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OPTIMISATION IN SPACE OF MEASURES AND OPTIMAL DESIGN

Ilya Molchanov1 and Sergei Zuyev2

Abstract. The paper develops an approach to optimal design problems based on application of ab-
stract optimisation principles in the space of measures. Various design criteria and constraints, such
as bounded density, fixed barycentre, fixed variance, etc. are treated in a unified manner providing a
universal variant of the Kiefer-Wolfowitz theorem and giving a full spectrum of optimality criteria for
particular cases. Incorporating the optimal design problems into conventional optimisation framework
makes it possible to use the whole arsenal of descent algorithms from the general optimisation litera-
ture for finding optimal designs. The corresponding steepest descent involves adding a signed measure
at every step and converges faster than the conventional sequential algorithms used to construct op-
timal designs. We study a new class of design problems when the observation points are distributed
according to a Poisson point process arising in the situation when the total control on the placement
of measurements is impossible.
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1. Introduction

The basic problem in the theory of linear optimal design concerns the best choice of design (or observation)
points in the following regression model:

yi =
k∑

j=1

βjfj(xi) + εi , i = 1, . . . , n , (1.1)

where x1, . . . , xn belong to a design space X (assumed to be a locally compact separable metric space), β =
(β1, . . . , βk) is a vector of unknown parameters, f(x) = (f1(x), . . . , fk(x)) is a row of linearly independent
functions on X and ε1, . . . , εn are independent identically distributed random variables with E εi = 0 and
Var(εi) = σ2. The theory of optimal experimental design addresses the problem of choosing the observation
points in order to achieve better properties of the least-squares estimator β̂.
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Since “exact” finite optimal designs are mostly difficult to compute, it is usual to describe a design in terms
of a measure µ, so that µ(dx) describes the frequency of taking x as an observation point. As a criterion
for optimality one may take, for instance, the so-called generalized variance, that is the determinant of the
covariance matrix ‖ cov(β̂i, β̂j)‖. Then it can be shown that the latter covariance matrix equals σ2M(µ)−1,
where

M(µ) =
∫

f(x)�f(x)µ(dx) (1.2)

is the so-called information matrix (see, e.g. [1] for details). The measure µ that minimizes detM−1(µ) over all
measures µ with a given total mass (usually over all probability measures) is called D-optimal design measure.
To create a convex optimisation criterion it is convenient to minimise Ψ(M) = − log(detM), which is a convex
functional on the space of matrices. Then any local minimum that is found will necessarily be global. In general,
a measure µ that provides a global minimum to a given differentiable functional Ψ(M(µ)) is called a Ψ-optimal
design measure.

The above optimisation problem is usually solved by first finding an optimal information matrix from the
class defined by all admissible design measures and afterwards by determining the corresponding design measure.
In other words, such methods of finding the optimal design break into the following two stages:

Ψ(M(µ))
Step I−→ M(µ)

Step II−→ µ . (1.3)

Step I concerns optimisation in the Euclidean space of dimension k(k + 1)/2, while Step II aims to identify the
measure by the obtained in the previous step information matrix.

However, the chain approach based on (1.3) cannot be easily adopted when the formulation of the problem
changes, e.g., when new constraints on µ appear. This usually calls for major changes in proofs, since a new
family of matrices has to be analysed at Step I of (1.3). Therefore, for each new type of constraint on µ both steps
in (1.3) have to be reworked, for example, as in [6] and [11], where various types of constraint are analysed.
Specific issues concerning optimal designs on general (not necessarily symmetric) experimental domains are
considered in [19].

Although the family of non-negative measures is not a linear space, many objective functionals can be
extended onto the linear space of signed measures as the definition (1.2) of the information matrix M(µ) applies
literally to signed measures. This allows us to treat the design problems described above as a special case of
the optimisation of functionals formally defined on signed measures but the solution constrained on the cone
of positive measures. This idea goes back to Fedorov and Hackl [11] who did not however explore the full
scope of the related abstract constraint optimisation problems. We show that the abstract setting incorporates
naturally many different optimal design problems and leads to new (apparently more efficient) steepest descent
algorithms for numerical computation of optimal designs. It is possible to specify the necessary conditions
for an optimal design measure for an arbitrary differentiable goal functional Ψ. If the latter is convex, then
such necessary conditions immediately become necessary and sufficient, as typically happens in the classical
D-optimality theory.

Furthermore, the suggested approach allows us to incorporate easily into the model various constraints on the
optimal design measure such as bounded density, fixed barycentre, fixed variance, etc. In a sense, the general
result given in Corollary 3.2 below provides a universal variant of the Kiefer-Wolfowitz theorem [16, 17] that
yields a full spectrum of particular optimality criteria.

