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ERGODICITY OF A CERTAIN CLASS OF NON FELLER MODELS:
APPLICATIONS TO ARCH AND MARKOV SWITCHING MODELS ∗, ∗∗

Jean-Gabriel Attali1

Abstract. We provide an extension of topological methods applied to a certain class of Non Feller
Models which we call Quasi-Feller. We give conditions to ensure the existence of a stationary distribu-
tion. Finally, we strengthen the conditions to obtain a positive Harris recurrence, which in turn implies
the existence of a strong law of large numbers.
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Introduction

It is well-known that to ensure the existence of invariant probability measure for a Feller Markov chain
with a Polish state space S, that is whose transition operator maps the span of bounded and continuous
function from S to R into itself, it suffices to establish the tightness of the sequence of probability measures
( 1

n

∑n−1
k=0 P

k(x0, dy))n∈N∗ for a certain x0 in S (see e.g. [2] or [5]). This elementary approach is very well
adapted to the problem of Markov chains in Rd. For instance, the existence of at least one invariant probability
measure for a nonlinear regression model NAR of the form Xt+1 = F (Xt) + εt+1, where Xt takes values in Rd

and the εt are i.i.d., can be easily proven providing that F (x) is a continuous function, to ensure that the
transition probability is Feller, and that it grows slowly when x goes to infinity, to ensure the tightness of the
sequence ( 1

n

∑n−1
k=0 P

k(x, dy))n∈N∗ . For the more general model ARCH of the form Xt+1 = F (Xt)+G(Xt)εt+1,
it suffices that F (x) and G(x) be continuous functions and have a good behavior when x goes to infinity.
Unfortunately, this topological approach doesn’t work for non Feller models. For instance, considering a ARCH
model, whenever F or G possess a point of discontinuity it is not possible to apply this method.

However, via techniques of petite sets (see e.g. [3] or [5]), we know that some NAR models, where F is a
threshold function, have invariant probability although they are not Feller. Thus, our aim is to extend the
topological approach to the study of non Feller models as well. In this context, we introduce the concept of
Quasi-Feller models.

The paper is organized as follows. In Section 1 we define Quasi-Feller models. In Section 2 we then give
conditions to obtain at least one invariant probability measure and finally, in Section 3 we closely study the

Keywords and phrases. Ergodic, Markov chain, Feller, Quasi-Feller, invariant measure, geometric ergodicity, rate of convergence,
ARCH models, Markov switching.
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problem of the positive Harris recurrence for such models. ARCH models and nonlinear autoregressive models
with Markov switching (NAR-MS ) illustrate our results throughout the paper.

1. Definition of Quasi-Feller models

1.1. Definitions

(S, d) is a separable complete metric space and B(S) is its Borel σ-field. We denote the class of bounded
continuous functions from S to R by Cb (S,R). Let us first define the Quasi-Feller models as follows:

Definition 1.1. A transition kernel P (x, dy) is Quasi-Feller if there exist a topological space W , a Borel
function H : S →W such that, for all compact subset K, H(K) is a compact subset and a family of probability
measures (Q(w, dy))w∈W on (S,B(S)), verifying:

i) the kernel Q defined for any measurable and bounded function g : S → R by Qg(w) :=
∫

S
g(y)Q(w, dy)

is Feller that is:
g ∈ Cb (S,R) ⇒ Qg ∈ Cb(W,R);

ii) ∀g measurable mapping from S to R, P g(x) = Qg(H(x));
iii) ∀w ∈ ⋃K∈KH(K) we have Q (w,DH) = 0, where DH denotes the set of discontinuity points of H and

K is the span of compact subsets of W .

Remark 1.2.

• Clearly
⋃

K∈KH(K) ⊂ H(S). If H is a continuous function, the above inclusion holds as an equality.
On the other hand, as soon as H is not continuous at one point, the inclusion may be strict.

