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POINTWISE CONVERGENCE OF BOLTZMANN SOLUTIONS FOR GRAZING
COLLISIONS IN A MAXWELL GAS VIA A PROBABILITISTIC

INTERPRETATION

Hélène Guérin
1

Abstract. Using probabilistic tools, this work states a pointwise convergence of function solutions of
the 2-dimensional Boltzmann equation to the function solution of the Landau equation for Maxwellian
molecules when the collisions become grazing. To this aim, we use the results of Fournier (2000) on
the Malliavin calculus for the Boltzmann equation. Moreover, using the particle system introduced by
Guérin and Méléard (2003), some simulations of the solution of the Landau equation will be given.
This result is original and has not been obtained for the moment by analytical methods.
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1. Introduction

The Boltzmann equation [5, 6] describes the behaviour of particles in a rarefied gas. More precisely, it
describes in dimension 2 the behaviour of the density f(t, v, x) of particles having the velocity v ∈ R

2 at time
t ≥ 0 and at point x ∈ R

2. We consider in this work the spatially homogenous case, which means that the
density does not depend on the position x of particles. In 1936, Landau [19] derived from the Boltzmann
equation a new equation called the Fokker-Planck-Landau equation, usually considered as an approximation of
the homogeneous Boltzmann equation in the limit of grazing collisions. These equations take the form

∂f

∂t
= Q(f, f) (1.1)

where Q is a quadratic operator depending on the nature of the collisions. In this paper, we consider the case
of a Maxwell gas in dimension 2. Then the Boltzmann equation writes

∂f

∂t
= QB(f, f) (BE)
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with a collision operator QB given by

QB(f, f)(t, v) =
∫
v∗∈R2

∫ π

θ=−π
(f(t, v′)f(t, v′∗) − f(t, v)f(t, v∗))β (θ) dθdv∗

where v, v∗ are the pre-collisional velocities and v′, v′∗ the post-collisional velocities and where the cross-section
β is an even positive function from [−π, π]\{0} to R

+ such that
∫ π
−π θ

2β(θ)dθ <∞.
The relation between the post-collisional velocities and the pre-collisional velocities in dimension 2 is the

following
v′ = v +A(θ)(v − v∗) ; v′∗ = v −A(θ)(v − v∗)

with

A(θ) =
1
2

(
cos θ − 1 − sin θ

sin θ cos θ − 1

)
.

We are interested in cases for which the molecules in the gas interact according to an inverse power law in 1
ds

with s ≥ 2, where d is the distance between particles. Consequently, the function β has a singularity in 0 of the
form β(θ) ∼

θ→0
Cθ−

s+1
s−1 , with C a positive constant. We assume that

Assumption (A): β is an even positive function on [−π, π]\{0} of the form β = β0 + β1 such that
1) β1 is an even and positive function on [−π, π];

2) there exist k0 > 0, θ0 ∈ (0, π) and r ∈ (1, 3) such that β0 (θ) =
k0

|θ|r I[−θ0,θ0] (θ).

The second equation we consider is the Landau equation:

∂f

∂t
= QL(f, f) (LE)

with the collision operator QL defined by

QL (f, f) =
1
2

2∑
i,j=1

∂

∂vi

{∫
R2

dv∗aij (v − v∗)
[
f (t, v∗)

∂f

∂vj
(t, v) − f(t, v)

∂f

∂v∗j
(t, v∗)

]}

with a = (aij)1≤i,j≤2 a nonnegative symmetric matrix of the form in the Maxwell case

a (z) = Λ |z|2 Π(z) (1.2)

where Π (z) is the orthogonal projection on (z)⊥ and Λ is a positive constant precised below.
Many authors have been interested in proving rigorously the convergence of Boltzmann to Landau, in differ-

ent cases of scattering cross-section and initial data. Firstly Arsen’ev and Buryak [2] proved the convergence of
solutions of the Boltzmann equation towards solutions of the Landau equation under very restrictive assump-
tions. Desvillettes [8] gave a mathematical framework for more physical situations, but excluding the case of
Coulomb potential which has been studied by Degond and Lucquin [7]. Degond and Lucquin stated an asymp-
totic development of the Boltzmann kernel when the collisions become grazing. Then, Goudon [12] and Villani
[23] proved in two independent works the existence of a solution of the Landau equation for soft potentials using
the asymptotic of grazing collisions, with a bounded entropy and energy function as initial data. More recently,
Guérin and Méléard [16] proved the convergence of solutions of the Boltzmann equation to a solution of the
Landau equation for ‘moderately soft’ potentials with a probabilistic representation when the initial data is a
probability measure with a finite fourth-order moment. All those works prove an L1-weak convergence of the
solutions. Alexandre and Villani [1] stated in a recent work a strong convergence in Lp for some soft potentials
including the case of a Coulomb gas.
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The aim of this paper is to prove a pointwise convergence of function-solutions of the Boltzmann equation to
the function-solution of the Landau equation on R

2 for a Maxwell gas, which is unknown by analytical methods.
We recall that in the case of Maxwell molecules, there is uniqueness of the solution of the Landau equation (see
for example [15], Cor. 7). Fournier [10] and Guérin [15] proved respectively from probability measure solutions
the existence of weak function solutions of the Boltzmann equation and of the Landau equation when the initial
data is not a Dirac measure. To this aim, they used an efficient probabilistic tool: the Malliavin calculus for
processes with jumps in [10] and the Malliavin calculus for white noises in [15]. From the result of Guérin and
Méléard in [16] on the convergence of the probability measure solutions following the asymptotic of grazing
collisions, it seems to be natural to study the convergence of function solutions.

In the asymptotics of grazing collisions, we only consider collisions with an infinitesimal angle of deviation.
To this aim, we renormalize the cross-section β of the Boltzmann equation to concentrate on such collisions.
We use the approximation introduced by Desvillettes [8]: for any ε > 0, let βε be the function defined on
[−επ, επ] \{0} by

βε (θ) =
1
ε3
β

(
θ

ε

)
(1.3)

We notice that the mass of the function βε concentrates on the values of θ near 0 when ε tends to 0, i.e. when
the collisions become grazing, in the following sense:

for any θ0 > 0, βε (θ) −→
ε→0

0 uniformly on θ ≥ θ0 (1.4)

and
∫ επ

−επ
sin
(
θ

2

)2

βε (θ) dθ −→
ε→0

Λ (1.5)

where Λ = 1
2

∫ π
0
θ2β(θ)dθ > 0 is the constant appearing in the expression (1.2) of the matrix a. This asymp-

totic (1.3) is a particular case of the one introduced by Villani in [23], and used by Guérin and Méléard in [16].
We prove here the following theorem:

Theorem 1.1. Let β be an even function on [−π, π]\{0} satisfying Assumption (A). Assume that the initial
data P0 is a probability measure with finite moments of all orders and P0 is not a Dirac mass.

We define βε(θ) = ε−3β (θ/ε) and we denote by fε the function-solution of the Boltzmann equation (BE)
associated with the cross-section βε (obtained by Fournier in [10]). The function fε is of class C∞ on R

2 ([10],
Th. 3.2).

Then the sequence (fε(t, .))ε>0 is pointwise convergent on R
2 as ε tends to 0 for any t > 0 and the limiting

function f is the function-solution of the Landau equation. Moreover, f(t, .) is of class C∞ and there is pointwise
convergence of derivatives of any orders.