It is worth also mentioning that the general optimality conditions of Theorem 2.1 are applicable to any differ-
entiable goal function rather than a function of the information matrix which is typical for a finite dimensional
space of response functions as in (1.1). For instance, infinite dimensional response spaces as in [25] can also
be treated in the same framework although a particular form of the optimality conditions will, of course, be
different from these given in Theorem 3.2. This is, however, out of scope of the present publication.

In this paper we consider only differentiable functionals and constraints, see [27] for a comprehensive dis-
cussion of non-differentiable cases. A natural approach to solving optimisation problems of that kind relies on
differentiation in linear spaces. Recall that the directional (or Gateaux ) derivative of a real-valued functional f
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in a Banach space E is defined by

Df(x)[v] = lim
t↓0

t−1(f(x + tv) − f(x)) , (1.4)

where v ∈ E is a direction (see, e.g. [15]). The functional f is said to have a Fréchet (or strong) derivative at
x ∈ E if

f(x + v) = f(x) + Df(x)[v] + o(‖v‖) as ‖v‖ → 0 ,

where D(f(x))[v] is a bounded linear continuous functional of v. In the design context f is a functional on the
space of measures, such as Ψ(M(µ)), and ‖ · ‖ is a norm defined for signed measures, e.g., the total variation
norm. If its Fréchet derivative exists, it is then written as DΨ(µ)[η].

Clearly, if µ is a probability measure, then µ+ tη as in (1.4) above is not necessarily a probability measure or
even a positive measure. Therefore, Ψ(µ+ tη) may loose a direct interpretation within the design framework for
an arbitrary signed measure η. To circumvent this difficulty, it is quite typical in the optimal design literature
to replace (1.4) by the following definition of the directional derivative:

D̃Ψ(µ)[η] = lim
t↓0

t−1(Ψ((1 − t)µ + tη) − Ψ(µ)) (1.5)

(see, e.g. [1, 24, 29, 37]). Now (1 − t)µ + tη is again a probability measure for t ∈ [0, 1] if both µ and η are
probability measures. This definition of the directional derivative is used to construct the steepest (with respect
to differential operator D̃) descent algorithms for finding optimal designs when it is not possible to obtain
analytical solutions, see [37]. However, steepest descent related to (1.5) differs from the true steepest descent
as defined by D in (1.4). Indeed, it is easy to see that

D̃Ψ(µ)[η] = DΨ(µ)[η − µ] .

Thus, the descent direction η̃∗ determined by minimizing D̃Ψ(µ)[η] over all η with the given norm is not the
true steepest descent direction η∗ obtained by minimizing DΨ(µ)[η]. This limitation was recognized in [31] as
unavoidable in view of the need to deal with the positiveness constraint on µ. Additional work is thus needed
to show that the descent in direction η̃∗ indeed converges to a minimum of the goal function. Convexity of the
goal function is usually assumed for that.

The true steepest descent method described in Section 5 emerges from our theoretical results on constrained
optimisation in the space of measures presented in Section 2. In contrast to the classical sequential algorithms
in the optimal design literature (see, e.g. [33–36]), that are widely used in the existing optimal design software,
we do not renormalise the obtained design measure on each step. Instead, the algorithm adds a signed measure
chosen so to minimise the Fréchet derivative of the goal function and to maintain the constraints, in particular,
the positivity and fixed total mass 1 of the measure. This extends the ideas of Atwood [2, 3], Fedorov [9],
Ford ([12], pp. 59–64) and Gaffke and Mathar [14] by incorporating the whole algorithm into the conventional
optimisation framework. Working on the linear space of signed measures rather than on the cone of positive
measures makes this algorithm just a special case of the general steepest descent algorithm known from the
optimisation literature. To establish its required convergence properties it is now sufficient to refer to the general
results for the steepest descent method. Theorem 3.2 provides an easily verifiable stopping rule for the descent
algorithm for various classes of design problems with multiple constraints.

The proposed descent method has a direct statistical bearing by reducing the calculation time and increasing
the precision of the solution, since at the final stage it reports correctly the support points of the optimal design
measure. Various constrained design problems can be naturally handled and so do not require individually
tailored treatments if the nature of constraints changes.

The structure of the paper is the following. In Section 2 we outline several concepts of abstract optimisation
for functionals defined on the cone of positive measures. Applications to optimal design are discussed in
Section 3. Section 4 introduces the so-called Poisson designs that appear if the design points are distributed
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according to a non-homogeneous Poisson point process. Finally, Section 5 is devoted to steepest descent type
algorithms stemming from our approach. While the corresponding algorithms were described in [21], here we
provide full derivations of optimal descent directions.

