣∣∣Πk

θ̂(s)
S̃(y, z) − Πk

θ̂(s′)
S̃(y, z)

∣∣∣+ ∣∣∣pθ̂(s)S̃ − pθ̂(s′)S̃
∣∣∣

≤Mk|s− s′| +K2|s− s′|β ≤ max(M,K2)(k + 1)|s− s′|β .

Then, using a convexity argument, there exist L1 ∈ R
+, L2 ∈ R

+ and L ∈ R
+ such that, for any a ∈ ]0, 1[, for

any β ∈ ]0, 1[, there exists η > 0 such that, for any k ∈ N and any (s, s′, y, z) ∈ Q2×Y×E such that |s−s′| < η,

ak,s,s′ (y, z) ≤ min
(
L1ρ

k, L2(k + 1)|s− s′|β)
≤ Lρ(1−a)k|s− s′|βa(k + 1)a.

Thus, for any β ∈ ]0, 1[, for any a ∈ ]0, 1[, there exists η > 0 such that, for any (s, s′, y, z) ∈ Q2 × Y × E such
that |s− s′| ≤ η,

|νs(z) − νs′(z)| ≤
∑
k≥0

ak,s,s′ (y, z)

≤ L

∑
k≥0

ρ(1−a)k (k + 1)a
 |s− s′|aβ .

So we obtain the following conclusion: for any a ∈ ]0, 1[, for any α ∈ ]0, a[, there exist real constants K2 and η
such that for all z in E

∀(s, s′) ∈ Q2 s.t. |s− s′| < η, |νs(z) − νs′(z)| ≤ K2|s− s′|α. (26)

Since Q is compact, we can recover it with a finite number N of balls of diameter η and thus obtain the
inequalities (25) and (26) with the same constants multiplied by N for any pair (s, s′) in Q2. �
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