This theorem states a strong convergence result of solutions of the Boltzmann equation to the solution of
Landau equation for a Maxwell gas when the collisions become grazing. Goudon [12] and Villani [23] proved
L1 -weak convergence, but in the more general case of soft potentials and in dimension 3. It seems that their
methods can not give a stronger result.

Theorem 1.1 gives a new proof of the existence of regular function-solution for the Landau equation via a
probabilistic approach.

We have to restrict our study to the dimension 2 because of the nonregularity of the Boltzmann coefficients
in R

3 (see [11], Lem. 2.6). Fournier [10] built the functions fε using the Fourier transforms of the probability
measure solutions. Consequently, since the Boltzmann measure-solutions converge, it suffices to prove that their
Fourier transforms are uniformly bounded by integrable functions on R

2, when the collisions become grazing
to obtain the convergence of the function-solutions. The proof is based upon a careful study of the results of
Fournier [10] (the details of the proof are given in Sect. 4).

In the last part of this paper, we use the Monte-Carlo algorithm following the asymptotic of grazing collisions
developed by Guérin and Méléard in [16]. We firstly simulate the convergence of solutions of the Boltzmann
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equation to the solution of the Landau equation for a degenerate initial distribution, and then we observe the
behaviour in time of the solution of the Landau equation and of its entropy.

Notations

- DT will denote the Skorohod space D([0, T ],R2) of cadlag functions from [0, T ] into R
2.

- C2
b (R

2) is the space of real bounded functions of class C2 with bounded derivatives.
- M2 (R) is the set of matrices of order 2 × 2. The matrix A∗ is the adjoint of the matrix A and the

matrix I denotes the identity matrix in M2 (R).
- The bracket 〈., .〉 denotes the scalar product in R

2.

2. Some definitions

Let β be defined by Assumption (A) and βε be defined by (1.3). We define the Boltzmann equation (BEε)
associated with the cross-section βε:

∂f

∂t
= QBε(f, f) (BEε)

with

QBε(f, f)(t, v) =
∫
v∗∈R2

∫ π

θ=−π
(f(t, v′)f(t, v′∗) − f(t, v)f(t, v∗))βε (θ) dθdv∗.

The collision operators of the Boltzmann and the Landau equations preserve momentum and kinetic energy.
Equations of the form (1.1) have to be understood in a weak sense, i.e. f is a solution of the equation if for
any test functions φ,

d
dt

∫
R2
φ(v)f(t, v)dv =

∫
R2
φ(v)Q(f, f)(t, v)dv.

As detailed for example in [10], a standard integration by parts and a compensation due to the bad integrability
behaviour of βε yield to the definition of a function-solution of the Boltzmann equation:

Definition 2.1. Let ε > 0 be fixed. A function-solution of (BEε) is a function fε satisfying for any φ ∈ C2
b (R

2)
the equation

d
dt

∫
R2
fε(t, v)φ(v)dv =

∫
R2×R2

Kφ
βε (v, v∗) fε(t, v)dvfε(t, v∗)dv∗ (2.1)

where Kφ
βε is defined by

Kφ
βε (v, v∗) = −bε∇φ (v) . (v − v∗)

+
∫ επ

−επ

(
φ (v +A (θ) (v − v∗)) − φ (v) −A (θ) (v − v∗) .∇φ (v)

)
βε (θ) dθ (2.2)

with bε = 1
2

∫ επ
−επ(1 − cos θ)βε(θ)dθ.

Using the conservation of the mass in (2.1), we introduce a definition of probability measure solutions
of (BEε):

Definition 2.2. Let ε > 0 be fixed. Let P0 be a probability measure with a finite 2-order moment. A measure
family (P εt )t≥0 is a measure-solution of (BEε) if it satisfies for any φ ∈ C2

b

(
R

2
)

∫
R2
φ(v)P εt (dv) =

∫
R2
φ(v)P0(dv) +

∫ t

0

∫
R2×R2

Kφ
βε (v, v∗)P εs (dv)P εs (dv∗) ds. (2.3)
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In the same way, we give the following definition of a function-solution for the Landau equation:

Definition 2.3. A function f is a function-solution of (LE) if f satisfies for each φ ∈ C2
b (R

2)

d
dt

∫
R2
f(t, v)φ (v) dv =

∫
R2×R2

Lφ (v, v∗) f(t, v)dvf (t, v∗) dv (2.4)

where Lφ is the Landau kernel defined on R
2 × R

2 by:

Lφ (v, v∗) =
1
2

2∑
i,j=1

∂2
ijφ (v) aij (v − v∗) +

2∑
i=1

∂iφ(v) bi (v − v∗)

with bi (z) =
2∑
j=1

∂jaij (z) = −Λzi.

We also state a definition of measure-solutions of (LE) as in Definition 2.2.
We notice that the Boltzmann kernel Kφ

βε is pointwise convergent on R
2 ×R

2 to the Landau kernel Lφ when
ε tends to 0 for any φ ∈ C2

b

(
R

2
)

(see for example [12] or [23]).

3. The convergence of the function-solutions

We give in this section the main idea of the proof of Theorem 1.1.
In all the following, P0 is assumed to be a probability measure with a finite two-order moment and β a

positive even function on [−π, π]\{0} satisfying Assumption (A).
In the probabilistic study of the Boltzmann equation, we consider in fact (2.3) as the evolution equation of

the family of the time marginals of a jump process. The distribution of this process will be solution of the
following nonlinear martingale problem:

Definition 3.1. Let ε > 0 be fixed. We say that a probability measure P ε on DT solves the nonlinear
martingale problem (MP ε) starting at P0 if for X the canonical process under P ε, the law of X0 is P0 and for
any φ ∈ C2

b

(
R

2
)
,

φ (Xt) − φ (X0) −
∫ t

0

∫
R2
Kφ
βε (Xs, v∗)P εs (dv∗) ds (3.1)

is a square-integrable martingale, where P εs is the marginal of P ε at time s.

Taking expectation in (3.1), we notice that if P ε is a solution of (MP ε),then (P εt )t≥0 is a measure-solution
of (BEε).

Fournier proved in [10] the existence of a solution P ε of (MP ε) for any ε > 0. Moreover, Guérin and Méléard
in [16] stated the tightness of the sequence (P ε)ε>0 when the collisions become grazing (ε → 0) in the more
general case of soft potentials and in dimension 3 (using the same arguments, the convergence theorem is still
true in dimension 2). In the particular case of Maxwellian molecules, there is convergence of the sequence
(P ε)ε>0 to the measure-solution of the Landau equation (LE) thanks to the uniqueness of this solution (see
[15], Cor. 7). We will use those results under the following form:

Theorem 3.2. Let βε = ε−3β (θ/ε). For any ε > 0, there exists a solution P ε of the martingale problem (MP ε).
Moreover, the sequence (P εt )ε>0 converges as ε goes to 0 to a distribution Pt which is the measure-solution of
the Landau equation.

Let us remark that to obtain a function-solution from a measure-solution (P εt )t≥0, it suffices to prove that
∀t > 0 P εt admits a density fε(t, .) with respect to the Lebesgue measure on R

2. Then the function fε satisfies
Definition 2.1. Fournier [10] stated the following theorem using the Malliavin calculus for processes with jumps:
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Theorem 3.3. Let ε ∈ (0, 1) be fixed. Assume that P0 is not a Dirac measure.
1) The Boltzmann equation (BEε) admits a function-solution fε with initial data P0.
2) If P0 belongs to Lp for any p ≥ 1, then for any t > 0, for any couple α = (α1, α2) ∈ N

2, there exists a
constant Cεt,α such that the following inequality holds for all ϕ ∈ C∞ (

R
2
)

with compact support

∣∣∣∣
∫

R2
∂αϕ (v)P εt (dv)

∣∣∣∣ ≤ Cεt,α ‖ϕ‖∞ (3.2)

where ∂α denotes the partial derivative ∂α1+α2

∂α1x1∂
α2x2

. Consequently, the function-solution fε is infinitely differ-
entiable on R

2 and is given by:

fε(t, v) =
1

4π2

∫
R2
P̂ εt (x) e−i<v,x>dx

where P̂ εt is the Fourier transform of P εt .