2. Optimisation in the space of signed measures

In this section we state first-order necessary conditions, for an extremum in constrained optimisation prob-
lems on the cone of positive measures. Let X be a locally compact separable metric space with its Borel
σ-algebra B. Further, M denotes the family of all non-negative finite measures on B; M̃ is the Banach space of
all signed measures on B with bounded total variation and equipped with the total variation norm (see, e.g. [8],
Sect. IV.2.16). The Jordan decomposition of a signed measure µ ∈ M̃ is denoted by

µ = µ+ − µ− ,

so that ‖µ‖ = µ+(X) + µ−(X) is the total variation of µ. Furthermore, µ|B is the restriction of a measure µ
onto a Borel set B, i.e.

µ|B( • ) = µ( • ∩ B) .

Let Y be a Banach space with dual space Y ∗, and let u·y be the canonical bilinear form defined for y ∈ Y and
u ∈ Y ∗. Often Y is the Euclidean space R

m and u·y is the conventional scalar product in R
m.

Consider the following optimisation problem:

Ψ(µ) → inf , µ ∈ A , H(µ) ∈ C , (2.1)

where A and C are closed convex subsets of M and Y , respectively, Ψ : M̃ → R and H : M̃ → Y are continuous
functions.

The following is the definition of Robinson’s regularity condition ([28], Th. 1) which, as shown in [38], guar-
antees the existence and boundedness of the Lagrange multipliers (see also [20] for the discussion of different
forms of the regularity condition).

Definition 2.1. A measure µ is called regular for Problem (2.1) if

0 ∈ core
{
H(µ) − C + DH(µ)[A − µ]

}
, (2.2)

where coreA is the set of all y ∈ A ⊂ Y such that y + ty1 ∈ A for all y1 ∈ Y and all sufficiently small positive
t. Here the ‘+’ (respectively, ‘−’) operation on sets designates all pairwise sums of (respectively differences
between) the points from the corresponding sets.

The family M of all non-negative measures is a cone in M̃ with a very rich boundary (in the topology
generated by the total variation norm) that coincides with the cone itself if X is non-countable. Indeed, it
suffices to subtract from µ an atom of a small mass located at a point where µ has no atom in order to obtain
a signed measure arbitrarily close to µ in the total variation norm.

Optimality conditions in (2.1) involving the derivative of Ψ typically refer to tangent cones drawn to A near
the feasible solution. Recall that the tangent cone TB(x) to a set B at a point x in a Banach space is defined
as the set of limits as t ↓ 0 for all convergent sequences {xt, t > 0} such that xt ∈ (B − x)/t for all t > 0.

The following theorem from [23] gives first-order necessary conditions for a minimum in Problem (2.1). Note
that no convexity of Ψ is assumed.

Theorem 2.1. Assume that both Ψ : M̃ → R and H : M̃ → Y are continuous on A and Fréchet differentiable at
a regular µ ∈ A such that H(µ) ∈ C. If µ is a local minimum in Problem (2.1), then for all η ∈ TA∩H−1(C)(µ)
one has

DΨ(µ)[η] ≥ 0 .
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Moreover, there exists (a Lagrange multiplier or a Kuhn-Tucker vector) u ∈ Y ∗ such that u·y ≥ 0 for every
y ∈ TC

(
H(µ)

)
, and, for the Lagrangian L(µ) = Ψ(µ) − u·H(µ), the following inequality holds:

DL(µ)[η] = DΨ(µ)[η] − u·DH(µ)[η] ≥ 0 for all η ∈ TA(µ) .

In order to apply Theorem 2.1 one has to characterize tangent cones in the space of measures. By [5] (Th. 3.1),
for a regular µ, differential DH(µ) is surjective on Y and one can incorporate the constraints as

TA∩H−1(C)(µ) = TA(µ) ∩ (
DH(µ)

)−1[
TC(H(µ))

]
.

Tangent cones to various families of measures are characterized in [22].

Remark 2.1. Although differentiability of Ψ implies its continuity in the total variation norm, often this is
not sufficient to deduce that Ψ attains its minimum at some measure µ, because many interesting families of
measures are not compact in the total variation norm. However, if Ψ is continuous in some other topology in
which the set of feasible measures is compact then Ψ does attain its minimum value. For instance, this will be
the case if Ψ is continuous in the weak topology and A is the family of measures {µ ∈ M : µ(X) ≤ Const} on
a compact X .

3. General equivalence theorem and examples

Most differentiable functionals of measures met in practice have derivatives which can be represented in the
integral form. Consider a common case of finitely many differentiable constraints of the equality and inequality
types: {

Hi(µ) = 0 , i = 1, . . . , m ;
Hj(µ) ≤ 0 , j = m + 1, . . . , l .

