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ON ASYMPTOTIC MINIMAXITY OF KERNEL-BASED TESTS ∗

Michael Ermakov1

Abstract. In the problem of signal detection in Gaussian white noise we show asymptotic minimaxity
of kernel-based tests. The test statistics equal L2-norms of kernel estimates. The sets of alternatives
are essentially nonparametric and are defined as the sets of all signals such that the L2-norms of signal
smoothed by the kernels exceed some constants ρε > 0. The constant ρε depends on the power ε of
noise and ρε → 0 as ε→ 0. Similar statements are proved also if an additional information on a signal
smoothness is given. By theorems on asymptotic equivalence of statistical experiments these results
are extended to the problems of testing nonparametric hypotheses on density and regression. The
exact asymptotically minimax lower bounds of type II error probabilities are pointed out for all these
settings. Similar results are also obtained for the problems of testing parametric hypotheses versus
nonparametric sets of alternatives.
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1. Introduction

Suppose we observe a random process Yε(t), t ∈ [0, 1], defined by a stochastic differential equation

dYε(t) = S(t)dt + εq(t)dw(t), ε > 0 (1.1)

where dw(t) is the standard Gaussian white noise and q(t), t ∈ [0, 1] is a weight function. The function S, called
a signal, is unknown. The problem is to test a hypothesis that the signal S(t) is absent, that is, S(t) = 0 for all
t ∈ [0, 1].

We could not test this hypothesis without a priori information of parametric or nonparametric type (see
Burnashev [5], Ermakov [12]). For nonparametric sets of alternatives a priori information is often given in
terms of assumptions on a signal smoothness (see Ingster and Suslina [22], Ermakov [6], Spokoiny [31]). Such a
setting can be considered as an analog of standard setting nonparametric estimation and obtained practically an
adequate development. The optimal rates of distinguishability of hypotheses were pointed out for nonparametric
sets of alternatives that can belong to a wide range of functional spaces (see Ingster and Suslina [22], Lepski
and Spokoiny [25], Guerre and Lavergne [14]). The asymptotically minimax tests have been found for the
nonparametric sets of alternatives in L2 (see Ermakov [6]) and lp (see Ingster [21]) spaces.
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maxity, kernel estimator.
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In nonparametric hypothesis testing the test statistics are often defined as the distances between the hypothe-
ses and estimator of nonparametric parameter. We have no usually any information on a signal smoothness,
such an information is not necessary in the problem of distinguishability of hypothesis and nonparametric sets of
alternatives (see Ermakov [12]) and it seems desirable to represent the sets of alternatives in a more evident form
depending also on distances between the hypotheses and alternatives, covering all possible alternatives. Thus
it seems natural to consider the testing nonparametric hypotheses from the distance positions and to develop
rigorous justification of this approach. From viewpoint of asymptotic minimaxity such an argumentation has
been developed in Ermakov [10,11] in the case of standard goodness-of-fit tests. These results are based on the
interpretation of test statistics of Kolmogorov, omega-square and chi-squared tests as the corresponding norms
or seminorms (in the case of chi-squared tests) Nn(F̂n−F0) depending on a difference of empirical distribution
function F̂n of independent sample X1, . . . , Xn and the distribution function F0 of hypothesis. The correspond-
ing norms or seminorms Nn are defined in the linear space generated by the differences of distribution functions.
The sets of alternatives are the sets of all distribution functions F such that Nn(F −F0) > ρn > 0 with ρn → 0
as n →∞. In this setting asymptotic minimaxity of tests statistics Nn(F̂n−F0) has been proved and asymptotic
behaviour of type II error probabilities has been studied. In the case of chi-squared tests we supposed that
the number of cells grows with increasing sample size. Note that this approach can be naturally considered as
a part of asymptotic theory of hypothesis testing on a value of functional (see Stein [32], Ermakov [8], Bickel
et al. [2]).

In paper similar statements will be obtained for the test statistics based on the kernel estimator (see Bickel
and Rosenblatt [1], Fan [13], Hart [19], Rayner and Best [29], Stute [33], Horowitz and Spokoiny [20] and
references therein)
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is a kernel estimator of signal with a kernel K and r(t), t ∈ [0, 1] is a weight function. We suppose that the support
of K is contained in [−1, 1], K(t) = K(−t) for all t ∈ (0, 1),

∫ 1

−1
K(t)dt = 1 and the function K is bounded. The

functions r(t), q(t) are supposed positive and continuous in [0, 1], 0 < c < r(t) < C < ∞, 0 < c < q(t) < C < ∞
for all t ∈ [0, 1].

The sets =ε,h of alternatives are as follows

=ε,h = =ε,h(ρε) = {S : T (h, S) > ρε(h) > 0, S ∈ L2(0, 1)}

=
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· (1.3)

The rates of convergence ρε = ρε(hε) → 0 and h = hε → 0 as ε → 0 will be defined later.
We also consider the sets of alternatives =ε,hε defined as the intersections of sets =ε,hε(ρε) with the balls in

Sobolev space.
It is easy to see that, in the case of alternative S,
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Thus the sets of alternatives are defined by the components of biases of test statistics T (h, Yε) caused by the
presence of signal.
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For any test L denote α(L) = E0(L) its type I error probability and β(L, S) = ES(1 − L) its type II error
probability for the alternative S ∈ =ε,h. For any set of alternatives =ε we put

βε(L) = βε(L,=ε) = sup{β(L, S) : S ∈ =ε}· (1.4)

We say a family of tests Uε with α(Uε) ≤ α, 0 < α < 1, ε > 0 is asymptotically minimax for the sets of
alternatives =ε, if for any family of tests Wε, α(Wε) ≤ α, it holds

lim inf
ε→0

(βε(Wε,=ε)− βε(Uε,=ε)) ≥ 0.

The test statistics Rε, ε > 0 generating the asymptotically minimax families of tests will be called asymptotically
minimax as well.

In paper we prove asymptotic minimaxity of kernel-based test statistics Tε(Yε) = T (hε, Yε) for the sets
of alternatives =ε,hε(ρε) and the intersections of sets =ε,hε(ρε) with the balls in Sobolev spaces. After that,
using the theory of asymptotic equivalence of nonparametric statistical experiments (see Brown and Low [4],
Nussbaum [27]) this statement is extended on the problems of hypothesis testing on regression and density. We
show that similar results can be also obtained if the hypotheses are parametric. Such statements are proved for
the problems of signal detection and hypothesis testing about density. We do not consider the same setting for
parametric regression in order to do not increase extremely the scope of paper. The sets alternatives =ε,hε(ρε)
are the largest sets =ε such that the hypothesis and alternatives Sε ∈ =ε are distinguishable if we apply the
test statistics T (hε, Yε). Thus we prove asymptotic minimaxity of test statistics T (hε, Yε) for the largest among
possible sets of alternatives. Moreover, it turns out, the lower bound of type II error probabilities is attained
for all families of alternatives Sε, ε > 0 such that T (hε, Sε) = ρε(1 + o(1)).

The asymptotic behaviour of kernel-based test statistics has been intensively studied in many papers (see
Konakov [24], Hall [16,17], Rayner and Best [29], Ghosh and Wei-Min Huang [15], Fan [13], Hart [19], Stute [33],
Horowitz and Spokoiny [20] and references therein). Thus the results on asymptotic minimaxity represent the
essential complement to the existing theory. We find the distance of hypothesis from the signal given in the
Gaussian noise and can analyse the type II error probabilities for all possible sets of alternatives defined in
terms of the same distance. The more detailed discussion of the role of asymptotic minimaxity in the distance
approach for testing nonparametric hypotheses one can find in Ermakov [11].

The reasonings in the paper are based on the same approach as in Ermakov [7]. In Ermakov [7] the sets of
alternatives were defined as the intersections of exteriors of balls and ellipsoid in L2. The requirement that the
signal belongs to ellipsoid was caused the smoothness assumptions. The problem was reduced to minimization of
variance of test statistics. The minimum of variance was attained on the intersection of boundaries of balls and
ellipsoid. Thus we got the minimization problem with two restrictions of quadratic type. In the present paper
the sets of alternatives =ε,hε(ρε) are interpreted as the exteriors of ellipsoids in L2(0, 1). As a consequence one
needs to solve the problem of variance minimization with only one restriction of quadratic type. At the same
time in the present paper the operator that set the restriction is not diagonal. This cause the main differences
in paper reasoning.

Note that, in the problems of signal detection with a given signal smoothness, asymptotically minimax test
statistics or statistics having optimal rates of distinguishability (see Ermakov [7], Ingster and Suslina [22]) are
often defined as seminorms Nε(Yε) of quadratic type. A simple analysis of the proofs in Ermakov [7] and Ingster
and Suslina [22] shows that these test statistics Nε(Yε) are asymptotically minimax or have optimal rates of
distinguishability for the more wider sets of alternatives {S : Nε(S) > ρε > 0, S ∈ L2(0, 1)} then in the setting
with a signal smoothness. Thus the results on signal detection with a given signal smoothness can be also
interpreted in terms of distance approach.

The asymptotic minimaxity of tests statistics T (hε, Yε) is proved for the sets of alternatives =ε,hε(ρε) having
two variable parameters hε and ρε. If ρε = ρε(hε) satisfies more strong restrictions as a function of hε we
prove asymptotic minimaxity of T (hε, Yε) for the more narrow sets. These sets of alternatives are defined as
intersections of =ε,hε(ρε) with the balls in Sobolev space.
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Remark 1.1. If we test the hypothesis S = S0, the test statistic T (h, Yε− S0) has the following modified form

T (h, Yε − S0) =
∫ 1

0

(∫ 1

0

Kh(t− s)dYε(s)−
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0
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)2

r(t)dt (1.5)
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)
.

The sets of alternatives are as follows
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}
·

(1.6)
In this setting the kernel-based tests have often another form

T̄ (h, Yε, S0) =
∫ 1

0

Ŝ2
h(t)r(t)dt =

∫ 1

0
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0

Kh(t− s)dYε(s)− S0(t)
)2

r(t)dt (1.7)

and it seems natural, for such tests, to define the sets of alternatives in another form

=̄ε,h(ρε, S0) =
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∫ 1

0
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0

Kh(t− s)S(s)ds− S0(t)
)2

r(t)dt > ρε(h) > 0, S ∈ L2(0, 1)

}
(1.8)

as well.
The test statistic T̄ (h, Yε, S0) contains additional bias term

E(T̄ (h, Yε, S0)− T (h, Yε − S0)) =
∫ 1

0

(∫ 1

0

Kh(t− s)S0(s)ds− S0(t)
)2

r(t)dt. (1.9)

Note that similar bias term ∫ 1

0
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Kh(t− s)S(s)ds− S(t)
)2

r(t)dt

caused the alternative is absent in test statistics T̄ (h, Yε, S0) and T (h, Yε − S0). Thus, using test statistics
T (h, Yε − S0), we simply delete the fast oscilating component both in hypothesis and alternatives. This is a
standard procedure. If we test the hypothesis versus sets of alternatives defined in terms of series of ortogonal
functions (see Ingster and Suslina [22], Lepskii and Spokoiny [25], Ermakov [7]), the tests statistics are also
based on the first Fourier coefficients and estimates of these coefficients. The Fourier coefficients of higher orders
are ignored both for the hypothesis and alternatives. Thus, using the test statistics T (h, Yε − S0) instead of
T̄ (h, Yε, S0), we follow the same reasons. If we could not make any serious conclusions about very fast oscilating
part of signal, we simply do not include this part in test statistics. The definition of sets of alternatives
=ε,h(ρε, S0) follows the same reasons as well. Note that the bias term (1.9) have often the order o(ρε(hε)) (see
Rem. 2.2.3) and is unessential in the problems of hypothesis testing. In this case both test statistics T (h, Yε−S0)
and T̄ (h, Yε, S0) are asymptotically minimax for both sets of alternatives =ε,h(ρε, S0) and =̄ε,h(ρε, S0).