We want to state the convergence of the function-solutions fε of the Boltzmann equation (BEε) when the
grazing collisions prevail.

Thanks to the convergence of measure-solutions (P εt )t≥0 of the Boltzmann equation to the measure-solution

(Pt)t≥0 of the Landau equation (see Th. 3.2), the sequence
(
P̂ εt

)
ε>0

is pointwise convergent on R
2 to the Fourier

transform P̂t of Pt, for any t ≥ 0.
Approximating the functions ϕ(v) = ei<v,x> with x = (x1, x2) ∈ R

2, by compact support functions of class
C∞, we obtain from inequality (3.2) that ∀x ∈ R

2 and ∀α1, α2 ≥ 2

∣∣∣P̂ εt (x)
∣∣∣ ≤ inf

{
1,

Cεt,(α1,α2)

|x1|α1 |x2|α2

}
·

Thus if we prove that the constants Cεt,α are uniformly bounded in ε by a constant Ct,α for any α ∈ N
2, using the

Lebesgue theorem, we easily deduce that the function-solutions fε (t, v) (and its derivatives of any orders) of the
Boltzmann equation converge as ε goes to 0 to the function-solution f(t, v) =

∫
R2 P̂t(x) ei<v,x>dx (respectively,

its derivatives) of the Landau equation (obtained in [15]) for any v ∈ R
2 and t > 0. Consequently the theorem

will be proved.

4. The proof of Theorem 1.1

We assume from now without restriction that ε ∈ (0, 1/2].
To state that the constants Cεt,α appearing in (3.2) are uniformly bounded in ε, we have to study the proof

of Theorem 3.3. Fournier [10] proved the existence of function-solutions by the mean of a nonlinear stochastic
differential equation giving a pathwise version of the probabilistic interpretation.

4.1. The Pathwise approach

Let ε > 0 be fixed, P0 be a probability measure with a finite 2-order moment and β satisfy Assumption (A).
Let us consider two probability spaces to highlight the nonlinearity of the equation: the first one is the abstract
space (Ω,F , {Ft}t∈[0,T ], P ) and the second one is ([0, 1],B([0, 1]), dα). The processes on ([0, 1],B([0, 1]), dα) will
be called α-processes, the expectation under dα will be denoted by Eα and the laws by Lα.

On (Ω,F , P ) we consider a Poisson measure Nε (dθ, dα, dt) on [−π, π]× [0, 1]× [0, T ] with intensity measure
νε (dθ, dα, dt) = βε (θ) dθdαdt and with compensated measure Ñε (dθ, dα, dt).
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Theorem 4.1. (see [10], Th. 2.8) Let V0 be a random variable with distribution P0. There exists a couple of
processes (V ε,W ε) on Ω × [0, 1] satisfying the nonlinear stochastic differential equation (SDEε):

V εt = V0 +
∫ t

0

∫ 1

0

∫ επ

−επ
A(θ)(V ε

s− −W ε
s−(α))Ñε(ds, dα, dθ) − bε

∫ t

0

∫ 1

0

(
V εs− −W ε

s−(α)
)
dαds

with L (V ε) = Lα (W ε) = P ε.

Moreover E[ sup
0≤t≤T

|V εt |2] = Eα[ sup
0≤t≤T

|W ε
t |2] <∞. There is uniqueness in law of P ε.

Corollary 4.2. Thanks to Itô’s formula, the measure P ε is also a solution of the martingale problem (MP ε).
Consequently, (P εt )t≥0 is a measure-solution of the Boltzmann equation for Maxwellian molecules.

Moreover we easily prove (see [16], Sect. 3.3):

Lemma 4.3. Assume that V0 is a random vector in R
2 belonging to Lp for any p ≥ 1. Then for any T >

0, p ≥ 1, there exists a constant Kp independent of ε such that

E[ sup
0≤t≤T

|V εt |p] = Eα[ sup
0≤t≤T

|W ε
t |p] ≤ Kp. (4.1)

Using the Malliavin calculus for a stochastic differential equation driven by a Poisson process, Fournier [10]
proved that each time-marginal P εt satisfies (3.2) for any t > 0 and the coefficients Cεt,α depend on the Malliavin
derivatives of V ε. Consequently, to control Cεt,α we have to estimate the Malliavin’s derivatives.

4.2. Some recalls on the Malliavin calculus

The Malliavin calculus in the case of a stochastic differential equation driven by a Poisson process, also called
the stochastic calculus of variations, has been adapted to the case of the Boltzmann equation by Graham and
Méléard [13] and Fournier [10] from the arguments of Bichteler, Gravereaux and Jacod in [3] and [4].

Let us consider a fixed time interval [0, T ], T > 0. Let ε ∈ (0, 1
2

]
be fixed.

Let us explain the main idea of this framework. We build a perturbation replacing θ with θ+ < λ, vε >
in order to obtain a new family of random measures Nε

λ (for λ ∈ Λ, Λ being a neighborhood of 0 in R
2 and

vε a well-chosen predictable function from Ω × [0, T ] × [−εθ0, εθ0] × [0, 1] to R
2). Then, we build a family of

probability measures P ελ = Gελ,T .P
ε on Ω such that L ((V0, N

ε
λ) |P ελ) = L ((V0, N

ε) |P ε). By this way, we obtain

a perturbed process V ελ satisfying L
(
V ελ,t|P ελ

)
= L (V εt |P ε), and thus E

[
ϕ
(
V ελ,t

)
Gελ,t

]
= E [ϕ (V εt )], for any

Borel bounded function ϕ on R
2. Differentiating this equality at λ = 0, using an L2-differentiate of V ελ,t and

Gελ,t, we finally obtain an equality of the form

E [ϕ′ (V εt ) .DV εt ] = −E [ϕ (V εt )DGεt ]

which is the first step to satisfy inequality (3.2) of Theorem 3.3.
Consequently, the constant Cεt,α appearing in (3.2) depends on the moments of the derivatives of V εt , of

det−1(DV εt ) and of the derivatives of DGεt . Under some assumptions on the initial data P0, Fournier [10]
obtained estimates of those moments. Consequently, we still have to state that those moments are uniformly
bounded in ε to prove Theorem 1.1. The derivatives of V εt and DGεt depend strongly on the random function
vε introduced in the perturbation. The function vε used by Fournier in [10] does not allow to obtain uniform
bounds of the moments in ε ∈ (0, 1/2] (see Rem. 4.3). So, we consider another perturbation which we describe
now.
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4.3. The perturbation and the Malliavin derivatives

Let δε be a nonnegative even function on [−εθ0, εθ0] defined by

δε (θ) = c ε1−r |θ|r+1

(
1 − |θ|

εθ0

)
(4.2)

with c a constant independent of ε such that c ≤ [θr0 (θ0 + r + 2 + r2r−1
)]−1. We notice that

δε (θ) +
∣∣(δε)′ (θ)∣∣ < 1.