(3.1)

Here Y = Y ∗ = R
l, H = (H1, . . . , Hl) : M̃ → R

l, C = {0}m × (−∞, 0]l−m and u·y is the scalar product of
vectors u and y in R

l. Note that all integrals are over X unless specified otherwise. The following theorem
immediately follows from [22] (Th. 4.1).

Theorem 3.1. Let µ be a regular local minimum of Ψ(µ) over µ ∈ M subject to (3.1). Assume that Ψ and H
are continuous on M and Fréchet differentiable at µ and there exist measurable real-valued functions dΨ(x, µ)
and hi(x, µ), i = 1, . . . , l, such that for all η ∈ M̃

DΨ(µ)[η] =
∫

dΨ(x, µ)η(dx) and DH(µ)[η] =
∫

h(x, µ)η(dx) , (3.2)

where h = (h1, . . . , hl). Then there exists u = (u1, . . . , ul), where uj ≤ 0 (resp. uj = 0) for those j ∈
{m + 1, . . . , l} satisfying Hj(µ) = 0 (resp. Hj(µ) < 0), such that{

dΨ(x, µ) = u·h(x, µ) µ-almost everywhere,

dΨ(x, µ) ≥ u·h(x, µ) for all x ∈ X .
(3.3)

Optimal design problems can be naturally treated within the above described general framework of optimisation
of functionals defined on finite measures. Theorem 3.1 directly applies to functionals of measures typical in
the optimal design literature and under quite general constraints. Although we do not assume any convexity
assumptions on Ψ and work exclusively with necessary optimal conditions, convexity of Ψ immediately ensures
that necessary conditions become sufficient, as typically happens in [16].

The following result specialises Theorem 3.1 for functionals Ψ that effectively depend on the information
matrix. Recall that, given an objective function Ψ0 : R

k2 → R, a Ψ-optimal design measure µ minimizes
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Ψ(µ) = Ψ0(M(µ)) over all probability measures on X (or, more generally, over all measures with the fixed
total mass µ(X) = a). In most cases it is possible to extend the functional Ψ onto the family M̃ of all signed
measures, allowing for infinite values, whenever the information matrix becomes degenerated.

Let mij =
∫

fi(x)fj(x)µ(dx) denote the (i, j)-th entry of the information matrix M(µ). Similarly to [16], by
the chain rule,

DΨ(µ)[η] =
∑
i,j

∂Ψ0(M)
∂mij

(µ)Dmij(µ)[η] (3.4)

=
∑
i,j

∂Ψ0(M)
∂mij

(µ)
∫

fi(x)fj(x)η(dx)

=
∫

f(x)DΨ0(M)(µ)f�(x)η(dx) .

Theorem 3.2. Assume that (3.2) holds and µ is a regular Ψ-optimal design measure under constraints (3.1).
Then {

dΨ(x, µ) = u·h(x, µ) µ-almost everywhere,

dΨ(x, µ) ≥ u·h(x, µ) for all x ∈ X ,
(3.5)

for some u = (u1, . . . , uk) ∈ R
k with uj ≤ 0 for those j ∈ {m + 1, . . . , k} for which Hj(µ) = 0 and uj = 0 if

Hj(µ) < 0, where dΨ(x, µ) = f(x)DΨ0(M)(µ)f�(x) and

DΨ0(M)(µ) =
∥∥∥∥∂Ψ0(M)

∂mij

∥∥∥∥
ij

(µ) .

If Ψ is convex then (3.5) is equivalent to µ being Ψ-optimal.

Example 3.1. (D-optimal design) Let Ψ0(M) = − log detM . Then DΨ0(M)(µ) = −M−1(µ). The only
constraint H(µ) = µ(X) − a has the derivative h(x, µ) ≡ 1. Any measure is regular in this case, and
dΨ(x, µ) = −f(x)M−1(µ)f�(x) = −d(x, µ), so that Theorem 3.2 becomes the Kiefer-Wolfowitz characteri-
zation of D-optimal designs (since Ψ is convex).

An advantage of our approach is that one can easily incorporate additional constraints on the design measure.
The only change concerns the right-hand side of (3.5).

Example 3.2. (D-optimal design with fixed moments) Let X = R
d and assume that along with the constraint

on the total mass µ(X) = 1 we fix the expectation of µ, which is a vector m =
∫

xµ(dx). These constraints can
be written as H(µ) = (m, 0), where H(µ) is a (d+1)-dimensional vector function with the components Hi(µ) =∫

xiµ(dx) for i = 1, . . . , d and Hd+1(µ) = µ(X) − 1. Clearly, DH(µ)[η] =
∫

h(x, µ)η(dx) for h(x, µ) = (x, 1),
x ∈ R

d. By Theorem 3.1, if µ minimizes Ψ(µ) under the conditions H(µ) = (m, 0), then{
dΨ(x, µ) = v·x + u µ-almost everywhere,
dΨ(x, µ) ≥ v·x + u for all x ∈ X ,

for some v ∈ R
d. In other words, d(x, µ) is affine for µ-almost all x.