Remark 1.2. The asymptotic minimaxity is proved for a wide classes of sets of alternatives defined by the
structure of kernel-based tests. All these sets of alternatives have the same optimal rates of distinguishability
if a priori information is given, that signal belongs to a ball W (β)(P0) in Sobolev space and hε � ε

4
4β+1 .

Moreover we show that T (hε, S − S0) � ||S − S0|| if S − S0 ∈ W (β)(P0) and hε � ε
4

4β+1 (see (2.8, 2.9)).
Thus such a wide class of sets of alternatives arises as the consequence of requirement: for given procedure to
enclose all distinguishable alternatives. Note that seminorm T (hε, S − S0) has a rather evident interpretation.
We compare the L2-norms for differences of smoothed signals of hypothesis and alternatives obliterating the
oscillations greater then hε.
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We use letter C as a generic notation for positive constants. We put Kh(t) = 1
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for i = 3, 4. If h = 1, the index h will be omitted, that is, K2,1 = K2, K4,1 = K4 and so on. Denote χ(A) the
indicator of an event A, [x] the whole part of x ∈ R1 and || · || – L2-norm in [0,1].

In paper the three settings are considered: the signal detection in Gaussian white noise, the hypothesis testing
on regression and density. It will be convenient to make use of similar or the same notation in the statements
and in the proofs of the related results.

2. Main results

The results on signal detection, testing hypotheses on nonparametric regression and density will be given in
three subsections.

2.1. Nonparametric signal detection

Define xα, 0 < α < 1, by the equation

α = 1− Φ(xα) =
1√
2π

∫ ∞

xα

exp
{
−x2

2

}
dx.

Denote

dε(h) =
ε2

h

∫ 1

0

r(t)dt

∫ 1

−1

K2(u)q2(t− uh)du,

σ2 = 2
∫ 2

−2

K2
2(v)dv

∫ 1

0

q4(t)r2(t)dt.

Hereafter we suppose that q(t) = 0 if t /∈ [0, 1].
Note that, if q(t) satisfies Hoelder condition: |q(t) − q(s)| < C|t − s|κ, κ > 1/2 for all t, s ∈ [0, 1], one can

make use of the more simple formula

dε(h) =
ε2

h

∫ 1

0

q2(t)r(t)dt

∫ 1

−1

K2(u)du
(
1 + o

(
h1/2

))
.

Theorem 2.1.1. Let ε2h
−1/2
ε → 0, hε → 0 as ε → 0 and

0 < lim inf
ε→0

ε−2ρε(hε)h1/2
ε ≤ lim sup

ε→0
ε−2ρε(hε)h1/2

ε < ∞. (2.1)

Then the family of kernel-based tests

Lε = χ
{
ε−2h1/2

ε σ−1(Tε(Yε)− dε(hε)) > xα

}

is asymptotically minimax for the sets of alternatives =ε,hε(ρε).
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It holds

βε,hε(Lε) = Φ

(
xα − h

1/2
ε ρε(hε)

ε2σ

)
(1 + o(1)) (2.2)

as ε → 0.
Moreover for each Sε ∈ L2(0, 1), ε > 0 such that T (hε, Sε) = ρε(hε)(1 + o(1)) it holds

βε,hε(Lε, Sε) = Φ

(
xα − h

1/2
ε ρε(hε)

ε2σ

)
(1 + o(1)) (2.3)

as ε → 0.

Remark 2.1.1. In the kernel estimation, to preserve the optimal rate of convergence (see Hardle [18]), a
modification of kernel estimator is often introduced near the boundary of interval [0,1]. The same problem can
arise in testing nonparametric hypotheses if a priori information on a signal smoothness is given. If we are not
interesting very seriously the signal behaviour near the boundary, one can use the test statistics

T̃ (h, Yε) =
∫ 1−h

h

(∫ 1

0

Kh(t− s)dYε

)2

r(t)dt

with the sets of alternatives
=̃ε,h = {S : T̃ (h, S) > ρε(h) > 0}·

For the test statistics T̃ (h, Yε) the similar statements of Theorem 2.1 holds. One needs only to replace the sets
of alternatives =ε,hε(ρε) by the sets =̃ε,hε(ρε) = {S : T̃ (h, S) > ρε(h) > 0} and dε(hε) by

d̃ε(hε) =
ε2

hε

∫ 1−hε

hε

r(t)dt

∫ 1

−1

K2(u)q2(t− uhε)du.

Similar modification of statements holds for the settings Theorems 2.2 and 2.3 as well.

Remark 2.1.2. As follows from (2.2) and (2.3) the lower bounds of type II error probabilities are attained for
all families of alternatives Sε, ε > 0 such that

0 < lim inf
ε→0

ε−2h1/2
ε T (hε, Sε) ≤ lim sup

ε→0
ε−2h1/2

ε T (hε, Sε) < ∞.

Thus the test statistics give “optimal distinguishability for all alternatives having a given distance from the
hypothesis in the sense of T 1/2(hε, S)-seminorm”. Note that the same situation takes place in the case of
chi-squared tests as well (see Ermakov [11]).

A similar statement is valid if a priori information on a signal smoothness is given that the signal S belongs
to a ball in Sobolev space

S ∈ W
(β)
2 (P0) =

{
S :
∫ 1

0

(S2(s) + (S(β)(s))2)ds < P0

}
·

Hereafter S(β) denotes β-derivative of S.
The sets of alternatives equal =ε,hε(ρε, β, P0) = =ε,hε(ρε) ∩W

(β)
2 (P0).

Make the following additional assumption:

A. There exists the bounded β-derivative K(β) of kernel K, that is, sups∈(−1,1) |K(β)(s)| < C < ∞ and
K(β)(−1) = K(β)(1) = 0, K(i)(−1) = K(i)(1) = 0 for all i, 0 ≤ i ≤ β. The function r(t) has bounded
β-derivatives on (0, 1).
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Denote

Cβ(K) =
∫ 1

−1

(K(β)(s))2ds

∫ 1

0

q2(t)r(t)dt.

Theorem 2.1.2. Let the assumptions of Theorem 2.1 be satisfied, let A hold and let

lim sup
ε→0

ρεh
−2β
ε Cβ(K) <

1
2
P0. (2.4)

Then the family of kernel-based tests Lε, ε > 0 is asymptotically minimax for the sets of alternatives =ε,hε(ρε, β, P0)
and

βε,hε(Lε) = βε,hε(Lε,=ε,hε(ρε, β, P0)) = Φ

(
xα − h

1/2
ε ρε(hε)

ε2σ

)
(1 + o(1)). (2.5)

As follows from (2.3) the lower bound in (2.5) is attained for each family of signals Sε ∈ W
(β)
2 (P0) such that

T (hε, Sε) = ρε(hε)(1 + o(1)).
By (2.1, 2.4) we get the following bounds for the rate of convergence hε and ρε to zero

lim sup
ε→0

ε2h−2β−1/2
ε < ∞ (2.6)

and
lim sup

ε→0
ε−

8β
4β+1 ρε > 0. (2.7)

The proof of Theorem 2.1.2 is similar to that of Theorem 2.1.1. It suffices to test only that the realizations of
random process generated by the Bayes a priori measures belongs to the ball W

(β)
2 (P0) in Sobolev space. A

similar statements can be obtained also for the balls in other functional spaces, using the same arguments and
the fact that, by (2.3), the corresponding lower bound is attained.

We say that the sets of alternatives =ε are distinguishable if, for each 0 < α < 1, there exists a family of
tests Uε, α(Uε) = α such that

lim inf
ε→0

βε,hε(Uε,=ε) < 1− α.

It follows from (2.1, 2.6, 2.7) that the optimal rate of distinguishability for the sets of alternatives =ε,hε(ρε, β, P0)
equals ε

8β
4β+1 . This rate is attained if hε � ε

4
4β+1 .

Define the sets
Q1(ρε, β, P0) =

{
S : S ∈ W

(β)
2 (P0), ||S||2 > ρε

}
·

Denote Q(ρε, β, P0) the set of all S ∈ Q1(ρε, β, P0) such that there exist β-derivatives S(β)(0) = 0 and S(β)(1) = 0
of S and S(0) = S(1) = S(i)(0) = S(i)(1) = 0 for all 0 < i ≤ [β].

Denote

K̂(ω) =
∫ ∞

−∞
K(t) exp{iωt}dt, Ŝ(ω) =

∫ ∞

−∞
S(t) exp{iωt}dt

the Fourier transforms of K(t) and S(t).
Suppose K̂(ω)|ω|−β → 0 as ω →∞. Suppose also that r(t) = 1 for all t ∈ (0, 1).
Denote ω0ε such that P0ω

−2β
0ε = ρεh

−2β
ε and denote ω0 = inf{ω : K̂(ω) = 0, ω > 0}.

We show that,
=ε,hε(ρε, β, P0) ⊂ Q1(ρε, β, P0) (2.8)

and, if ω0ε < ω0 − δ with δ > 0,
Q(ρε, β, P0) ⊂ =ε,hε(Cερε, β, P0) (2.9)

with Cε = |K̂(ω1ε)|−2(1 + o(1)) where ω1ε = arg infω{K̂(ω) = inf{K̂(u) : |u| < ω0ε}}.
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The optimal order of distinguishability for the sets of alternatives Q(ρε, β, P0) equals ε
8β

4β+1 (see Ingster and
Suslina [22], Ermakov [7]). Thus if hε � ε

4
4β+1 and ω0ε < ω0− δ with δ > 0, then the orders of distinguishability

coinside for the sets of alternatives =ε,hε(ρ1ε, β, P0) and Q(ρε, β, P0).
In hypothesis testing with a priori information on a signal smoothness the optimal rates of distinguishabil-

ity is often proved for the test statistics admitting the interpretation as seminorms in functional spaces (see
Ermakov [7], Ingster and Suslina [22]). Theorems 2.1.1, 2.1.2 and (2.8) show that, in this case, one can expect
asymptotic minimaxity of these tests statistics for essentially more wider sets of alternatives =ε(ρε) generated
by these seminorms. For such sets of alternatives we do not need to make any assumptions of smoothness type.
Moreover the statements of type (2.9) hold.

By Young inequality, we get Tε(S, hε) < ||S||2. This implies (2.8).
By Parseval identity, we get

Tε(S, hε) =
∫ ∞

−∞
|K̂(hεω)Ŝ(ω)|2dω,

∫ ∞

−∞
(S(β)(t))2dt =

∫ ∞

−∞
|ω|2β |Ŝ(ω)|2dω

and ||S|| = ||Ŝ||.
Hence, we get

inf{Tε(S, hε) : ||S||2 > ρε, S ∈ W
(β)
2 (P0), supp S ⊂ (0, 1)} ≥ inf

{∫ ∞

−∞
|K̂ (hεω) Ŝ(ω)|2dω : ||Ŝ||2 > ρε,

∫ ∞

−∞
|ω|2β|Ŝ(ω)|2dω < P0

}
+ o

(
h2β

ε

)
= |K̂(ω1ε)|2ρ2

ε + o
(
h2β

ε

)
. (2.10)

This implies (2.9).

Theorems 2.1.1 and 2.1.2 admit the interpretation from the confidence estimation viewpoint.
We say that the family of confidence sets Uε(Yε) with confidence coefficient 1 − α is =ε(ρε)-asymptotically

minimax if for any other confidence sets U1ε(Yε) with the same confidence coefficient 1− α

lim inf
ε→0

sup
S∈=ε(ρε)

(PS(S ∈ U1ε(Yε))− PS(S ∈ Uε(Yε))) ≥ 0

for each family ρε → 0 as ε → 0.
Define the confidence sets

Uε(hε, Yε, xα) = {S : Thε(Yε − S) ≤ xα, S ∈ L2(0, 1)}

with xα defined by the equation 1− Φ(xα) = α.