Let gε be a R
2-valued predictable function such that for any ω, t, α, ε, the map θ → gε (ω, t, θ, α) is of class C1

with ‖gε‖∞ + ‖gε′‖∞ ≤ 1 where gε′ is the derivative of gε with respect to θ.
We then define the random function vε on Ω × [0, T ]× [−εθ0, εθ0] × [0, 1] by

vε (ω, t, θ, α) = gε (ω, t, θ, α) δε (θ) . (4.3)

We denote by vε′ the derivative of vε with respect to θ.
Let Λ ⊂ B (0, 1) be a neighbourhood of 0 in R

2. For λ ∈ Λ, we consider the following perturbation

γε,λ (ω, t, θ, α) = θ + 〈λ, vε (ω, t, θ, α)〉 ·

We notice that the map θ 
−→ γε,λ (ω, t, θ, α) is an increasing bijection from [−εθ0, εθ0] into itself (for any ε ≤ 1
2

and |θ| ≤ εθ0, |vε′ (θ)| < 1 thanks to the choice of c).
Recalling that β = β1 + β0, the Poisson measure N split into N0 + N1, where N0 and N1 are independent

Poisson measures on [0, T ]× [0, 1]× [−π, π] with intensities ν0(dθ, dα, ds) = β0(θ)dθdαds and ν1(dθ, dα, ds) =
β1(θ)dθdαds respectively. We denote by Ñ0 and Ñ1 the associated compensated measures.

For λ ∈ Λ, we define Nε,λ
0 = γε,λ (Nε

0 ) the image measure of Nε
0 by the map γε,λ: if A ⊂ [0, T ] × [0, 1] ×

[−εθ0, εθ0] is a Borel set,

Nε,λ
0 (ω,A) =

∫ T

0

∫ 1

0

∫ εθ0

−εθ0
IA

(
s, γε,λ (ω, s, θ, α) , α

)
Nε

0 (ω, dθ, dα, ds) .

We consider the shift Sε,λ defined by

V0 ◦ Sε,λ (ω) = V0 (ω) , Nε
0 ◦ Sε,λ (ω) = Nε,λ

0 (ω) , and Nε
1 ◦ Sε,λ (ω) = Nε

1 (ω) .

Proposition 4.4. Let Gε,λ be the Doléans-Dade martingale:

Gε,λt = 1 +
∫ t

0

∫ 1

0

∫ εθ0

−εθ0
Gε,λs−

(
Y ε,λ (s, θ, α) − 1

)
Ñε

0 (dθ, dα, ds)

where Y ε,λ is the following predictable real valued function on Ω × [0, T ]× [−εθ0, εθ0] × [0, 1]

Y ε,λ (ω, s, θ, α) = (1 + 〈λ, vε′ (ω, t, θ, α)〉) β
ε
0

(
γε,λ (ω, t, θ, α)

)
βε0 (θ)

·

Then Gε,λt is positive for any t ∈ [0, T ].

Proof. Let us notice that ∣∣Y ε,λ (s, θ, α) − 1
∣∣ ≤ |λ| dε (θ)
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with dε (θ) = δε (θ) + |δε′ (θ)| + r2r−1 δ
ε(θ)
|θ| . According to Appendix (Lem. 6.2), dε ∈ ∩

p≥2
Lp (βε0 (θ) dθ) with

moments uniformly bounded in ε. Consequently, Gε,λ is well defined and if

M ε,λ
t = 1 +

∫ t

0

∫ 1

0

∫ επ

−επ

(
Y ε,λ (s, θ, α) − 1

)
Ñε

0 (dθ, dα, ds)

then (see Jacod and Shiryaev [18], p. 59),

Gε,λt = eM
ε,λ
t

∏
s≤t

(
1 + ∆M ε,λ

s

)
e−∆Mε,λ

s .

Moreover, since ε ≤ 1/2, for |θ| ≤ εθ0

∣∣Y ε,λ (s, θ, α) − 1
∣∣ ≤ dε (θ) ≤ 1

2
cθr0
[
θ0 + r + 2 + r2r−1

]
≤ 1/2

thanks to the choice of c (see (4.2)). Thus, the jumps of M ε,λ are greater than −1/2 which implies that Gε,λt
is positive.

�

Let P ε,λ be the probability measure defined by P ε,λ = Gε,λT .P ε. Using the Girsanov theorem for random
measures, we notice that P ε,λ ◦ (Sε,λ)−1 = P ε (for more details see [10], Prop. 3.7). We consider now the
perturbed process V ε,λ = V ε ◦ Sε,λ. Following Fournier [10], Section 3, and Appendix (Lem. 6.2), we notice
that V ε,λ and Gε,λ belong to Lp for any p ≥ 1 with bounded moments in ε, and they are differentiable at λ = 0.
We give the expressions of their derivatives:

- the derivative of Gε,λ at λ = 0 is the following random vector in R
2

DGεt =
∫ t

0

∫ 1

0

∫ εθ0

−εθ0

(
vε′ (s, θ, α) − r

vε (s, θ, α)
θ

)
Ñε

0 (dθ, dα, ds) ;

- the derivative of V εt is a 2 × 2 matrix which satisfies the equation

DV εt = −b
ε

2

∫ t

0

DV εs ds+
∫ t

0

∫ 1

0

∫ επ

−επ
A(θ)DV εs− Ñ

ε(dθ, dα, ds)

+
∫ t

0

∫ 1

0

∫ εθ0

−εθ0
A′(θ)(Vs− −Ws−(α))(vε(s, θ, α))∗Nε

0 (dθ, dα, ds) (4.4)

which can be also written
DV εt = M ε

t .H
ε
t (4.5)

where M ε is the following invertible Doléans-Dade martingale

M ε
t = I − bε

2

∫ t

0

M ε
sds+

∫ t

0

∫ 1

0

∫ επ

−επ
A (θ)M ε

s− Ñ
ε (dθ, dα, ds) (4.6)

and

Hε
t =

∫ t

0

∫ 1

0

∫ εθ0

−εθ0
(M ε

s−)−1 (I +A (θ))−1
A′ (θ) (V εs− −W ε

s− (α)) (vε (s, θ, α))∗Nε
0 (dθ, dα, ds) . (4.7)
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We want to state that the moments of the derivatives of V εt , of det−1(DV εt ) and of the derivatives of DGεt are
uniformly bounded in ε. We will just give here a detailed proof of the term det−1(DV εt ). We easily obtain the
bounds for the two other terms studying the construction of DGεt and of DV εt , using the definition (4.3) of vε

and the bounds given in Appendix (Lem. 6.2).
The derivatives of V εt and of DGεt depend strongly on vε. The choice of vε is important. The moments of

DGεt are uniformly bounded in ε, if there exists a positive constant K1 independent of ε such that

∫ εθ0

0

(
δε(θ) + |δε′(θ)| + r

δε(θ)
θ

)2

βε0(θ)dθ ≤ K1.

The moments of DV εt are uniformly bounded in ε, if there exists a positive constant K2 independent of ε such
that ∫ εθ0

0

δε(θ)βε0(θ)dθ ≤ K2.

Nevertheless, the integral
∫ εθ0
0 δε(θ)βε0(θ)dθ must not tend to 0 as ε goes to 0. If not, the variableDV εt converges

to 0 in L2 as ε tends to 0 (see Expression (4.4) of DV εt ) , and we have no hope to obtain uniform bounds for
the term det−1(DV εt ).