Assume in addition that the generalized variance of the design measure is fixed at a value z > 0. This
variance is defined as the determinant of the matrix

Gµ =
∥∥∥∥∫

xixjµ(dx) −
(∫

xiµ(dx)
)(∫

xjµ(dx)
)∥∥∥∥

i,j

.
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This change of the problem’s formulation manifests itself just in adding one more constraint Hd+2(µ) =
log(det Gµ) − log z = 0 to those imposed above. If we use the fact that the mean is fixed to m, the gradi-
ent of this additional constraint is equal to

g(x, m, µ) = x�G−1
µ x − x�G−1

µ m − m�G−1
µ x .

Then the first-order necessary condition becomes{
dΨ(x, µ) = v·x + u0 + u1g(x, m, µ) µ-almost everywhere,
dΨ(x, µ) ≥ v·x + u0 + u1g(x, m, µ) for all x ∈ X ,

for some u0, u1 ∈ R and v ∈ R
d. Note that g(x, m, µ) = x2 − 2xm for d = 1.

Example 3.3. (D-optimal designs with a limited total cost) Let h(x) determine the cost of taking an observation
at point x. If the total cost is bounded by C, then the design measure µ should, in addition to µ(X) = 1, satisfy
the constraint

∫
h(x)µ(dx) ≤ C. By Theorem 3.1, if µ provides a Ψ-optimal design under such constraints, then{

dΨ(x, µ) = u + vh(x) µ-almost everywhere,
dΨ(x, µ) ≤ u + vh(x) for all x ∈ X ,

for some u ∈ R and v ≤ 0 if
∫

h(x)µ(dx) = C and v = 0 if
∫

h(x)µ(dx) < C.

Since the function Ψ in the D-optimality problem is a convex function of µ, the above necessary conditions
become necessary and sufficient conditions, thus providing a full characterization of the optimal designs. It is
fairly easy to replace D-optimality with some other goal functional by calculating the corresponding derivative
and using the same approach to deal with the constraints.

Example 3.4. (D-optimal designs with bounded densities) As discussed in [6, 11], there are situations where
the design measures need to have (possibly, bounded) densities with respect to a fixed reference measure λ. In
our framework this corresponds to an optimisation problem in the space Mλ of measures absolutely continuous
with respect λ or in the space

M
C
λ =

{
µ ∈ Mλ : φµ(x) ≤ C

}
·

of measures whose Radon-Nikodym derivative φµ(x) = dµ
dλ (x) with respect to λ exists and is bounded by C.

Recall the definitions of essential extrema:

λ–ess-inf
B

f(x) = sup inf
E: λ(E)=0 B\E

f(x) , λ–ess-sup
B

f(x) = inf sup
E: λ(E)=0 B\E

f(x) .

The following result follows from [22] (Th. 5.1).

Theorem 3.3. Let µ be a regular local minimum of Ψ(µ) over µ ∈ A subject to (3.1). Assume that Ψ and H
are continuous on A and Fréchet differentiable at µ and there exist measurable real-valued functions dΨ(x, µ)
and hi(x, µ), i = 1, . . . , k, such that (3.2) holds. Then there exists u = (u1, . . . , uk) ∈ R

k, where uj ≤ 0 (resp.
uj = 0) for those j ∈ {m + 1, . . . , l} satisfying Hj(µ) = 0 (resp. Hj(µ) < 0), such that

(i) in the case A = Mλ one has{
dΨ(x, µ) − u·h(x) = 0 µ-almost everywhere,

λ–ess-inf
(
dΨ(x, µ) − u·h(x)

) ≥ 0 ;
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(ii) and in the case A = M
C
λ one has

dΨ(x, µ) − u·h(x) = 0 µ|{φµ<C}-almost everywhere ,

λ–ess-sup{φµ=C}
(
dΨ(x, µ) − u·h(x)

) ≤ 0 ,

λ–ess-inf{φµ<C}
(
dΨ(x, µ) − u·h(x)

) ≥ 0 .

Another characterization theorem for optimal designs with bounded densities was obtained in [27] (Th. 11.8)
in terms of the information matrix and under the only constraint on the total mass of µ, see also [10].

