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Abstract. In this paper a new multifractal stochastic process called Limit of the Integrated
Superposition of Diffusion processes with Linear differencial Generator (LISDLG) is presented which
realistically characterizes the network traffic multifractality. Several properties of the LISDLG
model are presented including long range dependence, cumulants, logarithm of the characteristic
function, dilative stability, spectrum and bispectrum. The model captures higher-order statistics
by the cumulants. The relevance and validation of the proposed model are demonstrated by real
data of Internet traffic.
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Introduction

Computer network traffic has recently been the subject of various types of statistical studies including
fractal analysis, and in particular, measuring and modeling Long-Range Dependence (LRD), investigating
self-similarity [26] and showing multifractal properties [39]. The common agreement among several empirical
findings about the general properties of traces is summarized in [31] as follows:

• many signals show significant LRD, but behavior inconsistent with strict self-similarity;
• for many signals, the scaling behavior of moments as the signal is aggregated is a nontrivial function

of the moment order;
• many signals have increments that are inherently positive, skewed and hence non-Gaussian.

There are some additional properties motivated by our experimental study of ATM traces, see [41], providing
strong evidence of the presence of Γ distribution and real-valued bispectrum. Therefore there are two
additional requirements:

• the marginal distribution of signals of ATM traces is close to Γ distribution;
• signals of ATM traces have a real-valued bispectrum.

Having these properties in mind we will study in the present paper a certain nonlinear diffusion process,
superposition of such processes with random coefficients, the limit of the centralized integral processes of the
superposition processes and its increment process. We will consider a possible application too. The main
objective is to find a multifractal model which has an analytically and statistically tractable higher order
cumulant structure.

The paper starts with the introduction. In Section 1 we introduce the notions of multifractality, self-
similarity and dilative stability. In Section 2 the basic process of superposition is considered. We call it
Diffusion with Linear differential Generator (DLG). We summarize the results obtained by Watanabe and
his coauthors concerning the connection between the DLG process and infinitely decomposable diffusion
processes and continuous-state branching processes. It is also pointed out that the finite-dimensional distri-
bution of the DLG process is multivariate Γ. We are concerned with stationary observations, therefore the
stationary DLG process will be studied in greater detail. The exact cumulants, characteristic functional and
spectra of the stationary DLG process will be given.

In Section 3 we will consider a triangular array of random coefficient DLG processes. It will be shown that
the row sums converge to a limit process called Superposition of DLG processes (SDLG process). As for the
properties of the SDLG process we will prove that the logarithm of the characteristic functional of the SDLG
process is the mixture of the logarithm of the characteristic functionals of the component DLG processes.
The SDLG process also has a Γ finite-dimensional distribution. It is stationary, it has a real-valued positive
bispectrum and it is LRD. The main result of the paper is the existence of the Limit of Integrated SDLG
processes, referred to as the LISDLG process. It is shown that both the LISDLG process and its increment
process, labeled as ∆LISDLG, are multifractals. The covariance structure of the LISDLG process is the same
as that of the Fractional Brownian Motion (FBM). Consequently, the spectrum of the ∆LISDLG process is
the same as that of the discrete time Fractional Gaussian Noise (FGN), ∆B(H)(k) = B(H)(k+1)−B(H)(k),
k ∈ Z. The bispectrum of the ∆LISDLG process is also given, and it has the extraordinary property that
it is real-valued. If the bispectrum of a linearly regular long-range dependent discrete time process is real
(non-zero), then the process must be nonlinear. Hence, the ∆LISDLG process is nonlinear. At the end of
Section 3 we compare our results with those of [1]. In this context it is pointed out that the Ornstein–
Uhlenbeck (OU) type models considered in [1] cannot fulfil our requirements for the bispectrum to be real.
The logarithm of the m-th order cumulants of the LISDLG process scales linearly with the logarithm of
time. A similar scaling behavior also holds for the ∆LISDLG process. In particular (1.9) below means that
the logarithm of the m-th order cumulants of the series averaged at level n depends linearly on logn with
coefficient 2(H−1) being independent of m, where H is the Hurst parameter. This fact is more special than
the multifractal property, nevertheless it holds under more general circumstances than our case, e.g. for the
OU type models of [1], see Section 3.5. Moreover, the LISDLG process has an interesting property, which
the authors call dilative stability, which implies the above mentioned scaling behavior (1.9).

In Section 4 we will apply our ∆LISDLG model to real data. The time series of ATM traces measured in
SUNET fits our model very well. The feasibility of carrying out parameter estimation utilizing the dilative
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stability is also discussed to some extent. In Section 5 some open problems and possible research directions
are suggested.

An Appendix giving some basic facts of multivariable Γ distribution closes the paper.

1. Multifractality, self-similarity and dilative stability

A wide variety of physical systems including data network traffic exhibit fractal properties. We are
interested in fractal data, i.e. data “look the same across a wide range of scales”, at least in certain respect.
The notion of fractal, in the sense that it is similar on all scales, is translated into the stochastic analysis by
the definition of Self-Similar process with Stationary Increments, see [23]. We will denote it by sssi. The
stochastic process Y (t) is called H-sssi, if it has stationary increments and, for all a > 0 real numbers,

Y (at) d= aHY (t) ,

where d= means the equality of finite-dimensional distributions. The parameter H is referred to as the Hurst
parameter or Hurst exponent. An example is the FBM B(H)(t), where parameter H ∈ (0, 1), see [2, 29, 33].
Let m ∈ N and suppose that the m-th order cumulant, cumm (Y (t)), exists. Now it follows from self-
similarity that

cumm (Y (t)) = tmH cumm (Y (1)) , (1.1)

i.e. the logarithm of cumm (Y (t)) scales linearly with log(t) and the coefficient is the homogeneous linear
function (of m) mH . Note that [39] considers absolute moments instead of cumulants, i.e.

E |Y (t)|m = tmHE |Y (1)|m (1.2)

instead of (1.1). For H-sssi processes both (1.1) and (1.2) hold.
There are different generalizations of the self-similar processes to multifractal processes. One concerns the

almost sure fractal property of continuous paths according to the deterministic theory of fractals, see [18]. The
other one is based on the statistical inference of the process. We follow this latter direction. A generalization
of the scaling (1.2) is

log E |Y (t)|m = mH (m) log (t) + c (m) , (1.3)

where the dependence of H on m points on the multifractal behaviour of the process. The papers [4] and [39]
define the notion of multifractal essentially by (1.3). We prefer cumulants rather than absolute moments for
describing the multifractal property because the scaling properties should not change with additive constants
and with summing up of independent copies of a process.

Definition 1. A stochastic process Y (t) is called multifractal if, for each m ∈ N the cumulant cumm (Y (t))
exists and the logarithm of |cumm (Y (t))| scales linearly with log (t), and the coefficient is mH (m), i.e.

log (|cumm (Y (t))|) = mH (m) log (t) + c (m) . (1.4)

Note that in the above definition constant c (m) is possibly −∞, if the corresponding cumulant is zero; in
this case (1.4) holds with arbitrary H (m). Note also that H (m) = H for H-sssi processes.

The H-sssi property of Y (t) implies that the increment process

X(k) = Y (k + 1)− Y (k) , k ∈ Z, (1.5)

which is stationary, is characterized in terms of the behavior of the aggregated processes arising by averaging
X(k) over nonoverlapping blocks of size n ∈ N, i.e.

X(n)(k) =
1
n

n−1∑
j=0

X(kn− j), k ∈ Z, (1.6)
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have similar finite-dimensional distributions, specifically,

∀n ∈ N : X(n)(k) d= nH−1X(k). (1.7)

The stationary process X(k) fulfilling (1.7) is called Stationary Self-Similar with Hurst exponent H , i.e. an
H-sss process. A typical example is the FGN process X(k) $ ∆B(H)(k) = B(H)(k + 1) − B(H)(k), k ∈ Z,
which is a unique Gaussian H-sss process, see [22, 37]. The m-th order cumulants of the aggregated H-sss
processes also scale as

cumm

(
X(n)(k)

)
= nm(H−1) cumm (X(k)) . (1.8)

Now if a stationary process X(k) fulfils equation (1.8) for each n ∈ N and m ∈ N, then the logarithm
of the modulus of cumm

(
X(n)(k)

)
scales linearly with log (n) with coefficients m (H − 1) depending on m

homogeneous linearly. Therefore such processes will be called unifractal processes because the Hurst exponent
H is universal for all n ∈ N and m ∈ N. The assumption that a process Y (t) is H-sssi is of course stronger
than the assumption that the increment process is unifractal. One can go even further in weakening the
assumption.

Definition 2. A stationary process X(k), k ∈ Z, is multifractal if

log
(∣∣∣cumm

(
X(n)(k)

)∣∣∣) = m (H(m)− 1) log (n) + c (m) ,

for all m ∈ N, i.e. allowing the exponent H to vary with the order m.

Similarly to Definition 1, constants c (m) may be −∞.
A particular class of multifractal processes is the set of p

1
2(H−1) -dilative stable processes which have

cumulants of all orders.

Definition 3. We say that a process Y (t) is dilative stable with scaling function c : R+ → R+ (or c-
dilative stable, for short), if for every p > 0, k ∈ N, and t1, . . . , tk > 0, the characteristic function ϕ of the
k-dimensional distribution satisfies(

ϕ(Y (t1),... ,Y (tk))(u1, . . . , uk)
)p

= ϕ 1
c(p) (Y (c(p)t1),... ,Y (c(p)tk))(u1, . . . , uk),

for all u1, . . . , uk ∈ R.

Note that the attribute “dilative” alludes to the dilatation (t1, . . . , tk) 7→ c(p) (t1, . . . , tk) in the time
domain. If cumulants of all orders of Y (t) exist, then the c(p) = p

1
2(H−1) -dilative stability implies that

p cumm (Y (t)) = p
m

2(1−H) cumm

(
Y
(
p

1
2(H−1) t

))
,

and taking p := t2(H−1) and t := 1, we have

log (|cumm (Y (t))|) = (2 (H − 1) +m) log t+ log (|cumm (Y (1))|) ,

i.e.

log
(∣∣∣∣cumm

(
Y (t)
t

)∣∣∣∣) = 2 (H − 1) log t+ c (m) .

Similarly, it holds for the aggregated process (1.6) of the increment process (1.5), that

log
∣∣∣cumm

(
X(n)(k)

)∣∣∣ = 2 (H − 1) log (n) + c (m) . (1.9)

What is interesting is that the coefficients of log t and logn do not depend on m. However, this must not be
confused with the unifractal property; it is an outcome of the dilative stability.
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The increments of an H-sssi process Y (t) have another particular second-order property called Long-
Range Dependence (LRD). The definition of LRD for a stationary process X(k), k ∈ Z, is that the au-
tocovariance series r(k) $ cov (X(i), X(i+ k)) = cum2 (X(i), X(i+ k)), k ∈ Z, behaves asymptotically
as

r(k) '
k→∞

L(k)k2(H−1), (1.10)

where L(x) is a slowly varying function at infinity, and 1/2 < H < 1. Note that the slowly varying function
has not a significant role. A stationary process is asymptotically second-order self-similar, see [8], if the
relationship

∀n ∈ N : r(n)(k) = cum
(
X(n)(i), X(n)(i+ k)

)
= n2(H−1)r(k) (1.11)

holds asymptotically as n → ∞ and k → ∞, or more precisely, the series of the autocorrelation functions
ρ(n)(k) = r(n)(k)/r(n)(0) converges, as n → ∞, to an autocorrelation series ρ(∞)(k), k ∈ Z, and ρ(∞) and
ρ(1) are equivalent at infinity, i.e. ρ(∞)(k) and ρ(1)(k) converge to zero in the same order as k →∞, i.e.

ρ(∞)(k) '
k→∞

const.ρ(1)(k).

This type of self-similarity is the weakest and it is the one which is implied by LRD. For an example see the
ΓMOU process in [16]. The main subject of this paper, the ∆LISDLG process is not self-similar, but as it
is LRD, it is asymptotically second-order self-similar.

2. Diffusion processes with a linear differential generator

(DLG processes)

2.1. Characterization of the DLG process

Let us consider the diffusion-type stochastic differential equation

dR(t) = (µ+ 2αR(t)) dt+ 2σ
√
R(t)+dB(t) (2.1)

where R(t)+
.= max (R(t), 0), moreover µ > 0, α ∈ R, σ > 0 are the parameters, and B(t) is a Brownian

motion. The equation (2.1) has a unique strong solution R(t), see the paper [43] or Theorem IV.3.2 in [17]
about the existence and uniqueness of the solution. It is not hard to prove that solution R(t) is conservative,
because P (R(t) > 0 | R(0) > 0) = 1 for all t > 0, see Example IV.8.2 in [17]. Assuming that R(0) > 0 one
could omit the notation of the nonnegative part in (2.1), replacing R(t)+ by R(t), i.e.

dR(t) = (µ+ 2αR(t)) dt+ 2σ
√
R(t)dB(t). (2.2)

Put

δ $ µ

σ2
· (2.3)

The solution R(t) of the stochastic differential equation (2.2) will be treated below under the name δ-
dimensional Diffusion process with a Linear differential Generator (DLG process), because its differential
generator A is given by

A = (µ+ 2αx)
∂

∂x
+ 2σ2x

∂2

∂x2
,

and both coefficients of A are linear, see [11]. Note here that the DLG process has recently been used
successfully for modeling interest rates, because it is one of the simplest models avoiding negative values.
There is a lack of agreement on terminology: after the authors of [9], for example, reference [36] would
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label this as CIR process and in the special case α = 0 (we will have mostly α < 0) it would be called the
squared Bessel process. Because of the form (2.1) it is called square-root diffusion, too. In the mathematical
literature this process has not been denominated although it was mentioned by Kolmogorov in 1931, see [21]
and was studied intensively by [12, 19] and by Watanabe in the seventies, see below.

Albeit at first sight the DLG process seems to be an overly special process, in fact the set of DLG processes
is a parametric class of substantially general processes.

Proposition 1. If α < 0, and δ ∈ N, then the DLG process is just the squared radial part of a particular
δ-dimensional OU process.

Proof (by Chap. 31 of [36]). Let us take the OU processes Xi(t), i = 1, . . . , δ, solutions of the Langevin
equations

dXi(t) = αXi(t)dt + σdBi(t), (2.4)

where Bi(t), i = 1, . . . , δ, are independent Brownian motions. Let

R(t) $
δ∑

i=1

Xi(t)2.

Then Itô’s formula implies

dR(t) =
(
2αR(t) + δσ2

)
dt+ 2σ

√
R(t)

δ∑
i=1

Xi(t)√
R(t)

dBi(t).

Since

B(t) $
δ∑

i=1

t∫
0

Xi(s)√
R(s)

dBi(s)

is a continuous square-integrable local martingale (with respect to the product σ-field) with quadratic varia-
tion t, it follows by Lévy’s theorem (see, e.g. Th. II.6.1 in [17]) that B(t) is a Brownian motion. Thus, R(t)
fulfils (2.2) with µ = δσ2.

�
Let α ∈ R and σ > 0 be arbitrarily fixed parameters.

Notation 1.

R(δ)
x (t) $ solution of (2.2) with µ = δσ2 starting from the initial value x,

i.e. R(δ)
x (0) = x, and

P (δ)
x $ distribution of R(δ)

x on C[0,∞)

for x > 0 and δ > 0. Sometimes, when it is not important to feature the superscript (δ), we will omit it.

Proposition 2.

P (δ1)
x1

~ P (δ2)
x2

= P
(δ1+δ2)
x1+x2

, (2.5)

for arbitrary δ1, δ2 > 0 and x1, x2 > 0, where ~ denotes the convolution.

Proof. Let

dR(δi)
xi

(t) =
(
δiσ

2 + 2αR(δi)
xi

(t)
)

dt+ 2σ
√
R

(δi)
xi (t)dBi(t),
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i = 1, 2, be the defining equations of the two DLG processes, where B1(t) and B2(t) are independent
Brownian motions. Summing the two equations up, we have

d
(
R(δ1)

x1
(t) +R(δ2)

x2
(t)
)

=
(
(δ1 + δ2)σ2 + 2α

(
R(δ1)

x1
(t) +R(δ2)

x2
(t)
))

dt+ 2σ
√
R

(δ1)
x1 (t) +R

(δ2)
x2 (t)

×


√
R

(δ1)
x1 (t)√

R
(δ1)
x1 (t) +R

(δ2)
x2 (t)

dB1(t) +

√
R

(δ2)
x2 (t)√

R
(δ1)
x1 (t) +R

(δ2)
x2 (t)

dB2(t)

 . (2.6)

Define

B(t) .=

t∫
0

√
R

(δ1)
x1 (s)√

R
(δ1)
x1 (s) +R

(δ2)
x2 (s)

dB1(s) +

t∫
0

√
R

(δ2)
x2 (s)√

R
(δ1)
x1 (s) +R

(δ2)
x2 (s)

dB2(s). (2.7)

Then one can use the same argument as at the end of the proof of Proposition 1 to get that B(t) is a
Brownian motion. Finally, let

R
(δ1+δ2)
x1+x2

(t) .= R(δ1)
x1

(t) +R(δ2)
x2

(t).

Then we have from (2.6) and (2.7) that R(δ1+δ2)
x1+x2

(t) is really a DLG process with dimension δ1 + δ2 and
starting from x1 + x2. Since processes R(δ1)

x1 (t) and R(δ2)
x2 (t) are independent, we obtain (2.5).

Notation 2. Let P(δ) be the equivalence class of distributions of δ-dimensional DLG processes, i.e.

P(δ) $
{
P (δ)

x : x > 0
}
,

for δ > 0. It is natural to call P(δ) the distribution class of R(δ)
x . Also define the parametric set

P $
{
P(δ) : δ > 0

}
·

Obviously, P is a classification of the set
{
P

(δ)
x : δ > 0, x > 0

}
and it is compatible with respect to the

convolution operation, so one can naturally extend the convolution to P via class representatives, i.e. with
the aid of (2.5), as follows:

Definition 4. Let δ1, δ2 > 0. Then

P(δ1) ~ P(δ2) $ P(δ1+δ2). (2.8)

Writing formula (2.5) in the language of Laplace transforms of finite dimensional distributions, and taking
particular initial values, we have

L(δ1)
cδ1

(u)L(δ2)
cδ2

(u) = L(δ1+δ2)
c(δ1+δ2)

(u), (2.9)

for every c, δ1, δ2 > 0, where L(δ)
x (u) denotes the Laplace transform at point u ∈ Rk

+ of the k-dimensional

distribution of
(
R

(δ)
x (t1), . . . , R

(δ)
x (tk)

)
, and k ∈ N and t1, . . . , tk ∈ R+ are arbitrary but fixed. Because

Cauchy’s multiplicative functional equation has a unique solution in the set of measurable functions, the
solution of (2.9) is

L(δ)
cδ (u) =

(
L(1)

c (u)
)δ

, (2.10)
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δ > 0. Considering (2.10) for fixed c and δ and for every k ∈ N and every u ∈ Rk
+, we have

P
(δ)
cδ =

(
P (1)

c

)~δ

, (2.11)

where the convolution power is defined as the inverse Laplace transform of the right hand side of (2.10).
This notion of convolution power is, clearly a generalization of the one with positive integer exponent. One
could naturally extend it to P via class representatives, however, the following definition is sufficient for our
purposes.

Definition 5. Let c, δ > 0. (
P(1)

)~δ .= the distribution class of
(
P (1)

c

)~δ

.

Obviously, this definition is right, because by (2.11), the class is independent of c. Now we formulate the
statement (2.11) in a concise form as follows:

Proposition 3.

P(δ) =
(
P(1)

)~δ

(2.12)

holds for every δ ∈ R+.

As mentioned above, the set of DLG processes is a parametric class of substantially general processes. To
explain it we introduce some notions.

Definition 6 (see [34]). A stochastic process is infinitely decomposable, if for every n ∈ N its distribution
class P (i.e. the set of its distributions for all possible initial values) can be represented in the convolution
power form

P = (Pn)~n
,

with some proper distribution classes Pn.

Remark 1. Clearly (2.8) implies that the DLG process is infinitely decomposable.

Definition 7. A process X(t) is a Continuous-state Branching process with Immigration (CBI process)
with a.s. continuous trajectories, if X(t) is a diffusion process with nonnegative trajectories, and there exist
functions f (t, u) > 0 and g (t, u) > 0, t, u > 0, such that the conditional Laplace transform of X(t) has the
form

E
(
e−uX(t) | X(0) = x

)
= e−f(t,u)xg (t, u) , (2.13)

for all x > 0.

We now list without proofs some statements from Section 1 of [34], which indicate the ponderosity of the
DLG process.

Theorem 1 (see [34]). The following statements are equivalent:

1) R(t) is a DLG process;

2) R(t) is an infinitely decomposable diffusion process with nonnegative trajectories;

3) R(t) is a CBI process with a.s. continuous trajectories.

Theorem 1 is the elegant, and the following Theorem 2 is the exact version.
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Theorem 2 (see [34]). The following statements are equivalent:

1)
{
P(δ) : δ > 0

}
is a parametric set of the distribution classes of DLG processes with the same parameters

α ∈ R and σ > 0;

2)
{
P(δ) : δ > 0

}
is a parametric set of the distribution classes of diffusion processes with nonnegative

trajectories, and it is a one-parameter convolution semigroup, i.e. (2.8) holds for all δ1, δ1 > 0;

3)
{
P(δ) : δ > 0

}
is a parametric set of the distribution classes of a.s. continuous CBI processes and

(2.12) holds for all δ > 0.

Observe that (2.12) also follows from Theorem 2.
We now examine the finite-dimensional distributions of the DLG process. Using the following result of

Section 1 in [34], one can directly calculate the conditional characteristic function.