In the sequel, we will consider more precisely the perturbation vε defined by

vε (t, θ, α) = ḡ (V εs− −W ε
s− (α) ,M ε

s− , θ) δ
ε (θ)

with for any x ∈ R
2, y ∈ M2 (R)

ḡ (x, y, θ) = (A′ (θ)x)∗
(
(I +A (θ))−1

)∗ (
y−1

)∗
ζ (x, y, θ)

ζ (x, y, θ) = h (A′ (θ) x) k (I +A (θ)) k (y)

where δε is defined by (4.2) and the functions h and k satisfy the following assumptions:

- h is the function from R
2 to (0, 1] defined by h(x) =

(
1 + |x|2

)−1

;
- k is a function from M2 (R) to [0, 1] such that k (y) = 0 if and only if det y = 0 and such that the map

y 
−→
{ (

y−1
)∗
k (y) if det y �= 0

0 if det y = 0
(4.8)

is of class C∞
b from M2 (R) to itself.

Consequently, the process Hε introduced in (4.5) writes

Hε
t =

∫ t

0

∫ 1

0

∫ επ

−επ
(M ε

s−)−1 Γ (V εs− −W ε
s− (α) , θ)

[
(M ε

s−)−1
]∗

×ζ (V εs− −W ε
s− (α) ,M ε

s− , θ) δ
ε (θ)Nε

0 (dθ, dα, ds)

with for any x ∈ R
2,

Γ (x, θ) = (I +A (θ))−1 (A′ (θ)x) (A′ (θ)x)∗
(
(I +A (θ))−1

)∗
.

4.4. Study of det−1 (DV ε
t )

Since the derivative of V εt can be written as DV εt = M ε
t .H

ε
t for any t ≥ 0, we study independently the term

M ε
t and the term Hε

t .
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Theorem 4.5. Assume (A) and P0 ∈ ∩p<∞Lp. For every t ≥ 0, (detM ε
t )

−1 admits moments of all orders
uniformly in ε.

Proof. By [10] (Th. 3.20), M ε
t is invertible and its inverse (M ε

t )−1 satisfies the equation

(M ε
t )

−1 = I − bε

2

∫ t

0

(M ε
s )

−1 ds−
∫ t

0

∫ 1

0

∫ επ

−επ
(M ε

s−)−1 (I +A (θ))−1A (θ) Ñε (dθ, dα, ds)

+
∫ t

0

∫ 1

0

∫ επ

−επ
(M ε

s−)−1
A (θ) (I +A (θ))−1A (θ)βε (θ) dθdαds (4.9)

with

(I +A (θ))−1A (θ) =
sin θ

cos θ + 1

(
0 −1
1 0

)
and

A (θ) (I +A (θ))−1A (θ) =
1
2

sin θ
cos θ + 1

( − sin θ 1 − cos θ
cos θ − 1 − sin θ

)
.

Since
∫ π
0
θ2β (θ) dθ <∞, the sequence (bε)ε>0 is bounded.

We notice that, ∫ επ

−επ

( |sin θ|
cos θ + 1

)p
βε (θ) dθ = ε−2

∫ π

−π

( |sin εθ|
cos εθ + 1

)p
β (θ) dθ.

For any ε ∈ (0, 1
2 ], the function θ 
−→ |sin εθ|

cos εθ+1β (θ) is continuous on [−π, π] \ {0} and for ε small enough,
|sin εθ|

cos εθ+1 ≤ εθ.

Consequently, the sequence
(∫ ( |sin θ|

cos θ+1

)p
βε (θ) dθ

)
ε∈(0,1/2]

is bounded for any p ≥ 2.

Using the same arguments, we notice that the integrals

∫ επ

−επ

(
sin2 θ + |sin θ (1 − cos θ)|

cos θ + 1

)p
βε (θ) dθ = ε−2

∫ π

−π

(
sin2 εθ + |sin εθ (1 − cos εθ)|

cos εθ + 1

)p
β (θ) dθ

are uniformly bounded in ε, ε ∈ (0, 1
2 ], for any p ≥ 1.

Then, using usual estimates, Gronwall’s lemma in (4.9), we easily deduce that for any p ≥ 1, there exists a
constant Kp (independent of ε) such that ∀ε ∈ (0, 1

2 ],

E
[
(M ε

t )
−p] ≤ Kp.

Thus (detM ε
t )

−1 is uniformly bounded in ε in Lp for any t ≥ 0. �

Theorem 4.6. Assume that (A) is satisfied and V0 ∈ ∩
p≥1

Lp. For every t ≥ 0 (detHε
t )

−1 admits moments of

all orders uniformly in ε.

Lemma 4.7. The map (ε, t, Y ) 
−→ L (〈V εt , Y 〉) is weakly continuous on
[
0, 1

2

] × [0, T ] × {Y ∈ R
2 : |Y | = 1

}
where P 0

t = L (V 0
t

)
is the measure-solution of the Landau equation at time t.

Proof. Let (εn, tn, Yn) be a sequence such that (εn, tn, Yn) →
n→∞ (ε, t, Y ) in [0, 1

2 ] × [0, T ]× {Y ∈ R
2 : |Y | = 1

}
.

Let ψ ∈ C2
b (R) and we define ψY on R

2 of class C2
b by v 
−→ ψY (v) = ψ (〈v, Y 〉). We consider the sequence

dn = E
[
ψY (V εt ) − ψYn

(
V εn
tn

)]
.

We want to state that dn −→ 0 as n goes to +∞.
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Let
(
Z1, Z2

)
be the canonical process on DT × DT . Let us define P εn

tn = L (V εn
tn

)
.

If ε > 0: Since the family of time marginal
(
P εn
tn

)
n≥0

of the probability measure P εn is a solution of (2.3), we
notice that :

dn = E [ψY (V0) − ψYn (V0)] +
∫ t

tn

EP ε⊗P ε

[
KψY

βε

(
Z1
s , Z

2
s

)]
ds

+
∫ tn

0

(
EP ε⊗P ε

[
KψY

βε

(
Z1
s , Z

2
s

)]− EP εn⊗P εn

[
K
ψYn

βεn

(
Z1
s , Z

2
s

)])
ds

= An +Bn + Cn.

Since ψ is globally Lipschitz, obviously An tends to 0 as n goes to +∞.
We rewrite the term Cn under the form:

Cn =
∫ tn

0

(
EP ε⊗P ε

[
KψY

βε

(
Z1
s , Z

2
s

)]− EP εn⊗P εn

[
K
ψYn

βεn

(
Z1
s , Z

2
s

)])
ds

=
∫ tn

0

(
EP ε⊗P ε

[
KψY

βε

(
Z1
s , Z

2
s

)]− EP εn⊗P εn

[
KψY

βε

(
Z1
s , Z

2
s

)])
ds

+
∫ tn

0

EP εn⊗P εn

[
K
ψY −ψYn

βε

(
Z1
s , Z

2
s

)]
ds+

∫ tn

0

EP εn⊗P εn

[
K
ψYn

βε−βεn

(
Z1
s , Z

2
s

)]
ds.

We easily prove the convergence of the law P εn ⊗ P εn to P ε ⊗ P ε when n goes to +∞.
For any φ ∈ C2

b (R), ε > 0 fixed, the function (v, v∗) 
−→ Kφ
βε (v, v∗) is continuous and a simple computation

shows that for any v, v∗ ∈ R
2

∣∣∣Kφ
βε (v, v∗)

∣∣∣ ≤ C ‖φ′′‖∞
(∫

|θ|2βε (θ) dθ
)
|v − v∗|2 + |bε| ‖φ′‖∞ |v − v∗|. (4.10)

Using the bounds (4.1) of the moment of V ε, we deduce that Bn and Cn converge to 0 as n goes to +∞. So
dn → 0 when n tends to +∞.