Theorem 2.1.3. Let the assumptions of Theorem 2.1.1 be satisfied. Then Uε(hε, Yε, xα) are =ε,hε(ρε)-asympto-
tically minimax confidence sets and Uε(hε, Yε, xα)∩W

(β)
2 (P0) are =ε,hε(ρε)∩W

(β)
2 (P0)-asymptotically minimax

confidence sets.

The proof is omitted. The reasoning are akin to the proof of similar statement on the relation of uniformly
most powerful tests and uniformly most accurate confidence intervals.

2.2. Testing hypotheses on nonparametric regression

We shall follow to the setting in Brown and Low [4].
Let H(·) be an increasing c.d.f. in [0, 1]. Let S(·) : [0, 1] → R1 and λ2(·) : [0, 1] → (0, 1) be measurable

functions.
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The independent random variables (xni, Yni), 1 ≤ i ≤ n are observed with

xni = H−1

(
i

n + 1

)

and
Yni = S(xni) + λ(xni)ξni, ξni ∼ N(0, 1).

Suppose the functions λ2(·) and H(·) are continuously differentiable and such that∣∣∣∣ d
dt

log λ(t)
∣∣∣∣ < C, 0 < c < p(t) .=

dH

dt
(t) < C, t ∈ [0, 1]. (2.11)

Denote q(t) = λ(t)p−1/2(t).
The problem is to test a hypothesis S(t) = S0(t), t ∈ [0, 1] for a given function S0(t), t ∈ [0, 1].
Let hn > 0, hn → 0 as n →∞ be a given sequence. Define the kernel-based test statistics

Tn(Yn) =
∫ 1

0

(
1
n

n∑
i=1

Khn(t− xni)Yni −
∫ 1

0

Khn(t− s)S0(s)ds

)2

r(t)dt

with Yn = {Yni}n
i=1.

Define the functional T̄n(S) = Tn(Sn) where Sn = {S(xni)}n
i=1.

We fix a sequence cn > 0, cn → 0 as n →∞ and denote

=n(hn, cn) =


S :

∫ 1

0

(
1
n

n∑
i=1

Khn(t− xni)S(xni)−
∫ 1

0

Khn(t− s)S(s)ds

)2

r(t)dt

< cn

∫ 1

0

(∫ 1

0

Khn(t− s)(S(s)− S0(s))ds

)2

r(t)dt, S ∈ L2(0, 1)

}
· (2.12)

The sets =nhn of alternatives equal

=nhn(ρn) = {S : T̄n(S) > ρn(hn) > 0, S ∈ =n(hn, cn)}

or
=nhn(ρn, β, P0) = =nhn(ρn) ∩W

(β)
2 (P0)

where

W
(β)
2 (P0) =

{
S :
∫ 1

0

(S(s)− S0(s))2 + (S(β)(s)− S
(β)
0 (s))2)ds < P0, S ∈ L2(0, 1)

}
·

Remark 2.2.1. We test a hypothesis using the discrete observations. Thus it seems natural to make some
assumptions on approximation properties of the following type

∫ 1

0

(
1
n

n∑
i=1

Khn(t− xni)S(xni)−
∫ 1

0

Khn(t− s)S(s)ds

)2

r(t)dt = o(ρn(hn))

if ∫ 1

0

(∫ 1

0

Khn(t− s)(S(s)− S0(s))ds

)2

r(t)dt = O(ρn(hn)).

The inequality in (2.12) can be interpreted as an extension of this assumption on the more distant alternatives.
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Assume as follows:

A1. There exists γ > 0 such that∫ ∞

−∞
(K(u1 − s)−K(u2 − s))2ds < C|u1 − u2|1+γ (2.13)

for all u1, u2 ∈ [0, 1].

A2. There exists κ > 1/2 such that

|S0(u1)− S0(u2)| < C|u1 − u2|κ

for all u1, u2 ∈ [0, 1].

Theorem 2.2. Assume A1, A2 and (2.3). Let the assumptions of Theorem 2.1.1 be satisfied with ε = n−1/2.
Let n−1h

−3/2−ω
n → 0 as n →∞ with ω > 0. Then the sequence of tests

Ln = χ
{

nh1/2
n σ−1(Tn(Yn)− dn(hn)) > xα

}
(2.14)

is asymptotically minimax for the sets of alternatives =nhn(ρn) and (2.2) holds.
The lower bound (2.2) is attained for any sequence Sn ∈ =(hn, cn) such that Tn(Sn) = ρn(hn), that is,

equation (2.3) holds.
Let A and (2.4) hold also. Then the sequence of tests Ln is asymptotically minimax for the sets of alternatives

=nhn(ρn, β, P0) and (2.2) holds with

βnhn(Ln) = βnhn(Ln,=(ρn, β, P0)).

Remark 2.2.2. The main goal of paper is to prove lower bounds of minimax type for the kernel-based tests and
to show that these lower bounds are principally attained. In some settings the assumptions are rather strong.
In theorems we pointed out that the asymptotic of type II error probabilities are the same for all sequences
of alternatives Sn having a given distance Tn(Sn) = ρn(hn). One can suppose that the statements of such a
type can be proved for essentially more wider assumptions and for essentially more wider classes of statistical
models. The proof of lower bounds are more difficult and can be considered as serious additional argument for
the analysis of kernel-based tests in distance terms.

Remark 2.2.3. The procedure of hypothesis testing is based on the comparison of kernel estimator with the
smoothed signal Khn ∗ S0. The smoothing may cause the losses of information about the signal S0. Such a
losses will be absent if

||S0||2 − ||Khn ∗ S0|| =
∫

(1− K̂2(hnω))Ŝ2
0(ω)dω = o(ρn) = o

(
h−1/2n−1

)
. (2.15)

Let K̂(ω) = 1− C|ω|γ(1 + o(1)) in some vicinity of ω = 0. Then

||S0||2 − ||Khn ∗ S0|| = Chγ
n

∫
|ω|γŜ2

0(ω)dω(1 + o(1)).

Thus it suffices to put hn = o(n−
2

1+2γ ) and (2.15) will be hold. If γ = 1, we get hn = o(n−2/3), ρn =
O(n−2/3), β = 1/4 and assumptions of Theorem 2.2 do not fulfilled. If γ = 2, we get hn = o(n−2/5), ρn =
O(n−4/5) and β = 1. Thus all the assumptions of Theorems 2.2 and Theorems 2.3, 3.2 given below are satisfied.
Therefore, if we apply the hypothesis testing procedure with hn � n−λ, λ > 2/5, we test the hypothesis versus
alternatives having more serious fluctuation then the signal S0.



KERNEL-BASED TESTS 289

Remark 2.2.4. The difference between the rates of consistent distinguishability n−
4β

4β+1 (or n−1h
−1/2
n ) in

testing nonparametric hypotheses and n−1/2 in testing parametric hypotheses is essentially smaller (n−
1

4β+1 )
then the corresponding difference (n−

1
2β+1 ) in estimation theory. If the sample size n ≤ 2000, the choice of

bandwidth O(n−
2

4β+1 ) for the smoothness parameter β ≥ 2 is approximately the same as in the testing with the
kernel-based tests of parametric hypotheses. Thus, for sufficiently smooth signals, there exists small difference
in interpretation of results of kernel-based procedure for parametric and nonparametric settings. The most
essential difference is that we get uniform estimates of distinguishability in terms of the sets =n,hn(ρn) for
nonparametric setting. If we want to test the hypothesis versus fast oscilating nonparametric sets of signals, the
definition of sets =n,hn(ρn) shows clearly the types of oscillations that can be distinguished. This is the signals
with oscillation width � 2hn or 3hn and the amplitude � ρn

3lσ2hn
where l is the number of oscillation peaks.

2.3. Nonparametric hypothesis testing on a density

Let X1, . . . , Xn be i.i.d.r.v.’s with c.d.f. F (x), x ∈ [0, 1]. The problem is to test a hypothesis F (x) =
F0(x), x ∈ (0, 1), where F0 is a given c.d.f. We suppose F0(x) is absolutely continuous w.r.t. Lebesgue measure
and has the density f0(x) = dF0

dx (x), x ∈ (0, 1).
Denote F̂n the empirical c.d.f. of X1, . . . , Xn.
The kernel-based test statistics are defined as follows

Tn(F̂n) =
∫ 1

0

(
1
n

n∑
i=1

Khn(t−Xi)−
∫ 1

0

Khn(t− s)f0(s)ds

)2

r(t)dt

=
∫ 1

0

(∫ 1

0

Khn(t− s)d(F̂n(s)− F0(s))
)2

r(t)dt.

The functionals Tn defining the sets of alternatives equal

Tn(F ) .= Tn(F, F0)
.=
∫ 1

0

(∫ 1

0

Khn(t− s)d(F (s)− F0(s))
)2

r(t)dt.

Make the following assumptions:

B. The density f0 satisfies the Hoelder condition

|f0(x) − f0(y)| < C|x− y|κ, x, y ∈ [0, 1] (2.16)

with κ > 1/2 and f0(x) > c > 0 for all x ∈ [0, 1].

C.
|r(x) − r(y)| < C|x− y|κ1 for all x, y ∈ [0, 1] and κ1 >

1
2
· (2.17)

We fix values ζ > 1
2 and C > 0, c > 0 and define the set = = =(C, c, ζ) of all distribution functions such that

F (h) + 1− F (1− h) < Chζ (2.18)

for all 0 < h < c.
The sets of alternatives equal

=nhn = =nhn(ρn) = {F : Tn(F ) > ρn(hn) > 0, F ∈ =}

or
=nhn = =nhn(ρn, β, P0) = =nhn(ρn) ∩W

(β)
2 (P0)
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where

W
(β)
2 (P0) =

{
f :
∫ 1

0

(f(s)− f0(s))2 + (f (β)(s)− f
(β)
0 (s))2ds < P0, f(s) =

dF

ds
(s), F ∈ =

}
·

In what follows, we shall make use of the same notation as in the problem of signal detection putting ε = n−1/2

and q(t) = f
1/2
0 (t), t ∈ [0, 1]. In particular

dn(hn) .= dn(hn, f0)
.=

1
nhn

∫ 1

−1

K2(s)ds

∫ 1

0

r(t)f0(t)dt,

σ2 = σ2(f0) = 2
∫ 2

−2

(∫ 1

−1

K(u + v)K(u)du

)2

dv

∫ 1

0

f2
0 (t)r2(t)dt.

Theorem 2.3. Assume A1, B, C and let the assumptions of Theorem 2.1 be satisfied with ε = n−1/2. Let
n−1h

−3/2−ω
n → 0 as n →∞ with ω > 0. Then the sequence of tests

Ln = χ
{
nh1/2

n σ−1(Tn(F̂n)− dn(hn)) > xα

}
is asymptotically minimax and (2.2) holds.

Let A and (2.4) hold also. Then the sequence of tests Ln is asymptotically minimax for the sets of alternatives
=nhn(ρn, β, P0) and (2.2) holds with

βnhn(Ln) = βnhn(Ln,=(ρn, β, P0)).

Remark 2.3.1. The tests based on kernel estimators of density are usually treated as nonparametric tests for
testing hypothesis on a density. In this setting we apply these tests for a more wide sets of alternatives defined
on the sets of distribution functions.

Remark 2.3.2. The proofs of lower bounds in Theorems 2.2 and 2.3 are based on the statements about
asymptotic equivalence of statistical experiments (see Brown and Low [4], Nussbaum [27]). The problem of
hypothesis testing on a density is asymptotically equivalent to the problem of signal detection

dY (t) = f(t)dt +
1√
n

f
1/2
0 (t)dw(t)

in the Gaussian white noise with the weight function f
1/2
0 (t) (see Nussbaum [27]). Since our model (1.1) of

signal detection also contains the weight function q(t) we can apply the theorem on asymptotic equivalence of
statistical experiments putting q(t) = f

1/2
0 (t).