Lemma 1 (see [34]). Let X(t) be a CBI process with a.s. continuous trajectories, and let the differential
generator, corresponding to it by Theorem 1, be of the form

(µ+ 2αx)
∂

∂x
+ 2σ2x

∂2

∂x2
·

Then functions f(t, u) and g (t, u) in (2.13) are such that f (t, u) is the solution of the differential equation

∂

∂t
f (t, u) = −2σ2f2 (t, u) + 2αf (t, u)

f (0, u) = u, (2.14)

and

g (t, u) = exp

−µ t∫
0

f (s, u) ds

 . (2.15)

Proposition 4. The conditional characteristic function of the instantaneous value of the DLG process,
given its initial value, is

ϕR(δ)(t)

(
u | R(δ)(0) = x

)
$ E

(
eiuR(δ)(t) | R(δ)(0) = x

)
= exp

(
iuxe2αt

1− iu σ2

−α (1− e2αt)

)(
1− iu

σ2

−α
(
1− e2αt

))− δ
2

, (2.16)

u ∈ R.

Proof. By Theorem 2 it is enough to compute the conditional characteristic function of a CBI process with
a.s. continuous trajectories and with property (2.12). Let R̃(δ)(t) be such a process. Then the conditional
Laplace transform of R̃(δ)(t) is of the form

ψ eR(δ)(t)

(
u | R̃(δ)(0) = x

)
$ E

(
e−u eR(δ)(t) | R̃(δ)(0) = x

)
= e−f(t,u)xg(t, u), (2.17)

and by Lemma 1 f(t, u) and g (t, u) are given by (2.14) and (2.15). The solution of (2.14) can be easily found
by the replacement h = 1/f to be

f(t, u) =
ue2αt

1− uσ2

α (1− e2αt)
·
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Hence, by (2.15),

g(t, u) =
(

1− u
σ2

α

(
1− e2αt

))− δ
2

.

Thus, by (2.17) the Laplace transform

ψ eR(δ)(t)

(
u | R̃(δ)(0) = x

)
= exp

(
−uxe2αt

1 + u σ2

−α (1− e2αt)

)(
1 + u

σ2

−α
(
1− e2αt

))− δ
2

,

whereby we get the characteristic function in the statement.
Formula (2.16) can be obtained also in a more direct probabilistic way, see [17], IV, 8, formula (8.10) and

below.

The transition density of the DLG process can be derived following [19], see also [12]. We quote only the
resulting formula:

Proposition 5. If α < 0, then the transition density px (t, y) .= pR(δ)(t)|R(δ)(0)(y|x) of the DLG process is

px (t, y) =
−α
σ2

· 1
1− e2αt

exp
(
α

σ2
· y + xe2αt

1− e2αt

)(
x

y
e2αt

)−β/2

Jβ

(
2 |α|
σ2

·
√
xye2αt

1− e2αt

)
, (2.18)

where β .= µ/
(
2σ2
)− 1 and Jβ denotes the modified Bessel function of the first kind of order β.

To guarantee the stationarity of the processes under consideration, from now on we will restrict the set
of values of the parameter α to negative values, i.e. the condition α < 0 will hold in the rest of the paper.

Taking the limit as t→∞ in (2.16), because α < 0, we have the characteristic function of the stationary
distribution

ϕR(δ)(t) (u) $ E eiuR(δ)(t) = lim
t→∞ϕR(δ)(t)

(
u | R(δ)(0) = x

)
=
(

1− iu
σ2

−α
)− δ

2

,

i.e. the characteristic function of the Γ
(
δ/2,−σ2/α

)
distribution. The same stationary distribution could

be obtained by taking the limit as t→∞ in (2.18). Thus we can state the following:

Proposition 6. The one-dimensional stationary distribution of the δ-dimensional DLG process R(t) defined
by (2.2), where α < 0, is Γ, i.e.

R(t) ∼ Γ
(
δ

2
,
σ2

−α
)
·

In the rest of the paper we will deal with stationary DLG processes, i.e. we will assume that the stationary
distribution is attained. In other words, we will suppose that the process starts from its stationary one-
dimensional distribution.

Let us examine the m-dimensional distribution of the stationary DLG process.

Proposition 7. Let t $ (t1, . . . , tm), and t1 < . . . < tm. Then the m-dimensional stationary distribution
of the δ-dimensional DLG process R(t) defined by (2.2), where α < 0, is m-dimensional Γ, i.e.

(R(δ)(t1), . . . , R(δ)(tm)) ∼ Γ
(
δ

2
, 2Σ

)
,
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where Σ is the m×m variance-covariance matrix of the accompanying Gaussian random vector (X(t1), . . . ,
X(tm)) and X(t) is the stationary OU process defined by

X(t) = σ

t∫
−∞

eα(t−s)dB(s). (2.19)

(See the Appendix for the multi-dimensional Γ distribution.)

Proof. Because of (2.12), the same convolutional power rule connects the m-dimensional distributions of
the vectors

(
R

(δ)
δx (t1 + s), . . . , R(δ)

δx (tm + s)
)

and
(
R

(1)
x (t1 + s), . . . , R(1)

x (tm + s)
)
. Letting s → ∞, we get

the power rule for the m-dimensional stationary distributions, i.e. denoting the stationary distribution of
(R(δ)(t1), . . . , R(δ)(tm)) by P (δ)

t we have

P
(δ)
t =

(
P

(1)
t

)~δ

. (2.20)

Since P (1)
t is the distribution of a vector the components of which are the squares of the components of

a homoscedastic Gauss–Markov vector, equation (2.20) implies that P (δ)
t is the m-dimensional Γ

(
δ
2 , 2Σ

)
distribution.

Remark 2. The fact that the above vector (R(δ)(t1), . . . , R(δ)(tm)) has the multi-dimensional Γ
(

δ
2 , 2Σ

)
distribution means a new proof for Theorem 1 in [14] about the infinitely divisibility of the Γ

(
1
2 , 2Σ

)
distri-

bution. See also the Appendix.

The following theorem is the stationary counterpart of Proposition 3, and it is a direct consequence
of (2.20). It is probably the most useful trait of the stationary DLG process, because it makes possible to
derive properties of the δ-dimensional DLG process from those of the simpler one-dimensional process.

Theorem 3. The distributions on C[0, T ] of the δ-dimensional and of the 1-dimensional stationary DLG
processes, i.e. P (δ) and P (1) are connected by the power rule

P (δ) =
(
P (1)

)~δ

,

δ > 0. Here ~δ denotes the convolution power, defined via the same convolution power of the finite dimen-
sional distributions.

Remark 3. Clearly, Theorem 3 implies that the stationary DLG process is infinitely divisible.

Remark 4. A useful observation found in [7] is that for α < 0 the right-hand side of (2.16) is just the
characteristic function of the mixture of Γ distributions by Poissonian weights, namely,

R(δ)
x (t) ∼ Γ

(
δ

2
+ η,

σ2(1− e2αt)
−α

)
, where η ∼ Poi

( −αx
σ2(e−2αt − 1)

)
· (2.21)

The proof is a simple and short calculation, so we omit it. Equation (2.21) provides the simulation of the
DLG process once a discrete set of times has been chosen.

2.2. Cumulants, characteristic functional and spectra of the DLG process

Let R(t) be the stationary DLG process. We will consider R(t) on an interval [0, T ] where T > 0 is
arbitrary but fixed.

We are now interested in the cumulants of finite-dimensional projections, and characteristic functional of
the measure induced on C[0, T ] by the stationary DLG process R(t). Let us make it clear what we mean
by the characteristic functional of a process Z(t) with trajectories a.s. in C[0, T ]. We will also call it the
characteristic functional of the measure generated on C[0, T ] by process Z(t).
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Notation 3. Let functional var denote the total variation of functions on [0, T ], and let NBV [0, T ] .=
{G : G(0) = 0, var(G) <∞}, i.e. NBV [0, T ] = C[0, T ]∗, the dual space of C[0, T ], the space of all continuous
linear functionals on C[0, T ]. We will denote the characteristic functional of process Z(t) with trajectories
a.s. in C[0, T ] by

ϕZ(G) $ Eei〈Z,G〉,

G ∈ NBV [0, T ], where

〈Z,G〉 $
T∫

0

Z(t)dG(t).

The following notations are needed for the sake of brevity:

Notation 4. Let us denote the set of all permutations of the elements of a set A by Perm(A).

Notation 5. Let m ∈ {2, 3, 4, . . .}, τ = (i1, . . . , im−1) ∈ Perm(2, 3, . . . ,m), t = (t1, . . . , tm) ∈ [0, T ]m.
Then

Dτ (t) $ |ti1 − t1|+ |ti2 − ti1 |+ · · ·+ ∣∣tim−1 − tim−2

∣∣+ ∣∣t1 − tim−1

∣∣ .
For m = 1 define Dτ (t) $ 0, t ∈ [0, T ].

In particular, if m = 2,

Dτ (t1, t2) = 2 |t1 − t2| ,

and for m = 3,

Dτ (t1, t2, t3) = 2 (max(t1, t2, t3)−min(t1, t2, t3)) = 2 diam(t1, t2, t3) .

Theorem 4. The cumulant of the m-dimensional distribution of the stationary DLG process R(t) defined
by (2.2) is

cum (R(t1), . . . , R(tm)) =


δ

2

(−α
σ2

)−m

, if m = 1

δ

2

(−α
σ2

)−m ∑
τ∈Perm(2,... ,m)

eαDτ (t1,... ,tm), if m > 2.
(2.22)

In a neighborhood of 0 ∈ NBV [0, T ] the logarithm of the characteristic functional of R can be put into the
following form.

logϕR(G) =
δ

2

∞∑
m=1

im

m

(−α
σ2

)−m ∫
[0,T ]m

eαDτ0 (t)dG(t1) . . . dG(tm), (2.23)

for G ∈ NBV [0, T ] : var(G) < −α/σ2, where τ0 is the identity permutation.

Proof. As we have seen, Theorem 3 permits of deriving the distributional properties of the δ-dimensional
DLG process from those of the one-dimensional process. Thus, in effect we have to deal only with the
one-dimensional stationary DLG process R(t) = X2(t), where X(t) is the stationary OU process (2.19).

Now consider the cumulants. For m = 1,

cum (R(t)) = ER(t) =
1
2

(−α
σ2

)−1

, (2.24)
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because R(t) ∼ Γ
(
1/2,−σ2/α

)
by Proposition 6. The right-hand side of (2.24) is the first line of the

right-hand side of (2.22) for δ = 1. For m > 2, by Proposition 27 in the Appendix, we have

cum (R(t1), . . . , R(tm)) = 2m−1
∑

(i1,... ,im−1)∈Perm(2,... ,m)

cov (X(t1), X(ti1)) cov (X(ti1), X(ti2)) · · ·

× cov
(
X(tim−2), X(tim−1)

)
cov

(
X(tim−1), X(t1)

)
= 2m−1

∑
τ∈Perm(2,... ,m)

(
σ2

−2α

)m

eαDτ (t),

which is the second line of the right-hand side of (2.22) for δ = 1. We remark that one can get the same result
by using formula (2.9) in [40], which is a direct expression for the joint cumulants of multiple Wiener–Itô
integrals.

Let us now calculate the characteristic functional. Or rather its logarithm, inasmuch as the cumulants
will be used in the series expansion.

logϕR(G) = logϕ〈R,G〉(u)|u=1 = logϕTR
0

R(t)dG(t)
(u)|u=1 =

∞∑
m=1

im

m!
cumm

 T∫
0

R(t)dG(t)

 , (2.25)

where cumm denotes the cumulant of order m. Since

cumm

 T∫
0

R(t)dG(t)

 = cum


T∫

0

R(t)dG(t), . . . ,

T∫
0

R(t)dG(t)

︸ ︷︷ ︸


m in all

=

T∫
0

· · ·
T∫

0︸ ︷︷ ︸
m in all

cum
(
R(t1), . . . R(tm)

)
dG(t1) . . . dG(tm)

=
∫

[0,T ]m

δ

2

(−α
σ2

)−m ∑
τ∈Perm(2,... ,m)

eαDτ (t1,... ,tm)dG(t1) . . . dG(tm)

=
δ

2

(−α
σ2

)−m

(m− 1)!
∫

[0,T ]m

eαDτ0 (t)dG(t1) . . . dG(tm), (2.26)

for m > 2, and the left-hand side equals the right-hand side also for m = 1. In (2.26) the change of the
order of the cumulant operator and the integrals can be justified, e.g. by the following way. Let us express
the cumulant via moments. Then in each term of products of moments one can change the order of the
expectations and the multiple integrals, because the conditions of the Fubini theorem are fulfilled. Then
changing back the expression via moments to cumulant one gets the second row of (2.26).

Returning to (2.25) and using (2.26), we have the result as in (2.23). It is easy to see that the restriction
G ∈ NBV [0, T ] : var(G) < −α/σ2 is enough for the series on the right-hand side of (2.25) to be convergent.

Now consider the stationary DLG process R(t) on the whole line, i.e. t ∈ R. We will be interested in
the spectra of the process, namely, the second and third order ones, i.e. the spectrum and the bispectrum,
respectively. Of the higher order spectra it is the bispectrum that has the least order. The notion of higher
order spectrum arises from Brillinger, see [3].

Definition 8. Let m ∈ {2, 3, 4, . . .}. Let X(t), t ∈ R, be a stationary process with finite absolute moments
of order m. Assume that the joint cumulant function, taken as a function of m − 1 variables t(m−1) $
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(t1, . . . , tm−1), is integrable, i.e.∫
Rm−1

|cum (X(0), X(t1), . . . , X(tm−1))| dt(m−1) <∞,

and that the (m− 1)-variable Fourier transform

Sm,X

(
ω(m−1)

)
$
(

1
2π

)m−1 ∫
Rm−1

exp

−im−1∑
j=1

tjωj

 cum (X(0), X(t1), . . . , X(tm−1)) dt(m−1),

where ω(m−1) $ (ω1, . . . , ωm−1), is also integrable, i.e.

∫
Rm−1

∣∣∣Sm,X(ω(m−1))
∣∣∣ dω(m−1) <∞.

Then Sm,X(ω(m−1)) is called the m-th order spectrum of process X(t). For m = 2 and m = 3 the m-th
order spectrum is called spectrum and bispectrum, respectively.

Remark 5. The spectrum of order m > 3 is generally, complex-valued, and so is the bispectrum. Only the
second order spectrum is always real-valued.

Lemma 2. For each m ∈ {2, 3, 4, . . .} the cumulant function of the stationary DLG process R(t), taken as
a function of m− 1 variables, is integrable, i.e.∫

Rm−1

|cum (R(0), R(t1), . . . , R(tm−1))| dt(m−1) <∞.

Proof. By (2.22), performing an integral transformation, we have∫
Rm−1

|cum (R(0), R(t1), . . . , R(tm−1))| dt(m−1)

=
δ

2

(−α
σ2

)−m ∑
τ∈Perm(1,... ,m−1)

∫
Rm−1

eαDτ (0,t1,... ,tm−1)dt(m−1).

=
δ

2

(−α
σ2

)−m

(m− 1)!
∫

Rm−1

exp

α
m−1∑

j=1

|sj |+
∣∣∣∣∣∣
m−1∑
j=1

sj

∣∣∣∣∣∣
ds(m−1)

6 δ

2

(−α
σ2

)−m

(m− 1)!
∫

Rm−1

exp

αm−1∑
j=1

|sj |
 ds(m−1) <∞,

where we also utilized the negativity of α in both of the inequalities.

Proposition 8. The spectrum of the stationary DLG process R(t) exists, and it is

S2,R(ω) =
1
2π

· δ
2

(−α
σ2

)−2 −4α
ω2 + 4α2

· (2.27)
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Proof. By Lemma 2, Definition 8 and formula (2.22), the Fourier transform of the second order cumulant
function with one variable is,

S2,R(ω) =
1
2π

∫
R

e−itω cum (R(0), R(t)) dt

=
1
2π

· δ
2

(−α
σ2

)−2 ∫
R

e−itω+2α|t|dt

=
1
2π

· δ
2

(−α
σ2

)−2 −4α
ω2 + 4α2

·

S2,R(ω) is also integrable, thus it is really a spectrum.

Remark 6. By the previous proposition the spectrum of the stationary DLG process R(t) is the same as
that of an Ornstein–Uhlenbeck (AR(1)) process.

Notation 6. The symmetrization operator sym
(ω(3))

is defined by the formula

sym
(ω(3))

(g (ω1, ω2, ω3)) =
1
3!

∑
(i1,i2,i3)∈Perm(1,2,3)

g (ωi1 , ωi2 , ωi3) .

Proposition 9. The bispectrum of the stationary DLG process R(t) exists, and it is

S3,R

(
ω(2)

)
=
(

1
2π

)2

δ

(−α
σ2

)−3

3! sym
(ω(3))

(
1

−iω1 − 2α
· 1
iω2 − 2α

)
, (2.28)

where ω1 + ω2 + ω3 = 0. In another form (2.28) is written as

S3,R

(
ω(2)

)
=
(

1
2π

)2

48δ
(−α
σ2

)−3 α2
(
ω1ω2 + ω2

1 + ω2
2 + 12α2

)
(ω2

1 + 4α2) (ω2
2 + 4α2)

(
(ω1 + ω2)

2 + 4α2
) · (2.29)

Hence, S3,R

(
ω(2)

)
has the extraordinary property that it is real-valued moreover it is positive.

Proof. By Lemma 2, Definition 8 and formula (2.22), the Fourier transform of the second order cumulant
function with two variables is,

S3,R

(
ω(2)

)
=
(

1
2π

)2 ∫
R2

e−i(t1ω1+t2ω2) cum (R(0), R(t1), R(t2) dt

=
(

1
2π

)2
δ

2

(−α
σ2

)−3 ∫
R2

e−i(t1ω1+t2ω2)
∑

τ∈Perm(1,2)

eαDτ (0,t1,t2)dt

=
(

1
2π

)2
δ

2

(−α
σ2

)−3

2!
∫
R2

e−i(t1ω1+t2ω2)+α(|t1|+|t2−t1|+|t2|)dt

=
(

1
2π

)2
δ

2

(−α
σ2

)−3

2!
∫
R2

e−i(s1(ω1+ω2)+s2ω2)+α(|s1|+|s2|+|s1+s2|)ds. (2.30)
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Breaking up the double integral according to the six parts of the plane defined by the axes and the line
y = −x, we have∫

R2

e−i(s1(ω1+ω2)+s2ω2)+α(|s1|+|s2|+|s1+s2|)ds = 3! sym
(ω(3))

(
1

−iω1 − 2α
· 1
iω2 − 2α

)
·

Continuing (2.30), we have for the Fourier transform

S3,R

(
ω(2)

)
=
(

1
2π

)2

δ

(−α
σ2

)−3

3! sym
(ω(3))

(
1

−iω1 − 2α
· 1
iω2 − 2α

)

=
(

1
2π

)2

δ

(−α
σ2

)−3

3!
8α2

(
ω1ω2 + ω2

1 + ω2
2 + 12α2

)
(ω2

1 + 4α2) (ω2
2 + 4α2)

(
(ω1 + ω2)

2 + 4α2
) · (2.31)

We remark that though it does not show at first sight, the numerator of the fraction in the last row is
symmetric in the variables ω1, ω2, ω3. Now, if ω1 and ω2 are both nonnegative or both negative, the fraction
in the last row of (2.31) can be bounded as

0 <
8α2

(
ω1ω2 + ω2

1 + ω2
2 + 12α2

)
(ω2

1 + 4α2) (ω2
2 + 4α2)

(
(ω1 + ω2)

2 + 4α2
)

6
8α2

(
(ω1 + ω2)

2 + 12α2
)

(ω2
1 + 4α2) (ω2

2 + 4α2)
(
(ω1 + ω2)

2 + 4α2
)

=
8α2

(ω2
1 + 4α2) (ω2

2 + 4α2)
+

64α4

(ω2
1 + 4α2) (ω2

2 + 4α2)
(
(ω1 + ω2)

2 + 4α2
)

6 8α2

(ω2
1 + 4α2) (ω2

2 + 4α2)
+

64α4

(ω2
1 + 4α2) (ω2

2 + 4α2) 4α2
,

and so S3,R

(
ω(2)

)
is integrable on the first and third quarters of the plane. If ω1 and ω2 have different signs,

then

0 <
8α2

(
ω1ω2 + ω2

1 + ω2
2 + 12α2

)
(ω2

1 + 4α2) (ω2
2 + 4α2)

(
(ω1 + ω2)

2 + 4α2
)

6
8α2

(
ω2

1 + ω2
2 + 12α2

)
(ω2

1 + 4α2) (ω2
2 + 4α2)

(
(ω1 + ω2)

2 + 4α2
)

=
8α2

(ω2
2 + 4α2)

(
(ω1 + ω2)

2 + 4α2
) +

8α2

(ω2
1 + 4α2)

(
(ω1 + ω2)

2 + 4α2
)

+
32α4

(ω2
1 + 4α2) (ω2

2 + 4α2)
(
(ω1 + ω2)

2 + 4α2
)

6 8α2

(ω2
2 + 4α2)

(
(ω1 + ω2)

2 + 4α2
) +

8α2

(ω2
1 + 4α2)

(
(ω1 + ω2)

2 + 4α2
) +

32α4

(ω2
1 + 4α2) (ω2

2 + 4α2) 4α2
,

and thus, S3,R

(
ω(2)

)
is integrable on the second and fourth quarters of the plane, too. This means that

S3,R

(
ω(2)

)
is integrable on the whole plane R2, thus it is really a bispectrum. We have also proven that it

is real-valued and positive.
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3. Superposition of DLG processes and its multifractal limit process

3.1. Superposition of random-parameter stationary DLG processes (SDLG process)

Derivation of LRD by superposing short range dependent processes is not new in the literature. Here are
some papers on this subject: reference [28] showed that superposition of many sources exhibiting the infi-
nite variance syndrome can result in LRD. Reference [13] aggregated random coefficient AR(1) time series,
while [27, 32] superposed renewal processes and alternating renewal processes with heavy tailed interarrival
time distributions to get LRD. A model similar to the latter was considered in [39, 42], aggregating inde-
pendent ON/OFF processes with heavy tailed ON or OFF time periods to achieve LRD. References [5, 6]
pointed out that the Riemann–Liouville fractional integral operator can be represented as a mixture of AR(1)
operators. Reference [16] considered 1) superposition of random-coefficient independent OU processes; 2)
mixture of random-coefficient OU processes with common input and 3) superposition of random-intensity
Poisson alternating 0–1 reward processes, and the result was a LRD process, called GMOU process in all
the three cases. Reference [1] studied the superposition of OU processes with Lévy process input, and under
specified conditions, obtained a LRD process as a result.