Thus the function (ε, t, Y ) → L (〈V εt , Y 〉) is weakly continuous on (0, 1
2 ] × [0, T ]× {Y ∈ R

2 : |Y | = 1
}
.

If ε = 0: As
(
P εn
tn

)
n≥0

and
(
P 0
t

)
t≥0

are measure-solutions of the Boltzmann equation and of the Landau equation
respectively, we rewrite dn:

dn = E [ψY (V0) − ψYn (V0)] +
∫ t

tn

EP 0⊗P 0

[
LψY

(
Z1
s , Z

2
s

)]
ds

+
∫ tn

0

(
EP 0⊗P 0

[
LψY

(
Z1
s , Z

2
s

)]− EP εn⊗P εn

[
K
ψYn

βεn

(
Z1
s , Z

2
s

)])
ds

= A′
n +B′

n + C′
n.

As in the previous case, we divide the term C′
n into three parts

C′
n =

∫ tn

0

(
EP 0⊗P 0

[
LψY

(
Z1
s , Z

2
s

)]− EP εn⊗P εn

[
K
ψYn

βεn

(
Z1
s , Z

2
s

)])
ds

=
∫ tn

0

EP 0⊗P 0

[
LψY

(
Z1
s , Z

2
s

)−KψY

βεn

(
Z1
s , Z

2
s

)]
ds+

∫ tn

0

EP εn⊗P εn

[
K
ψY −ψYn

βεn

(
Z1
s , Z

2
s

)]
ds

+
∫ tn

0

(
EP 0⊗P 0

[
KψY

βεn

(
Z1
s , Z

2
s

)]− EP εn⊗P εn

[
KψY

βεn

(
Z1
s , Z

2
s

)])
ds.
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We notice that for any φ ∈ C2
b (R), v, v∗ ∈ R

2

Lφ (v, v∗) ≤ C
(‖φ′′‖∞ |v − v∗|2 + ‖φ′‖∞ |v − v∗|

)
.

Using the same arguments as above, the convergence of the Boltzmann kernel to the Landau kernel and the
convergence of measure-solutions of the Boltzmann equation to the measure solution of the Landau equation,
we obtain the convergence of dn to 0 as n→ +∞. Consequently, L (〈V εn

tn , Yn〉
) →
n→∞ L (〈V 0

t , Y 〉).
Finally, the map (ε, t, Y ) 
−→ L (〈V εt , Y 〉) is weakly continuous on [0, 1

2 ] × [0, T ]× {Y ∈ R
2 : |Y | = 1

}
. �

We now state a technical lemma of nondegeneracy of the law of V εt :

Lemma 4.8. Assume that (A) is satisfied, V0 ∈ ∩p<∞Lp and E [V0] = 0. Let t0 > 0 be fixed. There exists
η > 0, q > 0 and ξ > 0 (depending on t0) such that for any ε ∈ [0, 1

2 ], for any t ∈ [t0, T ] and for any X,Y ∈ R
2

with |Y | = 1,
P
(
〈V εt −X,Y 〉2 > η, |V εt |2 < ξ

)
> q

where L(V 0
t ) is the solution of the Landau equation at time t.

Proof. Fournier ([10], lem. 3.22) proved this lemma for any fixed ε ≥ 0. So we study step by step his proof to
state that η, q and ξ do not depend of ε.

Let us notice that it is enough to show that there exists η > 0, q > 0 such that for any t ∈ [t0, T ], for any
ε ≥ 0 and for any X,Y ∈ R

2 with |Y | = 1,

P
(〈V εt −X,Y 〉2 > η

)
> 2q.

Indeed, since supε≥0E
[
sup0≤t≤T |V εt |2

]
≤ K, using Bienayme-Tchebichev’s inequality, there exists ξ > 0 such

that P
(
|V εt |2 < ξ

)
> 1 − q and ξ does not depend of ε.

Step1. Let t ≥ t0, ε ≥ 0 and |Y | = 1 be fixed. The distribution of V εt admits a density with respect to
the Lebesgue measure, hence the distribution of 〈V εt , Y 〉 has a density on R. Using the conservation of the
momentum, we notice that E (〈V εt , Y 〉) = E (〈V0, Y 〉) = 0.

Consequently, there exists η (t, ε, Y ) > 0 and q (t, ε, Y ) > 0 such that

P
(
〈V εt , Y 〉 >

√
η (ε, t, Y )

)
> 2q (ε, t, Y ) and P

(
〈V εt , Y 〉 < −

√
η (ε, t, Y )

)
> 2q (ε, t, Y ) .

Step2. Using Lemma 4.7 and Portemanteau’s theorem, for any t ∈ [t0, T ], for any ε ∈ [0, 1
2

]
and Y ∈ R

2 with
|Y | = 1, there is a neighborhood V (ε, t, Y ) of (ε, t, Y ) such that for any (ε′, t′, Y ′) ∈ V (ε, t, Y )

P
(
〈V ε′t′ , Y ′〉 >

√
η (ε, t, Y )

)
> 2q (ε, t, Y ) .

We consider a finite covering ∪Ni=1V (εi, ti, Yi) of the compact set [0, 1
2 ] × [t0, T ] × {Y ∈ R

2 : |Y | = 1
}
. If we

define η = infi≤N η (εi, ti, Yi) and q = infi≤N q (εi, ti, Yi), we notice that

P (〈V εt , Y 〉 > √
η) > 2q

for any (ε, t, Y ) ∈ [0, 1
2 ] × [t0, T ] × {Y ∈ R

2 : |Y | = 1
}
.

In the same way, P
(〈V εt , Y 〉 < −√

η
)
> 2q for any t ∈ [t0, T ] and Y ∈ R

2 with |Y | = 1.

Step3. Let X ∈ R
2, t ∈ [t0, T ], ε ≥ 0 and |Y | = 1 be fixed. If 〈X,Y 〉 ≤ 0,

P
(〈V εt −X,Y 〉2 > η

) ≥ P (〈V εt , Y 〉 > √
η) > 2q
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and if 〈X,Y 〉 > 0,
P
(〈V εt −X,Y 〉2 > η

) ≥ P (〈V εt , Y 〉 < −√
η) > 2q.

The lemma is proved. �

Proof of Theorem 4.6. We fix t0 > 0, and we prove the theorem for every t ≥ t0 which suffices.
We choose k such that k (y) = 1 as soon as |det y| ≥ d0 with d0 = inf |θ|≤θ0 |det (I + A (θ))| > 0. First of

all, we prove that (det (F εHε
t ))

−1 belongs to Lp uniformly in ε for any p ≥ 1 where F ε is the random variable
defined by

F ε = sup
s∈[0,T ]

{(
1 +

1
4

(
|V εs |2 + ξ

))
×
(
k (M ε

s−)
∥∥∥((M ε

s−)−1
)∗∥∥∥2

op

)−1
}

with
∥∥∥((M ε

s−
)−1
)∗∥∥∥2

op
the operator norm of

((
M ε
s−
)−1
)∗

and ξ defined by Lemma 4.8. To this aim, using

Lemma 6.1, we estimate the quantity for p ≥ 2

E = E

[∫
X∈R2

|X |p exp (−X∗F εHε
tX) dX

]

=
∫ ∞

ρ=0

∫
|Y |=1

ρpE
[
exp

(−ρ2F ε × Y ∗Hε
t Y
)]

dY dρ.