• DH is a measurable set (see e.g. [1]).
• The decomposition of P following Q and H is not unique.
• A Feller transition kernel P is Quasi-Feller with W = S, H = IdS , DH = ∅ and Q = P .
• Q is a transition probability if and only if W = S.
• In our examples, W generally will be Rp or one of its subsets.

1.2. Examples

1.2.1. ARCH model

Let F : Rd → Rd and G : Rd → S+(d,R) (where S+(d,R) denotes the set of definite positive matrix)
be measurable functions. Let (εt)t≥1 be a white noise whose distribution µ is defined on a probability space
(Ω,A,P). The ARCH model is then defined by:

Xt+1 = F (Xt) +G(Xt)εt+1, X0 ∈ Rd. (1)

Let us define the function:
G(−1) : Rd → S+(d,R),

x �→ (G(x))−1
,

and the norm of a d× d matrix:

‖A‖ := sup
|u|=1

|Au|
|u| ·

The transition probability P (x, dy) of the ARCH is given by:

∀g bounded measurable function, P g(x) =
∫
g (F (x) +G(x)y) µ(dy). (2)
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Proposition 1.3. If the set DF,G := DF ∪DG satisfies:

∀ (w1, w2
) ∈ ⋃

K∈K
F (K) ×G(K), µ

((
w2
)−1 (

DF,G − w1
))

= 0, (3)

then the ARCH model is Quasi-Feller.

Proof. Let us define, for any bounded measurable function g : Rd → R the function Qg as follows:

∀ (w1, w2
) ∈ Rd × S+(d,R), Qg

(
w1, w2

)
=
∫
g
(
w1 + w2y

)
µ(dy). (4)

We have Pg(x) = Qg (F (x), G(x)). Q obviously is Feller according to the Definition 1.1 (Q is no longer a
transition probability because E = Rd × S+(d,R)).

The hypothesis ∀w ∈ ⋃
K∈K F (K) ×G(K), Q(w,DF,G) = 0 turns into

∀w :=
(
w1, w2

) ∈ ⋃
K∈K

F (K) ×G(K), µ
((
w2
)−1 (

DF,G − w1
))

= 0. �

Remark 1.4. In this case, we have: W = Rd × S+(d,R), and G(K) ⊂ S+(d,R).

1.2.2. Nonlinear autoregressive model with Markov switching (NAR-MS)

Definition 1.5. (Yt)t∈N ∈ (Rd
)N is a NAR-MS if:

Yt := fXt (Yt−1) + εt,

where (Xt)t≥0 is a positive Harris recurrent chain on {1, · · · ,m}, for all k ∈ {1, · · · ,m}, fk is a measurable
function from Rd into itself and the εt are i.i.d. random variables taking values in Rd.

Example 1.6. Let (Yt)t∈N be a NAR-MS . Let µ denote the distribution of ε0 and Dk denote the set of
discontinuity points of fk. If:

∀k ∈ {1, · · · ,m}, ∀z ∈
⋃

K∈K
fk(K), µ (Dk − z) = 0,

then the NAR-MS is Quasi-Feller.

Proof. Xt being positive Harris, there exist a measurable function h : {1, · · · ,m} × R → {1, · · · ,m} and
a sequence of i.i.d. real valued variables (ηt)t≥1 with distribution ν and which are independent from the
process (εt)t≥0 such that:

Xt = h (Xt−1, ηt) .

Then, the process:

Zt =

(
Xt

Yt

)
=

(
h (Xt−1, ηt)

fh(Xt−1,ηt) (Yt−1) + εt

)
,

is a Markov chain whose transition kernel P verifies:

∀g ∈ Cb

({1, · · · ,m} × Rd,R
)
, P g(x, y) =

∫
R

ν(dη)
∫

Rd

g
(
h(x, η), fh(x,η)(y) + ε

)
µ(dε).
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Now let define, for all g ∈ Cb

({1, · · · ,m} × Rd,R
)

the function Qg as follows:

∀(x, z1, · · · , zm) ∈ {1, · · · ,m} × (Rd
)m

,

Qg(x, z1, · · · , zm) =
∫

R

ν(dη)
∫

Rd

g

(
h(x, η),

m∑
k=1

1{k} (h(x, η)) zk + ε

)
µ(dε). (5)

For all x and η, (z1, · · · , zm) �→ g(h(x, η),
∑m

k=1 1{k}(h(x, η))zk + ε) is a continuous function. So, the func-
tion (z1, · · · , zm) �→ Qg(x, z1, · · · , zm) is continuous. But x takes values in a finite set, hence the function
(x, z1, · · · , zm) �→ Qg(x, z1, · · · , zm) is also continuous.

Setting H(x, y) = (x, f1(y), · · · , fm(y)), we have:

∀g ∈ Cb

({1, · · · ,m} × Rd,R
)
, P g(x, y) = Qg (H(x, y)) .

To finish, DH ⊂ {1, · · · ,m} ×⋃m
k=1Dk. Hence, the hypothesis:

∀k ∈ {1, · · · ,m}, ∀zk ∈
⋃

K∈K
fk(K), µ (Dk − zk) = 0,

implies that:
∀(x, z1, · · · , zm) ∈

⋃
K∈K

H(K), Q (x, z1, · · · , zm, DH) = 0,

and so the NAR-MS is Quasi-Feller. �

2. Existence of a stationary probability measure for Quasi-Feller models

Theorem 2.1. Let us consider a Quasi-Feller transition probability P (x, dy) associated to a function H a kernel
Q according to Definition 1.1.
Suppose there exists x0 ∈ S such that ( 1

n

∑n−1
k=0 P

k(x0, dy))n∈N∗ is tight. Then
(a) the model has an invariant probability measure;
(b) for all invariant probability measure ν and all measurable set C satisfying:

∀w ∈
⋃

K∈K
H(K), Q (w,C) = 0, (6)

then ν(C) = 0. In particular, ν(DH) = 0.

Proof. The idea is to show, as for Feller Models, that any limit point ν for weak convergence of the tight
sequence 1

n

∑n−1
k=0 P

k(x0, dy) is an invariant probability distribution.
The key is to show that ν (DH) = 0. Let us prove directly point (b). Let C be a measurable subset of S

satisfying (6). Let prove that ν(C) = 0.
If F be a closed subset of C. then F also satisfies (6), i.e.:

∀w ∈
⋃

K∈K
H(K), Q (w,F ) = 0.

Let (hp)p∈N be the sequence of functions from S to R defined by:

∀p ∈ N∗, ∀x ∈ S, hp := 1 − min (pd (x, F ) , 1) .
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For all p ∈ N, hp are continuous functions (even p-Lipschitz). Moreover, they verify ‖hp‖∞ ≤ 1 and hp ↘ 1F =
1F for F is a closed subset.

Let us consider now (Qhp)p∈N the sequence of functions from W to R. For Q is Feller, Qhp are so continuous
functions. On the other hand, Q(w, dy) is a probability measure for all w ∈ W , hence following dominated
convergence Theorem, we have:

∀ w ∈
⋃

K∈K
H(K), Qhp(w) ↘ Q(w,F ).

Let K be a compact subset of S. Qhp ↘ 0 on H(K) for Q(w,F ) = 0 if w ∈ H(K). At last, H(K) is, by
hypothesis, a compact subset. Then, the Dini’s Theorem implies that the above convergence is uniform onH(K)
i.e.

sup
w∈H(K)

Qhp(w) → 0 when p→ +∞. (7)

Define νn := 1
n

∑n−1
k=0 P

k(x0, dy) with the usual convention P 0(x0, dy) = δx0(dy). The sequence (νn)n∈N∗ is
tight, so we have:

∀ε > 0, ∃Kε compact subset of S such that, ∀n ∈ N∗, νn(cKε) ≤ ε. (8)

It follows that, for all n, p ≥ 1,

νn(Php) =
∫

Kε

Phpdνn +
∫

cKε

Phpdνn ≤ sup
y∈Kε

Php(y) + νn(cKε) ≤ sup
y∈Kε

Php(y) + ε.