4. Poisson design

Every finite measure µ on X corresponds to a Poisson point process Π (with possibly multiple points) with
µ being its intensity measure. We treat each realization of Π as a counting measure, so that Π(B) equals the
number of the points in a Borel set B. Note that Π(B) follows a Poisson distribution with mean µ(B) and
Π(B1), . . . , Π(Bk) are mutually independent for disjoint B1, . . . , Bk. In what follows, Eµ denotes the expectation
with respect to the distribution of the Poisson process Π with intensity measure µ.

In this section we define a new class of design problems where the observation points are distributed according
to a Poisson point process Π, and one can control them only through the process’ intensity measure µ.

Such a situation is typical in bio-engineering experiments as described, for instance, in the paper [18]. Ex-
periments are carried out studying the repopulation rate of mice bearing cancer cells as a function of a number
of haematopoietic stem cells received through injection. The experimentator may vary the dilution of the liquid
derived from stem cells’ bearing material in a doze, but he cannot control the number of stem cells in it. As
even a small amount of cells is capable of repopulating a mouse, the interest is to keep the concentration of cells
so low that to have just a few cells per doze. Therefore the number of cells in a doze may be assumed to follow
Poisson distribution with the parameter proportional to the inverse of the dilution rate. The P -optimal design
is thus aims at identifying the set of dilutions in injected dozes and their corresponding frequencies in order to
achieve the minimum of the goal function which along with statistical properties of the estimator should also
include a very high cost of the specially elevated mouse should it dies as a result of the experiment.

In this case the fixed total number of points n is replaced by the constraint µ(X) = a on the fixed average
total number of points. Since Poisson process arises as a limit in various point process convergence and thinning
schemes, see [7] (Chap. 9), such a model naturally appears also when the locations of observations are subject
to errors or measurements may fail at some originally suggested design points.

Consider a general continuous functional Ψ that depends on counting measures and assesses the quality of
the standard least squares estimator β̂ in (1.1) obtained by choosing the points of Π as design points. Then it
is natural to choose µ that maximizes Eµ Ψ(Π) among all measures µ satisfying constraints (3.1). We will call
such µ a P-optimal design.

It is possible to find the derivative of Eµ Ψ(Π) with respect to µ by appealing to the following result proved
in [23]. Assume that

|Ψ(Π)| ≤ cΠ(X) for some c > 0 and all realisations of Π. (4.1)
Then f(µ) = Eµ Ψ(Π) is Fréchet differentiable and

Df(µ)[η] =
∫

dΨ(x, µ)η(dx) , (4.2)

where the gradient is given by
dΨ(x, µ) = Eµ[Ψ(Π + δx) − Ψ(Π)] . (4.3)

Note that dΨ(x, µ), called the expected first difference, is the expected increment of Ψ when a new point located
at x (or unit mass measure δx concentrated at x) is added to the realization Π.

Using (4.2), we may now apply Theorem 3.1 to arrive at the following result:
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Theorem 4.1. Let the function Ψ(Π) satisfy (4.1), and let µ provide a regular P-optimal design under con-
straints (3.1) satisfying (3.2). Then the expected first-order difference dΨ(x, µ) given by (4.3) satisfies (3.3). If
Ψ is convex, then (3.3) is also sufficient for µ to be a P-optimal design.

As an example, consider Ψ(Π) = det M(Π), where the random information matrix M(Π) is given by

M(Π) =
∫

f(x)�f(x)Π(dx) =
∑
xi∈Π

f�(xi)f(xi). (4.4)

Functional Ψ is convex. Indeed, the same arguments as in the standard D-optimal case are applicable here,
since the functional (− log detM) is convex on the family of information matrices. The exponential boundedness
condition (4.1) is satisfied if and only if all fj(·) are bounded on X .

For this particular functional Ψ, it appears that the P -optimal design coincides with the D-optimal design.
This is due to the fact that the Poisson process expectation and determinant of an information matrix commute:

Eµ det M(Π) = detEµ M(Π) = detM(µ) . (4.5)

The last equality follows from the Campbell theorem, see, e.g. ([7], p. 188):

Eµ M(Π) =
∫

f(x)�f(x)µ(dx) = M(µ).

To justify the first equality, we write the definition of the determinant in terms of the sum over all permutations
σ of k indexes

detM(Π) =
∑

σ

(−1)|σ|M1σ1 . . .Mkσk

=
∑

σ

(−1)|σ|
(∫

f1(x)fσ1(x)Π(dx)
)
×. . .×

(∫
fk(x)fσk

(x)Π(dx)
)

=
∑

σ

(−1)|σ|
∫

· · ·
∫

f1(x1)fσ1(x1) . . . fk(xk)fσk
(xk)Π(dx1) . . . Π(dxk)

=
∑

σ

(−1)|σ|
∑

x1,...,xk∈Π

f1(x1)fσ1(x1) . . . fk(x)fσk
(x)

=
∑

x1,...,xk∈Π

detΦ(x1, . . . , xk) , (4.6)

where Φ(x1, . . . , xk) is a k by k matrix with elements fi(xi)fj(xi) at the (i, j)th place and |σ| is the rank of
the permutation. Note that if xl = xm for some l �= m then the lth and mth rows in the matrix are identical
and thus its determinant vanishes. Therefore the last sum can only be taken over k-tuples of distinct points
x1, . . . , xk ∈ Π thus giving

EdetM(Π) = E
∑

x1,...,xk∈Π

�=
detΦ(x1, . . . , xk)

=
∫

· · ·
∫

detΦ(x1 . . . dxk)µ(dx1) . . . µ(dxk) .