The superposition model to be exposed in this subsection is similar to the first model of [16]; however
the component processes to be superposed are not OU but another sort of AR(1) processes. They are DLG
processes. Going into details, we will show that if we take a sequence of series of independent stationary
DLG processes

R1,1(t)
R2,1(t), R2,2(t)

...
Rn,1(t), . . . , Rn,n(t)

...

(3.1)

with properly chosen random parameters, the row sums will converge in a certain sense to a limit process
Y , i.e.

Zn $
n∑

k=1

Rn,k −→
n→∞ Y.

As we will see, the characteristic functional of the limit process Y (t), called Superposition of DLG processes
(SDLG), is some weighted geometric mean of the characteristic functionals of stationary DLG processes.
The latter processes are called component processes. As an outcome, both the joint cumulants and the
spectra of the SDLG process Y (t) are mixtures of the joint cumulants and the spectra, respectively, of the
component processes. This fact makes it possible to calculate the cumulants and spectra of process Y (t)
from those of the component processes. Examining the cumulants, one can observe that the SDLG process
Y (t) has fractal-like properties in that its second order cumulant structure is asymptotically the same as
that of the continuous-time fractional Gaussian noise. Moreover, it is LRD, and its centered integral process
is asymptotically multifractal. The one-dimensional distribution of Y (t) is also worthy of note: it is Γ. One
can go further and take a limit process of series of SDLG processes which is already exact multifractal, see
Section 3.2. An additional remarkable attribute is that the bispectrum of Y (t) is real-valued moreover it is
positive. The former property of the bispectrum involves some reversibility-like feature of the 3-dimensional
distribution, see Remark 17.

Let us see the construction in details. Assume that there is given a sequence of parameters αk, k ∈ N, such
that they are independent random variables on a probability space (ΩA,FA, PA), and −2αk ∼ Γ(3−2H, 1/λ),
k ∈ N, where λ > 0 and 1/2 < H < 1 are constants. Assume moreover that the parameters σ2

k depend
on parameters αk, such that σ2

k = −αkσ
2
0 , where σ2

0 > 0 is a constant. Furthermore let the parameters
µn $ µ0/n, n ∈ N, where µ0 > 0 is a constant. Thus parameters αk and σk are random variables,
parameters µn are deterministic, and the parameters δn,k $ µn/σ

2
k (see (2.3)) are random variables too.
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Let the probability space (ΩB,FB, PB)2 be independent of (ΩA,FA, PA)1. Let the sequence of series (3.1)
of the stationary DLG processes be defined PA a.s. on (ΩB,FB, PB), specifically, the process Rn, k(t) with
input BM Bk(t) and parameters αk, σk, and µn, for each (n, k), n ∈ N, k = 1, . . . , n. Assume that the BMs
Bk(t), k ∈ N, are independent. Thus, we have

dRn,k(t) = (µn + 2αkRn,k(t)) dt+ 2σk

√
Rn,k(t)dBk(t), PA a.s., (3.2)

n ∈ N, k = 1, . . . , n.
Now we summarize the above conditions.

Condition 1. λ > 0, 1/2 < H < 1, σ2
0 > 0 and µ0 > 0 are constants.

Condition 2. (ΩA,FA, PA) and (ΩB,FB, PB) are independent probability spaces.

Condition 3. −2αk ∼ Γ(3− 2H, 1/λ), k ∈ N, are independent random variables on (ΩA,FA, PA).

Condition 4. σ2
k $ −αkσ

2
0, k ∈ N.

Condition 5. µn $ µ0/n, n ∈ N.

Condition 6. Bk(t), k ∈ N, are independent Brownian motions on (ΩB ,FB, PB).

Stressing it again, we have the stationary DLG processes Rn,k(t) defined by (3.2). Specifically, R1,1(t)
has the parameters −2α1 ∼ Γ(3− 2H, 1/λ), σ2

1 = −α1σ
2
0 and µ1 = µ0.

Remark 7. Note that it is Condition 5 only that accounts for our having not simply a series but a sequence
of series of DLG processes.

Notation 7. Let us define for each n ∈ N the process Zn(t) to be the sum of the n-th row of (3.1), i.e.

Zn(t) $
n∑

k=1

Rn,k(t), (3.3)

n ∈ N.

Remember that due to Proposition 6, Rn,k(t) ∼ Γ
(
δn,k/2,−σ2

k/αk

)
, where δn,k = µn/σ

2
k, i.e.

Rn,k(t) ∼ Γ
(

µ0

2nσ2
k

, σ2
0

)
.

The first observation is that the one-dimensional limit distribution of Zn(t) remains Γ as n→∞.

Proposition 10. For every fixed t ∈ R the distribution of the series of random variables Zn(t) PA a.s.
converges weakly to a Γ distribution, that is to say,

Zn(t) w−→
n→∞ Γ

(
µ0λ

2σ2
0 (1−H)

, σ2
0

)
, PA a.s.

Proof. Because of the independence of processes Rn,k(t), k = 1, . . . , n, and Condition 4, we have

Zn(t) ∼ Γ

(
µ0

nσ2
0

n∑
k=1

1
−2αk

, σ2
0

)
. (3.4)

Because of Condition 3, it follows, by the strong law of large numbers, that

µ0

nσ2
0

n∑
k=1

1
−2αk

−→
n→∞

µ0

σ2
0

EA
1

−2αk
=
µ0

σ2
0

· λ

2(1−H)
, PA a.s., (3.5)

where EA means the expectation with respect to the distribution PA. From (3.4) and (3.5) the statement
follows straightaway.

2We use the subscript B and A, to remind the reader of the Brownian motion input process and the parameter α, respectively.
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Corollary 1. The SDLG process Y (t), if it exists, has marginal distribution Γ, that is,

Y (t) ∼ Γ
(

µ0λ

2σ2
0 (1−H)

, σ2
0

)
,

for all t > 0.

Remark 8. For each n ∈ N, PA a.s. holds that the random process Zn(t) is PB a.s. continuous, i.e. PA

a.s.: Zn ∈ C[0, T ] PB a.s. Thus, for each n ∈ N, PA a.s.: process Zn induces a measure PZn on C[0, T ]. The
measure PZn is random in the sense that it depends on the realization (α1, . . . , αn). However, it would be
inadequate to call it a “random measure”, so we omit the attribute “random”.

Before the main theorem in this section we need the following lemma:

Lemma 3. PA a.s. holds that the series of measures PZn , n ∈ N, mentioned in Remark 8, is tight.

Proof. We premise that in this proof every statement depending on the realizations of α1, α2, α3, . . . , will be
meant PA a.s.

It follows from Proposition 7 and from the form of the characteristic function of the multi-dimensional Γ
distribution (see the Appendix) that the characteristic function of Rn,k(t)−Rn,k(0) is

ϕRn,k(t)−Rn,k(0)(u) = ϕRn,k(t),Rn,k(0)(u,−u)

=
∣∣∣∣I − iuσ2

0

(
1 0
0 −1

)(
1 eαk|t|

eαk|t| 1

)∣∣∣∣−
µ0

−2nσ2
0αk

=
(
1 + u2σ4

0

(
1− e2αk|t|

))− µ0
−2nσ2

0αk .

Calculating the moments from the characteristic function by differentiation, we have

EB (Rn,k(t)−Rn,k(0))2 =
2µ0σ

2
0

n
· 1− e2αk|t|

−2αk
,

EB (Rn,k(t)−Rn,k(0))4 = 12
µ0

−2nσ2
0αk

(
µ0

−2nσ2
0αk

+ 1
)((

1− e2αk|t|
)
σ4

0

)2

.

Hence

EB (Zn(t)− Zn(0))4 =
n∑

k=1

EB (Rn,k(t)−Rn,k(0))4

+
n∑

k=1

n∑
`=1

EB (Rn,k(t)−Rn,k(0))2 EB (Rn,`(t)−Rn,`(0))2

6
(

12
µ0σ

6
0

n

n∑
k=1

(
µ0

σ2
0n

− 2αk

)
+

4µ2
0σ

4
0

n2

n∑
k=1

n∑
`=1

1

)
t2

=

(
4µ2

0σ
4
0

(
1 +

3
n

)
+

12µ0σ
6
0

n

n∑
k=1

(−2αk)

)
t2

6
(
16µ2

0σ
4
0 + 12µ0σ

6
0K(α1, α2, α3, . . . )

)
t2, (3.6)

for all n ∈ N, where K(α1, α2, α3, . . . ) is a constant bounding above the series 1
n

n∑
k=1

(−2αk). Such a constant

really exists, in agreement with the strong law of large numbers.
Process Zn(t) is stationary, thus it has stationary increments. Consequently, using (3.6), we have

EB (Zn(t+ s)− Zn(s))4 6 K1(α1, α2, α3, . . . )t2,

for all t, s > 0 and n ∈ N. Thus the tightness condition of Kolmogorov is fulfilled.
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Now, in the main theorem of this section, we state the existence of the SDLG process Y (t), and give a
series expansion for its logarithmic characteristic functional.

Theorem 5. 1) PA a.s. holds that the series of measures PZn , n ∈ N, mentioned in Remark 8, converges
weakly to some measure PY , i.e. there exists an a.s. continuous process Y (t) on (ΩB ,FB, PB) such that

Zn
w−→

n→∞ Y in C[0, T ], PA a.s.

Distribution PY and thus process Y (t) do not depend on the realizations of α1, α2, α3, . . . any more. (Zn

and PZn do.)

2) For all G ∈ NBV [0, T ] such that var(G) < σ−2
0 , the logarithm of the characteristic functional of process

Y (t) (or of PY ) can be put into the form

logϕY (G) =
µ0λ

2σ2
0 (1−H)

∞∑
m=1

im

m
σ2m

0

∫
[0,T ]m

(
1 +

Dτ0(t)
2λ

)2(H−1)

dG(t1) . . . dG(tm), (3.7)

where τ0 is the identity permutation. (See Notation 5 on Dτ0(t).)

3) The characteristic functional of process Y (t) is the weighted geometric mean of the characteristic func-
tionals of stationary DLG component processes R1,1(t), where the weight measure is the Γ(3 − 2H, 1/λ)
distribution, see Condition 3. In other words, the logarithm of the characteristic functional of process Y (t)
is the mixture of logarithms of the characteristic functionals of component processes R1,1(t), i.e.

logϕY (G) = EA logϕR1,1(G), (3.8)

for all G ∈ NBV [0, T ].

Proof. The proof of the first two statements is composed of four parts. The fifth part is the proof of the
third statement of the theorem. We premise that in this proof every statement depending on the realizations
of α1, α2, α3, . . . , will be meant by PA a.s.

Part 1. Because of the independence of the elements inside the rows of (3.1), Theorem 4, formula (2.3),
and Conditions 4 and 5, we have

logϕZn(G) =
n∑

k=1

logϕRn,k
(G)

=
∞∑

m=1

im

m
µ0σ

2(m−1)
0

∫
[0,T ]m

1
n

n∑
k=1

(
1

−2αk
eαkDτ0 (t)

)
dG(t1) . . .dG(tm),

for var(G) < σ−2
0 . Because of the strong law of large numbers and Condition 3,

1
n

n∑
k=1

(
1

−2αk
eαkDτ0 (t)

)
−→

n→∞ EA

(
1

−2αk
eαkDτ0 (t)

)
=

λ

2(1−H)

(
1 +

Dτ0(t)
2λ

)2(H−1)

.

Consequently

logϕZn(G) −→
n→∞

µ0λ

2σ2
0 (1−H)

∞∑
m=1

im

m
σ2m

0

∫
[0,T ]m

(
1 +

Dτ0(t)
2λ

)2(H−1)

dG(t1) . . . dG(tm), (3.9)

for var(G) < σ−2
0 . The change of the order of the limit and the integral, and also the change of the order of

the limit and the sum can be easily justified by the fact that we are considering the characteristic functionals
only on the domain

{
G ∈ NBV [0, T ] : var(G) < σ−2

0

}
.
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Part 2. As we found it simpler to deal directly with the characteristic functionals of measures on C[0, T ] than
to prove the convergence of finite-dimensional distributions, we will use the following well-known property
of measures on complete separable metric spaces.

PZn

w−→
n→∞ P ⇐⇒ Every subsequence of 〈PZn〉 contains

a subsequence converging weakly to P . (3.10)

Let 〈PZen〉 be a subsequence of 〈PZn〉. We have the following deduction chain.

Lemma 3 =⇒ The series 〈PZen〉 is tight.
=⇒ The series 〈PZen〉 is relatively compact.

=⇒ There exists a subsequence
〈
PZ≈

n

〉
of 〈PZen〉 , converging weakly to some measure, say P .

=⇒ logϕ
Z≈n

(G) −→
n→∞ logϕP (G) for all G ∈ NBV [0, T ],

where ϕ
Z≈n

(G) and ϕP (G) is the characteristic functional of PZ≈
n

and P , respectively.
From the last convergence and (3.9), we have

logϕ
Z≈n

(G) −→
n→∞ logϕP (G)

=
µ0λ

2σ2
0 (1−H)

∞∑
m=1

im

m
σ2m

0

∫
[0,T ]m

(
1 +

Dτ0(t)
2λ

)2(H−1)

dG(t1) . . . dG(tm), (3.11)

for var(G) < σ−2
0 .

If one takes another subsequence 〈PZ em〉 instead of 〈PZen〉, then it follows in the same way that there exists
a subsequence

〈
PZ≈

m

〉
of 〈PZ em〉, and a probability measure Q on C[0, T ] such that

logϕZ≈
m

(G) −→
n→∞ logϕQ(G)

=
µ0λ

2σ2
0 (1−H)

∞∑
m=1

im

m
σ2m

0

∫
[0,T ]m

(
1 +

Dτ0(t)
2λ

)2(H−1)

dG(t1) . . . dG(tm), (3.12)

for var(G) < σ−2
0 . It is simply the consequence

ϕP (G) = ϕQ(G), for var(G) < σ−2
0 , (3.13)

that concerns us in (3.11) and (3.12). By (3.10), what we have to prove is that P = Q.

Part 3. To prove that P = Q, it is enough to prove that all the finite-dimensional marginal distributions of
the two measures are the same. In other words, we have to prove that all the finite-dimensional distributions
of the a.s. continuous processes, say, YP and YQ, are the same, where YP and YQ has distribution P and Q,
respectively.

Let m ∈ N and t1, . . . , tm ∈ [0, T ] be arbitrary. We have to prove that the distribution of (YP (t1), . . . ,
YP (tm)) and that of (YQ(t1), . . . , YQ(tm)) on Rm are the same. To attain this it is enough to prove that all
the linear combinations of their components have the same one-dimensional distribution, i.e.

m∑
k=1

λkYP (tk) ∼
m∑

k=1

λkYQ(tk), (3.14)

for all λ1, . . . , λm ∈ R.
In (3.13) let us perform the substitution

G $ u

m∑
k=1

λkχ[tk,T ],
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where

|u| < σ−2
0

(
m∑

k=1

|λk|
)−1

, (3.15)

and χ denotes the characteristic (or indicator) function of the set in its subscript. This replacement is
legitimate because obviously var(G) < σ−2

0 . In this way we have

ϕ mP
k=1

λkYP (tk)
(u) = ϕP (G) = ϕQ(G) = ϕ mP

k=1
λkYQ(tk)

(u),

for the values of u given by (3.15). Thus, in a neighborhood of u = 0 the characteristic functions are equal,
from which the equality of the moments of the two random variables in (3.14) follows. To complete the proof
we have to prove that these moments determine the distribution uniquely.

Part 4. We have to prove that the moments of the random variable

m∑
k=1

λkYP (tk) (3.16)

uniquely determine the distribution, and the proof is complete.
It is well known that the moments Mn, n ∈ N, of a distribution, uniquely determine the distribution, if

the absolute moments of even order, M2n, n ∈ N, satisfy the moment condition

lim
n→∞

(
M2n

) 1
2n

2n
<∞.

In our case

lim
n→∞

(
E
∣∣∣∣ m∑
k=1

λkYP (tk)
∣∣∣∣2n
) 1

2n

2n
= lim

n→∞

 1
2n

∥∥∥∥∥
m∑

k=1

λkYP (tk)

∥∥∥∥∥
(2n)


6 lim

n→∞

(
1
2n

m∑
k=1

|λk| ‖YP (t)‖(2n)

)
=

m∑
k=1

|λk| lim
n→∞

(
1
2n

‖YP (t)‖(2n)

)
<∞,

because YP (t) has Γ distribution, see Proposition 10. Thus, the moments uniquely determine the distribution
of the random variable (3.16), and this is what was to be proved. The first two statements of the theorem
are proven.

Part 5. Similarly to the beginning of Part 1, we have

EA logϕR1,1(G) = EA

∞∑
m=1

im

m
µ0σ

2(m−1)
0

∫
[0,T ]m

(
1

−2αk
eαkDτ0 (t)

)
dG(t1) . . . dG(tm)

=
∞∑

m=1

im

m
µ0σ

2(m−1)
0

∫
[0,T ]m

EA

(
1

−2αk
eαkDτ0 (t)

)
dG(t1) . . . dG(tm)

=
µ0λ

2σ2
0 (1−H)

∞∑
m=1

im

m
σ2m

0

∫
[0,T ]m

(
1 +

Dτ0(t)
2λ

)2(H−1)

dG(t1) . . . dG(tm)

= logϕY (G),
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for var(G) < σ−2
0 . The change of order of the expectation and the integral, and also the change of order of

the expectation and the sum can be easily justified by Fubini’s theorem and the fact that the characteristic
functionals are only considered for var(G) < σ−2

0 .
We also have to prove, that equation (3.8) holds not only for var(G) < σ−2

0 but on the whole space
NBV [0, T ]. The exponential of the right-hand side of (3.8) defines a characteristic functional, ψ(G), say, on
the whole NBV [0, T ] because every positive power of the characteristic functional of any stationary DLG
process also will be a characteristic functional (of some stationary DLG process), see Remark 3. Now, we have
two characteristic functionals, ϕY (G) and ψ(G), and they both agree with the exponential of the right-hand
side of (3.7) for var(G) < σ−2

0 . The situation is the same as it was at (3.13), thus, the conclusion must also be
the same, namely that ϕY (G) = ψ(G) for all G ∈ NBV [0, T ]. Thus (3.8) holds for all G ∈ NBV [0, T ].

The following observation is a consequence of the third statement of Theorem 5 and Remark 3.

Corollary 2. The SDLG process Y (t) is infinitely divisible.

Remark 9. As it appears from the last paragraph of the previous proof, the existence of the SDLG process
Y (t) depends eventually on the stationary DLG process being infinitely divisible.

Remark 10. Let G(t) $ uχ[t1,T ](t), where u ∈ R, |u| < σ−2
0 . Taking function G(t) in Theorem 5, we have

logϕY (t)(u) = − µ0λ

2σ2
0 (1−H)

log
(
1− iuσ2

0

)
,

for |u| < σ−2
0 . This is the logarithm of the characteristic function of a Γ distribution around zero, and it

uniquely determines the characteristic function on the whole line. Thus, we have the result already known,
namely that Y (t) ∼ Γ

(
µ0λσ

−2
0 (1−H)−1/2, σ2

0

)
, see Corollary 1.

The following lemma will be needed later:

Lemma 4. Let m ∈ N, t1, . . . , tm ∈ [0, T ]. Then the mixture representation

cum (Y (t1), . . . , Y (tm)) = EA cum (R1,1(t1), . . . , R1,1(tm))

holds, where R1,1(t) are the component processes defined above, see the paragraph preceding Remark 7. The
following explicit formula also can be given.

cum (Y (t1), . . . , Y (tm)) =
µ0λσ

2m−2
0

2(1−H)

∑
τ∈Perm(2,... ,m)

(
1 +

Dτ (t)
2λ

)2(H−1)

. (3.17)

Proof. The same mixture representation holds for the finite-dimensional, in particular for the m-dimensional
distributions, as for the distributions of processes on C[0, T ]. Thus the same formula holds for the logarithmic
m variate characteristic functions, and for the cumulants of order m too. This is

cum (Y (t1), . . . , Y (tm)) = EA cum (R(t1), . . . , R(tm))

= µ0σ
2m−2
0

∑
τ∈Perm(2,... ,m)

EA

(
1

−2αk
eαkDτ (t)

)
=
µ0λσ

2m−2
0

2(1−H)

∑
τ∈Perm(2,... ,m)

(
1 +

Dτ (t)
2λ

)2(H−1)

.

The second equation follows from (2.22, 2.3), and Condition 4 and that µ = µ0. The last equation follows
from Condition 3.

Proposition 11. The centered integral process of the SDLG process Y (t) is asymptotically multifractal.
Specifically, the following scaling rules hold.

cumm

 t∫
0

(Y (s)− EY )ds

 '
t→∞ k(m)tm+2(H−1),
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for m > 2, where cumm denotes the cumulant of order m of the one-dimensional distribution, k(m),
m > 2, are some positive constants not depending on t but depending on m, and '

t→∞ means asymptotically
equivalence as t→∞.