But Php = Qhp ◦H hence, for all n, p ≥ 1,

νn(Php) ≤ sup
w∈H(Kε)

Qhp(w) + ε.

Consider a subsequence
(
νϕ(n)

)
n∈N∗ that converges weakly to a probability measure ν. Because for all bounded

function f we have:

|νn(Pf) − νn(f)| ≤ 2‖f‖∞
n

,

it follows immediately that:

ν(hp) = lim
n→∞ νϕ(n)(hp) = lim

n→∞ νϕ(n)(Php) ≤ sup
w∈H(Kε)

Qhp(w) + ε.

Thus, by (7) we have:
∀ ε > 0, lim sup

p→∞
ν(hp) ≤ ε,

showing that, ν(F ) = limp→∞ ν(hp) = 0.
Then, for all closed subset F of C we have ν(F ) = 0. By regularity of the probability measure ν, we have:

ν(C) := sup {ν(F ), F ⊂ C, F closed subset} (see [1]).

Finally ν(C) = 0. In particular, we have ν (DH) = 0.
Consider now h ∈ Cb. One clearly has Ph = Qh ◦H is a continuous function on the continuity set of H . So,

Ph is ν-a.s. continuous. Then:
νϕ(n)(Ph) n→+∞−→ ν(Ph) for νϕ(n) ⇒ ν.
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But
|νn(Ph) − νn(h)| n→+∞−→ 0 and νϕ(n)(h) n→+∞−→ ν(h),

so we can deduce that ν(Ph) = ν(h) and to finish νP = ν because h is an arbitrary function in Cb. �

To ensure the tightness of ( 1
n

∑n−1
k=0 P

k(x, dy))n∈N∗ we usually use a Lyapunov function V i.e. verifying
for a ∈ S:

lim
d(x,a)→∞

V (x) = +∞.

Let recall the following result:

Proposition 2.2. Let P (x, dy) be a transition probability on S and V be a continuous Lyapunov function.
Pakes’ lemma [6] suppose that:

i) ∀x ∈ S, PV (x) ≤ V (x) + β;
ii) for a ∈ S, limd(x,a)→∞(PV − V )(x) = −∞.

Then, for all x in S the sequence ( 1
n

∑n−1
k=0 P

k(x, dy))n∈N∗ is tight.

3. Irreducibility and positive Harris recurrence

The aim of this section is to extend the criterion of positive Harris recurrence from the Feller case as presented
in [5] to our Quasi-Feller models. Any ψ-irreducible Feller chain on a polish space S, where the support of ψ
has nonempty interior, is such that every compact subset of S is petite. If we add the hypothesis of tightness,
for all x in S, of the sequence of probability measures ( 1

n

∑n−1
k=0 P

k(x, dy))n∈N it is easy to show the chain is
positive Harris recurrent (see e.g. [5]). Our aim is to extend this result to Quasi-Feller chain.

3.1. Definitions

Let recall first the notion of φ-irreducibility as defined in [4]:

Definition 3.1. Consider a Markov chain with transition kernel P (x, dy) on S and φ a nonnegative measure.
The chain is said to be φ-irreducible if,

∀x ∈ S, φ(dy) �
+∞∑
n=1

anP
n(x, dy),

where the an are nonnegative real numbers such that
∑+∞

n=1 an = 1.

Definition 3.2. We will say an homogeneous Markov chain (Xt)t∈N
is positive Harris recurrent if there exists

a probability measure ν such that:

∀g : S → R bounded continuous function , ∀x ∈ S,
1
n

n−1∑
k=0

g(Xk) Px-a.s.−→ ν(g).