The last equality reflects the total independence of the Poisson process points and can be found, e.g. in [30]
(p. 44). As the last expression has the same form as the third line in (4.6) (with µ in place of Π) then it is
simply detM(µ).
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Therefore the P -optimal design µ also maximizes detEµ M(Π) and thus is the D-optimal design for detM(µ).
This fact also allows for another non-asymptotic interpretation of a D-design measure: it is the optimal intensity
measure of the Poisson point process (with average total number of points equal to one) with the points of this
process chosen as the design points.

5. Gradient method for search of optimal design

Various descent algorithms are widely studied in the optimal design literature as they allow one to find the
optimal design numerically if the “exact” analytical solution is not feasible. The gradient descent method relies
on knowledge of the derivative of the objective function. We first consider the general set-up, which will be
specialized later for particular constraints and objective functionals. As before, it is assumed that Ψ(µ) is
Fréchet differentiable and its derivative is representable in the integral form (3.2).

The most basic method of the gradient descent type used in the optimal design suggests moving from µn

(the approximation on step n) to µn+1 = (1 − αn)µn + αnζn, where 0 < αn < 1 and ζn minimizes D̃Ψ(µ)[ζ]
over all probability measures ζ, see, e.g. [36]. It is easy to see that such ζn is concentrated at the points where
the corresponding gradient function dΨ(x, µ) is minimised. Rearranging the terms, we obtain

µn+1 = µn + αn(ζn − µn) . (5.1)

In this form the algorithm looks like a conventional descent algorithm that descends along the direction ηn =
αn(ζn − µn). In this particular case, the step size is ‖ηn‖ ≤ 2αn, and

η+
n = αnζn , η−

n = αnµn .

Such a choice of ηn ensures that µn +ηn remains a probability measure guaranteed by the fact that the negative
part of ηn is proportional to µn with αn < 1.

However, if one does not restrict the choice for the descent direction to measures with the negative part
proportional to µn, then it is possible to find a steeper descent direction than that given by (5.1). If the current
value µn = µ, then the “steepness” of the descent direction η is characterized by the directional derivative

DΨ(µ)[η] =
∫

dΨ(x, µ)η(dx) .

Then the true steepest descent direction must be chosen to minimise DΨ(µ)[η] over all signed measures η with
total variation ‖η‖ ≤ α = 2αn such that µ + αη is a non-negative measure satisfying all specified constraints.
For example, if the only constraint is that the total mass µ(X) = a, then η should deliver the zero total mass,
whence η(X) = 0.

A straightforward generalisation of a single constraint on the total mass is the case of several linear constraints
written in integral form:

Hi(µ) =
∫

hi(x)µ(dx) = ai , i = 0, 1, . . . , k , (5.2)

where H0(µ) = µ(X) = a = a0 is the fixed total mass condition and a1, . . . , ak are given real numbers. In vector
form, H(µ) =

∫
h(x)dµ = A, where H = (H0, . . . , Hk), h = (1, h1, . . . , hk) and A = (a, a1, . . . , ak).

For a µ ∈ M denote by Υµ the family of all signed measures η ∈ M̃ such that µ + η ∈ M and µ + η satisfies
the constraints (5.2). Further, ε denotes a positive constant that controls the size of the step. The following
result provides a characterization of the steepest direction. Recall that vectors w0, w1, . . . , wk are called affinely
independent if w1 − w0, . . . , wk − w0 are linearly independent.

Theorem 5.1. The minimum of DΨ(µ)[η] over all η ∈ Υµ with ‖η‖ ≤ ε is achieved on a signed measure
η such that η+ has at most k + 1 atoms and η− is representable as a convex combination

∑k+1
i=0 ti µ|Bi for
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some 0 ≤ ti ≤ 1,
∑k+1

i=0 ti = 1 and some measurable sets Bi, such that H(µ|Bi), i = 0, . . . , k + 1 are affinely
independent vectors.