Proof. Taking in (3.7) function G(t) = ut with |u| sufficiently small, we have

cumm

 T∫
0

Y (t)dt

 =
µ0λσ

2m−2
0

2(1−H)
(m− 1)!

∫
[0,T ]m

(
1 +

Dτ0(t)
2λ

)2(H−1)

dt

'
T→∞

21−2H

1−H
µ0λ

3−2Hσ2m−2
0 (m− 1)!

∫
[0,1]m

Dτ0(t)
2(H−1)dt Tm+2(H−1) = k(m)Tm+2(H−1),

where the asymptotically equivalence holds for m > 2.

Proposition 12. The SDLG process Y (t) is LRD with parameter H .

Proof. Using Lemma 4, the autocovariance function of the stationary process Y (t) is

RY (t) $ cov(Y (0), Y (t)) = σ2
0

µ0λ

2(1−H)

(
1 +

|t|
2λ

)2(H−1)

'
t→∞ const.t2(H−1),

indicating a hyperbolically decay, and the LRD parameter is H .

3.2. Multifractal limit processes (LISDLG and ∆LISDLG processes)

In this subsection we will show that one can go further and make up a subsequent limit process as
parameter λ → 0. The new limit process will have interesting properties. Firstly it has the same second
order covariance structure as that of the FBM, thus it will be second order self-similar. However, not self-
similar, but multifractal, in particular exactly multifractal. Furthermore, the increments of the limit process
will have a distribution close to Γ, leastwise for the case of values of H close to 1. In addition, the bispectrum
will also be unusual as it is real-valued, but that is in fact the subject of a later section.

Assume that µ0 depends on λ so that lim
λ→0

(
µ0λ

3−2H
)

= c0, some positive constant. Let us denote the

dependence of the SDLG process on λ, too. Hence Y (t) = Yλ(t).
As a consequence of Corollary 1, we know the expectation of Yλ(t), and thus

EYλ(t) =
µ0λ

2(1−H)
=
µ0λ

3−2H

2(1−H)
λ2(H−1) −→

λ→0
∞,

because 1/2 < H < 1, see Condition 1. Hence, the higher order moments of Yλ(t), and also the central
moments converge to infinity, therefore the existence of any limit process as λ → 0 is unlikely, even af-
ter standardization. However, there may exist a limit process in some Schwartz-distribution sense, which
indicates that it is more profitable to deal with the integral or time-aggregated process.

Notation 8.

Jλ(t) $
t∫

0

(Yλ(s)− EYλ) ds,

where the integral is simply assumed to be either pathwise Lebesgue integral or pathwise Riemann integral.
Process Jλ(t) is the integral process of the centralized SDLG process Yλ, therefore it will be referred to as
an Integrated SDLG (ISDLG) process. Its discrete increment process,

∆Jλ(t) $ Jλ(t+ 1)− Jλ(t),

t ∈ Z, will be called a ∆ISDLG process.
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Remark 11. The ISDLG process Jλ(t) is infinitely divisible because so is the SDLG process Yλ(t), see
Corollary 2.

We reassert our latter assumption.

Condition 7. lim
λ→0

(
µ0λ

3−2H
)

= c0 > 0.

Because Jλ(t) is an integral process, it is a.s. continuous, hence it generates a measure on C[0, T ]. Now
we state that the characteristic functional of the ISDLG process Jλ converges as λ→ 0, around zero, at the
very least.

Proposition 13. In a neighborhood of 0 ∈ NBV [0, T ] the logarithm of the characteristic functional of the
ISDLG process Jλ converges to a limit, that is to say,

logϕJλ
(G) =

∞∑
m=1

im

m!
cumm

 T∫
0

Jλ(t)dG(t)


−→
λ→0

21−2H

1−H
· c0
σ2

0

∞∑
m=2

im

m
σ2m

0

∫
[0,T ]m

Dτ0(t)
2(H−1)

m∏
k=1

(G(T )−G(tk)) dt, (3.18)

for

var(G) <
1
Tσ2

0

, (3.19)

where τ0 is the identity permutation. (See Notation 5 on Dτ0(t).)

Proof. Let G ∈ NBV [0, T ], such that (3.19) holds. Let us calculate the cumulants of the random variable

T∫
0

Jλ(t)dG(t). (3.20)

The cumulant of order 1 is the expectation, which is zero, because Jλ(t) is centralized, i.e.

cum1

 T∫
0

Jλ(t)dG(t)

 = E

T∫
0

Jλ(t)dG(t) = 0. (3.21)

The higher order cumulants are

cumm

 T∫
0

Jλ(t)dG(t)

 = cumm

 T∫
0

Yλ(t) (G(T )−G(t)) dt


=

∫
[0,T ]m

cum (Yλ(t1), . . . , Yλ(tm))
m∏

k=1

(G(T )−G(tk)) dt

=
µ0λ

2 (1−H)
σ2m−2

0

∫
[0,T ]m

∑
τ∈Perm(2,... ,m)

(
1 +

Dτ (t)
2λ

)2(H−1) m∏
k=1

(G(T )−G(tk)) dt

= µ0λ
3−2H 21−2H

1−H
σ2m−2

0 (m− 1)!
∫

[0,T ]m

(2λ+Dτ0(t))
2(H−1)

m∏
k=1

(G(T )−G(tk)) dt

−→
λ→0

c0
21−2H

1−H
σ2m−2

0 (m− 1)!
∫

[0,T ]m

Dτ0(t)
2(H−1)

m∏
k=1

(G(T )−G(tk)) dt, (3.22)
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for m > 2. In the second equation the change of the order of the cumulant operator and the integrals can be
justified similarly as in (2.26) (see the explanation after (2.26)). In the third equation we used Lemma 4, and
the fourth equation arises by performing the proper permutational integral transformations. In reference to
the convergence in the last row, we remark that if the m-dimensional integral in the last row were finite,
then Lebesgue’s dominated convergence theorem could be applied, since

(2λ+Dτ0(t))
2(H−1) 6 Dτ0(t)

2(H−1). (3.23)

Our backlog, the inequality ∫
[0,T ]m

Dτ0(t)
2(H−1)

m∏
k=1

|G(T )−G(tk)| dt <∞,

will be a by-product of the following calculation.∣∣∣∣∣∣cumm

 T∫
0

Jλ(t)dG(t)

∣∣∣∣∣∣ 6 µ0λ
3−2H21−2Hσ2m−2

0 (m− 1)!
1−H

∫
[0,T ]m

Dτ0(t)
2(H−1)

m∏
k=1

|G(T )−G(tk)| dt

6 µ0λ
3−2H21−2Hσ2m−2

0 (m− 1)!
1−H

(
sup

t∈[0,T ]

|G(T )−G(t)|
)m ∫

[0,T ]m

Dτ0(t)
2(H−1)dt

6 const.
σ2m−2

0 (m− 1)! var(G)m

1−H

∫
[0,T ]m

|t2 − t1|2(H−1) dt

= const.
(m− 1)!T 2(H−1)

σ2
0 (1−H) (2H − 1)H

(
σ2

0 var(G)T
)m

, (3.24)

where the first inequality is the consequence of the second last row of (3.22) and of (3.23). The second
inequality is obvious. The third inequality and the last equality hold because of Condition 7 and the
1/2 < H < 1 part of Condition 1.

Using (3.24) we find the series expansion in the first row of (3.18) to be absolutely convergent on the
domain given by (3.19). Substituting (3.21) and (3.22) into the first row of (3.18), we get the statement to
be proved. In the last step, when changing the order of the infinite sum and the operator lim

λ→0
, we could

apply Lebesgue’s theorem because of (3.24).

Lemma 5. The set of measures on C[0, T ] induced by the ISDLG processes Jλ, λ > 0, is tight.

Proof. Let λ > 0 be arbitrary. The ISDLG process Jλ(t) has stationary increments, therefore

E (Jλ(s+ t)− Jλ(s))2 = E Jλ(t)2 = cum2 (Jλ(t)) . (3.25)

We will refer to the proof of Proposition 13. It is easy to check that the equation part of (3.22), i.e. (3.22)
except for the last row, holds for all G ∈ NBV [0, T ]. Performing the substitution G(s) = χ[t,T ](s) in the
second last row of (3.22) for m = 2, we have

cum2 (Jλ(t)) = µ0λ
3−2H 21−2H

1−H
σ2

0

∫
[0,t]2

(2λ+ 2 |s2 − s1|)2(H−1) ds2ds1

6 const.
σ2

0

1−H

∫
[0,t]2

|s2 − s1|2(H−1) ds2ds1 = const.
σ2

0

(2H − 1)H (1−H)
t2H , (3.26)

where the inequality follows because of the 1/2 < H < 1 part of Condition 1. Equations (3.25) and (3.26)
together show that Kolmogorov’s tightness condition is satisfied.
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Now in the main theorem in this subsection, we state the convergence as λ→ 0, of the family of ISDLG
processes Jλ(t), λ > 0, and give a series expansion for the logarithmic characteristic functional of the limit
process.

Theorem 6. There exists an a.s. continuous process J such that

Jλ
w−→

λ→0
J in C[0, T ].

In a neighborhood of 0 ∈ NBV [0, T ] the logarithmic characteristic functional of the limit process J has the
series expansion

logϕJ (G) =
21−2H

1−H
· c0
σ2

0

∞∑
m=2

im

m
σ2m

0

∫
[0,T ]m

Dτ0(t)
2(H−1)

m∏
k=1

(G(T )−G(tk)) dt, (3.27)

for

var(G) <
1
σ2

0T
,

where τ0 is the identity permutation.
Because process J (t) is the Limit of ISDLG processes, it will be called a LISDLG process.

Proof. The reader can check that the proof of Theorem 5 as far as Part 4 can be applied to the present case
too. That is to say, in the same way, we already have the tightness and the convergence of the characteristic
functionals around zero, see Lemma 5 and Proposition 13, respectively. The only point, that we have to
amend is in Part 4. We adapt the notations of the proof mentioned and continue it from the beginning of
Part 4.

We have to prove that the moments of the random variable

m∑
k=1

λkJP (tk) (3.28)

uniquely determine its distribution, and the proof is complete. Let us consider the expression in the moment
condition. We can estimate it as follows.

lim
n→∞

 1
2n

E

∣∣∣∣∣
m∑

k=1

λkJP (tk)

∣∣∣∣∣
2n
 1

2n

 6
m∑

k=1

|λk| max
16j6m

lim
n→∞

(
1
2n

‖JP (tj)‖(2n)

)
.

Thus what we have to prove is

lim
n→∞

(
1
2n

‖JP (t)‖(2n)

)
<∞, (3.29)

for all t ∈ [0, T ].
For this end we use the expression of moments via cumulants since the cumulants are more tractable now

than the moments. At first let us show how to express the joint central moments of the SDLG process Y (t)
by its joint cumulants. The general formula we apply is formula (1.9) in [40]. Thus we have

E
m∏

j=1

(Y (tj)− EY (t)) =
∑

L∈Part(26)(1,... ,m)

∏
K∈L

cum
(
Y
(
t(K)

))
. (3.30)

Explanation of the notations: Part(1, . . . ,m) is the set of all partitions of the set {1, . . . ,m} and the set of
partitions the elements of which have at least two elements is denoted by Part(26)(1, . . . ,m), i.e.

Part(26)(1, . . . ,m) $ {L ∈ Part(1, . . . ,m) : ∀K ∈ L : |K| > 2} ·
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Moreover, Y
(
t(K)

)
= (Y (ti1), . . . , Y (tik

)), if K = {i1, . . . , ik}.
Replacing the cumulants in (3.30) by their expressions in (3.17), we have

E
m∏

j=1

(Y (tj)− EY (t)) =
∑

L∈Part(26)(1,... ,m)

∏
K∈L

µ0λ
3−2H

2(1−H)
σ

2|K|−2
0

∑
τ∈Perm(K\{min(K)})

(
2λ+Dτ

(
t(K)

))2(H−1)


=

∑
L∈Part(26)(1,... ,m)

( µ0λ
3−2H

2(1−H)σ2
0

)|L|
σ2m

0

∏
K∈L

∑
τ∈Perm(K\{min(K)})

(
2λ+Dτ

(
t(K)

))2(H−1)

 .

Hence,

E (Jλ(t))m =
∫

[0,t]m

E
m∏

j=1

(Y (sj)− EY ) ds

=
∑

L∈Part(26)(1,... ,m)

[(
µ0λ

3−2H

σ2
0

· 1
2(1−H)

)|L|
σ2m

0

×
∏

K∈L

(|K| − 1)!
∫

[0,t]|K|

∑
τ∈Perm(K\{min(K)})

(
2λ+Dτ0

(
s(K)

))2(H−1)

ds(K)




−→
λ→0

(
tσ2

0

)m ∑
L∈Part(26)(1,... ,m)

( 1
2(1−H)

· c0
σ2

0

t2(H−1)

)|L|∏
K∈L

(|K| − 1)!
∫

[0,1]|K|

Dτ0

(
s(K)

)2(H−1)

ds(K)




where the change of order of the integral and the limes as λ→ 0 is justifiable because of the inequality

(2λ+Dτ0(s))
2(H−1) 6 Dτ0(s)

2(H−1).

After these preparations we can return to the actual proof of inequality (3.29).

lim
n→∞

(
1
2n

‖JP (t)‖(2n)

)
= lim

n→∞

 1
2n

(tσ2
0

)2n ∑
L∈Part(26)(1,... ,2n)

(
1

2(1−H)
· c0
σ2

0

t2(H−1)

)|L|

×
∏

K∈L

(|K| − 1)!
∫

[0,1]|K|

Dτ0

(
s(K)

)2(H−1)

ds(K)


1
2n


6 tσ2

0 lim
n→∞

 1
2n

 ∑
L∈Part(1,... ,2n)

(
1

2(1−H)
· c0
σ2

0

t2(H−1)

)|L| ∏
K∈L

(
(|K| − 1)!

1
(2H − 1)H

) 1
2n


6 tσ2

0 max
{

1,
1

(2H − 1)(1 −H)2H
· c0
σ2

0

t2(H−1)

}
lim

n→∞

 1
2n

 ∑
L∈Part(1,... ,2n)

∏
K∈L

(|K| − 1)!


1
2n

 · (3.31)
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At the same time, if we take 2n identical copies of a Γ(1, 1) distributed random variable, i.e. ξ1 = . . .
= ξ2n ∼ Γ(1, 1), and express their joint moment by the joint cumulants, we get the very identity

(2n)! = E ξ2n
1 = E

2n∏
j=1

ξj =
∑

L∈Part(1,... ,2n)

∏
K∈L

cum
(
ξ
(K)

)
=

∑
L∈Part(1,... ,2n)

∏
K∈L

cum|K| (ξ1) =
∑

L∈Part(1,... ,2n)

∏
K∈L

(|K| − 1)!, (3.32)

where in the third equation the general expression of the moments via cumulants is used again, see formula (1.9)
in [40]. Substituting the result of (3.32) into (3.31), we obtain the inequalities

lim
n→∞

(
1
2n

‖JP (t)‖(2n)

)
6 const. lim

n→∞

(
1
2n

((2n)!)
1
2n

)
6 const. lim

n→∞

(
1
2n

· 1
2n

(1 + 2 + · · ·+ 2n)
)
<∞.

We arrived at (3.29), which was to be proved.

Since the ISDLG process Jλ is infinitely divisible (see Rem. 11), and the weak limit of infinitely divisible
processes also has this property, we have the following corollary:

Corollary 3. The LISDLG process J(t) is infinitely divisible.

The ISDLG processes Jλ, λ > 0, being integral processes of stationary processes, have stationary incre-
ments, hence the following remark is true:

Remark 12. The LISDLG process J(t) has stationary increments.

After the SDLG process Yλ(t), we defined the ISDLG process Jλ(t), which is asymptotically multifractal,
see Proposition 11. Taking the limit as λ → 0, we have arrived at our object, the limit process J(t). Our
motive to do so was that the LISDLG process J(t) is already exactly multifractal.

Theorem 7. The LISDLG process J(t) has the following cumulants

cum1(J(t)) = 0,

and

cumm(J(t)) = (m− 1)!
21−2H

1−H
c0σ

2(m−1)
0

∫
[0,1]m

Dτ0(s)
2(H−1)ds tm+2(H−1)

= k1(m)tm+2(H−1), (3.33)

for m > 2. (See also Prop. 11 for comparison.) Therefore, the LISDLG process J(t), t ∈ R, is multifractal.

Proof. Let us consider the function G(s) = uχ[t,T ](s), 0 6 s 6 T , where 0 6 |u| < σ−2
0 T−1, and substitute

it into (3.27). The replacement is legitimate since var(G) = |u| < σ−2
0 T−1, and for the cumulant generator

function logϕJ(t)(u) we have

logϕJ(t)(u) = logϕJ (G)

=
21−2H

1−H
· c0
σ2

0

∞∑
m=2

im

m
σ2m

0

∫
[0,T ]m

Dτ0(s)
2(H−1)

m∏
k=1

(G(T )−G(sk)) ds

=
21−2H

1−H
· c0
σ2

0

∞∑
m=2

(iu)m

m
σ2m

0

∫
[0,t]m

Dτ0(s)
2(H−1)ds

=
∞∑

m=2

(iu)m

m!
(m− 1)!

21−2H

1−H
· c0
σ2

0

σ2m
0

∫
[0,t]m

Dτ0(s)
2(H−1)ds,
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that is,

cum1(J(t)) = 0,

and

cumm(J(t)) = (m− 1)!
21−2H

1−H
· c0
σ2

0

σ2m
0

∫
[0,t]m

Dτ0(s)
2(H−1)ds

= (m− 1)!
21−2H

1−H
· c0
σ2

0

σ2m
0

∫
[0,1]m

Dτ0(s)
2(H−1)ds tm+2(H−1),

for m > 2.

Corollary 4. The discrete increment process ∆J(t) $ J(t+ 1)− J(t), t ∈ Z, is multifractal. We will call it
a ∆LISDLG process.

Proof. Indeed the aggregated increments ∆J(k)(n), i.e.

∆J(k)(n) =
1
n

n−1∑
j=0

∆J(kn− j) =
1
n

(J(kn+ 1)− J((k − 1)n+ 1)) d=
1
n
J(n),

have cumulants of order m

cumm

(
∆J(k)(n)

)
= (m− 1)!

21−2H

1−H
c0σ

2(m−1)
0

∫
[0,1]m

Dτ0(s)
2(H−1)ds n2(H−1) = k1(m)n2(H−1), (3.34)

as it follows from Theorem 7. The exponent of n is 2H − 2 = m
(

2H−2+m
m − 1

)
, i.e. the Hurst exponent

depends on m:

H(m) =
2H − 2 +m

m
=

2H − 2
m

+ 1.

The following is also an outcome of Theorem 7:

Corollary 5. The LISDLG process J(t) has the same covariance structure as the FBM. That is,

cov(J(t1), J(t2)) = const.
(
t2H
1 + t2H

2 − |t2 − t1|2H
)
,

t1, t2 > 0, where the constant does not depend on time. Moreover, the ∆LISDLG process ∆J(t) is LRD with
parameter H.

Proof. As the LISDLG process J(t) has stationary increments, we have

cov(J(t1), J(t2)) =
1
2
(
D2 (J(t1)) + D2 (J(t2))−D2 (J(t2 − t1))

)
, (3.35)

where the operator D2 denotes the variance. The variance is the second order cumulant, therefore by
substituting into (3.35) the expression for the second order cumulant from Theorem 7, we have

cov(J(t1), J(t2)) = const.
(
t2H
1 + t2H

2 − |t2 − t1|2H
)
,

thus we have proved the first part of the corollary.
LRD is a property depending only on the second order covariance structure. On the other hand, the

H-FGN, the increment process of the FBM with parameter H , is LRD with parameter H . In this manner
the second part is proved too.
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By the first statement of Corollary 5, the second order cumulant structure of the LISDLG process J(t)
is the same as that of the FBM. The question is how to proceed, what is the general formula for the higher
order joint cumulants? The question relative to a closed formula is open. However, on the basis of the
foregoing it is not hard to arrive at the following form:

Proposition 14. The 2 6 m-th order joint cumulants of the LISDLG process J(t) are

cum(J(t1), . . . , J(tm)) = const.σ2m
0 (m− 1)! sym

t

 t∫
0

Dτ0(s)
2(H−1)ds

 , (3.36)

for 0 < t1, . . . , tm, where the operator sym
t

is the symmetrization operator, i.e. symmetrization for all

permutations of the components of the vector t = (t1, . . . , tm). Moreover, the constant depends neither on
time, nor on m.

Proof. The proof is similar to that of Theorem 7. Let us consider the function

G(s) .=
m∑

i=1

uiχ[ti,T ](s),

0 ≤ s ≤ T , where

m∑
i=1

|ui| < σ−2
0 T−1,

and substitute it into (3.27). The replacement is legitimate, since

var(G) =
m∑

i=1

|ui| < σ−2
0 T−1,

and for the cumulant function logϕJ(t1),... ,J(tm)(u1, . . . , um) we have

logϕJ(t1),... ,J(tm)(u) = logϕJ (G)

=
21−2H

1−H
· c0
σ2

0

∞∑
k=2

ik

k
σ2k

0

∫
[0,T ]k

Dτ0(s)
2(H−1)

k∏
j=1

(G(T )−G(sj)) ds

=
21−2H

1−H
· c0
σ2

0

∞∑
k=2

ik

k
σ2k

0

m∑
i1,... ,ik=1

ui1 · · ·uik

ti1∫
0

· · ·
tik∫
0

Dτ0(s)
2(H−1)ds

=
∞∑

k=2

1
k!

m∑
i1,... ,ik=1

21−2H

1−H
· c0
σ2

0

σ2k
0 (k − 1)! (iu1) · · · (iuk)

ti1∫
0

· · ·
tik∫
0

Dτ0(s)
2(H−1)ds.