Thanks to Lemma 4.8, we can state (see the proof of [10], Th. 3.24) that for ρ > 0, t ≥ t0 and Y ∈ R
2 with

|Y | = 1,

E
[
exp

(−ρ2F ε × Y ∗Hε
t Y
)] ≤ exp

(
−q (t− t0)

∫ εθ0

0

(
1 − e−ηρ

2δε(θ)
)
βε0 (θ) dθ

)

with η independent of ε issue from Lemma 4.8. Thus, there exists a constant K > 0 (independent of ε) such
that for any p ≥ 1, t > t0 and ε > 0

E ≤ K

∫ ∞

0

ρp exp

(
−q (t− t0)

∫ εθ0

0

(
1 − e−ρ

2ηδε(θ)
)
βε0 (θ) dθ

)
dρ

Moreover, using Appendix Lemma 6.3, we can write

E ≤ K√
η

[∫ √
kε

0

ρp exp
(−K1ρ

2
)
dρ+

∫ +∞
√
kε

ρp exp
(
−K2ε

− 4
r+1 ρ2 r−1

r+1

)
dρ

]

where K1 = qC1 (t− t0), K2 = qC2 (t− t0) are positive constants independent of ε (with C1 and C2 constants
defined in Lem. 6.3), and kε = 2(r+2)θ

−(r+1)
0 ε−2/c.

In the following computations, we observe that the choice of the random function vε, and consequently of δε,
is really important. It is the main technical difficulty of the proof of Theorem 1.1.

Let us study the first term.
We notice that kε −→

ε→0
+∞, thus we can write for ε small enough

∫ √
kε

0

ρp exp
(−K1ρ

2
)
dρ ≤ 1 +

∫ √
kε

1

ρ2p+1 exp
(−K1ρ

2
)
dρ

≤ 1 +
∫ kε

1

ρp exp (−K1ρ) dρ

≤ CK1,p (1 + (kε)p exp (−K1 k
ε))
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with CK1,p a positive constant independent of ε. Consequently, this integral is uniformly bounded in ε,
ε ∈ (0, 1

2

]
.

Let us now study the second term

∫ +∞
√
kε

ρp exp
(
−K2ε

− 4
r+1 ρ2 r−1

r+1

)
dρ.

We notice that K2ε
− 4

r+1 −→ +∞ and kε −→ +∞ when ε tends to 0. Let us recall that r ∈ (1, 3), then for any
q ≥ 1, for any ε > 0, ρq exp

(
−K2ε

− 4
r+1 ρ2 r−1

r+1

)
−→ 0 as ρ goes to +∞. Consequently, there exists ε0 > 0 such

that for any ε < ε0, for any ρ >
√
kε,

ρp exp
(
−K2ε

− 4
r+1 ρ2 r−1

r+1

)
≤ ρ−2

and ∫ +∞
√
kε

ρp exp
(
−K2ε

− 4
r+1 ρ2 r−1

r+1

)
dρ ≤

∫ +∞
√
kε

ρ−2dρ ≤ (kε)−1/2

which implies that ∫ +∞
√
kε

ρp exp
(
−K2ε

− 4
r+1 ρ2 r−1

r+1

)
dρ −→

ε→0
0.

We then deduce that for any p ≥ 1 there exists Kp independent of ε such that

E

[∫
X∈R2

|X |p exp (−X∗F εHε
tX) dX

]
≤ Kp.

We conclude that for any t > t0, (detF εHε
t )

−1 =
(
(F ε)2 detHε

t

)−1

belongs to Lp uniformly in ε for any p ≥ 1.
Moreover, it is possible to choose k such that F ε ≤ F ε1 × F ε2 with

F ε1 = sup
[0,T ]

(
1 +

1
4
|V εs |2 +

ξ

4

)
and F ε2 = sup

[0,T ]

(
k (M ε

s )
∥∥∥((M ε

s )
−1
)∗∥∥∥2

op

)−1

.

The random variable F ε1 has moments of all orders independent of ε thanks to (4.1). From the definition (4.6)
of M ε, we easily prove that the moment of supt∈[0,T ] |M ε

t | are uniformly bounded in ε. So we obtain that F ε2
has the same property thanks to Theorem 4.5 and the following estimate (see the proof of [10], Th. 3.24),

F ε2 ≤ sup
[0,T ]

(
1 + |M ε

s |8
)
× sup

[0,T ]

∣∣∣(M ε
s )

−1
∣∣∣2 .

Thus, for any p ≥ 2, there exists Cp > 0 such that for any ε ∈ (0, 1
2 ],

E
[
|detHε

t |−p
]

= E
[
|F ε|2p × |det (F εHε

t )|−p
]

≤ E
[
|F ε|4p

] 1
2
E
[
|det (F εHε

t )|−2p
] 1

2

≤ Cp <∞.

The Theorem 4.6 is proved. �
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Consequently, according to Theorem 4.6 and Theorem 4.5, for any p ≥ 1 there exists a constant Cp such that
for any ε > 0

E[|det(DV εt )|−p] ≤ Cp.

Then, Theorem 1.1 on the convergence of the function-solutions is proved.

5. Some numerical results

Guérin and Méléard ([16], Sect. 4), built a Monte-Carlo algorithm of simulation by a conservative particle
method following the asymptotic of grazing collisions. In this section, we will use this algorithm to simulate
the convergence of the function-solutions of the Boltzmann equation to the function-solution of the Landau
equation. Moreover, we observe the behaviour in time of the entropy of the solution of the Landau equation
(even if our theorical result gives no proof on this behaviour).

Let us consider an initial measure
P0 =

1
2
(
δ(−1,1) + δ(1,−1)

)
and the following approximation βε of the grazing collisions

βε(θ) =
1

2πε3 sin( θ2ε)
2
Iε≤| θ

ε |≤π.

Let ε > 0 be fixed. We define
(
V ε,1n, ..., V ε,nn

)
the n-particles system in

(
R

2
)n introduced by Guérin and

Méléard [16] which is a (R2)n-valued pure-jump Markov process with generator defined for φ ∈ Cb((R2)n) by

1
n− 1

∑
1≤i,j≤n

∫ π

−π

1
2

(
φ (vn + ei.A(θ)(vi − vj) + ej.A(θ)(vj − vi)) − φ(vn)

)
βε(θ)dθ.

Here vn = (v1, ..., vn) denotes the generic point of (R2)n and ei : h ∈ R
2 
→ ei.h = (0, ..., 0, h, 0, ..., 0) ∈ (R2)n

with h at the i-th place.
In [16] (Th. 4.1), it is proved that the empirical measure µε = 1

n

∑n
i=1 δV ε,in on P (DT ) associated with the

system converges to the measure-solution P of the Landau equation when n tends to +∞ and ε tends to 0.
Then, for any φ ∈ Cb (DT ),

1
n

n∑
i=1

φ
(
V ε,in

) −→
n→+∞
ε→0

∫
R2
φ (v)P (dv) . (5.1)

Let us explain how we simulate the function-solution from the particle system.
Let t > 0 be fixed. Thanks to the convergence of the empirical measure µε, the function gε,nh1,h2

on R
2 defined

by

x = (x1, x2) 
−→ gε,nh1,h2
(x) =

1
nh1h2

n∑
i=1

Ix1<V
ε,in

t,1 ≤x1+h1
.Ix2<V

ε,in
t,2 ≤x2+h2

converges to Fh1,h2 (x) =
1

h1h2

∫ ∫
(x1,x1+h1]×(x2,x2+h2]

Pt (dv) as n → +∞ and ε → 0 for any step h1, h2 > 0.