This definition clearly implies that ν is the unique invariant probability measure of the chain. Moreover, if a
chain is positive Harris recurrent chain with ν for unique stationary distribution, then it is ν-irreducible (see
[5]).

In the following, ψ will denote a maximal measure of irreducibility, i.e. a measure of irreducibility that
dominates all measures of irreducibility. The existence of such a measure for a φ-irreducible Markov chain is
proved in [5].
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Definition 3.3. Let P (x, dy) be the transition kernel of a ψ-irreducible Markov chain. A nonempty set
A ∈ B(S) is called petite if it verifies:

inf
x∈A

Ka(x, dy) ≥ δψ(dy),

where Ka(x, dy) :=
∑+∞

k=1 akP
k(x, dy) and

∑+∞
k=1 ak = 1, ∀k ≥ 1, ak > 0, δ > 0.

Remark 3.4.

• KaKb(x, dy) :=
∫
Ka(x, dz)Ka(z, dy) = Ka∗b(x, dy).

• The property of petiteness depends only on P (x, dy) but not on the chosen sequence (an)n∈N∗ .
• Every subset of a petite set is petite.

3.2. Positive Harris recurrence of Quasi-Feller models

To obtain positive Harris recurrence for our models, the key is to prove the following result:

Proposition 3.5. Let P (x, dy) = Q(H(x), dy) be a ψ-irreducible Quasi-Feller transition probability. If supp{ψ}
has nonempty interior, then all compact subsets of S are petite.

Proof. The proof relies on the following two Lemmas:

Lemma 3.6. Let P (x, dy) = Q(H(x), dy) be a Quasi-Feller. Then:

(a) for any bounded function f : S → R which is continuous on S\DH, and for any k ∈ N∗, P kf is
continuous on S\DH ;

(b) ∀F closed set, ∀k ∈ N∗, x �→ P k(x, F ) is upper semicontinuous on S\DH ;
(c) ∀O open set, ∀k ∈ N∗, x �→ P k(x,O) is lower semicontinuous on S\DH .

Consequently Ka(x, dy) is a Quasi-Feller transition probability. More precisely, there exists a Feller transition
kernel K̃a(x, dy) such that Ka(x, dy) = K̃a(H(x), dy).

Proof. Let us show that if f is a lower semicontinuous function on S\DH , so is Pf .
Let f be a lower semicontinuous function on S\DH . Then f is the limit on S\DH of a growing se-

quence (gp)p∈N
of bounded Lipschitz functions on S\DH .

During the proof of Theorem 2.1, we showed if g : S → R is a bounded continuous function then Pg is
continuous on S\DH .

So we have:

Pg(xn) → Pg(x) when xn → x.

Thus, we can write:

∀x ∈ S\DH , P (xn, dy) ⇒ P (x, dy) when xn → x.

Then for any P (x, dy)-a.s. continuous function g:

Pg(xn) → Pg(x) si xn → x. (9)

But P (x,DH) = 0 by hypothesis. Consequently Pf is P (x, dy)-a.s. continuous whenever f is a bounded and
continuous function on S\DH .

It shows that for all p ∈ N, Pgp is continuous on S\DH . Then, x �→ Pf(x) is a lower semicontinuous function
on S\DH as a growing limit of continuous functions on S\DH . So, Point (a) is true. Points (b) and (c) follow
easily.
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To see the second part of the Lemma, let g : S → R be a bounded continuous function. We have:

Kag(x) =
+∞∑
k=1

akP
kg(x)

=
∫
P (x, dy)

+∞∑
k=1

akP
k−1g(y)

=
∫
Q(H(x), dy)

+∞∑
k=1

akP
k−1g(y).

By point (a), we know that
∑+∞

k=1 akP
k−1g(y) is continuous on S\DH and so it is Q(z, dy)-a.s. continuous.