Thus we have

cum(J(t1), . . . , J(tm)) =
21−2H

1−H
· c0
σ2

0

σ2m
0 (m− 1)! sym

t

 t∫
0

Dτ0(s)
2(H−1)ds

 ,

for m ≥ 2.
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Unfortunately, equation (3.36) is not a closed formula. However, there would be a closed formula for the
joint cumulants of the derivative process J ′(t) = d

dtJ(t), if the latter process existed, viz.

cum(J ′(t1), . . . , J ′(tm)) =
dm

dt1 · · ·dtm cum(J(t1), . . . , J(tm))

= const.σ2m
0 (m− 1)! sym

t

(
Dτ0(t)

2(H−1)
)

= const.σ2m
0

∑
τ∈Perm(2,... ,m)

Dτ (t)2(H−1)

= lim
λ→0

cum(Yλ(t1), . . . , Yλ(tm)). (3.37)

Because of stationarity, for m = 2 and m = 3 the latter means that

cum(J ′(0), J ′(t)) = const2 |t|2(H−1) = const′2

(
d
dt

)2

|t|2H
, (3.38)

for t 6= 0, and

cum(J ′(0), J ′(t1), J ′(t2)) = const3 (|t1|+ |t2 − t1|+ |t2|)2(H−1)

= const3 (2 diam(0, t1, t2))
2(H−1)

= const′3

(
d
dt

)2

|t|2H

∣∣∣∣∣
t=diam(0,t1,t2)

, (3.39)

for t1 6= 0, t2 6= 0, t1 6= t2, respectively. In (3.39) diam(a, b, c) $ max(a, b, c) −min(a, b, c) is the diameter,
and the various constants are all positive.

Now, the discrete time counterpart of J ′, the ∆LISDLG process ∆J(t), t ∈ Z, already exists and it is a
stationary process. As they are easy to obtain, the formulas corresponding to (3.38) and (3.39) in discrete
time are

cum(∆J(0),∆J(t)) = c̃onst2
(
|t+ 1|2H − 2 |t|2H + |t− 1|2H

)
= c̃onst2∆2

1
2
|t|2H

,

for t 6= 0, where ∆ 1
2
f (x) = f

(
x+ 1

2

)− f (x− 1
2

)
is the central difference operator and ∆2

1
2

is its square, and

cum(∆J(0),∆J(t1),∆J(t2)) = c̃onst3
(
|t+ 1|2H − 2 |t|2H + |t− 1|2H

)∣∣∣
t=diam(0,t1,t2)

= c̃onst3 ∆2
1
2
|t|2H

∣∣∣
t=diam(0,t1,t2)

, (3.40)

for t1 6= 0, t2 6= 0, t1 6= t2, respectively.

Remark 13. It is interesting that in formula (3.40) the cumulant does not depend on the middle of the
points 0, t1, t2, it only depends on the diameter of the set of the three points. This property is stronger than
the following one.

cum(∆J(0),∆J(t1),∆J(t2)) = cum(∆J(0),∆J(t2 − t1),∆J(t2)), (3.41)

for all t1, t2 ∈ Z. The latter is equivalent to the fact that the bispectrum of the ∆LISDLG process ∆J(t) is
real-valued, see Remark 21.

Now we state two important properties of the finite dimensional distributions of the LISDLG process.
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Theorem 8. The LISDLG process J(t) is c(p) = p
1

2(H−1) -dilative stable (see Def. 3), i.e. for every p > 0,
k ∈ N and t1, . . . , tk > 0, the characteristic function ϕ of the k-dimensional distribution satisfies(

ϕ(J(t1),... ,J(tk))(u1, . . . , uk)
)p = ϕ

p
− 1

2(H−1)

�
J

�
p

1
2(H−1) t1

�
,... ,J

�
p

1
2(H−1) tk

��(u1, . . . , uk),

i.e. (
ϕ(J(t1),... ,J(tk))(u1, . . . , uk)

)c2(H−1)

= ϕc−1(J(ct1),... ,J(ctk))(u1, . . . , uk), (3.42)

for all u1, . . . , uk ∈ R.

Proof. Let T ≥ max (t1, . . . , tk) and let us consider the function

G(s) .=
k∑

j=1

ujχ[tj ,T ](s),

0 ≤ s ≤ T , where

k∑
j=1

|uj | < σ−2
0 T−1,

and substitute it into (3.27). The replacement is legitimate, since

var(G) =
k∑

j=1

|uj | < σ−2
0 T−1,

and for the cumulant function logϕJ(t1),... ,J(tk)(u1, . . . , uk) we have

logϕJ(t1),... ,J(tk)(u) = logϕJ(G)

=
21−2H

1−H
· c0
σ2

0

∞∑
`=2

i`

`
σ2`

0

∫
[0,T ]`

Dτ0(s)
2(H−1)

∏̀
j=1

(G(T )−G(sj)) ds

=
21−2H

1−H
· c0
σ2

0

∞∑
`=2

i`

`
σ2`

0

k∑
i1,... ,i`=1

ui1 · · ·ui`

ti1∫
0

· · ·
ti`∫
0

Dτ0(s)
2(H−1)ds (3.43)

for u∈ Rk :
k∑

j=1

|uj| < σ−2
0 T−1. From (3.43) by a change of variable in the integral we have (3.42) for u

∈ Rk :
k∑

j=1

|uj | < σ−2
0 T−1.

Since the distribution of (J(t1), . . . , J(tk)) is infinitely divisible (see Cor. 3), the left hand side of (3.42)
is a characteristic function. On the other hand, the characteristic function on the right hand side of (3.42) is
uniquely determined by its values in any neighborhood of 0∈ Rk. This last fact follows easily if one considers
the proof of Theorem 6 (with JP = J) from formula (3.28). Thus we have proved (3.42) for all u∈ Rk.

Corollary 6. The finite-dimensional distributions of the LISDLG process J(t) are infinitely divisible.

Proof. It is a direct consequence of Theorem 8 or either of Corollary 3.

Hereafter several facts follow about the one-dimensional distributions of the increments of the LISDLG
process J(t). Because of the stationary increments, it suffices to examine the distribution of J(t) itself.
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Proposition 15. The distribution of the random variable J(t) is uniquely determined by its cumulants
given by (3.33). For each t > 0 the logarithm of the characteristic function of J(t) has the series expansion

logϕJ(t)(u) =
∞∑

m=2

 (iu)m

m
· 21−2H

1−H
c0σ

2(m−1)
0

∫
[0,1]m

Dτ0(s)
2(H−1)ds tm+2(H−1)

 ,

in the neighborhood
{
u : |u| < σ−2

0 t−1
}

of zero.

Proof. The cumulants and the series expansion have been calculated in the proof of Theorem 7. The
uniqueness has also been proved, see the proof of Theorem 6.

The next two propositions are special cases of Corollary 6 and of Theorem 8.

Proposition 16. The distribution of the random variable J(t) is infinitely divisible.

Proposition 17. For each t ∈ R+ the characteristic function of the random variable J(t)/t has the following
property, called one-dimensional dilative stability. (See Def. 3, Th. 8 and also Sect. 4.1 for an application.)

ϕ J(t)
t

(u) =
(
ϕJ(1)(u)

)t2(H−1)

, (3.44)

for all u ∈ R.

Actually the LISDLG process is derived from the SDLG process, which has Γ one-dimensional distribution.
So, one can expect that the one-dimensional distribution of the LISDLG process cannot be far from the shifted
Γ distribution. Now, we examine if it is so. If H → 1, then the m-fold integral in (3.33) converges to one.
Therefore if one sets the additional condition

c0
2(1−H)

−→
H→1

c1, (3.45)

where c1 is a positive constant, then

cumm(J(t)) −→
H→1

(m− 1)!c1σ
2(m−1)
0 tm,

which is the 2 6 m-th cumulant of the Γ(c1/σ2
0 , σ

2
0t) distribution. Since the Γ distribution is uniquely

determined by its cumulants, we can state the following:

Remark 14. If H → 1 such that (3.45) holds, then the one-dimensional distribution of the shifted LISDLG
process converges to the Γ distribution, namely, we have

J(t) + c1t
w−→

H→1
Γ(c1/σ2

0 , tσ
2
0). (3.46)

Equation (3.46) means that the one-dimensional distribution of the ∆LISDLG process is easily mixed up
with a proper Γ distribution, leastwise for values of H near 1. See Section 4.2 for a potential occurrence in
practice.

3.3. Spectra of the SDLG process and its offsprings

The conventional definition of the spectrum of order m, see Definition 8, requires the integrability of
the m-th order joint cumulant as a function of m − 1 variables. This condition comes true in the case of
the stationary DLG process, e.g. see Lemma 2. However, LRD processes fail to satisfy it by definition, at
least form = 2. If LRD is expressed also by the higher order cumulants, then the condition for the existence of
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higher order spectra may be unfulfilled. This happens for the SDLG process Y (t), as the following proposition
states:

Proposition 18. For each m ∈ {2, 3, 4, . . .} the m-th order joint cumulant of the SDLG process Y (t), as a
function of m− 1 variables, is not integrable, i.e.∫

Rm−1

|cum (Y (0), Y (t1), . . . , Y (tm−1))| dt(m−1) = ∞.

Proof. By formula (3.17),∫
Rm−1

|cum (Y (0), Y (t1), . . . , Y (tm−1))| dt(m−1)

= K

∫
Rm−1

(2λ+ |t1|+ |t2 − t1|+ · · ·+ |tm−1 − tm−2|+ |tm−1|)2(H−1) dt(m−1)

> 22(H−1)K

∫
Rm−1

(λ+ |t1|+ |t2|+ · · ·+ |tm−1|)2(H−1) dt(m−1)

= ∞, (3.47)

where K > 0 is a constant. The inequality in (3.47) is the consequence of the triangle inequality and that
2(H − 1) < 0, see Condition 1. The result of the last integral is infinity because of the Fubini theorem and
that H > 1/2, see Condition 1, too.

Fortunately, the integrability of a function guarantees the one-to-one correspondence between it and its
(inverse) Fourier transform. Thus Definition 8 can be generalized adequately for our case, i.e. when the
cumulant is not integrable.

Definition 9. Let m ∈ {2, 3, 4, . . .}. Let X(t), t ∈ R, be a stationary process with finite absolute moments
of order m, and let the cumulant function cum (X(0), X(t1), . . . , X(tm−1)) be given. Assume that the
function Sm,X(ω(m−1)) is integrable, and its inverse Fourier transform is just the cumulant function, i.e.

cum (X(0), X(t1), . . . , X(tm−1)) =
∫

Rm−1

exp

im−1∑
j=1

tjωj

Sm,X(ω(m−1))dω(m−1).

Then function Sm,X(ω(m−1)) is called the m-th order spectrum of process X(t). For m = 2 and m = 3 the
m-th order spectrum is called a spectrum and a bispectrum, respectively.

Thanks to Definition 9 we are now able to give the spectra in a clear form, leastwise the spectrum and
the bispectrum.

Proposition 19. The spectrum of the SDLG process Y (t) exists and it can be given either by the mixture
representation

S2,Y (ω) = EA S2,R1,1(ω), (3.48)

or by the following explicit expression.

S2,Y (ω) =
1
2π

· 1
1−H

µ0λ
3−2Hσ2

0 Re

eiλω

∞∫
λ

x2(H−1)e−ixωdx

 . (3.49)
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Proof. Because of the mixture representation of the cumulant function, see Lemma 4, we have

cum (Y (0), Y (t)) = EA cum (R1,1(0), R1,1(t))

= EA

∫
R

eitωS2,R1,1(ω)dω

=
∫
R

eitω EA S2,R1,1(ω)dω

=
1
2π

∫
R

eitω EA

(
2µ0σ

2
0

ω2 + 4α2

)
dω

=
1
2π

∫
R

eitω 2µ0σ
2
0λ

3−2H

Γ(3− 2H)

∞∫
0

1
ω2 + x2

x2(1−H)e−λxdxdω

=
1
2π

∫
R

eitω 1
1−H

µ0λ
3−2Hσ2

0 Re

eiλω

∞∫
λ

e−isωs2(H−1)ds

 dω. (3.50)

The third equation is true because of the Fubini theorem, the fourth is the consequence of Proposition 8,
formula (2.3), Condition 4 and of the fact that µ = µ0. The fifth equation is motivated by Condition 3.
Define the function

S2,Y (ω) $ 1
2π

· 1
1−H

µ0λ
3−2Hσ2

0 Re

eiλω

∞∫
λ

e−isωs2(H−1)ds


=

1
2π

2µ0σ
2
0

λ3−2H

Γ(3 − 2H)

∞∫
0

1
ω2 + x2

x2(1−H)e−λxdx. (3.51)

By the second expression in (3.51), changing the order of the integrals we have

∫
R

|S2,Y (ω)| dω =
1
2π

2µ0σ
2
0

λ3−2H

Γ(3− 2H)

∞∫
0

∫
R

1
ω2 + x2

dωx2(1−H)e−λxdx

= µ0σ
2
0

λ3−2H

Γ(3− 2H)

∞∫
0

x1−2He−λxdx = µ0σ
2
0λ

1
2(1−H)

<∞.

Therefore S2,Y (ω) is integrable and its inverse Fourier transform is the second order cumulant function,
see formula (3.50). Thus, S2,Y (ω) is really the spectrum of process Y (t), and this proves formula (3.49).
Formula (3.48) is the consequence of the third equation in (3.50) and the one-to-one correspondence between
the spectrum and the covariance.

Proposition 20. Recall that the LISDLG process J(t) has stationary increments. Thus if one defines the
spectrum of the informal derivative process J ′ = d

dtJ as the limit

S2,J′(ω) $ lim
λ→0

S2,Yλ
(ω), (3.52)

then one has

S2,J′(ω) =
1

2 cos(Hπ)Γ(3 − 2H)
c0σ

2
0 |ω|1−2H =

1
2π

· Γ(2H − 1)
1−H

c0σ
2
0 sin(Hπ) |ω|1−2H

. (3.53)

We will call S2,J′(ω) the generalized spectrum (appertaining to process J(t) [to avoid reference to the informal
derivative process J ′]).
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Proof. Applying Proposition 19 and Condition 7 we have

S2,J′(ω) = lim
λ→0

S2,Yλ
(ω) =

1
2π

· 1
1−H

c0σ
2
0 Re

 ∞∫
0

e−isωs2(H−1)ds


=

1
2π

· 1
1−H

c0σ
2
0 Re

(
Γ(2H − 1)(iω)1−2H

)
=

1
2π

· Γ(2H − 1)
1−H

c0σ
2
0 sin(Hπ) |ω|1−2H

,

where the third equation is the consequence of formula (2.3.3.1) in [30]. By the identity

Γ(2H − 1)Γ(2(1−H)) = − π

sin(2πH)
, (3.54)

one obtains the constant multiplier in the required form.

Remark 15. In view of Corollary 5, it is not surprising that, apart from a constant multiplier, S2,J′(ω) in
Corollary 20 is the same as the informal spectrum of the continuous time FGN, i.e. the informal spectrum
of the informal derivative of the FBM.

Let us consider the analogous statements for the bispectrum.

Proposition 21. The bispectrum of the SDLG process Y (t) exists and it can be given either by the mixture
representation

S3,Y

(
ω(2)

)
= EA S3,R1,1

(
ω(2)

)
, (3.55)

or in the following explicit manner.

S3,Y

(
ω(2)

)
= −

(
1
2π

)2 6µ0λ
3−2H

1−H
σ4

0

1
ω1ω2ω3

Im sym
(ω(3))

ω2
1

∞∫
λ

ei(λ−s)ω1s2(H−1)ds

 , (3.56)

where ω3 $ −ω1 − ω2.
The bispectrum S3,Y

(
ω(2)

)
has the extraordinary property that it is real-valued moreover it is positive.

Proof. Because of the mixture representation of the cumulant function, see Lemma 4, we have

cum (Y (0), Y (t1), Y (t2)) = EA cum (R1,1(0), R1,1(t1), R1,1(t2))

= EA

∫
R2

ei(t1ω1+t2ω2)S3,R1,1(ω1, ω2)dω(2) =
∫
R2

ei(t1ω1+t2ω2) EA S3,R1,1

(
ω(2)

)
dω(2)

=
(

1
2π

)2 ∫
R2

ei(t1ω1+t2ω2)12µ0σ
4
0 EA

 1
−2α

sym
(ω(3))

(
1

−iω1 − 2α
· 1
iω2 − 2α

) dω(2).

The third equation is due to the Fubini theorem, and the fourth is the consequence of Proposition 9,
formula (2.28), Condition 4, and of the fact that µ = µ0. Let us define the function

S3,Y

(
ω(2)

)
$ EA S3,R1,1

(
ω(2)

)
=
(

1
2π

)2

12µ0σ
4
0 sym
(ω(3))

EA

(
1

−2α
· 1
−iω1 − 2α

· 1
iω2 − 2α

)
· (3.57)
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Notice that S3,Y

(
ω(2)

)
must be real-valued and positive, because for each realization of the random variable

−2α, so is the bispectrum S3,R1,1

(
ω(2)

)
. Now we have to calculate the expectation

E
(

1
−2α

· 1
−iω1 − 2α

· 1
iω2 − 2α

)
,

where −2α ∼ Γ(3− 2H, 1/λ), see Condition 3. Function 1/(iω− 2α), ω ∈ R, is just the Fourier transform of
function exp(2αt), t > 0, and the latter is more usable from the point of view of the Γ distribution. Using
this observation, and partial fraction decomposition, one can easily obtain

E
(

1
−2α

· 1
−iω1 − 2α

· 1
iω2 − 2α

)
= λ3−2H 1

ω1ω2

∞∫
λ

(
1− ω2

ω1 + ω2
e−i(λ−s)ω1 − ω1

ω1 + ω2
ei(λ−s)ω2

)
s2H−3ds.

Substituting this expression into (3.57), we have

S3,Y

(
ω(2)

)
=
(

1
2π

)2

12µ0λ
3−2Hσ4

0 sym
(ω(3))

 1
ω1ω2

∞∫
λ

(
1− ω2

ω1 + ω2
e−i(λ−s)ω1 − ω1

ω1 + ω2
ei(λ−s)ω2

)
s2H−3ds


=
(

1
2π

)2

12µ0λ
3−2Hσ4

0

1
ω1ω2ω3

∞∫
λ

sym
(ω(3))

(
− ω2ω3

ω1 + ω2
e−i(λ−s)ω1 − ω1ω3

ω1 + ω2
ei(λ−s)ω2

)
s2H−3ds

=
(

1
2π

)2

12µ0λ
3−2Hσ4

0

1
ω1ω2ω3

∞∫
λ

sym
(ω(3))

(
ω2ei(λ−s)ω1 + ω1ei(λ−s)ω2

)
s2H−3ds

=
(

1
2π

)2

12µ0λ
3−2Hσ4

0

1
ω1ω2ω3

∞∫
λ

sym
(ω(3))

(
−ω1ei(λ−s)ω1

)
s2H−3ds. (3.58)

Integrating by parts changes (3.58) into

S3,Y

(
ω(2)

)
= −

(
1
2π

)2 6µ0λ
3−2H

1−H
σ4

0

1
ω1ω2ω3

Im sym
(ω(3))

ω2
1

∞∫
λ

ei(λ−s)ω1s2(H−1)ds

 .

What is left to prove is that S3,Y

(
ω(2)

)
is integrable.

∫
R2

∣∣∣S3,Y

(
ω(2)

)∣∣∣dω(2) =
∫
R2

S3,Y

(
ω(2)

)
dω(2) =

∫
R2

EA S3,R1,1

(
ω(2)

)
dω(2)

= EA

∫
R2

S3,R1,1

(
ω(2)

)
dω(2) = EA cum3(R1,1(0)) = 2µ0σ

4
0 EA

1
−2α

= µ0σ
4
0

λ

1−H
<∞.

Here the first equation is the consequence of the positivity of S3,Y

(
ω(2)

)
, the second is true because of (3.57),

the third is the Fubini theorem, the fourth is the consequence of Definition 8, the fifth is true because of
Proposition 6, Condition 4 and of the fact that µ = µ0. The sixth equation is motivated by Condition 3,
and the finiteness arises from inequality H < 1, see Condition 1.
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Proposition 22. If one defines the bispectrum of the informal derivative process J ′ = d
dtJ as the limit

S3,J′
(
ω(2)

)
$ lim

λ→0
S3,Yλ

(
ω(2)

)
, (3.59)

then one obtains

S3,J′
(
ω(2)

)
=
(

1
2π

)2 6Γ(2H − 1)
1−H

c0σ
4
0

1
ω1ω2ω3

Im sym
(ω(3))

(
(iω1)3−2H

)
, (3.60)

or, in another form,

S3,J′
(
ω(2)

)
=

1
2π

· 3
sin(Hπ)Γ(3− 2H)

c0σ
4
0 sym
(ω(3))

|ω1|2(1−H)

ω2ω3
, (3.61)

where ω3 $ −ω1 − ω2.
We will call S3,J′(ω(2)) the generalized bispectrum (appertaining to process J(t) [to avoid reference to the

informal derivative process J ′]).
The generalized bispectrum S3,J′

(
ω(2)

)
has the extraordinary property that it is real-valued moreover it

is positive.