Moreover, the function Fh1,h2 (x) is pointwise convergent to the density f (t, x) of the probability measure Pt
on R

2 when h1, h2 → 0. Thus, the function gε,nh1,h2
is an estimator of the function-solution f of the Landau

equation.
For the simulations, we consider 500 000 particles and we choose the step h1 = h2 = 0.1.

We first observe the behaviour of the entropy of the solution f of the Landau equation which is defined by

H(t) =
∫

R2
f(t, v) ln(f(t, v))dv.
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Figure 1. Evolution in 1/ε of the entropy Hε.

Figure 2. Evolution in time of the entropy H .

Replacing the density f with its estimator gε,nh1,h2
in the expression of H , we simulate the entropy Hε associated

with the Boltzmann equation and we observe in Figure 1. Its evolution in ε when t = 0.005.
We note that the entropy Hε converges when ε tends to 0 and the choice of ε = 0.1 seems to be reasonable

to describe the Landau behaviour.
From now, we fix ε = 0.1 and we observe in Figure 2. the decay in time of the entropy H of the solution of

the Landau equation (see [22]). We note that the entropy converge to −2.833 when t goes to infinity.
Villani proved in [22] the convergence the function-solution f of the Landau equation to a Maxwellian

function. This property is also satisfied by the solutions of the Boltzmann equation and the limited Maxwellian
function is the same for the Landau and the Boltzmann equations.
As the 2-order moments of f are given by the following expression (see [22], Sect. 2.)

∫
R2
vivjf(t, v)dv = (1 − e−8t)δij

∫
R2

|v|2
2
P0(dv) + e−8t

∫
R2
vivjP0(dv)

f converges to the following Maxwellian function when the time goes to infinity

M(v) =
1
2π

exp
(−|v|2

2

)
·
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We notice that the entropy associated to M is equal to −1 − ln(2π) ≈ 2.838 which is approximately the limit
value obtained in Figure 2.

6. Appendix

We first mention a useful lemma proved in [3] (p. 92).

Lemma 6.1. For any p ≥ 1, there exists a constant Cp such that for any 2 × 2 symmetric positive matrix A,

(detA)−p ≤ Cp

∫
X∈R2

|X |4p−2 e−X
∗AXdX.

Let us now give some estimates on the function δε introduced in (4.3) and defined on [−εθ0, εθ0] by

δε (θ) = cε1−r |θ|r+1

(
1 − |θ|

εθ0

)

with c ≤ [θr0 (r2r−1 + r + 2 + θ0
)]−1.

Lemma 6.2. Assume that ε ∈ (0, 1
2

]
. - δε ∈ ∩

p≥1
Lp (βε0 (θ) dθ) with moments uniformly bounded in ε.

- Let dε (θ) = δε (θ) +
∣∣(δε)′ (θ)∣∣ + r2r−1 δ

ε(θ)
|θ| . Then dε ∈ ∩

p≥2
Lp (βε0 (θ) dθ) with moments uniformly

bounded in ε.

Proof. Let us recall that βε0 (θ) = ε−3β0 (θ/ε) = k0ε
r−3 |θ|−r I|θ|≤εθ0 . Thanks to the choice of the constant c,

the function δε is bounded by 1. Then, it is enough to estimate its first moment:

∫ εθ0

0

δε (θ)βε0 (θ) dθ ≤ ck0ε
−2

∫ εθ0

0

θdθ ≤ ck0θ
2
0

2
·

Then the first point of the lemma is proved.
We notice that the function dε is also bounded by 1. So we just have to study the integral

∫ εθ0
0

(dε (θ))2 βε0 (θ) dθ.
The function dε is the sum of three terms. We already know that

∫ εθ0
0 (δε (θ))2 βε0 (θ) dθ is uniformly bounded

in ε. We estimate now the two other terms:
- Study of the second term:

(δε)′ (θ) =
c (r + 1)
εr−1

θr
(

1 − θ

εθ0

)
− c

εrθ0
θr+1 if θ ∈ [0, εθ0] .

Thus ∫ εθ0

0

(
(δε)′ (θ)

)2
βε0 (θ) dθ ≤ k0c

2ε−(r+1)

∫ εθ0

0

(
(r + 1) +

θ

εθ0

)2

θrdθ

≤ 2k0c
2θr+1

0

r2 + 4r + 4
r + 3

·

- Study of the third term:

∫ εθ0

0

(
δε (θ)
θ

)2

βε0 (θ) dθ ≤ c2k0ε
−(r+1)

∫ εθ0

0

θrdθ

≤ c2θr+1
0 k0

r + 1
·
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The lemma is proved.
�

Lemma 6.3. Let r ∈ (1, 3) and x > 0. Let kε = 2r+2θ
−(r+1)
0 ε−2/c.

a) For any x ≥ kε there exists a constant C1 > 0 independent of ε such that

∫ εθ0

0

(
1 − e−xδ

ε(θ)
)
βε0 (θ) dθ ≥ C1ε

− 4
r+1 x

r−1
r+1 .

b) For any x ≤ kε there exists a constant C2 > 0 independent of ε such that

∫ εθ0

0

(
1 − e−xδ

ε(θ)
)
βε0 (θ) dθ ≥ C2x.

Proof. Since βε0 (θ) = k0ε
r−3 |θ|−r I|θ|≤εθ0 , we write

I (ε, x) =
∫ εθ0

0

(
1 − e−xδ

ε(θ)
)
βε0 (θ) dθ = k0ε

r−3

∫ εθ0

0

(
1 − e−xδ

ε(θ)
)
θ−rdθ

≥ k0ε
r−3

∫ εθ0
2

0

(
1 − e−xδ̃

ε(θ)
)
θ−rdθ

with δ̃ε (θ) = c
2ε

1−rθr+1. We notice that kε = 1/δ̃ε( εθ02 ).
We use in the proof the following inequality:

if x ∈ [0, 1] , 1 − e−x ≥ x

2
·

a) The function δ̃ε is increasing and its inverse function is

(
δ̃ε
)−1

(y) =
(

2εr−1

c
y

)1/(r+1)

for y > 0.

If x ≥ 1/δ̃ε( εθ02 ), we notice that
(
δ̃ε
)−1 (

x−1
) ≤ εθ0

2 , thus

I (ε, x) ≥ k0ε
r−3

∫ (δ̃ε)−1(x−1)

0

(
1 − e−xδ̃

ε(θ)
)
θ−rdθ.

As δ̃ε is an increasing function, xδ̃ε (θ) ≤ 1 for any θ ∈
[
0,
(
δ̃ε
)−1 (

x−1
)]

. Thus, we conclude

I (ε, x) ≥ k0

2
εr−3x

∫ (δ̃ε)−1(x−1)

0

δ̃ε (θ) θ−rdθ

≥ k0c

4
ε−2x

∫ (δ̃ε)−1(x−1)

0

θdθ

≥ k0c

8

(
2
c

) 2
r+1

ε−
4

r+1x
r−1
r+1 .
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b) If x ≤ 1/δ̃ε( εθ02 ), then we have clearly xδ̃ε (θ) ≤ 1 and

I (ε, x) ≥ k0

2
εr−3x

∫ εθ0
2

0

δ̃ε (θ) θ−rdθ

≥ k0c

4
ε−2x

∫ εθ0
2

0

θdθ

≥ k0cθ
2
0

32
x.

�
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