Remark 2.3.3. It is easy to see from the proof of Theorem 2.3 that the assumptions of theorem can be weaken.
In the definition of sets =nhn of alternatives the set = = =(ζ, C, c) can be replaced by the set of all distribution
functions. In such a setting the statement of Theorem 2.3 holds for the sequence of test statistics

T̂n(F̂n) = Tn(F̂n)−
∫ 1

0

r(t)dt

∫ 1

0

(
Khn(t− x)−

∫ 1

0

Khn(t− s)f0(s)ds

)2

dF̂n(x) (2.19)

generating the sequence of tests
L1n = χ(nh1/2

n σ−1T̂n(F̂n) > xα).
The last addendum in the right-hand side of (2.19) deletes the component of bias EF (Tn(F̂n)) having the order
greater then n−1h

−1/2
n = O((Var(Tn(F̂n)))1/2). Without deleting this term we need to estimate more accurately

the boundary effects in asymptotic of EF (Tn(F̂n)) and to assume (2.17, 2.18).
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3. Main results. Parametric hypothesis

We begin with the study of problem of signal detection.
Suppose we observe a random process Yε(t) defined by a stochastic differential equation (1.1) with an unknown

signal S(t). The problem is to test a parametric hypothesis S(t) = S(t, θ), θ ∈ Θ ⊂ Rl versus nonparametric
sets of alternatives

S ∈ =ε,hε(Θ) = =ε,hε(Θ, ρε) =

{
S : inf

θ∈Θ

∫ 1

0

(∫ 1

0

Khε(t− s)(S(s)− S(s, θ))ds

)2
r(t)dt > ρε(hε) > 0, S ∈ L2(0, 1)

}

or

S ∈ =ε,hε(Θ) = =ε,hε(Θ, ρε, β, P0) = =ε,hε(Θ, ρε) ∩W
(β)
2 (P0, Θ)

where

Wβ(P0, Θ) =
{

S :
∫ 1

0

(S(s)− S(s, θ))2 + (S(β)(s)− S(β)(s, θ))2ds < P0, with θ = θ̃(S) = argminθ Tε(S, θ)
}
·

Thus, in the case of sets of alternatives =ε,hε(Θ, ρε, β, P0), we assume that there exists β-derivative S(β)(s, θ) of
a signal S(s, θ), θ ∈ Θ and

∫ 1

0 ((S(β)(s, θ))2ds < ∞.
Suppose the set Θ is a closure of bounded open set in Rl.
Let θ̂ε be an estimator of unknown parameter θ ∈ Θ. Define the test statistics

Tε(Yε, θ̂ε) =
∫ 1

0

(
Ŝhε(t)−

∫ 1

0

Khε(t− s)S(s, θ̂ε)ds

)2

r(t)dt.

For any test U denote αθ = Eθ(U) its type I error probability for the hypothesis θ ∈ Θ. We put βε,hε(U) =
βε,hε(U,=ε,hε(Θ)) = sup{β(U, S) : S ∈ =ε,hε(Θ)}.

We say that a family of tests Uε, ε > 0, αθ(Uε) = Eθ(Uε) ≤ α > 0, θ ∈ Θ is uniformly asymptotically
minimax on the sets of alternatives =ε,hε(Θ) if the family of tests Uε is asymptotically minimax for each fixed
θ ∈ Θ in the problems of testing the simple hypothesis S(s) = S(s, θ) versus S ∈ =ε,hε(Θ).

For a wide class of estimators θ̂ε we prove that the test statistics Tε(Yε, θ̂ε) generates uniformly asymptotically
minimax families of tests.

Denote u′v the inner product of u, v ∈ Rl.
Assume as follows:

D1. For all θ1, θ2 ∈ Θ, θ1 6= θ2 ∫ 1

0

(S(s, θ1)− S(s, θ2))2ds 6= 0.

Suppose S(s, θ) is differentiable in θ ∈ Θ and denote Sθi(s, θ) = ∂S(s,θ)
∂θi

the partial derivatives of S(s, θ) for all
1 ≤ i ≤ l, s ∈ [0, 1], θ = (θ1, . . . , θl) ∈ Θ. Denote Sθ(s, θ) = {Sθi(s, θ)}l

i=1.

D2. There exists ω > 0 such that for all θ1, θ2 ∈ Θ

∫ 1

0

(S(s, θ2)− S(s, θ1)− (θ2 − θ1)′Sθ(s, θ1))2ds < C|θ2 − θ1|2+ω.

D3. Uniformly in θ ∈ Θ it holds
∫ 1

0 S2
θi

(s, θ)ds < C, 1 ≤ i ≤ l.
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D4. There exists a functional θ̄ : L2(0, 1) → Θ such that, θ̄(S(·, θ)) = θ for all θ ∈ Θ and for any δ > 0

PS(|θ̂ε − θ̄(S)| > δT 1/2
ε (S, θ̄(S))) = o(1)

PS

(
|θ̂ε − θ̄(S)|2+ω > δh1/2

ε Tε

(
S, θ̄(S)

))
= o(1)

uniformly in S ∈ L2(0, 1) as ε → 0.

D5. There exists λ1(δ) → 0 as δ → 0 such that for all θ ∈ Θ

sup{|S(s, θ)− S(t, θ)| : |t− s| < δ : t, s ∈ [0, 1]} < λ1(δ).

D6. There exists λ2(δ) → 0 as δ → 0 such that

sup
{∫ 1

0

|S(β)(s, θ1)− S(β)(s, θ2)|2ds : |θ1 − θ2| < δ, θ1, θ2 ∈ Θ
}

< λ2(δ).

Theorem 3.1. Assume D1–D5. Let ε2h
−1/2
ε → 0, hε → 0 as ε → 0 and (2.1) holds. Then the family of tests

Lε = χ(ε−2h1/2
ε σ−1(Tε(Yε, θ̂ε)− dε(hε)) > xα)

is uniformly asymptotically minimax for the sets of alternatives =ε,hε(Θ, ρε) and (2.2, 2.3) hold.
Let A, D6 and (2.4) hold also. Then the family of tests Lε is uniformly asymptotically minimax for the sets

of alternatives =ε,hε(Θ, ρε, β, P0) and (2.2) holds with βε,hε(Lε) = βε,hε(Lε,=ε,hε(Θ, ρε, β, P0)).

The problem of testing parametric hypotheses on a density versus nonparametric sets of alternatives will be
treated in the following setting. Let X1, . . . , Xn be i.i.d.r.v.’s with c.d.f. F (x), x ∈ [0, 1]. One needs to test a
hypothesis F = Fθ, θ ∈ Θ versus

F ∈ =nhn(Θ, ρn) = {F : inf{Tn(F, Fθ) : θ ∈ Θ} > ρn(hn), F ∈ =}·

Suppose that c.d.f.’s Fθ, θ ∈ Θ are absolutely continuous w.r.t. Lebesgue measure and have the densities
f(x, θ) = dFθ

dx (x), x ∈ (0, 1).
Let θ̂n be an estimator of θ. We shall test the hypothesis on the base of test statistics T̂n = Tn(F̂n, Fθ̂n

).
Make the following assumptions:

B1. There exists κ > 1/2 and C > 0 such that, for all θ ∈ Θ,

|f(x, θ)− f(y, θ)| < C|x− y|κ, x, y ∈ [0, 1].

B2. There exist C > c > 0 such that 0 < c < f(x, θ) < C < ∞ for all x ∈ [0, 1] and θ ∈ Θ.

E1. For all θ ∈ Θ it holds Fθ ∈ =.

E2. The assumptions D1–D3, D5 hold with S(s, θ) =
√

f(s, θ), θ ∈ Θ.

E3. For each c.d.f. F (x) ∈ = there exists θ̄(F ) ∈ Θ such that θ̄(Fθ) = θ for all θ ∈ Θ and for any δ > 0

PF (|θ̂n − θ̄(F )|2 > δTn(F, θ̃(F ))) = o(1)

uniformly in F ∈ =.
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Theorem 3.2. Assume A1, B1, B2, C, E1–E3 and (2.1). Let n−1h
−3/2−ω
n → 0 as n → ∞ with ω > 0. Then

the sequence of tests
Ln = χ{nh1/2

n σ−1(fθ̂n
)(Tn(F̂n, Fθ̂n

)− dn(hn, fθ̂n
)) > xα}

is uniformly asymptotically minimax and

βnhn(Ln) = sup
θ∈Θ

Φ
(
xα − nh1/2

n σ(fθ)ρn(hn)
)

(1 + o(1)) (3.1)

as n →∞.

We begin with the proof of Theorem 3.1. The proof of Theorem 2.1.1 is obtained by an easy modification of
these arguments.

4. Proof of Theorem 3.1

To simplify notation we suppose that θ is one dimensional parameter, θ ∈ Θ ⊂ R1.
First of all we study the asymptotic behaviour of test statistics T (Yε, θ̂ε) and prove the upper bound in (2.2).
Let S(s) ∈ =ε,hε(Θ) be a true value of a signal. We have

∫ 1

0

Khε(t− s)
(
dYε(s)− S

(
s, θ̂ε

)
ds
)

= g1hε(t) + g2hε(t) + ξε(t) (4.1)

with

g1hε(t) =
∫ 1

0

Khε(t− s)(S(s)− S(s, θ(S)))ds,

g2hε(t) =
∫ 1

0

Khε(t− s)(S(s, θ(S))− S(s, θ̂ε))ds,

ξε(t) = ε

∫ 1

0

Khε(t− s)q(s)dw(s).

Hence we get
T (Yε, θ̂ε) = I1ε + I2ε + I3ε + I4ε + I5ε + I6ε (4.2)

with

I1ε =
∫ 1

0

g2
1hε

(t)r(t)dt, I2ε = 2
∫ 1

0

g1hε(t)g2hε(t)r(t)dt, (4.3)

I3ε =
∫ 1

0

g2
2hε

(t)r(t)dt, I4ε = 2
∫ 1

0

g1hε(t)ξε(t)r(t)dt, (4.4)

I5ε = 2
∫ 1

0

g2hε(t)ξε(t)r(t)dt, I6ε =
∫ 1

0

ξ2
ε (t)r(t)dt. (4.5)

Since S(s) ∈ =ε,hε(Θ, ρε(hε)) we have
I1ε > ρε(hε). (4.6)

Note that for any function U ∈ L2(0, 1) it holds

∫ 1

0

r(t)
(∫ 1

0

Kh(t− s)U(s)ds

)2

dt ≤ Ch−2

∫ 1

0

(∫ t+h

t−h

|U(s)|ds

)2

dt (4.1)

≤ Ch−1

∫ 1

0

∫ t+h

t−h

U2(s)dsdt < C

∫ 1

0

U2(t)dt. (4.7)
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Denote

W (s) = S
(
s, θ̂ε

)
− S

(
s, θ̄(S)

)− (θ̂ε − θ̄(S)
)

Sθ

(
s, θ̄(S)

)
.