Proof. The bispectrum of the SDLG process Y (t) is

S3,Y

(
ω(2)

)
= −

(
1
2π

)2 6µ0λ
3−2H

1−H
σ4

0

1
ω1ω2ω3

Im sym
(ω(3))

ω2
1

∞∫
λ

ei(λ−s)ω1s2(H−1)ds

 , (3.62)

see (3.56). Though in (3.62) the function to be integrated is not Lebesgue integrable on the whole positive
ray, the integral exists in the sense of principal value. In particular, the following integral is defined, and
there is an explicit expression for it, i.e.

∞∫
0

e−isωs2(H−1)ds $ lim
N→∞

N∫
0

e−isωs2(H−1)ds = Γ(2H − 1)(iω)1−2H , (3.63)

ω 6= 0, see formula (2.3.3.1) in [30]. By (3.59) we have to take the limit as λ→ 0 in (3.62). To do this, cut
the integral of (3.62) into two parts:

∞∫
λ

ei(λ−s)ωs2(H−1)ds =

1∫
λ

ei(λ−s)ωs2(H−1)ds+ eiλω

∞∫
1

e−isωs2(H−1)ds. (3.64)

By Condition 7 and (3.64) the convergence of (3.62) to (3.59) is now obvious. In another form we have

S3,J′
(
ω(2)

)
=

1
2π

· 3
sin(Hπ)Γ(3 − 2H)

c0σ
4
0 sym
(ω(3))

|ω1|2(1−H)

ω2ω3
,

where we also applied identity (3.54).
The fact that S3,J′

(
ω(2)

)
is real-valued and positive, follows from its form (3.61) since

sym
(ω(3))

|ω1|2(1−H)

ω2ω3
=
|ω1|3−2H sig(ω1) + |ω2|3−2H sig(ω2) + |ω3|3−2H sig(ω3)

3ω1ω2ω3
> 0, (3.65)
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for all ω1,ω2 ∈ R for which ω1ω2ω3 6= 0. The inequality in (3.65) is easily obtainable supposing without loss
of generality that ω1ω2 > 0 and using the inequality (x+ 1)3−2H > 1 + x3−2H with x = |ω2/ω1|.
Remark 16. The generalized bispectrum S3,J′(ω(2)) behaves around zero as

S3,J′(ω1, ω2) '
ω1,ω2→0

(√
ω2

1 + ω2
2

)−2H

.

Remark 17. The property of the bispectrum S3,Y

(
ω(2)

)
that it is real-valued, is equivalent to the property

of the cumulants that

cum (Y (0), Y (t1), Y (t2)) = cum (Y (0), Y (t2 − t1), Y (t2)) , (3.66)

t1, t2 ∈ R.

Proof. By the stationarity we have

cum (Y (0), Y (−t1), Y (−t2)) = cum (Y (t2), Y (t2 − t1), Y (0)) = cum (Y (0), Y (t2 − t1), Y (t2)) . (3.67)

If the bispectrum is real, then by Definition 9 we have

cum (Y (0), Y (t1), Y (t2)) = cum (Y (0), Y (−t1), Y (−t2)) . (3.68)

Comparing (3.68) and (3.67) we have (3.66).
On the other hand, if (3.66) holds, then by Definition 9 we have∫

R2

ei(t1ω1+t2ω2)S3,Y

(
ω(2)

)
dω(2) =

∫
R2

ei(t1ω1+t2ω2)S3,Y

(
ω(2)

)
dω(2), (3.69)

for all t1, t2 ∈ R. There is a one-to-one correspondence between integrable functions and their inverse Fourier
transforms, thus by (3.69) the bispectrum must be real.

Incidentally, equation (3.66) is also a consequence of the form of the cumulants, see Lemma 4. More
generally, the following statement holds true.

Remark 18. We have

cum (Y (0), Y (t1), . . . , Y (tm−1)) = cum (Y (0), Y (tm−1 − tm−2), . . . , Y (tm−1)) ,

for all m ≥ 3 and t1, . . . , tm−1 ∈ R.

Proof. The terms in the sum in (3.17) correspond to circles (Y (0), Y (ti1 ), . . . ,Y (tim−1), Y (0)), and any such
term remains the same if one walks round the circle in the opposite direction.

In practice it is usually not the whole process but its discretely sampled version that is observed. For the
LISDLG process J(t) this means that we deal with the discrete time LISDLG process J(t), t ∈ Z, say, or
equivalently, with the ∆LISDLG process ∆J(t) = J(t+ 1)− J(t), t ∈ Z. The latter is more desirable for the
very reason that it is stationary. Unfortunately, its continuous time counterpart, the derivative process J ′(t)
does not exist, and thus there is another reason why we have to deal with the ∆LISDLG process ∆J(t),
t ∈ Z. On the other hand, we have seen above that the bispectrum of the SDLG process Yλ(t) is real-valued
and positive. We will state that the discrete time counterpart of the SDLG process Yλ(t), t ∈ R, i.e. the
∆ISDLG process ∆Jλ(t), t ∈ Z, has a bispectrum that is also real-valued and positive. Going further and
taking the limit as λ → 0, we arrive at the ∆LISDLG process ∆J(t), t ∈ Z, and we find that it also has a
bispectrum which is real-valued and positive too.

It is important to remark that in the case of discrete time LRD processes we will use the notion of
spectrum of any order in the same sense as in the case of continuous time LRD processes. That is, even if the
cumulant series is not absolutely summable, the spectrum must be integrable and its inverse Fourier transform
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must be the cumulant series. Clearly, the integrability of the spectrum ensures – also in the discrete-time
case – a one-to-one correspondence between the spectrum and the cumulant series.

Let us examine first the second order spectrum.

Proposition 23. The spectrum of the ∆ISDLG process ∆Jλ(t) exists and it is

S2,∆Jλ
(ω) =

∣∣eiω − 1
∣∣2 ∞∑

k=−∞

((
ω(k)

)−2

S2,Yλ

(
ω(k)

))

=
1
2π

· µ0λ
3−2H

1−H
σ2

0

∣∣eiω − 1
∣∣2 Re

 ∞∑
k=−∞

(ω(k)
)−2

eiλω(k)

∞∫
λ

e−ixω(k)
x2(H−1)dx

 ,

for ω ∈ (0, 2π), where ω(k) $ ω + 2kπ, k ∈ Z.

Proof. Let us calculate cum (∆Jλ(0),∆Jλ(0)). At first, we can change the order of the cumulant operator
and the integrals by right of a similar reasoning as in (2.26) (see the explanation after (2.26)). Then applying
Lemma 4 we have

cum (∆Jλ(0),∆Jλ(0)) = cum

 1∫
0

Yλ(s)ds,

1∫
0

Yλ(s)ds


=

1∫
0

1∫
0

cum (Yλ(s0), Yλ(s1)) ds1ds0

=

1∫
0

1∫
0

σ2
0

µ0λ

2(1−H)

(
1 +

Dτ (s)
2λ

)2(H−1)

ds1ds0

=
1

2(1−H)
σ2

0µ0λ
3−2H

1∫
0

1∫
0

(λ+ |s1 − s0|)2(H−1) ds1ds0

=
1

(1−H) (2H − 1)
σ2

0µ0λ
3−2H

(
1

2H

(
(λ+ 1)2H−λ2H

)
− λ2H−1

)
. (3.70)

We will need the resulting expression later, but presently we only use the fact that cum (∆Jλ(0),∆Jλ(0)) is
finite.

Now let us calculate cum (∆Jλ(0),∆Jλ(t)) in general. We can change the order of the cumulant operator
and the integrals as above, so by the stationarity we have

cum (∆Jλ(0),∆Jλ(t)) = cum

 1∫
0

Yλ(s)ds,

t+1∫
t

Yλ(s)ds


=

1∫
0

(s0)

t+1∫
t

(s1)

cum (Yλ(0), Yλ(s1 − s0)) ds1ds0. (3.71)
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We know that S2,Yλ
(ω) is the spectrum of the continuous time process Yλ(t), therefore continuing (3.71), we

obtain

cum (∆Jλ(0),∆Jλ(t)) =

1∫
0

(s0)

t+1∫
t

(s1)

∫
R

(ω)

ei(s1−s0)ωS2,Yλ
(ω)dωds1ds0

=
∫
R

(ω)

1∫
0

(s0)

t+1∫
t

(s1)

ei(s1−s0)ωds1ds0S2,Yλ
(ω)dω, (3.72)

where the change of the order of the integrals is the consequence of the integrability of S2,Yλ
(ω). Calculating

the two inner integrals in the last row of (3.72), and breaking the outer integral and performing the proper
substitutions yields

cum (∆Jλ(0),∆Jλ(t)) =
∫
R

eitωω−2
∣∣eiω − 1

∣∣2 S2,Yλ
(ω)dω

=
∞∑

k=−∞

2π∫
0

eitω
(
ω(k)

)−2 ∣∣eiω − 1
∣∣2 S2,Yλ

(
ω(k)

)
dω. (3.73)

For t = 0 the above double integral (i.e. a sum and an integral) is finite, because cum (∆Jλ(0),∆Jλ(0)) is
finite. Thus by the Fubuni theorem we can change the order of the sum and the integral in (3.73) to get

cum (∆Jλ(0),∆Jλ(t)) =

2π∫
0

eitω
∣∣eiω − 1

∣∣2 ∞∑
k=−∞

((
ω(k)

)−2

S2,Yλ

(
ω(k)

))
dω. (3.74)

Let us define the function

S2,∆Jλ
(ω) $

∣∣eiω − 1
∣∣2 ∞∑

k=−∞

((
ω(k)

)−2

S2,Yλ

(
ω(k)

))
, (3.75)

ω ∈ (0, 2π). We have just mentioned the integrability of S2,∆Jλ
(ω), thus the spectrum of the discrete time

process ∆Jλ(t) really exists and by (3.74) it is the above-defined S2,∆Jλ
(ω). Moreover, by substituting the

form (3.49) of S2,Yλ
(ω) into (3.75), we have

S2,∆Jλ
(ω) =

1
2π

· µ0λ
3−2H

1−H
σ2

0

∣∣eiω − 1
∣∣2 ∞∑

k=−∞

(ω(k)
)−2

Re

eiλω(k)

∞∫
λ

e−ixω(k)
x2(H−1)dx

 .

The following technical concept will be needed in some of subsequent proofs:

Definition 10. We will say that a set of functions fλ(ω) converges as λ → 0 essentially monotonely to a
function f(ω), if there exist a set of constants cλ, a constant c, a set of functions gλ(ω) and a function g(ω)
such that fλ(ω) = cλgλ(ω) for all λ and ω, f(ω) = cg(ω) for all ω, moreover cλ −→

λ→0
c, and the convergence

fλ(ω) −→
λ→0

f(ω) is monotone (either increasing for all ω or decreasing for all ω).
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Theorem 9. The spectrum of the ∆LISDLG process ∆J(t) exists and it is

S2,∆J(ω) =
∣∣eiω − 1

∣∣2 ∞∑
k=−∞

((
ω(k)

)−2

S2,J′
(
ω(k)

))

=
1
2π

· −Γ(2H − 1)
1−H

c0σ
2
0

∣∣eiω − 1
∣∣2 Re

( ∞∑
k=−∞

(
iω(k)

)−1−2H
)

=
1
2π

· Γ(2H − 1)
1−H

sin(Hπ)c0σ2
0

∣∣eiω − 1
∣∣2 ∞∑

k=−∞

∣∣∣ω(k)
∣∣∣−1−2H

, (3.76)

for ω ∈ (0, 2π), where ω(k) $ ω + 2kπ, k ∈ Z.

Proof. By (3.51),

S2,Yλ
(ω) =

1
2π

· 2
Γ(3 − 2H)

µ0λ
3−2Hσ2

0

∞∫
0

x2(1−H)e−λx 1
ω2 + x2

dx,

thus by (3.52) and Condition 7

S2,J′(ω) = lim
λ→0

S2,Yλ
(ω) =

1
2π

· 2
Γ(3− 2H)

c0σ
2
0

∞∫
0

x2(1−H) 1
ω2 + x2

dx. (3.77)

Moreover, the convergence

∞∫
0

x2(1−H)e−λx 1
ω2 + x2

dx −→
λ→0

∞∫
0

x2(1−H) 1
ω2 + x2

dx (3.78)

is monotone, that is, for each ω 6= 0, the left-hand side of (3.78) increases as λ decreases. So thus, the
convergence in (3.77) is essentially monotone.

Now, by Proposition 23 and formula (3.53),

lim
λ→0

S2,∆Jλ
(ω) =

∣∣eiω − 1
∣∣2 lim

λ→0

∞∑
k=−∞

((
ω(k)

)−2

S2,Yλ

(
ω(k)

))

=
∣∣eiω − 1

∣∣2 ∞∑
k=−∞

((
ω(k)

)−2

S2,J′
(
ω(k)

))

=
1
2π

· Γ(2H − 1)
1−H

sin(Hπ)c0σ2
0

∣∣eiω − 1
∣∣2 ∞∑

k=−∞

∣∣∣ω(k)
∣∣∣−1−2H

, (3.79)

which is finite for all ω ∈ (0, 2π). In (3.79) the change of order of the limit and the infinite sum can be justified
by the Beppo Levi theorem and the fact that the convergence (3.77) is essentially monotone. Therefore let
us define the function

S2,∆J(ω) $ lim
λ→0

S2,∆Jλ
(ω), (3.80)
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ω ∈ (0, 2π). Then S2,∆J(ω) is integrable, because by the Fatou lemma we have

2π∫
0

|S2,∆J(ω)| dω =

2π∫
0

lim
λ→0

|S2,∆Jλ
(ω)| dω

6 lim
λ→0

2π∫
0

S2,∆Jλ
(ω)dω

= lim
λ→0

cum (∆Jλ(0),∆Jλ(0))

= lim
λ→0

(
1

(1−H) (2H − 1)
σ2

0µ0λ
3−2H

(
1

2H

(
(λ+ 1)2H − λ2H

)
− λ2H−1

))
=

1
(1−H) (2H − 1)2H

σ2
0c0 <∞. (3.81)

The fourth row in (3.81) is the consequence of formula (3.70). Moreover,

2π∫
0

eitωS2,∆J(ω)dω =

2π∫
0

eitω lim
λ→0

S2,∆Jλ
(ω)dω

= lim
λ→0

2π∫
0

eitωS2,∆Jλ
(ω)dω = lim

λ→0
cum (∆Jλ(0),∆Jλ(t)) = cum (∆J(0),∆J(t)) , (3.82)

where the second equation can be justified by applying the Beppo Levi theorem both to the real and to the
imaginary parts and considering that the convergence in (3.80) is essentially monotone. The last equation
in (3.82) is the consequence of Theorem 6. Thus, S2,∆J(ω) is really the spectrum of the discrete time process
∆J(t). The first equation of (3.76) is the second equation of (3.79). The second equation of (3.76) arises
from Proposition 23, since

S2,∆J(ω) = lim
λ→0

S2,∆Jλ
(ω)

=
1
2π

· 1
1−H

c0σ
2
0

∣∣eiω − 1
∣∣2 Re

 ∞∑
k=−∞

(ω(k)
)−2

∞∫
0

e−ixω(k)
x2(H−1)dx


=

1
2π

· −Γ(2H − 1)
1−H

c0σ
2
0

∣∣eiω − 1
∣∣2 Re

( ∞∑
k=−∞

((
iω(k)

)−1−2H
))

,

where we also used formula (2.3.3.1) in [30]. At last, the third equation of (3.76) is just the last row of
formula (3.79).

Remark 19. The spectrum of the ∆LISDLG process ∆J(t) is the same as that of the FGN, apart from
some multiplicative constant.

Let us turn now to the bispectrum.
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Proposition 24. The bispectrum of the ∆ISDLG process ∆Jλ(t) exists and it is

S3,∆Jλ

(
ω(2)

)
= −i

3∏
j=1

(1 − eiωj )
∞∑

k=−∞

∞∑
`=−∞

((
ω

(k)
1 ω

(`)
2 ω

(k+`)
3

)−1

S3,Yλ

(
ω

(k,`)
(2)

))

=
(

1
2π

)2 6iµ0λ
3−2H

1−H
σ4

0

3∏
j=1

(1− eiωj )

× Im


∞∑

k=−∞

∞∑
`=−∞

(ω(k)
1 ω

(`)
2 ω

(k+`)
3

)−2

sym�
ω

(k,`)
(3)

�
(ω(k)

1

)2

eiλω
(k)
1

∞∫
λ

e−ixω
(k)
1 x2(H−1)dx

 ,

for
(
ω(2)

)
∈ (0, 2π)2, such that ω3 6= 0, where ω3 $ −ω1 − ω2, ω

(k)
j $ ωj + 2kπ, j = 1, 2, k ∈ Z, and

ω
(k+`)
3 $ −ω(k)

1 − ω
(`)
2 , ω(k,`)

(2) $
(
ω

(k)
1 , ω

(`)
2

)
, ω(k,`)

(3) $
(
ω

(k)
1 , ω

(`)
2 , ω

(k+`)
3

)
, k, ` ∈ Z.

The bispectrum S3,∆Jλ

(
ω(2)

)
has the extraordinary property that it is real-valued and positive.

Proof. Not only do the statements of this proposition and Proposition 23 correspond but the proofs are also
very similar.

Let us calculate cum (∆Jλ(0),∆Jλ(0),∆Jλ(0)) . At first, we can change the order of the cumulant operator
and the integrals by right of a similar reasoning as in (2.26) (see the explanation after (2.26)). Then applying
Lemma 4 yields

cum (∆Jλ(0),∆Jλ(0),∆Jλ(0)) = cum

 1∫
0

Yλ(s)ds,

1∫
0

Yλ(s)ds,

1∫
0

Yλ(s)ds


=

1∫
0

1∫
0

1∫
0

cum (Yλ(s0), Yλ(s1), Yλ(s2)) ds2ds1ds0

= 2

1∫
0

1∫
0

1∫
0

σ4
0

µ0λ

2(1−H)

(
1 +

Dτ0(s)
2λ

)2(H−1)

ds

=
1

1−H
σ4

0µ0λ
3−2H3!

1∫
0

(s0)

1∫
s0

(s1)

1∫
s1

(s2)

(λ+ s2 − s0)
2(H−1) ds

=
3λ3−2Hµ0σ

4
0

(1−H)(2H − 1)H

(
2

2H + 1

(
λ2H+1−(λ+1)2H+1

)
+(λ+1)2H +λ2H

)
.

(3.83)

We will need the resulting expression later, but presently we use only the fact that cum (∆Jλ(0),∆Jλ(0) ,
∆Jλ(0)) is finite.
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Now let us calculate cum (∆Jλ(0),∆Jλ(t1),∆Jλ(t2)) in general. We can change the order of the cumulant
operator and the integrals as above, so by the stationarity, we have, that

cum (∆Jλ(0),∆Jλ(t1),∆Jλ(t2)) = cum

 1∫
0

Yλ(s)ds,

t1+1∫
t1

Yλ(s)ds,

t2+1∫
t2

Yλ(s)ds


=

1∫
0

(s0)

t1+1∫
t1
(s1)

t2+1∫
t2
(s2)

cum (Yλ(0), Yλ(s1 − s0), Yλ(s2 − s0)) ds. (3.84)

We know that S3,Yλ

(
ω(2)

)
is the bispectrum of the continuous time process Yλ(t), hence by continuing

(3.84) we have

cum (∆Jλ(0),∆Jλ(t1),∆Jλ(t2)) =

1∫
0

(s0)

t1+1∫
t1
(s1)

t2+1∫
t2
(s2)

∫
R2

(ω(2))

ei((s1−s0)ω1+(s2−s0)ω2)S3,Yλ

(
ω(2)

)
dω(2)ds

=
∫
R2

(ω(2))

1∫
0
(s0)

t1+1∫
t1
(s1)

t2+1∫
t2
(s2)

ei((s1−s0)ω1+(s2−s0)ω2)dsS3,Yλ

(
ω(2)

)
dω(2), (3.85)

where the change of order of the integrals is the consequence of the integrability of S3,Yλ

(
ω(2)

)
. Calculating

the three inner integrals in the last row of (3.85), then cutting up the outer integral and performing the
proper substitutions, we arrive at

cum (∆Jλ(0),∆Jλ(t1),∆Jλ(t2)) = −i
∫
R2

ei(t1ω1+t2ω2)
3∏

j=1

(1− eiωj )ω−1
1 ω−1

2 ω−1
3 S3,Yλ

(
ω(2)

)
dω(2)

=
∞∑

k=−∞

∞∑
`=−∞

∫
[0,2π]2

ei(t1ω1+t2ω2) (−i)
3∏

j=1

(1 − eiωj )
(
ω

(k)
1 ω

(`)
2 ω

(k+`)
3

)−1

S3,Yλ

(
ω

(k,`)
(2)

)
dω(2). (3.86)

Remembering that S3,Yλ

(
ω(2)

)
is real-valued and positive, one can easily check that the function

f
(
k, l, ω(2)

)
= −i

3∏
j=1

(1− eiωj )
(
ω

(k)
1 ω

(`)
2 ω

(k+`)
3

)−1

S3,Yλ

(
ω

(k,`)
(2)

)
(3.87)

is real and positive, too. Thus

∞∑
k=−∞

∞∑
`=−∞

∫
[0,2π]2

∣∣∣∣∣∣ei(t1ω1+t2ω2) (−i)
3∏

j=1

(1− eiωj )
(
ω

(k)
1 ω

(`)
2 ω

(k+`)
3

)−1

S3,Yλ

(
ω

(k,`)
(2)

)∣∣∣∣∣∣dω(2)

=
∞∑

k=−∞

∞∑
`=−∞

∫
[0,2π]2

f
(
k, l, ω(2)

)
dω(2) = cum (∆Jλ(0),∆Jλ(0),∆Jλ(0)) , (3.88)

where the last equation is (3.86) for t1 = t2 = 0. The right-hand side of (3.88) is finite, see the beginning
of this proof. Therefore by the Fubini theorem we can change the order of the double sum and the double
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integral in (3.86) to get

cum (∆Jλ(0),∆Jλ(t1),∆Jλ(t2))

=
∫

[0,2π]2

ei(t1ω1+t2ω2) (−i)
3∏

j=1

(1 − eiωj )
∞∑

k=−∞

∞∑
`=−∞

[(
ω

(k)
1 ω

(`)
2 ω

(k+`)
3

)−1

S3,Yλ

(
ω

(k,`)
(2)

)]
dω(2). (3.89)

Let us define the function

S3,∆Jλ

(
ω(2)

)
$ −i

3∏
j=1

(1− eiωj )
∞∑

k=−∞

∞∑
`=−∞

[(
ω

(k)
1 ω

(`)
2 ω

(k+`)
3

)−1

S3,Yλ

(
ω

(k,`)
(2)

)]
, (3.90)

for ω(2) ∈ (0, 2π)2 such that ω3 6= 0. We have just mentioned the integrability of S3,∆Jλ

(
ω(2)

)
, thus, the

bispectrum of the discrete time process ∆Jλ(t) really exists and by (3.89) it is S3,∆Jλ

(
ω(2)

)
. Moreover, by

substituting the form (3.56) of S3,Yλ

(
ω(2)

)
into (3.90), we have

S3,∆Jλ

(
ω(2)

)
=
(

1
2π

)2 6iµ0λ
3−2H

1−H
σ4

0

3∏
j=1

(1− eiωj ) Im


∞∑

k=−∞

∞∑
`=−∞(ω(k)

1 ω
(`)
2 ω

(k+`)
3

)−2

sym�
ω

(k,`)
(3)

�
(ω(k)

1

)2

eiλω
(k)
1

∞∫
λ

e−ixω
(k)
1 x2(H−1)dx

 ·

The fact that S3,∆Jλ

(
ω(2)

)
is real-valued and positive, follows from its form (3.90) since function f

(
k, l, ω(2)

)
has the same properties.