Q being Feller, the function f(z) =
∫
Q(z, dy)

∑+∞
k=1 akP

k−1g(y) is a bounded continuous function from W

to R. It implies that K̃a(z, .) =
∫
Q(z, dy)

∑+∞
k=1 akP

k−1(y, .) is Feller which proves the announced result for
K̃a(H(x), .) = Ka(x, .). �

The following lemma and the end of the proof of Proposition 3.5 are extensions of Lemma 6.2.7 and Propo-
sition 6.2.8 from [5].

Lemma 3.7. Let P (x, dy) = Q(H(x), dy) be a Quasi-Feller transition probability and let A be a Borel set such
that A ∩ (S\DH) is a petite set for P . Then A ∩ (S\DH) is a petite set for P .

Proof. By hypothesis, we have infx∈A∩(S\DH
Ka(x, dy) ≥ δψ(dy), with δ > 0.

Let B ∈ B(S) and let F ⊂ B be a closed set. Lemma 3.6 permits us to ensure that the function x �→ Ka(x, F )
is a uniform limit of functions that are upper semicontinuous on S\DH . So it is a function that is also upper
semicontinuous on S\DH . Thus:

inf
x∈A∩(S\DH )

Ka(x, F ) = inf
x∈A∩(S\DH)

Ka(x, F ).

F being a subset of B, we can deduce:

inf
x∈A∩(S\DH )

Ka(x,B) ≥ δψ(F ).

For ψ is a regular measure,
inf

x∈A∩(S\DH )
Ka(x,B) ≥ δψ(B),

which proves that A ∩ (S\DH) is a petite set. �

End of the proof of Proposition 3.5: The chain being ψ-irreducible, there exists a petite set A of strictly
positive ψ-measure (see [5]).

Let us define for all k ∈ N∗, the following sets:

Ak :=
{
x ∈ S/ Ka(x,A) >

1
k

}
·

It is clear that: ⋃
k∈N∗

Ak = {x ∈ S/ Ka(x,A) > 0} = S for ψ(A) > 0.
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So, there exists k0 ∈ N∗ such that for all k ≥ k0, Ak �= ∅. For k ≥ k0 and x ∈ Ak, we have:

Ka∗a(x, dy) =
∫
Ka(x, dz)Ka(z, dy)

≥
∫

A

Ka(x, dz)Ka(z, dy)

≥ δψ(dy) ×Ka(x,A)

≥ δ

k
ψ(dy).

Thus, for k ≥ k0, Ak is a petite set of strictly positive ψ-measure.

Let O :=
◦

̂supp{ψ}. O is a nonempty set and is of strictly positive ψ-measure. Thus, for all k ≥ k0, Ak ∩ O
is of strictly positive ψ-measure. On the other hand, Ak ∩O is a petite set because it is a subset of the petite
set Ak. So Ak ∩O is a petite set of strictly positive ψ-measure. By Proposition 2.1, we know that ν(DH) = 0,
so ψ(DH) = 0 for ψ � ν. Then, for all k ≥ k0, Ak ∩O ∩ (S\DH) is a petite set of strictly positive ψ-measure.

Lemma 3.7 implies that for all k ≥ k0, the sets:

Bk := Ak ∩O ∩ (S\DH) ,

are petite set of strictly positive ψ-measure.
Let us define, for all k ≥ k0, the sets Fk := Ak ∩O. Fk are closed sets and verify

⋃
k≥k0

Fk = O. Hence, at
least one of the Fk is nonempty. By Baire’s Theorem, we know then that at least one of the Fk has a nonempty
interior.

Let Fk1 (k1 ≥ k0) be one of the Fk with a nonempty interior and let Ok1 be its interior. Ok1 ∩ (S\DH) has
strictly positive ψ-measure because Ok1 ⊂ supp{ψ} and is a petite set as subset of Bk1 . Hence there exists
δ1 > 0 such that:

inf
x∈Ok1∩(S\DH)

Ka(x, dy) ≥ δ1ψ(dy).