By (4.7), D2–D4, we get

I3ε < 2(θ̂ε − θ̄(S))2
∫ 1

0

r(t)
(∫ 1

0

Khε(t− s)Sθ(s, θ̄(S))ds

)2

dt

+ 2
∫ 1

0

r(t)
(∫ 1

0

Khε(t− s)W (s)ds

)2

dt ≤ C|θ̂ε − θ̄(S)|2. (4.8)

We have

E(I4ε) = 0. (4.9)

Define the operators K̄2,qh and K̄2,h with the kernels K2,qh(t1, t2) =
∫ 1

0
Kh(t1 − s)q2(s)Kh(t2 − s)ds and

K2,h(t1, t2) respectively. The operators K̄2,qh and K̄2,h are nonnegative. Since K̄2,qh < CK̄2,h and the kernel K
is bounded we get

Var(I4ε) = 4
∫ 1

0

r(t1)dt1

∫ 1

0

r(t2)dt2 g1hε(t1)g1hε(t2)E(ξε(t1)ξε(t2))

= 4ε2
∫ 1

0

r(t1)dt1

∫ 1

0

r(t2)dt2g1hε(t1)g1hε(t2)K2,qhε(t1, t2)

≤ Cε2I
1/2
1ε

(∫ 1

0

r(t1)dt1

(∫ 1

0

K2,hε(t1, t2)g1hε(t2)r(t2)dt2

)2
)1/2

≤ Cε2I
1/2
1ε

(∫ 1

0

r(t1)dt1

∫ 1

0

|K2,hε(t1, t2)|r(t2)dt2

∫ 1

0

|K2,hε(t1, t3)|g2
1hε

(t3)r(t3)dt3

)1/2

≤ Cε2I
1/2
1ε

(∫ 1

0

r(t1)dt1

∫ 1

0

|K2,hε(t1, t3)|g2
1hε

(t3)r(t3)dt3

)1/2

≤ Cε2I
1/2
1ε

(
h−1

ε

∫ 1

0

r(t1)dt1

∫ t1+2hε

t1−2hε

g2
1hε

(t3)r(t3)dt3

)1/2

≤ Cε2I1ε. (4.10)

By Schwartz inequality, we get

I2ε ≤ 2I
1/2
1ε I

1/2
3ε . (4.11)

We have

I2
5ε ≤ 2I2

51ε + 2I2
52ε (4.12)

with

I51ε
.= 2(θ̂ε − θ̄(S))Qε

.= 2(θ̂ε − θ̄(S))
∫ 1

0

ξε(t)r(t)dt

∫ 1

0

Khε(t− s)Sθ(s, θ̄(S))ds, (4.13)

I52ε = 2
∫ 1

0

r(t)ξε(t)dt

∫ 1

0

Khε(t− s)W (s)ds. (4.14)
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By (4.7), we get

EQ2
ε =

∫ 1

0

q2(s)
(∫ 1

0

Khε(s− t)r(t)
∫ 1

0

Khε(t− s1)Sθ(s1, θ̄(S))ds1dt

)2

ds

≤ C

∫ 1

0

q2(s)
(∫ 1

0

Khε(s− t)r(t)Sθ(t, θ̄(S))dt

)2

ds

≤ C

∫ 1

0

q2(s)r2(s)S2
θ (s, θ̄(S))ds ≤ C < ∞. (4.15)

By Schwartz inequality, we get
I52ε ≤ J51εJ52ε (4.16)

with

J2
51ε =

∫ 1

0

r(t)dt

(∫ 1

0

Khε(t− s)W (s)ds

)2

,

J2
52ε = I6ε =

∫ 1

0

r(t)ξ2
ε (t)dt.

By (4.7), D2, we get

J2
51ε ≤ C

∫ 1

0

r(t)W 2(t)dt ≤ C|θ̂ε − θ̄(S)|2+ω. (4.17)

Estimating similarly to (4.10), we get

E(J2
52ε) ≤ ε2

∫ 1

0

q2(s)K2,rhε(s, s)ds ≤ ε2h−1
ε (4.18)

with

K2,rhε(y1, y2) =
∫ 1

0

Khε(y1 − t)r(t)Khε(y2 − t)dt, y1, y2 ∈ [0, 1].

By (4.16–4.18), we get
I52ε ≤ εh−1/2

ε |θ̂ε − θ̄(S)|1+ω/2. (4.19)
By D4, (4.13–4.15, 4.19), we get

I2
5ε = OP

(
ε2h(ω−1)/2

ε

)
. (4.20)

By straightforward calculations, arguing similarly to Hall [16, 17], we get

E(I6ε) = dε(hε)(1 + O(hε)), (4.21)

Var(I6ε) = 2ε4
∫ 1

0

r(t1)dt1

∫ 1

0

r(t2)dt2K
2
2,qhε

(t1, t2). (4.22)

Putting t2 = t1 + vhε, s = t1 − uhε, we get

Var(I6ε) =2ε4
∫ 1

0

r(t1)dt1

∫ (1−t1)/hε

−t1/hε

r(t1 + vhε)

×
(∫ t1/hε

(t1−1)/hε

K(u)q2(t1 − uhε)K(u + v)du

)2

dv =
ε4σ2

hε
(1 + o(1)). (4.23)
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By D4 (4.6, 4.8–4.11, 4.20–4.23) together, we get that ε2h
−1/2
ε = O(I1ε) implies

I2ε + I3ε + I4ε + I5ε = oP (I1ε + I6ε − dε(hε)) (4.24)

as ε → 0.

Lemma 4.1. Let the assumptions of Theorem 3.1 be satisfied. Then the distributions of h
1/2
ε ε−2σ−1(I6ε(hε)−

dε(hε)) converge to the standard normal one.

By (4.6, 4.24) and Lemma 4.1 we get (2.2) and (2.3). The proof of Lemma 4.1 will be given later.

It remains to prove the lower bounds for the type II error probabilities in the problems of testing a simple
hypothesis S = S(θ0), θ0 ∈ Θ versus S ∈ =ε,hε(Θ, ρε(hε)).

The proof of lower bounds is based on the wellknown fact that the Bayes risk does not exceed the minimax
one. We fix δ > 0 and introduce the family of Gaussian probability measures µεδ which set by the random
processes

S̃(t) = S̃ε(t) = S(t, θ0) + τr1/2(t)
∫ 1

0

Khε(t− s)q(s)dw1(s)

where dw1(s), s ∈ (0, 1) is a Gaussian white noise and

τ2 = τ2
ε,δ = 2(1 + δ)ρε(hε)hεσ

−2.

The Bayes probability measure νεδ is defined as the conditional probability measure of S̃ under the condition
S̃ ∈ =ε,hε(Θ).

Lemma 4.2. It holds

((1 + δ)ρε(hε))−1

∫ 1

0

(∫ 1

0

Khε(t− s)(S̃(s)− S(s, θ0))ds

)2

r(t)dt → 1 (4.25)

and

((1 + δ)ρε(hε))−1 inf
θ∈Θ

∫ 1

0

(∫ 1

0

Khε(t− s)(S̃(s)− S(s, θ))ds

)2

r(t)dt → 1 (4.26)

in probability as ε → 0.
This implies

Pµεδ
(S̃ ∈ =εhε(Θ, ρε(hε))) = 1 + o(1) (4.27)

as ε → 0.

The proof of Lemma 4.2 will be given later.
Denote Ũε and Uε a posteriory Bayes likelihood ratios generated by a priori Bayes probability measures µεδ

and νεδ respectively. It is easy to see that (4.27) implies Ũε/Uε → 1 as ε → 0 in probability both in the case of
hypothesis and Bayes alternatives νεδ, µεδ. This allows us to replace a priori Bayes probability measures νεδ by
a priori Bayes probability measure µεδ in the further arguments. Therefore, for the proof of theorem, it suffices
to find the representation of Bayes test statistic Dεδ(Yε) corresponding to a priori probability measure µεδ in a
simple form and to show that, for the tests Uεδ generated by the test statistics Dεδ(Yε), it holds

lim
δ→0

lim
ε→0

(
βε,hε(Lε)−

∫
β(Uεδ, S)dµεδ

)
= 0. (4.28)

Let us find Bayes a posteriori likelihood ratios in the case of a priori probability measures µεδ.
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Let {φj}∞1 be an orthonormal system of functions in L2(0, 1). Then (1.1) can be written as follows

yj = sj + εξj , 1 ≤ j < ∞

with yj =
∫ 1

0 φj(t)dYε(t), sj =
∫ 1

0 S(t)φj(t)dt, ξj =
∫ 1

0 φj(t)q(t)dw(t).
Define the operators Q, R such that (Qu)(t) = q(t)u(t), (Ru)(t) = r(t)u(t) for any function u ∈ L2(0, 1).

Define also the operator Kh with the kernel Kh(x− t) with x, t ∈ [0, 1] and the unit operator E. In (4.29–4.32)
we shall make use of notation Yε = {yj}∞j=1, S = {sj}∞j=1, S0 = {sj0}∞j=1 with sj0 =

∫ 1

0
S(t, θ0)φj(t)dt.

The Bayes a posteriori likelihood ratio equals

∫
exp

{
− 1

2ε2
(Yε − S)′Q−2(Yε − S)− 1

2
τ−2(S − S0)′Q−1K−1

hε
R−1K−1

hε
Q−1(S − S0)

+
1

2ε2
(Yε − S0)′Q−2(Yε − S0)

}
dµεδ =

∫
exp

{
ε−2(Yε − S0)′Q−2(S − S0)

− 1
2
(S − S0)′

(
ε−2Q−2 + τ−2Q−1K−1

hε
R−1K−1

hε
Q−1

)
(S − S0)

}
dµεδ

= C

∫
exp

{
−1

2
||(Yε − S0)′Q−1

(
ε−2Q−2 + τ−2Q−1K−1

hε
R−1K−1

hε
Q−1

)−1/2

− (ε−2Q−2 + τ−2Q−1K−1
hε

R−1K−1
hε

Q−1
)1/2

(S − S0)||2
}

dµεδ

× exp
{
−1

2
(Yε − S0)′Q−1

(
ε−2Q−2 + τ−2Q−1K−1

hε
R−1K−1

hε
Q−1

)−1
Q−1(Yε − S0)

}

= C exp
{
−1

2
(Yε − S0)′Q−1

(
ε−2Q−2 + τ−2Q−1K−1

hε
R−1K−1

hε
Q−1

)−1
Q−1(Yε − S0)

}
· (4.29)

Thus the Bayes test statistics can be defined as follows

Dεδ = (Yε − S0)′Q−1
(
ε−2Q−2 + τ−2Q−1K−1

hε
R−1K−1

hε
Q−1

)−1
Q−1(Yε − S0)

= (Yε − S0)′KhεR
1/2
(
ε−2τ2KhεRKhε + E

)−1
R1/2Khε(Yε − S0).

Denote
D1εδ = D1εδ(Yε − S0) = ε−2τ2(Yε − S0)′(KhεRKhε)

2(Yε − S0).

We have

Tε −Dεδ −D1εδ = ε−4τ4(Yε − S0)′(KhεR
1/2)3(ε−2τ2KhεRKhε + E)−1(R1/2Khε)

3(Yε − S0))

< ε−4τ4(Yε − S0)′(KhεRKhε)
3(Yε − S0)

.= D2εδ. (4.30)

We have
D1εδ(Yε − S0) ≤ 2D1εδ(Yε − S) + 2D1εδ(S − S0), (4.31)

D2εδ(Yε − S0) ≤ 2D2εδ(Yε − S) + 2D2εδ(S − S0). (4.32)

The unique difference of statistics Tε = (Yε−S)′KhεRKhε(Yε−S) and D1εδ(Yε−S), D2εδ(Yε−S) are the powers
of the kernels. Hence, estimating similarly to (4.21–4.23), we get

d1ε(hε)
.= ES [D1εδ(Yε − S)] = τ2

∫ 1

0

q2(t) dt

∫ 1

0

dt1K
2
2,rhε

(t, t1) < C
τ2

hε
< Cε2h−1/2

ε , (4.33)
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ES [D2εδ(Yε − S)] = ε−2τ4

∫ 1

0

q2(t) dt

∫ 1

0

r(s)ds

(∫ 1

0

dt1Khε(t1 − s)×K2,rhε(t, t1)
)2

< C
ε−2τ4

hε
< Cε2,

(4.34)

VarS(D1εδ(Yε − S)) < C
τ4

hε
< Cε4, VarS(D2εδ(Yε − S)) < C

ε−4τ8

hε
< Cε4h3

ε . (4.35)

By straightforward calculations, using (4.7), we get

D1εδ(S − S0) < Cρε(hε), D2εδ(S − S0) < Cρε(hε) (4.36)

if ρε(hε) < Tε(S, θ0) < Cρε(hε).
By (4.30–4.36) we get

PS

(
ε−2h1/2

ε σ−1(Tε(Yε, θ0)− dε(hε)) < xα

)
= PS

(
ε−2h1/2

ε σ−1(Dεδ(Yε, θ0)− dε(hε))− d1ε(hε)
)

< xα(1 + o(1)))
(4.37)

uniformly in S : ρε(hε) < Tε(S, θ0) < Cρε(hε) as δ → 0, ε → 0.
By (4.25, 4.29, 4.37) we get (4.28). This completes the proof of Theorem 3.1 in the case of sets of alternatives

=ε,hε(Θ, ρε).
The Theorem 2.1.2 and Theorem 3.1 in the case of sets of alternatives =ε,hε(Θ, ρε, β, P0) follows from

Lemma 4.3.