Theorem 10. The bispectrum of the ∆LISDLG process ∆J(t) exists and it is

S3,∆J

(
ω(2)

)
= −i

3∏
j=1

(1− eiωj )
∞∑

k=−∞

∞∑
`=−∞

[(
ω

(k)
1 ω

(`)
2 ω

(k+`)
3

)−1

S3,J′
(
ω

(k,`)
(2)

)]

=
(

1
2π

)2 −6iΓ(2H − 1)
1−H

c0σ
4
0

×
3∏

j=1

(1− eiωj ) Im


∞∑

k=−∞

∞∑
`=−∞

(ω(k)
1 ω

(`)
2 ω

(k+`)
3

)−2

sym�
ω

(k,`)
(3)

�
((

iω
(k)
1

)3−2H
)

=
−3i

2π sin(Hπ)Γ(3 − 2H)
c0σ

4
0

3∏
j=1

(1− eiωj )
∞∑

k=−∞

∞∑
`=−∞

(ω(k)
1 ω

(`)
2 ω

(k+`)
3

)−1

sym�
ω

(k,`)
(3)

�
∣∣∣ω(k)

1

∣∣∣2(1−H)

ω
(`)
2 ω

(k+`)
3

 , (3.91)

for
(
ω(2)

)
∈ (0, 2π)2 such that ω3 6= 0, where ω3 $ −ω1 − ω2, ω

(k)
j $ ωj + 2kπ, j = 1, 2, k ∈ Z, and

ω
(k+`)
3 $ −ω(k)

1 − ω
(`)
2 , ω(k,`)

(2) $
(
ω

(k)
1 , ω

(`)
2

)
, ω(k,`)

(3) $
(
ω

(k)
1 , ω

(`)
2 , ω

(k+`)
3

)
, k, ` ∈ Z.

The bispectrum S3,∆J

(
ω(2)

)
has the extraordinary property that it is real-valued moreover it is positive.
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Proof. By (3.57) and Condition 3,

S3,Yλ

(
ω(2)

)
= EA S3,R1,1

(
ω(2)

)
=
(

1
2π

)2 12
Γ(3− 2H)

µ0λ
3−2Hσ4

0

∞∫
0

x2(1−H)e−λx sym
(ω(3))

(
1
x
· 1
−iω1 + x

· 1
iω2 + x

)
dx,

hence by (3.59) and Condition 7,

S3,J′
(
ω(2)

)
= lim

λ→0
S3,Yλ

(
ω(2)

)
=
(

1
2π

)2 12
Γ(3− 2H)

c0σ
4
0

∞∫
0

x2(1−H) sym
(ω(3))

(
1
x
· 1
−iω1 + x

· 1
iω2 + x

)
dx. (3.92)

Moreover, the convergence

∞∫
0

x2(1−H)e−λx sym
(ω(3))

(
1
x
· 1
−iω1 + x

· 1
iω2 + x

)
dx −→

λ→0

∞∫
0

x2(1−H) sym
(ω(3))

(
1
x
· 1
−iω1 + x

· 1
iω2 + x

)
dx

(3.93)

is monotone, that is, for every ω1, ω2 ∈ R such that ω1ω2ω3 6= 0, the left-hand side of (3.93) increases as λ
decreases. The motivation is the nonnegativity of S3,R1,1

(
ω(2)

)
and thus of the symmetrized term in (3.93).

Observe also that the convergence in (3.92) is essentially monotone.

At this point we anticipate that for each (k, `) ∈ Z2 the term −i
3∏

j=1

(1 − eiωj )
(
ω

(k)
1 ω

(`)
2 ω

(k+`)
3

)−1

is

real-valued and positive, as it is easy to see.
By Proposition 24 and formulae (3.60) and (3.61), we have

lim
λ→0

S3,∆Jλ

(
ω(2)

)
= −i

3∏
j=1

(1− eiωj ) lim
λ→0

∞∑
k=−∞

∞∑
`=−∞

[(
ω

(k)
1 ω

(`)
2 ω

(k+`)
3

)−1

S3,Yλ

(
ω

(k,`)
(2)

)]

= −i
3∏

j=1

(1− eiωj )
∞∑

k=−∞

∞∑
`=−∞

[(
ω

(k)
1 ω

(`)
2 ω

(k+`)
3

)−1

S3,J′
(
ω

(k,`)
(2)

)]

=
(

1
2π

)2 −6ic0σ4
0Γ(2H − 1)

1−H

×
3∏

j=1

(1− eiωj ) Im


∞∑

k=−∞

∞∑
`=−∞

(ω(k)
1 ω

(`)
2 ω

(k+`)
3

)−2

sym�
ω

(k,`)
(3)

�
((

iω
(k)
1

)3−2H
)

=
−3i

2π sin(Hπ)Γ(3 − 2H)
c0σ

4
0

3∏
j=1

(1− eiωj )
∞∑

k=−∞

∞∑
`=−∞

(ω(k)
1 ω

(`)
2 ω

(k+`)
3

)−1

sym�
ω

(k,`)
(3)

�
∣∣∣ω(k)

1

∣∣∣2(1−H)

ω
(`)
2 ω

(k+`)
3

 , (3.94)

which is finite for every ω(2) ∈ (0, 2π)2 such that ω1ω2ω3 6= 0, because it is even integrable on [0, 2π]2, as
we will see immediately. In (3.94) changing the order of the limit and the infinite sum can be justified by
the Beppo Levi theorem and the fact that the convergence (3.92) is essentially monotone. Therefore let us
define the function

S3,∆J

(
ω(2)

)
$ lim

λ→0
S3,∆Jλ

(
ω(2)

)
, (3.95)
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for every ω(2) ∈ (0, 2π)2 such that ω1ω2ω3 6= 0. Then S3,∆J

(
ω(2)

)
is integrable since by the Fatou lemma

we have ∫
[0,2π]2

∣∣∣S3,∆J

(
ω(2)

)∣∣∣ dω(2) =
∫

[0,2π]2

lim
λ→0

∣∣∣S3,∆Jλ

(
ω(2)

)∣∣∣ dω(2)

6 lim
λ→0

∫
[0,2π]2

∣∣∣S3,∆Jλ

(
ω(2)

)∣∣∣ dω(2) = lim
λ→0

cum (∆Jλ(0),∆Jλ(0),∆Jλ(0))

= lim
λ→0

[
µ0λ

3−2Hσ4
0

3
(1−H)(2H − 1)H

(
2

2H + 1

(
λ2H+1 − (λ+ 1)2H+1

)
+ (λ+ 1)2H + λ2H

)]
= c0σ

4
0

3
(1−H)H(2H + 1)

<∞. (3.96)

The third equation in (3.96) is the consequence of formula (3.83). Moreover,∫
[0,2π]2

ei(t1ω1+t2ω2)S3,∆J

(
ω(2)

)
dω(2) =

∫
[0,2π]2

ei(t1ω1+t2ω2) lim
λ→0

S3,∆Jλ

(
ω(2)

)
dω(2)

= lim
λ→0

∫
[0,2π]2

ei(t1ω1+t2ω2)S3,∆Jλ

(
ω(2)

)
dω(2) = lim

λ→0
cum (∆Jλ(0),∆Jλ(t1),∆Jλ(t2))

= cum (∆J(0),∆J(t1),∆J(t2)) , (3.97)

where the second equation can be justified by applying the Beppo Levi theorem both to the real and to the
imaginary parts, and considering that the convergence in (3.95) is essentially monotone. The last equation
in (3.97) is the consequence of Theorem 6. Thus S3,∆J

(
ω(2)

)
is really the bispectrum of the ∆LISDLG

process ∆J(t). Equation (3.91) follows from (3.95) and (3.94).
The fact that S3,∆J

(
ω(2)

)
is real-valued and positive, is the consequence of the fact that the same property

holds for each of the terms S3,J′
(
ω

(k,`)
(2)

)
and (−i)

3∏
j=1

(1− eiωj )
(
ω

(k)
1 ω

(`)
2 ω

(k+`)
3

)−1

on the right-hand side of

the first row of (3.91).

Remark 20. The bispectrum S3,∆J

(
ω(2)

)
behaves around zero as

S3,∆J (ω1, ω2) '
ω1,ω2→0

(√
ω2

1 + ω2
2

)−2H

.

Remark 21. The property of the bispectrum S3,∆J

(
ω(2)

)
that it is real-valued is equivalent to the property

of the cumulants that

cum (∆J(0),∆J(t1),∆J(t2)) = cum (∆J(0),∆J(t2 − t1),∆J(t2)) , (3.98)

t1, t2 ∈ Z, see also Remark 13.

Proof. See the proof of Remark 17.
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On the other hand, the generalization of (3.98) for cumulants of order m > 3 also holds, that is to say,
we have

Remark 22.

cum (∆J(0),∆J(t1), . . . ,∆J(tm−1)) = cum (∆J(0),∆J(tm−1 − tm−2), . . . ,∆J(tm−1)) ,

for all m ≥ 3 and t1, . . . , tm−1 ∈ Z.

Proof. Similar to that of Remark 18.

3.4. Nonlinearity of the ∆ISDLG and ∆LISDLG processes

The notion of nonlinearity has several meanings in time series analysis. The most frequent is the following.
Let X(t), t ∈ Z, be a discrete time L2-stationary process with zero mean. It is called a linear process, if
it has an L2-convergent moving average representation with independent and identically distributed (i.i.d.)
input variables, i.e.

X(t) =
∞∑

k=−∞
c(k)Z(t− k), (3.99)

where

∞∑
k=−∞

c(k)2 <∞, (3.100)

and the input random variables Z(t), t ∈ Z, are i.i.d., EZ(t) = 0 and EZ(t)2 <∞. Otherwise process X(t)
is said to be nonlinear.

Let us consider a third order stationary process X(t), linear in the above sense and having bispectrum
(in the sense of the paragraph before Prop. 23). By the Marcinkiewicz–Zygmund inequality (see e.g. [35])
the input random variables Z(t) also have finite third order moment. Therefore the bispectrum of process
X(t) has the form

S3,X

(
ω(2)

)
=

cum3(Z(0))
(2π)2

ϕ(ω1)ϕ(ω2)ϕ(−ω1 − ω2),

where

ϕ(ω) =
∞∑

k=−∞
c(k)e−ikω ,

ω ∈ [0, 2π), is the frequency domain transfer function of process X(t) with moving average representation
(3.99), see [15], Lemma 7. However, if X(t) is also linearly regular and long-range dependent then such a
bispectrum cannot be real. Summing up, it holds true the following lemma, which is a somewhat sharpened
version of the theorem in [15].

Lemma 6. If a discrete time process with zero mean is linearly regular, long-range dependent and it has
real-valued bispectrum, then it is nonlinear.

The discrete time processes ∆Jλ(t) and ∆J(t) are linearly regular, because the spectrum of each process
obviously satisfies the Kolmogorov–Szegő condition. They are long-range dependent as well. Taking into
account that they have real-valued bispectra, see Propositions 24 and 10, we can derive the following theorem.

Theorem 11. Both the ∆ISDLG process ∆Jλ(t) and the ∆LISDLG process ∆J(t) are nonlinear.
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3.5. Relation with [1], a similar result of Barndorff–Nielsen

A paper [1] by Barndorff–Nielsen also deals with the superposition of OU processes and the limit of
its integral process. The buildup of its model is very similar to ours, but the terminology and the initial
processes, i.e. the processes to be superposed are totally different. In effect the treatment in [1] is somewhat
more general than ours, so we will test it only from our point of view.

Our notation is unlike that of the paper under review in order to make the correspondence of the two
models evident. Now, in [1] there is defined a family Y (t, ·), t ∈ R, of random measures Y (t, B), B ∈ B(R+),
on R+, in terms of integrating with respect to an independently scattered random measure Z(dt, dx) on the
set R× R+, i.e.

Y (t, B) $
∫
B
(x)

e−xt

xt∫
−∞
(s)

esZ(ds, dx), (3.101)

and the process proper is

Y (t) $ Y (t,R+). (3.102)

From (3.101) and (3.102) one has

dY (t) =
∫

R+

(x)

(−xY (t, dx)dt + Z(xds, dx)) ,

showing that Y (t) is really a superposition of perhaps infinitesimally determined OU processes.
Let the generalized Lévy measure Q(A, dt) in the Lévy–Khinchin representation

log
(
ϕZ(A)(u)

)
= log

(
EeiZ(A)u

)
=
∫
R

(
eiut − 1− iuτ(t)

)
Q(A, dt),

where A ∈ B (R× R+), factorize as

Q(A, dt) = M(A)V (dt), (3.103)

for some measure M on R× R+ and some Lévy measure V on R. Moreover let M factorize as

M(ds, dx) = dsN(dx), (3.104)

for the Lebesgue measure ds on R and a probability measureN on R+. The paper under discussion, similarly
to our paper, uses the Γ distribution, but with a different shape parameter, namely,

N $ Γ(2(1−H), 1/λ), (3.105)

where the parameters are 1/2 < H < 1 and 0 < λ. We denote the dependence on λ as we did in the case of
the SDLG process Y (t) = Yλ(t).

The joint cumulants of the superposition process Y (t), if they exist, are also given in the formula (3.5)
by [1], showing that

cum (Y (t1), . . . Y (tm)) =
∫

R+

cum
(
Y (x)(t1), . . . Y (x)(tm)

)
N(dx), (3.106)
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i.e. the mixture of the corresponding cumulants of the component processes Y (x)(t), x ∈ R+, by the weight
distribution N . For each x ∈ R+, the component process Y (x)(t) in (3.106) is the OU process defined by the
Langevin equation

dY (x)(t) = −xY (x)(t)dt+ Z(x)(xdt),

where the independently scattered random measure Z(x)(dt) $ Z(dt, dx), choosing the measure N in (3.104)
to be

N = Px, (3.107)

the atomic measure concentrated at point x. That is, Y (x)(t) and Z(x)(dt) are the same as Y (t) and
Z(dt, dx), respectively, except that N is different, being defined by (3.107) and (3.105). We will also denote
the dependence on λ as, e.g., Y (x)

λ (t).
The integrated process

Jλ(t) $
t∫

0

Yλ(s)ds

is also defined, and a theorem is stated and proved about the convergence as λ→ 0, of the family of processes
Jλ(t), λ > 0. More precisely, assume that the Lévy measure V in (3.103) also depends on λ, viz.

Vλ(dt) = λ2(H−1)V (dt). (3.108)

Under condition (3.108) and some other condition imposed on the logarithmic characteristic function of
the stationary process Y1(t), the finite-dimensional distributions of Jλ(t) converge weakly to those of some
process J(t), i.e.

Jλ
w−→

λ→0
J

in the finite-dimensional sense, see Theorem 6.1 of [1]. Of course, process J(t) has stationary increments.
Now, assuming that the Lévy measure V is such that J(1) has a finite second order moment, we have

cov (J(t1), J(t2)) = const.
(
|t1|2H + |t2|2H − |t2 − t1|2H

)
(3.109)

(see Ex. 6.2 in [1]), the same as the covariance of the LISDLG process J(t) (and of the FBM). More generally,
there is a close resemblance between the two processes J(t). In particular, as long as the cumulants exist,
for both of them

cumm(J(t)) = k(m)tm+2(H−1)

holds for m > 2, where k(m), m > 2, are some positive constants not depending on t, see Theorem 7 in this
paper and Example 6.3 in [1]. (Naturally, constants k(m) are different for the two processes J(t).) Thus,
both processes J(t) are multifractal with the same exponents.

It follows from (3.109) that the generalized second order spectra appertaining to the two processes are
the same, namely, S2,J′(ω) =const.|ω|1−2H , see Proposition 20. We state this in the following proposition:

Proposition 25. The generalized spectrum appertaining to process J(t) of [1], i.e.

S2,J′ (ω) $ lim
λ→0

S2,Yλ
(ω) ,

is given by

S2,J′ (ω) = const. |ω|1−2H
.
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Thus it is the same as the generalized spectrum appertaining to the LISDLG process J(t).

After all, the two processes are significantly different. The discrepancy shows itself by means of the
different properties of the generalized bispectra. That is to say, the generalized bispectrum appertaining
to the LISDLG process J(t) is real-valued, see Proposition 22, in contrast to the generalized bispectrum
appertaining to process J(t) of [1].

Proposition 26. The generalized bispectrum appertaining to process J(t) of [1], i.e.

S3,J′
(
ω(2)

)
$ lim

λ→0
S3,Yλ

(
ω(2)

)
,

if it exists at all, cannot be real-valued apart from the case when it is zero.

Proof. We may assume that the Lévy measure V in (3.108) is such that the random variables Z(x)
λ (1) $

Z
(x)
λ ((0, 1]), x ∈ R+, λ > 0, have finite third order cumulants, because in the opposite case the bispectra of

processes Y (x)
λ (t), x ∈ R+, λ > 0, do not exist, thus, neither do the bispectra of processes Yλ(t), λ > 0, so

the generalized bispectrum appertaining to process J(t) is not defined either.
Since for each x ∈ R+ process Y (x)

λ (t) is an OU process with a zero expectation and a finite second order
moment, its spectral representation is

Y
(x)
λ (t) =

∫
R

eitω 1
iω + x

W
(x)
λ (dω),

with some stochastic spectral measure W (x)
λ (dω) on R. Since Y (x)

λ (t) is a linear process with an integrable
transfer function in its moving average representation (being an OU process), its bispectrum is the three-term
product

S
3,Y

(x)
λ

(
ω(2)

)
=
(

1
2π

)2

c3(x, λ)
1

iω1 + x
· 1
iω2 + x

· 1
−i(ω1 + ω2) + x

=
(

1
2π

)2

c3(x, λ)
x
(
x2 + ω2

1 + ω2
2 + ω1ω2

)− i(ω1 + ω2)ω1ω2

x2 (x2 + ω2
1 + ω2

2 + ω1ω2)
2 + (ω1 + ω2)

2
ω2

1ω
2
2

(3.110)

(see Ex. 3 in [3]), where

c3(x, λ) = x cum3

(
Z

(x)
λ (1)

)
= xλ2(H−1) cum3(Z

(x)
1 (1)) = xλ2(H−1) c̃3, (3.111)

and c̃3 ∈ R is a constant depending neither on x nor on λ.
On the other hand, because of (3.106) the bispectrum of Yλ(t) is the mixture of the bispectra of Y (x)

λ (t),
i.e.

S3,Yλ

(
ω(2)

)
=
∫

R+

S
3,Y

(x)
λ

(
ω(2)

)
N(dx), (3.112)

where the distribution N is the Γ distribution given by (3.105). Hence by substituting the results of (3.110)
and (3.111) into (3.112), one has

S3,Yλ

(
ω(2)

)
=
(

1
2π

)2

λ2(H−1)c̃3

∫
R+

x
x
(
x2 + ω2

1 + ω2
2 + ω1ω2

)− i(ω1 + ω2)ω1ω2

x2 (x2 + ω2
1 + ω2

2 + ω1ω2)
2 + (ω1 + ω2)

2
ω2

1ω
2
2

N(dx),
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and therefore

S3,J′
(
ω(2)

)
=

c̃3

(2π)2
lim
λ→0

λ2(H−1) λ2(1−H)

Γ(2(1−H))

∫
R+

x2(1−H)e−λx

× x
(
x2 + ω2

1 + ω2
2 + ω1ω2

)− i(ω1 + ω2)ω1ω2

x2 (x2 + ω2
1 + ω2

2 + ω1ω2)
2 + (ω1 + ω2)

2
ω2

1ω
2
2

dx


= c̃3

1
(2π)2 Γ(2(1−H))

∫
R+

x3−2H
(
x2 + ω2

1 + ω2
2 + ω1ω2

)
x2 (x2 + ω2

1 + ω2
2 + ω1ω2)

2 + (ω1 + ω2)
2
ω2

1ω
2
2

dx

− ic̃3
(ω1 + ω2)ω1ω2

(2π)2 Γ(2(1−H))

∫
R+

x2(1−H)

x2 (x2 + ω2
1 + ω2

2 + ω1ω2)
2 + (ω1 + ω2)

2 ω2
1ω

2
2

dx.