Let x ∈ S and B ∈ B(S). Let F be a closed subset of B. We have:

Ka∗a(x, F ) =
∫
Ka(x, dy)Ka(y, F )

≥
∫

Ok1∩(S\DH)

Ka(x, dy)Ka(y, F )

≥ δ1ψ(F )Ka (x,Ok1 ∩ (S\DH)) .

But Ka(x,DH) = 0 so Ka∗a(x, F ) ≥ δ1ψ(F )Ka (x,Ok1) . By taking the supremum over the closed sets included
in B, we obtain:

Ka∗a(x,B) ≥ δ1ψ(B)Ka (x,Ok1 ) . (10)
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If we choose a < 1 and ak = (1 − a)ak−1 for all k ≥ 1, we have

Ka (x,Ok1 ) =
+∞∑
k=1

(1 − a)ak−1P k (x,Ok1 )

= (1 − a)P (x,Ok1 ) + a

+∞∑
k=1

(1 − a)ak−1

∫
P (x, dy)P k (y,Ok1)

= (1 − a)P (x,Ok1 ) + a

∫
P (x, dy)Ka (y,Ok1)

= (1 − a)P (x,Ok1 ) + a

∫
Q (H(x), dy)Ka (y,Ok1)

≥ a

∫
Q (H(x), dy)Ka (y,Ok1) .

We already know that Ka(y,Ok1) is lower semicontinuous on S\DH . Hence,
∫
Q(w, dy)Ka(y,Ok1) is a positive

lower semicontinuous on W which implies that its infimum on any compact subset of W is also positive. By
hypothesis, for all K compact subset of S, H(K) is a compact subset of W . So we have:

inf
x∈K

Ka (y,Ok1) ≥ a inf
w∈H(K)

∫
Q (w, dy)Ka (y,Ok1) = α > 0,

what replaced in (10) gives:

inf
x∈K

Ka∗a(x, dy) ≥ αδ1ψ(dy),

which proves that every compact subset K of S is petite. �

Theorem 3.8. Let P (x, dy) = Q(H(x), dy) be the transition kernel of a Quasi-Feller chain. Suppose that:

i) ∀x ∈ S, ( 1
n

∑n−1
k=0 P

k(x, dy))n∈N is tight;
ii) the chain is ψ-irreducible and supp{ψ} has a nonempty interior.

Then the chain is positive Harris recurrent.

Proof. Proposition 3.5 proves that we are under assumptions of Theorem 6.2.5 of [5]. Then, the result follows
from Theorem 9.2.2 of [5]. �

3.3. Applications

Example 3.9. Consider a ARCH model. Recall that µ denotes the distribution of ε0. Let suppose:

i) µ ∼ λd;
ii) F and G are Riemann integrables;
iii) F , G et G∗ are bounded on compact sets;
iv) ∀x ∈ Rd,

(
1
n

∑n−1
k=0 P

k(x, dy)
)

n∈N

is tight.

Then the model is positive Harris recurrent.

Proof. For F and G are Riemann integrable, we have λd (DF,G) = 0, so the model is Quasi-Feller. The result
follows then from Theorem 3.8 for i) implies that the transition probability is λd-irreducible. �
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Example 3.10. Consider (Yt)t∈N a NAR-MS. Recall that µ denotes the distribution of ε0 and suppose that:
i) µ ∼ λd;
ii) the fk are Riemann integrables;
iii) ∀x ∈ Rd, ( 1

n

∑n−1
k=0 P

k(x, dy))n∈N is tight.

Then (Zt)t≥0 := (Xt, Y
′
t )′y≥0 is positive Harris.

Proof. For the fk are Riemann integrable, we have, for all k ∈ {1, · · · ,m}, λd (Dk) = 0, what proves that the
model is Quasi-Feller. Again, the result follows then from Theorem 3.8 for the transition probability of (Zt)t≥0

is a α⊗ λd-irreducible chain, where α is the measure on {1, · · · ,m} such that, for all k, α{k} = 1. �
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