Lemma 4.3. Let A and (2.4) hold additionally. Then

(1 + δ)−1

∫ 1

0

(
S̃(β)(t)− S(β)(t, θ0)

)2

dt → P0 (4.38)

and

(1 + δ)−1

∫ 1

0

(
S̃(β)(t)− S(s, θ̄ε)

)2

dt → P0 (4.39)

in probability as ε → 0.

Proof of Lemma 4.1. We have
ε−2h1/2

ε I6ε = 2J1∆ε + J2∆ε (4.40)

where

J1∆ε = h1/2
ε

∫ 1

0

q(y1)dw(y1)
∫ y1−∆

y1−2hε

K2,rhε(y1, y2)q(y2)dw(y2),

J2∆ε = h1/2
ε

∫ 1

0

q(y1)dw(y1)
∫ y1+∆

y1−∆

K2,rhε(y1, y2)q(y2)dw(y2)

and ∆ = ∆ε → 0, ∆ε/hε → 0 as ε → 0.
By straightforward calculations, arguing similarly to (4.10, 4.62) we get

Var(J2∆ε) = 2hε

∫ 1

−1

q2(y1)dy1

∫ y1+∆

y1−∆

K2
2,rhε

(y1, y2)q2(y2)dy2 < C∆. (4.41)

Thus it suffices to study the limit behaviour of J1∆ε. One can write

J1∆ε =
C∆∑
j=1

Zjε
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where C∆ = [1/∆] and

Zjε = h1/2
ε

∫ j∆

(j−1)∆

q(y1)dw(y1)
∫ y1−∆

y1−2hε

K2,rhε(y1, y2)q(y2)dw(y2).

We can consider J1∆ε as a sum of martingale differences Zjε and to apply corresponding Central Limit Theorem
(see Brown [3]) to prove asymptotic normality. Thus it suffices to show that

lim
ε→0

C∆∑
j=2

E
{
Z2

jεχ(|Zjε| > C)
}

= 0, (4.42)

lim
ε→0

2
σ2

C∆∑
j=2

E
{
Z2

jε|Fj−1,ε

}
= 1 (4.43)

where Fj−1,ε is the σ-field generated by the Wiener process w(t), 0 ≤ t ≤ (j − 1)∆ε.
We have

C∆∑
j=1

E(Z4
jε) = 3h2

ε

C∆∑
j=1

(∫ j∆

(j−1)∆

q2(y1)dy1

∫ y1−∆

y1−2hε

K2
2,rhε

(y1, y2)q2(y2)dy2

)2

= 3h2
ε∆
∫ 1

0

q4(y1)dy1

(∫ y1−∆

y1−2hε

K2
2,rhε

(y1, y2)q2(y2)dy2

)2

(1 + o(1))

= 3∆h−1
ε

∫ 1

0

q8(y)r4(y)dy

(∫ 0

−2

K2
2(u)du

)2

(1 + o(1)). (4.44)

By Chebyshov inequality, equation (4.44) implies (4.42).
Denote

Vjε = E
(
Z2

jε|Fj−1,ε

)
= hε

∫ j∆

(j−1)∆

q2(y1)dy1

(∫ y1−∆

y1−2hε

K2,rhε(y1, y2)q(y2)dw(y2)

)2

.

Estimating similarly to (4.10), we get

Var


C∆∑

j=1

Vjε


 < Ch2

ε

∫ 1

0

q2(y1)dy1

∫ 1

0

q2(y2)dy2

(∫ z2−∆

z1−2hε

K2,rhε(y1, y3)q2(y3)K2,rhε(y2, y3)dy3

)2

< Ch2
ε

∫ 4

−4

dx1

∫ 4

−4

dx2K
2
4,hε

(x1, x2) < Chε (4.45)

where z1 = z1(y1, y2) = max{y1, y2}, z2 = z2(y1, y2) = min{y1, y2}.
By Chebyshov inequality, equation (4.45) implies (4.43). This completes the proof of Lemma 4.1.

Proof of Lemma 4.2. Denote ζ(t) = S̃(t)− S(t, θ0) and θ̄ε =argminθ∈Θ Mε(θ) where

Mε(θ) =
∫ 1

0

r(t)dt

(∫ 1

0

Khε(t− s)
(
S̃(s)− S(s, θ)

)
ds

)2

.

We have
Mε(θ̄ε) = M1ε + 2M2ε + M3ε (4.46)
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with

M1ε =
∫ 1

0

r(t)dt

(∫ 1

0

Khε(t− s)ζ(s)ds

)2

,

M2ε =
∫ 1

0

r(t)dt

∫ 1

0

Khε(t− s)
(
S(s, θ0)− S(s, θ̄ε)

)
ds

∫ 1

0

Khε(t− s)ζ(s)ds,

M3ε =
∫ 1

0

r(t)dt

(∫ 1

0

Khε(t− s)
(
S(s, θ0)− S(s, θ̄ε)

)
ds

)2

.

At first we shall prove (4.26), assuming that (4.25) holds, that is

((1 + δ)ρε(hε))−1M1ε → 1 (4.47)

in probability as ε → 0.
After that the proof of (4.25) will be given.
We have

M2ε ≤ M
1/2
1ε M

1/2
3ε . (4.48)

Using the definition of θ̄ε and (4.47, 4.48) together we get

M3ε → 0 (4.49)

in probability as ε → 0.
We have

M
1/2
3ε ≥ B

1/2
1ε −B

1/2
2ε −B

1/2
3ε (4.50)

with

B1ε =
∫ 1

0

(S(t, θ0)− S(t, θ̄ε))2r(t)dt,

B2ε =
∫ 1

0

r(t)dt

(∫ 1

0

Khε(t− s)(S(s, θ0)− S(t, θ0))ds

)2

,

B3ε =
∫ 1

0

r(t)dt

(∫ 1

0

Khε(t− s)(S(s, θ̄ε)− S(t, θ̄ε))ds

)2

.

By D6,
B2ε < Cω(hε), B3ε < Cω(hε). (4.51)

By (4.49–4.51), we get
B1ε → 0 (4.52)

in probability as ε → 0.
By D1–D3, equation (4.52) implies

θ̄ε → θ0 (4.53)

in probability as ε → 0.
Denote

V (s) = S(s, θ0)− S(s, θ̄ε)− (θ0 − θ̄ε)Sθ(s, θ0).

We have
M3ε = M31ε + 2M32ε + M33ε (4.54)
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with

M31ε = (θ̄ε − θ0)2
∫ 1

0

r(t)dt

(∫ 1

0

Khε(t− s)Sθ(s, θ0)ds

)2

,

M32ε = (θ̄ε − θ0)
∫ 1

0

r(t)dt

∫ 1

0

Khε(t− s)Sθ(s, θ0)ds

∫ 1

0

Khε(t− s)V (s)ds,

M33ε =
∫ 1

0

r(t)dt

(∫ 1

0

Khε(t− s)V (s)ds

)2

.

By (4.7), D2, we get

M33ε ≤ C

∫ 1

0

r(t)dt

∫ 1

0

V 2(s)ds ≤ C|θ̄ε − θ0|2+ω. (4.55)

By Schwartz inequality, we get

M32ε < M
1/2
31ε M

1/2
33ε . (4.56)

By (4.7), we get

M31ε ≤ C
(
θ̄ε − θ0

)2 ∫ 1

0

r(t)S2
θ (t, θ0)dt ≤ C

(
θ̄ε − θ0

)2
. (4.57)

By (4.54–4.57), we get

M3ε ≤ C|θ̄ε − θ0|2(1 + oP (1)). (4.58)

By (4.47, 4.48, 4.58) together, we get

M2ε = OP

(
|θ̄ε − θ0|ρ1/2

ε (hε)
)

. (4.59)

By (4.47), M1ε can be represented as M1ε = ρε(hε)(1 + δ) + oP (ρε(hε)) as ε → 0. Similarly, by (4.58, 4.59), we
get M2ε + M3ε = OP (|θ̄ε − θ0|ρ1/2

ε (hε) + |θ̄ε − θ0|2). Hence, by definition of Mε(θ̄ε) = min{Mε(θ) : θ ∈ Θ} and
(4.46, 4.53) we get

|θ̄ε − θ0| = oP

(
ρ1/2

ε (hε)
)

. (4.60)

By (4.46, 4.47, 4.58–4.60) together, we get (4.26).
It remains to prove (4.25). Denote

K̃2,rhε(t1, t2) =
∫ 1

0

Khε(t1 − s)r1/2(s)Khε(t2 − s)ds.
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By straightforward calculations, using the same technique as in (4.10), we get

E

{∫ 1

0

(∫ 1

0

Khε(t− s)(S̃(s)− S(s, θ0))ds

)2

r(t)dt

}
=

τ2E

{∫ 1

0

(∫ 1

0

Khε(t− s1)r1/2(s1)ds1

∫ 1

0

Khε(s1 − s2)q(s2)dw1(s2)
)2

r(t)dt

}

= τ2

∫ 1

0

r(t)dt

∫ 1

0

Khε(t− s1)ds1

∫ 1

0

Khε(t− s3)ds3r
1/2(s1)r1/2(s3)

× E

(∫ 1

0

Khε(s1 − s2)q(s2)dw1(s2)
∫ 1

0

Khε(s3 − s4)q(s4)dw1(s4)
)

= τ2

∫ 1

0

r(t)dt

∫ 1

0

Khε(t− s1)ds1

∫ 1

0

Khε(t− s3)ds3r
1/2(s1)r1/2(s3)

×
∫ 1

0

Khε(s1 − s2)q2(s2)Khε(s2 − s3)ds2

= τ2

∫ 1

0

r(t)dt

∫ 1

0

q2(s)dsK̃2
2,rhε

(t, s) = τ2σ2/(2hε)(1 + o(1)). (4.61)

Arguing similarly to (4.61), we get

Var

(∫ 1

0

(∫ 1

0

Khε(t− s)
(
S̃(s)− S(s, θ0)

)
ds

)2

r(t)dt

)

= 2τ4

∫ 1

0

r(t1)dt1

∫ 1

0

r(t2)dt2

(∫ 1

0

Khε(t1 − s1)ds1

∫ 1

0

Khε(t2 − s3)ds3

× r1/2(s1)r1/2(s3)
∫ 1

0

Khε(s1 − s2)q2(s2)Khε(s3 − s2)ds2

)2

(1 + o(1))

= 2τ4

∫ 1

0

r(t1)dt1

∫ 1

0

r(t2)dt2

(∫
K̃2,rhε(t1, s2)q2(s2)K̃2,rhε(t2, s2)ds2

)2

(1 + o(1))

= 2τ4h−1
ε

∫ 1

0

q4(s)r4(s)ds

∫ 4

−4

K2
4(v)dv(1 + o(1)). (4.62)

By Chebyshov inequality, equations (4.61, 4.62) together imply (4.25).