Proof. Let η0 minimise DΨ(µ)[η] with respect to η and satisfy the required conditions. By [32] (Th. 2.1), there
exists a measure η+ with at most k + 1 atoms such that

H(η+) = H(η+
0 ) and DΨ(µ)[η+] = DΨ(µ)[η+

0 ] .

Next, the set Aµ = {ν ∈ M : µ − ν ∈ M} is a convex linearly compact subset of M and H is a linear map
from M to R

k+1. By [32] (Prop. 2.1) the extreme points of the set H = Aµ ∩ H−1(η−
0 ) are contained in the

convex combinations of the type
∑k+1

i=0 ti µ|Bi with affinely independent H(µ|Bi), i = 0, . . . , k + 1. Therefore,
the maximum of a linear functional DΨ(µ)[ν] over all ν ∈ H is attained at one of such measures which can
then be taken to replace η−

0 . Therefore, η+ − η− can be taken instead of η0 without changing the value of the
derivative DΨ(µ)[η]. �

Corollary 5.2. If the only constraint is µ(X) = a, then the minimum of DΨ(µ)[η] over all η ∈ Υµ with ‖η‖ ≤ ε
is achieved on a signed measure η such that η+ is the positive measure of total mass ε/2 concentrated on the
points of the global minima of dΨ(x, µ) and η− = µ|M(tε) + δµ|M(sε)\M(tε), where

M(p) = {x ∈ X : dΨ(x, µ) ≥ p} ,

and

tε = inf{p : µ(M(p)) < ε/2} ,

sε = sup{p : µ(M(p)) ≥ ε/2}·

The factor δ is chosen in such a way that µ(M(tε)) + δµ(M(sε) \ M(tε)) = ε/2.

Proof. By Theorem 5.1, we can search the optimal η among all signed measures with η+ concentrated at a
single point x0 and η− being the restriction of µ. This is equivalent to minimizing the integral

ε

2
dΨ(x0, µ) −

∫
B

dΨ(x, µ)µ(dx) .

The first term is minimised if x0 is a point of the set of global minima of dΨ(x, µ). To maximize the second
term over η = µ|B , the set B should consist of the points where dΨ(x, B) is as large as possible. Therefore, if
the decreasing function µ(M(p)) takes the value ε/2 for some p = tε, then tε = sε and η− = µ|M(tε) provides
the maximum. If µ(M(p)) is discontinuous at the point tε then µ|M(tε) has total mass smaller than ε/2 and the
rest of the mass is provided by δµ|M(sε)\M(tε), leading to η− = µ|M(tε) + δµ|M(sε)\M(tε). Both cases correspond
to form of η− given by Theorem 5.1 with t0 = 1, t1 = 0 in the first case and (1 − δ)µ|M(tε) + δµ|M(sε) in the
second. �

Remark 5.1. (Step length and line search)
1. As Corollary 5.2 determines the true steepest direction in the space of measures, it is possible to use a variety
of well-established procedures from optimisation theory in order to find the optimal step sizes. For example,
the Armijo method of choosing the step-length [26] may be used. All convergence results concerning gradient
descent algorithms are then applied literally to finding optimal designs.

2. It is interesting to note that, without constraint ‖η‖ ≤ ε on the total variation norm of the increment measure,
the steepest direction that preserves the total mass a is the measure η = aδx0 −µ, where x0 is a global minimum
point of dΨ(x, µ). The classical descent algorithm (5.1) based on the modified directional derivative (1.5) uses,
in fact, the scaled variant of this direction.
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3. On a discrete state space X , the descent along the steepest direction provided by Corollary 5.2 with a very
small step size ε is equivalent to the descent by Vertex Exchange Method (VEM) suggested in [4] as η− is
concentrated on a single atom being the point of global maximum of dΨ(x, µ) for such ε. Thus VEM uses the
scaled variant of the true steepest direction.

The necessary condition given in Theorem 3.1 can be used as a stopping rule for descent algorithms. For
instance, if µ is optimal in the problem with a fixed mass then dΨ(x, µ) is constant on the support of µ.
Therefore, the difference between the supremum of dΨ(x, µ) over the support of µ and the global infimum can
be used to indicate how close is µ to the solution.

On discrete design spaces, which are the only ones used in numerical methods, minimisation of DΨ(µ)[η]
over all signed measures η ∈ Υµ with ‖η‖ = ε becomes a linear programming problem of dimension equal to the
cardinality of X , see also [13]. Therefore, if the cardinality is large and/or in the presence of many constraints,
it might be computationally more effective to use an approximation to the exact steepest direction described
in [21]. An additional analysis is however necessary to ensure that the algorithm does converge to the minimal
solution.

The steepest descent method described above has been programmed in the SPLUS and R languages. For more
detailed discussion on the algorithms, numerical examples and codes, see [21].
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