Proof of Lemma 4.3. To simplify the reasoning we assume r(t) = 1 for all t ∈ [0, 1]. This does not cause any
principal differences in the arguments.

We have

ζ̃β
.= S̃(β)(t)− S(β)(t, θ0) = τh−β−1

∫ 1

0

K(β)

(
t− s

h

)
q(s)dw1(s). (4.63)

Repeating similar estimates as in the proof of (4.25) we get (4.38).
We have ∫ 1

0

(
S̃(β)(t)− S(β)

(
t, θ̄ε

))2

dt
.= D1ε + D2ε + D3ε (4.64)
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where

D1ε =
∫ 1

0

(
S̃(β)(t)− S(β)(t, θ0)

)2

dt,

D2ε =
∫ 1

0

(
S̃(β)(t)− S(β)(t, θ0)

)2

dt
(
S(β)(t, θ0)− S(β)

(
t, θ̄ε

))2

dt,

D3ε =
∫ 1

0

(
S(β)(t, θ̄ε)− S(β)(t, θ0)

)2

dt.

We have
|D2ε| < D

1/2
1ε D

1/2
3ε . (4.65)

By B2, equation (4.60), we get
D3ε → 0 (4.66)

in probability as ε → 0.
By (4.38, 4.64–4.66) together, we get (4.39). This completes the proof of Lemma 4.3.

5. Proofs of Theorems 2.2, 2.3 and 3.2

The further arguments will be given in the notation of Theorems 2.2 and 2.3. In the case of Theorem 3.2 a
modification of notation is unessential.

The statements on asymptotic equivalence of statistical experiments (see Brown and Low [4] and
Nussbaum [27]) can be applied to the proof of lower bounds if the realizations of random processes gener-
ated by the Bayes a priori measures belong to the Hoelder space

Σ(β, M) = {S : |S(t)− S(s)| < M |t− s|β , t, s ∈ (0, 1)}

with M > 0, β > 1
2 .

In the problem of hypothesis testing on density we need also to suppose f(t) > c > 0 for all t ∈ [0, 1] (see
Nussbaum [27]).

Denote
=̄nhn(β, M) = {S : S ∈ =nhn , S ∈ Σ(β, M), |S(t)− S0(t)| < cn, t ∈ [0, 1]}

where cn → 0 as n →∞.
The Bayes a priori probability measures νlnδ of S and f in the problems of hypothesis testing on regression

and density respectively are defined as the conditional probability measures of S̃ = S̃n under the condition
S̃n ∈ =̄nhn(β, Ml) with Ml →∞ as l →∞.

For the proof of lower bounds it suffices to show that there exists Ml →∞ as l →∞ such that

Pµnδ
(S̃n ∈ =nhn(β, Ml)) = 1 + o(1) (5.1)

as l →∞, δ → 0, n →∞.
Thus we need to prove that there exists cn → 0 as n →∞ such that

lim
n→∞P (sup{|S̃n(t)− S0(t)| : t ∈ [0, 1]} < cn) = 1 (5.2)

and there exists ωl → 0, Ml →∞ as l →∞ such that

lim inf
n→∞ P

(
S̃n ∈ Σ(β, Ml)

)
> 1− ωl. (5.3)
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We begin with the proof of (5.2). By A, we get

E|S̃n(t)− S̃n(s)|2 < Cτ2

∫ 1

0

|Khn(t− u)−Khn(s− u)|2q2(u)du

≤ Cτ2h−2−γ
n min

{|t− s|1+γ , h1+γ
n

}
< Cn−1h−3/2−γ

n min
(|t− s|1+γ , h1+γ

n

)
. (5.4)

By straightforward calculations, we get

E
(
S̃2

n(t)
)

< Cτ2h−1
n < Cn−1h−1/2

n . (5.5)

By Theorem 7.1 in Piterbarg [28] and Slepian comparison principle (see Slepian [30]) we get (5.2) with
cn = ch

γ/2
n .

It follows from Theorem 1 (Sect. 15 in Lifshits [26]) that for any sequence φl > 0, φl → 0 as l → ∞ there
exist sequences Mln →∞ as l →∞ such that

P
(
S̃n ∈ Σ(β, Mln)

)
> 1− φl (5.6)

with 1
2 < β < 1+γ

2 .
The proof of Theorem 1 Sect. 15 in Lifshits [26] is based on Borel–Cantelli lemma. In order to show that one

can choose the values Mln = Ml which does not depend on n it suffices to make use of the following version of
Borel–Cantelli lemma in Lifshits [26] arguments.

Lemma 5.1. Let A1n, A2n, . . . be sequences of events. Let there exist a sequence κm → 0 as m →∞ such that
for each n

∞∑
i=m

P (Ain) < κm. (5.7)

Denote Bmn = ∪∞i=mAin. Then P (Bmn) → 0 as m →∞ uniformly in n.

Applying Lemma 5.1 in the reasoning the proof of Theorem 1 (Sect. 15 in Lifshits [26]) we get the version of
this theorem with Ml = Mln which does not depend on n. Therefore (5.3) holds. By (5.2, 5.3), we can apply
to the realizations of random processes generated by corresponding Bayes a priori measures the arguments of
the proof of Theorem 2.1 and get the lower bounds in Theorems 2.2, 2.3 and 3.2 as corollaries of Theorem 4.1
in Brown and Low [4] and Theorems 2.1, 2.7 in Nussbaum [27] respectively. This completes the proof of lower
bounds in Theorems 2.2, 2.3 and 3.2.

Proof of Theorem 2.2. Upper bound. The estimates are akin to (4.1–4.24).
Denote

gh(t) =
1
n

n∑
i=1

Kh(t− xni)S(xni)

and

g0h(t) =
1
n

n∑
i=1

Kh(t− xni)S0(xni).

We write

Tn(Y ) = I1n + I2n + I3n (5.8)
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with

I1n =
∫ 1

0

(ghn(t)− g0hn(t))2r(t)dt,

I2n =
∫ 1

0

(
1
n

n∑
i=1

Khn(t− xni)(Yni − S(xni))

)
(ghn(t)− g0hn(t))r(t)dt,

I3n =
∫ 1

0

(
1
n

n∑
i=1

Khn(t− xni)(Yni − S(xni))

)2

r(t)dt.

Observe that I3n does not depend on S.
We write

I3n = I31n + I32n (5.9)
where

I31n =
1
n2

n∑
i=1

∫ 1

0

(Khn(t− xni)(Yni − S(xni)))2r(t)dt,

I32n =
2
n2

∑
1≤i<j≤n

(Yni − S(xni))(Ynj − S(xnj))
∫ 1

0

Khn(t− xni)Khn(t− xnj)r(t)dt.

Denote tni = 2i−1
2n+1 for all 1 ≤ i ≤ n.

We have

E(I31n) =
1
n2

n∑
i=1

λ2(xni)
∫ 1

0

K2
hn

(t− xni)r(t)dt. (5.10)

We have
|E(I31n)− dn(hn)| < Rn1 + Rn2 (5.11)

where, by (2.4),

Rn1 =
1
n

n∑
i=1

λ2(xni)
∫ 1

0

r(t)dt

∫ tn,i+1

tni

|K2
hn

(t− xni)−K2
hn

(
t−H−1(s)

) |ds

≤ C

nhn

n∑
i=1

λ2(xni)
∫ tn,i+1

tni

ds

∫ 1

0

r(t)dt|Khn(t− xni)−Khn

(
t−H−1(s)

) |
≤ C

nhn

n∑
i=1

∫ tn,i+1

tni

(∫ 1

0

(
Khn(t− xni)−Khn

(
t−H−1(s)

))2
dt

)1/2

ds

≤ C

nhn

n∑
i=1

∫ tn,i+1

tni

h(1+γ)/2
n ds ≤ C

nh
1/2−γ/2
n

= o

(
1

nh
1/2
n

)
(5.12)

and

R2n =
1
n

n∑
i=1

∫ tn,i+1

tni

|λ2(xni)− λ2(H−1(s))|ds

∫ 1

0

K2
hn

(
t−H−1(s)

)
r(t)dt ≤ C

n2hn
= o

(
n−1h−1/2

n

)
. (5.13)

By (5.11–5.13), we get
|E(I31n)− dn(hn)| = o

(
n−1h−1/2

n

)
. (5.14)
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Using a similar technique as in the estimation of addendum denoted I1n in Hall [16], we get

Var(I31n) = O(n−1). (5.15)

Using the same reasoning and estimates as in analysis of I2n in Hall [16], we get the following lemma:

Lemma 5.2. The distributions of I32n are asymptotically normal and

E(I32n) = 0, Var(I32n) = n−2h−1
n σ2(1 + o(1)). (5.16)

We have
E(I2n) = 0. (5.17)

Arguing similarly to (4.10), we get

Var(I2n) =
1
n2

n∑
i=1

λ2(xni)
∫ 1

0

r(t)dt

∫ 1

0

r(s)dsKhn(t− xni)Khn(s− xni)(ghn(t)− g0hn(t))(ghn(s)− g0hn(s))

≤ 1
n2

I
1/2
1n


∫ 1

0

r(t)dt

(
n∑

i=1

λ2(xni)
∫ 1

0

r(s)Khn(s− xni)dsKhn(t− xni)(ghn(t)− g0hn(t))

)2



1/2

.

(5.18)

Since

Dn(t, s) .=
n∑

i=1

λ2(xni)r(t)Khn(t− xni)r(s)Khn(s− xni) <
Cn

hn

if |t− s| < 2hn and Dn(t, s) = 0 if |t− s| > 2hn, we get

Var(I2n) < Cn−1I
1/2
1n


∫ 1

0

dth−2
n

(∫ t+2hn

t−2hn

|ghn(s)− g0hn(s)|ds

)2



1/2

≤ Cn−1I
1/2
1n

(∫ 1

0

dth−1
n

∫ t+2hn

t−2hn

(ghn(s)− g0hn(s))2ds

)1/2

≤ C

n
I1n. (5.19)

Now the upper bound in Theorem 2.2 follows from Lemma 5.2 and (5.8, 5.9, 5.14–5.17, 5.19) together. This
completes the proof of Theorem 2.2.

Proof of Theorem 3.2. Upper bound. We follow to the same arguments as in the proof of Theorem 3.1.
Let F ∈ =nhn(Θ) be a true c.d.f. Denote θ0 = θ(F ).
We have ∫ 1

0

Khn(t− s)d
(
F̂n(s)− F

(
s, θ̂n

))
= g1hn(t) + g2hn(t) + ξn(t) (5.20)

with

g1hn(t) =
∫ 1

0

Khn(t− s)d(F (s)− F (s, θ0)),

g2hn(t) =
∫ 1

0

Khn(t− s)d
(
F (s, θ0)− F

(
s, θ̂n

))
,

ξn(t) =
∫ 1

0

Khn(t− s)d
(
F̂n(s)− F (s)

)
.
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Hence we get
T (F̂n, Fθ̂n

) = I1n + I2n + I3n + I4n + I5n + I6n (5.21)

with I1n, . . . , I6n defined by (4.3–4.5) respectively with ε = n.
Since F ∈ =nhn(Θ) then (4.6) holds.
Similarly to (4.8) we get

I3n < C|θ̂n − θ0|2. (5.22)

We have
E(I4n) = 0. (5.23)

By Schwartz inequality, we get

E(I2
4n) = n−1

∫ 1

0

∫ 1

0

g1hn(t1)g1hn(t2)r(t1)r(t2)
(∫ 1

0

Khn(t1 − s)Khn(t2 − s)dF (s)

−
∫ 1

0

Khn(t1 − s)dF (s)
∫ 1

0

Khn(t2 − s)dF (s)
)

< n−1

∫ 1

0

dF (s)
(∫ 1

0

Khn(t− s)r(t)g1hn(t)dt

)2

< n−1

∫ 1

0

dF (s)
∫ 1

0

K2
hn

(t− s)dt

∫ 1

0

r2(t)g2
1hn

(t)dt < Cn−1h−1
n Tn(F, Fθ0 ). (5.24)

We get

I2n < I
1/2
1n I

1/2
3n . (5.25)

Arguing similarly to (4.13–4.20), we get

I5n = OP

(
n−1h(−1+ω)/2

n

)
. (5.26)

It remains to study the asymptotic behaviour of I6n.
Denote

σ2(h, F ) = 2
∫ 1

0

r2(x)dx

∫ 2

−2

du

[∫ 1

−1

K(z)K(z + u)dF (x − zh)
]2

.

For all 1 ≤ i ≤ n, 1 ≤ j ≤ n denote

Hn(Xi, Xj) =
∫ 1

0

(
Khn(t−Xi)−

∫ 1

0

Khn(t− s)dF (s)
)(

Khn(t−Xj)−
∫ 1

0

Khn(t− s)dF (s)
)

r(t)dt.

We have
I6n = I61n + I62n (5.27)

where

I61n = 2n−2
∑

1≤i<j≤n

Hn(Xi, Xj),

I62n = n−2
n∑

j=1

Hn(Xj , Xj).
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It follows from (2.13) and (2.14) that

E(I62n) = n−1

∫ 1

0

∫ 1

0

K2
hn

(t− x)dF (x)r(t)dt
(
1 + o

(
h1/2

n

))

= n−1

∫ 1

0

∫ 1

0

K2
hn

(t− x)r(x)dF (x)dt
(
1 + o

(
h1/2

n

))

= n−1h−1
n

∫ 1

0

r(t)dF (t)
∫ 1

−1

K2(z)dz
(
1 + o

(
h1/2

n

))
.= en

(
1 + o

(
h1/2

n

))
. (5.28)

By straightforward calculations, we get

Var(I62n) = O
(
n−3h−2

n

)
. (5.29)

By (2.13), we get

sup
hn<t<1−hn

∣∣∣∣
∫ 1

0

Khn(t− s)r(s)ds − r(t)
∣∣∣∣ < Chκ1

n .

Hence, using (2.12) and Schwartz inequality, we get

∣∣∣∣
∫ 1

0

r(t)(dF (t) − dF (t, θ0))
∣∣∣∣ < Chζ

n + Chκ1
n +

∣∣∣∣∣
∫ 1−hn

hn

∫ 1

0

Khn(t− s)r(s)ds(dF (t) − dF (t, θ0))

∣∣∣∣∣
< Chζ

n + Chκ1
n +

∣∣∣∣∣
∫ 1

0

r(s)ds

∫ 1−hn

hn

Khn(s− t)(dF (t) − dF (t, θ0))

∣∣∣∣∣ < Chζ
n + Chκ1

n + CI
1/2
1n .

Therefore, using n−1h
−3/2−ω
n → 0 as n →∞ and I1n > cn−1h

−1/2
n we get

|dn(hn, fθ0)− en| < Cn−1h−1
n I

1/2
1n + o

(
n−1h−1/2

n

)
= o(I1n). (5.30)

By the same arguments, using E2, E3, we get

|dn(hn, fθ0)− dn(hn, fθ̂n
)| < Cn−1h−1

n T 1/2
n (F̂θ̂n

, Fθ0 | ≤ Cn−1h−1
n |θ̂n − θ0| = oP (I1n). (5.31)

By Lemma 3 in Hall [17],

E(I61n) = 0, (5.32)

n2hnVar(I61n) =
1
2

∫ 1

0

r(t)dt

∫ h−1
n −t/hn

−t/hn

r(t + uhn)
[∫ 1

−1

K(z)K(z + u)dF (t− zhn)

− hn

{∫ 1

−1

K(z)dF (t− zhn)
}{∫ 1

−1

K(z)dF (t + uhn − zhn)
}]2

du(1 + o(1))

=
1
2

∫ 1

0

r2(t)dt

∫ h−1
n −t/hn

−t/hn

[∫ 1

−1

K(z)K(z + u)dF (t− zhn)
]2

du(1 + o(1)) .=
1
4
σ2(hn, F )(1 + o(1)). (5.33)
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By B1, we get

σ2(h, Fθ0)− σ2(fθ0) = 2
∫ 1

0

r2(t)dt

∫ 2

−2

du

((∫ 1

−1

K(z)K(z + u)fθ0(t− zh)dz

)2

−
(∫ 1

−1

K(z)K(z + u)dz

)2

f2
θ0

(t)

)
+ O(h)

≤ 2
∫ 1

0

r2(t)dt

∫ 2

−2

du

∫ 1

−1

K(z)K(z + u)|fθ0(t− zh)− fθ0(t)|dz

×
∫ 1

−1

K(z)K(z + u)(fθ0(t− zh) + fθ0(t))dz + O(h)

≤ Chκ

∫ 1

0

r2(t)dt

∫ 2

−2

du

∫ 1

−1

K(z)K(z + u)|z|κdz

×
∫ 1

−1

K(z)K(z + u)(fθ0(t− zh) + fθ0(t))dz + O(h) ≤ Chκ. (5.34)

By E1, we have

1
2
σ2(hn, F )− 1

2
σ2(hn, Fθ0) =

∫ 1

0

r2(t)dt

∫ 2

−2

du

∫ 1

−1

K(z1)K(z1 + u)d(F (t− z1hn)− Fθ0(t− z1hn))

×
∫ 2

−2

K(z2)K(z2 + u)d(F (t− z2hn) + Fθ0(t− z2hn)) + O(hn)

= J1n + J2n + O(hn). (5.35)

with

J1n =
∫ 1

0

r2(x)dx

∫ 1

−1

∫ 1

−1

K2(z1 − z2)K(z1)d(F (x− z1hn)− Fθ0(x− z1hn))

×K(z2)d(F (x − z2hn)− Fθ0(x− z2hn)) ≤ CI1n = CTn(F, Fθ0 ), (5.36)

J2n = 2
∫ 1

0

r2(x)dx

∫ 1

−1

∫ 2

−2

K2(z1 − z2)×K(z1)d(F (x − z1hn)− Fθ0(x − z1hn))K(z2)dFθ0(x− z2hn) + O(hn).

(5.37)

Since the operator K̄2,h is nonnegative, by Shwartz inequality, we get

J2n < 2
∫ 1

0

r2(x)dx

(∫ 1

−1

∫ 2

−2

K2(z1 − z2)K(z1)d(F (x − z1hn)− Fθ0(x− z1hn))

× K(z2)d(F (x − z2hn)− Fθ0(x − z2hn)))1/2

×
(∫ 1

−1

∫ 2

−2

K2(z1 − z2)K(z1)dFθ0(x− z1hn)K(z2)dFθ0(x− z2hn)
)1/2

+ O(hn)
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≤ C

(∫ 1

0

r2(x)dx

∫ 1

−1

∫ 2

−2

K2(z1 − z2)K(z1)d(F (x− z1hn)− Fθ0(x− z1hn))

× K(z2)d(F (x − z2hn)− Fθ0(x− z2hn)))1/2

×
(∫ 1

0

r2(x)dx

∫ 1

−1

∫ 2

−2

K2(z1 − z2)K(z1)dFθ0(x− z1hn)K(z2)dFθ0(x− z2hn)
)1/2

+ O(hn)

≤ C

(∫ 1

0

r2(x)dx

∫ 1

−1

∫ 2

−2

K2(z1 − z2)K(z1)d(F (x− z1hn)− Fθ0(x− z1hn))

× K(z2)d(F (x − z2hn)− Fθ0(x− z2hn)))1/2 ≤ CT 1/2
n (F, Fθ0) + O(hn). (5.38)

By (5.35–5.38), we get

|σ2(hn, F )− σ2(hn, Fθ0)| < CI1n + CI
1/2
1n + O(hn). (5.39)

Arguing similarly and using E2, E3, we get

|σ2(hn, Fθ̂n
)− σ2(hn, Fθ0)| = OP

(
I1n + I

1/2
1n

)
+ O(hn) (5.40)

as n →∞.
We have

β(Kn, F ) ≤ Λ1n + Λ2n + Λ3n + Λ4n (5.41)

with

Λ1n = PF

(
−Tn

(
F̂n, Fθ0

)
+ dn (hn, fθ0) < −xαn−1h−1/2

n σ (hn, Fθ0) + O
(
cnI

1/2
1n n−1/2h−1/4

n + cnn−1h−1/2
n

))
,

Λ2n = PF

(
Tn

(
F̂n, Fθ0

)
− Tn

(
F̂n, Fθ̂n

)
< cnI

1/2
1n n−1/2h−1/4

n

)
= PF

(
I2n + I3n + I5n < cnI

1/2
1n n−1/2h−1/4

n

)
,

Λ3n = PF

(
|dn (hn, fθ0)− dn

(
hn, fθ̂n

)
| > cnn−1h1/2

n

)
,

Λ4n = PF

(
|σ2
(
hn, Fθ̂n

)
− σ2 (hn, Fθ0) | > cn

)
.

By (5.22, 5.25, 5.26) and (5.31, 5.40) respectively, there exists cn → 0 as n →∞ such that

Λ2n = o(1), Λ3n = o(1), Λ4n = o(1). (5.42)

By Chebyshov inequality, using (5.41, 5.42) and (5.28, 5.30), we get

β(Kn, F ) = Λ1n + o(1) = PF (−Tn(F̂n, Fθ0) + dn(hn, Fθ0) + Tn(F, Fθ0)(1 + o(1))

< −xαn−1h−1/2
n σ(hn, Fθ0) + Tn(F, Fθ0 )(1 + o(1))) + o(1)

≤ VarF (Tn(F̂n, Fθ0))

(Tn(F, Fθ0 )(1 + o(1))− xαn−1h
−1/2
n σ(hn, Fθ0))2

· (5.43)

By (5.24, 5.27, 5.29, 5.33) together, we get

VarF

(
Tn

(
F̂n, Fθ0

))
< 2VarF (I4n) + 2Var(I6n) < Cn−1h−1

n I1n + O
(
n−2h−1

n

)
. (5.44)
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By (2.1, 5.43, 5.44) together, for any sequence of c.d.f. Fn,

β(Kn, Fn) → 0 (5.45)

if nh
1/2
n Tn(Fn, Fθ0) →∞ as n →∞.

Denote ΓC = {F : nh
1/2
n Tn(F, Fθ0 ) < C}.

By (5.39, 5.40) together, we have

σ2(hn, F )(1 + o(1)) = σ2
(
fθ̂n

)
(1 + o(1)) (5.46)

uniformly in F ∈ ΓC .
The estimates in the proof of Lemma 3 in Hall [17] are uniform w.r.t. F ∈ ΓC . Therefore the distributions of

2I61n(σ(fθ̂n
)nh

1/2
n )−1 converges to the standard normal one uniformly w.r.t. F ∈ ΓC . Hence, using (5.21–5.31,

5.41, 5.42, 5.45, 5.46), we get (3.1). This completes the proof of Theorem 3.2.

Remark 5.1. The corresponding version of (5.20) for the test statistics T̂n(F̂n) does not contain the adden-
dum I32n. Therefore, in the analysis of asymptotic behaviour of T̂n(F̂n) we do not need to estimate E(I32n).
This allows to simplify the definition of sets of alternatives and to prove the statement of Remark 2.4.
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