Now, if the generalized bispectrum S3,J′
(
ω(2)

)
is real, then c̃3 = 0, thus S3,J′

(
ω(2)

)
= 0.

4. Application to computer network traffic data

The earlier paper [41] raised the problem of finding a stochastic process all of whose increment processes
have the following properties:
• stationarity;
• LRD;
• real-valued bispectrum;
• nonlinearity;
• Γ one-dimensional distribution (or nearly Γ in some sense).

Multifractal property was not positively required but was alluded to. The motivation was that the computer
network traffic data set investigated by the authors of that paper mainly from the point of view of spectral-
bispectral analysis, showed basically the above properties. The ∆LISDLG process does have these properties.
Here we wish to demonstrate, in particular graphically, that a fair fit can be found between the network
traffic data centralized to zero and the ∆LISDLG process.

We analyzed the time series of aggregated 155 Mbps SUNET ATM WAN (Swedish University Network,
Asynchronous Transfer Mode, Wide Area Network) traffic3 on the ≈0.1 s (approximately 0.1 s) level. That
is to say, the source data set consisting of 425 million cell arrivals (slots) was divided into blocks of size
8000 slots, approximately this is the amount of slots piping in 0.1 s. Then for each block the block sum was
calculated. Thus the aggregated data set consists of about 425 million/8000 ≈ 53000 measurements. It will
be called ≈0.1 s level ATM data, or briefly ATM data. We will also use the data set called ≈1 s level ATM
data arising by aggregating the ≈0.1 s level ATM data in each block of size 10.

4.1. The dilative stability and parameter estimation

At first we demonstrate one-dimensional dilative stability, a particular manifestation of the multifractal
property, see Proposition 17. Figure 1 shows in logarithmic scale of how the estimated cumulants of the
aggregated data depend on the level of aggregation. The aggregation is meant in the sense of Corollary 4,
i.e. it means averaging. The orders of the cumulants is in the range {2, . . . , 6}. If the data came from a

3The reported ATM WAN measurements were carried out by the CARAT laboratory of Telia Research in Sweden. We would
like to thank them and Sándor Molnár in High Speed Networks Lab., Dept. of Telecommunications & Telematics, Technical
University of Budapest, for providing the data. Special thanks go to our colleague Zoltán Gál in Center for Informatics and
Computing, University of Debrecen, for joint work.
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∆LISDLG process, then by taking the logarithm in (3.34) for each fixed orderm ∈ {2, . . . , 6} the relationship
would be

log cumm

(
∆J (ni)

)
= log k1(m) + 2(H − 1) logni, (4.1)

where the levels of time-aggregation are ni, i = 1, . . . , r. In Figure 1, r = 25 and ni ranges from n1 = 4 to
n25 = 223 such that logni, i = 1, . . . , 25, is an approximately equidistant sequence. For each cumulant order
m, (4.1) means that the dependence is linear and the lines must be parallel, each with slope 2(H−1). This is
so in Figure 1, where the five linear point sets, corresponding upwards tom = 2, . . . , 6, confirm the ∆LISDLG
model. The common slope parameter 2(H − 1) and constants log k1(m), m = 2, . . . , 6, were estimated by
weighted linear regression from the linear model with equations (4.1), i = 1, . . . , r, m = 2, . . . , 6, where the
weights are the inverse of the standard deviations of the logarithm of the estimated cumulants. The LRD
parameter H estimated in this way came out to be4

Ĥ = 0.9156. (4.2)

In possession of the estimated H , the constants depending on m and H in (3.34), including the integral term
could be obtained. By the way, the latter term was computed by Monte-Carlo method. Then constants c0
and σ2

0 were estimated, also by linear regression, to be ĉ0 = 38.3156 and σ̂2
0 = 29.0833.
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Figure 1. One-dimensional dilative stability illustrated by cumulants. The discrete
points corresponds to the data. Points plotted with the same signs have coordinates(
logni, log ĉumm

(
∆J (ni)

))
, i = 1, . . . , 25. The orders of the cumulants are m = 2, . . . , 6,

upwards. The continuous lines fitted by weighted linear regression have the common slope
2(Ĥ − 1), where Ĥ = 0.9156.

4Examination of statistical methods is not the aim of this paper. However, it should be noticed that it is not hard to see
that stationarity and the law of large numbers ensure the consistency of the cumulant estimates and the characteristic function
estimates, and in this wise the consistency of the estimators used in this section.
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In place of the cumulants the characteristic function is also available to demonstrate one-dimensional
dilative stability and to estimate the LRD parameter H . Taking the logarithm twice and then the real part
in (3.44), we have

Re log logϕ J(t)
t

(u) = 2(H − 1) log t+ Re log logϕJ(1)(u).

Changing to the notation of Corollary 4, this means that

Re log logϕ∆J(ni)(u) = 2(H − 1) logni + Re log logϕ∆J(1)(u). (4.3)

When testing the ATM data from this point of view, we used the same range of the levels of aggregation ni

as above. The arguments u of the estimated characteristic functions were 100 points equally spaced in the
interval (0, 0.05]. (The reason for the choice of 0.05 as the end point is that the variance of the estimated
characteristic function and also the variance of the curves increase apace for larger values of u.) Figure 2
plots for each fixed level of aggregation ni the left-hand side of (4.3) as a function of u. If the ATM data
set were a realization of the ∆LISDLG process, then by (4.3) these curves should be approximately parallel.
And it seems they really are.

Figure 2. One-dimensional dilative stability. Each curve is the graph of a function
Re log log ϕ̂∆J(ni)(u) as function of u. The aggregational levels ni are the same as in Figure 1.
The curves are approximately parallel.

Figure 3 plots for different values of u the left-hand side of (4.3) as a function of logni. If the ATM data
set were a realization of the ∆LISDLG process, then by (4.3) these curves should be approximately parallel
lines, each with the approximate slope 2(H − 1). And it seems they really are.

If the data come from a ∆LISDLG process, the previous method can be used to estimate parameter H
from the linear model (4.3). We also tried it for wider ranges of the arguments of characteristic function.
Figure 4 shows the result when 500 equidistant values of uj in the interval (0, 10) are used. The mean of the
500 estimated values Ĥ(uj), j= 1, . . . , 500, is

Ĥ = 0.9452. (4.4)
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Figure 3. One-dimensional dilative stability. Each line is the graph of a function
Re log log ϕ̂∆J(ni)(u) as function of logni. The aggregational levels ni are the same as in
Figures 1 and 2. The values of u are the same as in Figure 2. Each line has approximately
the same slope 2(H − 1).

If even larger intervals are used in place of (0, 10), the arrangement of the estimations Ĥ(uj) remains similar
to the one in Figure 4. Thus, we have good reason for supposing the value in (4.4) to be an adequate
estimation of parameter H .

4.2. Fitting of distributions and spectra

4.2.1. Fitting of the one-dimensional distributions

Figure 5 shows the histogram of the ATM data centralized to zero and the density function of the shifted
Γ distribution fitted by the method of moments using the second and third moments. Though it is known
that the distribution of the ∆LISDLG process ∆J(t) is not exactly shifted Γ, it is close to it if the LRD
parameter H is near to 1, see Remark 14. We do not know how rapid the convergence is; anyhow it seems
that the estimated value Ĥ = 0.9452 in (4.4) is sufficiently close to 1, the distribution of ∆J(t) being near
to the shifted Γ.

Let us now examine what the fitting looks like for characteristic functions. We know the characteristic
function of ∆J(1) only in the interval

(−σ−2
0 , σ−2

0

)
, where the series expansion of its logarithm holds, see

Proposition 15. Using the value (4.4) for H , we searched for the values of the other two parameters c0 and σ2
0

giving the best least squares fitting, in the interval
(−0.9σ−2

0 , 0.9σ−2
0

)
, between the characteristic function

ϕ∆J(1)(u) and the empirical one ϕ̂∆J(1)(u), the latter being estimated from the ATM data. (The coefficient
0.9 is used because the series expansion begins to diverge, or rather, to converge slowly near the end points
of the convergence interval. This effect occurs even for the series expansion of the log-characteristic function
of the Γ distribution.) The search ended on finding the optimal values

ĉ0 = 12.7201

σ̂2
0 = 62.1118, (4.5)
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Figure 4. Linear regression estimators of H based on the linear model (4.3). The points
have coordinates

(
uj , Ĥ(uj)

)
, where uj , j= 1, . . . , 500, are equidistant in the interval (0, 10),

and Ĥ(uj) is the linear regression estimator based on (4.3) when the range of the aggrega-
tional levels ni is the same as in Figure 1.

and the best fitting can be seen in Figure 6. The value giving the end points of the interval used at the final

stage is 0.9σ̂2
0

−1
= 0.0145. The curve consisting of discrete points is the estimated characteristic function

ϕ̂∆J(1)(u), and the best fitting ϕ∆J(1)(u) is the continuous curve. Also the best fitting Γ characteristic
function is plotted, but it is not shown as it is overlapped by the other optimal curve.

4.2.2. Fitting of the spectra and bispectra

To demonstrate the fitting of the theoretical spectra of the ∆LISDLG process to the empirical spectra,
we use the ≈1 s level ATM data because the coincidence of the second order spectra is rather convincing at
this level of aggregation. Thus, the level of aggregation of the ∆LISDLG process too has to be changed by a
factor of 10. Or rather, we can get the same result changing not the level of aggregation, but parameters c0
and σ2

0 , according to the scaling behavior (3.33) or (3.34) of the cumulants. For this purpose, consider the
parameters of the ∆LISDLG process fitted above to the ≈ 0.1 s level ATM data, i.e.

H = 0.9452
c0 = 12.7201

σ2
0 = 62.1118,

see (4.4) and (4.5). Now the parameters of the ∆LISDLG process, after changing the time scale by a factor
of 10, are

H = 0.9452

c0 = 12.7201 · 102(H−1) = 9.883

σ2
0 = 62.1118. (4.6)
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Figure 5. Histogram of the ATM data centralized to zero and the shifted Γ density fitted to them.

Thus when computing the theoretical spectrum and bispectrum by the corresponding formulas (3.76) and
(3.91), respectively, we used the parameters in (4.6).

Figure 7 shows the fitting of the estimated spectrum alias smoothed periodogram and the theoretical
spectrum (3.76) of the ∆LISDLG process. More precisely, in Figure 7 both spectra are normed so that their
geometric mean be equal to 1.

Figure 8 shows is the theoretical bispectrum. Figures 9 and 10 show the real part and the imaginary part,
respectively, of the estimated bispectrum. More precisely, in Figures 8, 9 and 10 both the theoretical and the
empirical bispectrum are normed so that the arithmetic mean of their real parts be equal to 1. Now observe
the imaginary part of the estimated bispectrum (Fig. 10) fluctuating around zero with a small amplitude as
compared to the range of the real part (Fig. 9). Thus, the imaginary part seems to be negligible. This fits
in with the fact that the imaginary part of the theoretical bispectrum is zero. Also note the similarity of the
real parts, see Figures 8 and 9.

5. Open problems and directions of future research

It seems to be a difficult task to calculate∫
[0,1]m

Dτ0(s)
2(H−1)ds (5.1)

in closed form, in order to get the form of the dependence on dimension m. The difficulty arises from the
fact that for m > 4 the term Dτ0(s) is not symmetric in its variables, hence for different permutations τ the
integrals on the simplexes {s ∈ [0, 1]m : sτ1 6 . . . 6 sτm} are different as a rule. This is a relevant problem
because the m-th cumulant of the distribution of the LISDLG process J(t) differs in the factor (5.1) from
the m-th cumulant of the corresponding Γ distribution, see (3.33).

A problem connected with the previous one is to specify the distribution of the LISDLG process J(t),
and hence that of the ∆LISDLG process ∆J(t) (for fixed t, naturally). Because of the one-dimensional
dilative stability, see Proposition 17, it would suffice to give the distribution of J(1). The authors know the
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Figure 6. Real (left) and imaginary (right) parts of the following three characteristic
functions: the empirical one estimated from ATM data (discrete points); the best fitting
∆LISDLG and the best fitting Γ characteristic fuction (both plotted with continuous lines
and exactly overlapped by each other). When fitting the ∆LISDLG characteristic function,
parameter H was fixed at the value given by (4.4). The parameters yielding the best fitting
characteristic function ϕ∆J(1)(u) are the ones in (4.5). The end points of the interval used

for the optimizing procedure are ±0.9σ̂2
0

−1
, which are ±0.0145 at the final stage.

series expansion of the log characteristic function only in a certain neighborhood of zero, see Proposition 15.
Reference [10] gives an elegant closed-form expression for the whole characteristic function of the integral
on [0, t], of a squared OU process. Using it as well as the mixture representation of the logarithm of the
characteristic function, one obtains

logϕJλ(1)(u) =
µ0λ

3−2H

Γ(3− 2H)σ2
0

∞∫
0

x2(1−H)e−λx

(−iuσ2
0

x
+ g(u, x)

)
dx, (5.2)

where

g(u, x) $ 1
2
− 1
x

log
[
1
2

(
z (u, x) +

1
z (u, x)

)
sinh

(x
2
z (u, x)

)
+ cosh

(x
2
z (u, x)

)]
,

and

z (u, x) =

√
1− 4iuσ2

0

x
·

Taking limit in (5.2) the characteristic function ϕJ(1)(u), u ∈ R, could be derived, since

logϕJ(1)(u) = lim
λ→0

logϕJλ(1)(u),
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Figure 7. The smoothed periodogram of the ≈1 s level ATM data and the theoretical
spectrum (3.76) of the ∆LISDLG process with parameters as in (4.6). Both curves are
normed so that their geometric mean be 1.

u ∈ R, if the function

x 7−→ x2(1−H)

(−iuσ2
0

x
+ g(u, x)

)
,

x ∈ R+, proved to be integrable5.
Note also that expression (5.1) in closed form would be useful for deriving the Fourier transform of the

Lévy measure in the Lévy–Khinchin representation of logϕJ(1)
6.

Concerning the spectra of order m > 4, it follows easily from Definition 9 and Remark 17 that they must
be real provided they exist, similarly to the case m = 3, i.e. the case of the bispectrum. The question is
whether they exist, and if they do, is there a general form of the m-th order spectrum as a function of m
too? This problem is at least as hard as to compute (5.1) in closed form, because it needs the knowledge of
the m-th order spectrum of the DLG process. The latter however makes it necessary to calculate an integral,
similar to but even more complicated than, equation (5.1), see the proof of Proposition 9. Anyway, the
authors know the closed expression (3.37) for the cumulants of the derivative of the LISDLG process J(t).
Though the derivative of the LISDLG process J(t) is only an informal thing, its cumulants can be defined
exactly. Is there a closed form expression, similar to (3.37), for cum (∆J(0),∆J(t1), . . . ,∆J(tm−1)) which
also holds for all m > 4?

Another direction for future research is the fitting of ∆LISDLG processes to simulated and real data.
First of all, concerning the simulation it must be noted that there is a very effective method to simulate a
DLG process in discrete time points, see Remark 4. Probably, one can put this method to use for simulating

5After submitting the first version of this paper, the authors pushed through this idea, so the cumulant function log ϕJ(1)(u),

u ∈ R, has been obtained since then.
6The referee was so kind to draw the authors attention to this fact.
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Figure 8. The theoretical bispectrum (3.91) of the ∆LISDLG process with parameters as
in (4.6). It is normed so that its arithmetic mean be 1. It is plotted on the determining
triangle with vertices (0, 0), (π, 0), (2π/3, 2π/3), see [37] (p. 29).

∆LISDLG process7. Secondly, adapting existing parameter estimation methods and tests of model fitting
to our process is a promising task, as well as contriving and investigating new ones, including those we used
in Section 4.

Stochastic modelling of computer network data traffic flow processes using the ∆LISDLG process is
another topic for future research. The motivation comes not only from the apparently convincing fitting
found by using various graphical methods and several data sets, but also from the existing realistic models
for the DLG processes which are the component processes for our superposition step. In particular, the
DLG process is a CBI process with a.s. continuous trajectories, see Theorem 1, and the latter process can
be represented as a scaled limit of Galton–Watson processes with immigration, see Theorem 2.2 in [20].
Another practical model is a Cox process with DLG process intensity, resulting in a birth and death process
with immigration, see [7].

Appendix A. Multivariate Γ distribution

The accompanying Gaussian distribution
Let m ∈ N, and let Σ = (σij)i,j=1,... ,m be an m×m matrix with the following property:

Σ is symmetric, positive definite and σ11 = . . . = σmm = σ2. (A.1)

Let X = (X1, X2, . . . , Xm) be a zero mean Gaussian vector with covariance matrix Σ. Define Y = (Y1, Y2 ,
. . . , Ym) as the random vector with entries Yk = X2

k , k = 1, 2, . . . ,m. The characteristic function of Y is

ϕY(u) = |I − 2iUΣ|−1/2
,

7After submitting the first version of this paper, the authors pushed through this idea. More specifically, processes approx-
imating the ∆LISDLG process with adequate precision have been simulated.
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Figure 9. The real part of the estimated bispectrum of the ≈1 s level ATM data. It is
normed so that its arithmetic mean be equal to 1. It is plotted on the same triangle as in
Figure 8.

where U $ diag(u) with u ∈ Rm, i.e. a matrix with zero elements except for the main diagonal, which is u,
I is the m ×m identity matrix, and | | denotes the determinant. If one takes Z =

∑n
k=1 Yk, the sum of

n ∈ N independent copies of the vector Y, then one gets the characteristic function

ϕZ(u) = |I − 2iUΣ|−n/2
. (A.2)

All the marginals of ϕZ(u) are χ2 distributed with degree of freedom n which is a particular case of the Γ
distribution. The Γ (α, β) distribution is defined in general either by the density

fΓ(α,β) (x) =
xα−1

βαΓ (α)
exp (−x/β) , if x > 0 and zero otherwise,

or by the characteristic function

ϕΓ(α,β)(u) = (1− iuβ)−α
.

Its cumulants are

cumm(Γ (α, β)) = (m− 1)!αβm,

m = 1, 2, 3, . . . Parameters α > 0 and β > 0 are called the shape parameter and the scale parameter,
respectively. In that context the marginals of ϕZ(u) are Γ

(
n/2, 2σ2

)
. The entries of Y are correlated and

χ2 distributed with degree of freedom 1. The cumulants of Y are the same as the cumulants of Y − σ2 =
(H2 (X1) , H2 (X2) , . . . , H2 (Xm)) , where H2 (Xk) = X2

k − σ2 is the Hermite polynomial of second order.
The cumulants of Hermite polynomials are well-known, in particular in the following case.
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Figure 10. The imaginary part of the estimated bispectrum of the ≈1 s level ATM data. It
is normed by the same constant with which the real part. It is plotted on the same triangle
as in Figure 8.

Proposition 27.

cum (H2 (X1) , H2 (X2) , ..., H2 (Xm)) =

2m−1
∑

(i1,... ,im−1)

∈Perm(2,... ,m)

cov (X1, Xi1) cov (Xi1 , Xi2) · · · cov
(
Xim−2 , Xim−1

)
cov

(
Xim−1 , X1

)
,

see [40], Example 10, for details.

E.g., if m = 2, one can see that

cum (H2 (X1) , H2 (X2)) = cov (H2 (X1) , H2 (X2)) = 2σ2
12,

and if m = 3,

cum (H2 (X1) , H2 (X2) , H2 (X3)) = 8σ12σ23σ31.

Although one cannot change the exponent n/2 in (A.2) for an arbitrary positive real number α, because the
result might not be a characteristic function, see [24], we define the function

ϕ(u) = |I − 2iUΣ|−α
, (A.3)

for further consideration.

Definition 11. If function ϕ(u) defined by (A.3) is a characteristic function, then the m-dimensional Γ
distribution with shape parameter α and scale parameter matrix 2Σ according to the accompanying Gaussian
distribution, Γ (α, 2Σ) for short, is defined, in particular by its characteristic function ϕ(u).
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Let Z = (Z1, . . . , Zm) be Γ (α, 2Σ) distributed. It is easy to see that each component of Z has one-
dimensional Γ distribution, namely,

Zk ∼ Γ
(
α, 2σ2

)
,

k = 1, . . . ,m. Moreover, for 1 6 k 6 m, each subset (Zi1 , . . . , Zik
) also has k-dimensional Γ distribution.

Naturally, there are other m-dimensional distributions whose one-dimensional marginals are Γ distributions,
however the one given above is the most plausible of them, because of the following:

Proposition 28 (see Th. 1 in [24]). The distribution Γ (n/2, 2Σ) is just the marginal distribution of the
diagonal elements of a Wishart matrix.

For these special values of the shape parameter, i.e. for half-integer positive α, and arbitrary Σ with
property (A.1), the multi-dimensional Γ (α, 2Σ) distribution was defined in [25]. Reference [24] draws our
attention to the fact that for m > 2, if one makes no restraints for the parameters, other than α > 0 and Σ
fulfils (A.1), then (A.3) is not necessarily a characteristic function. However, the infinite divisibility of the
Γ (1/2, 2Σ) distribution is a necessary and sufficient condition for the Γ (α, 2Σ) distribution to exist for all
α > 0. Reference [14] gave a sufficient condition for infinite divisibility, namely that Σ is the autocovariance
matrix of a Gauss–Markov vector. The latter condition comes true for the very case of an autocovariance
matrix of a stationary OU process. To conclude, we state the following:

Proposition 29 (see [14]). If α > 0 and Σ is the autocovariance matrix of the vector (X(t1), . . . , X(tm)),
where t1 < . . . < tm and X(t) is a stationary OU process, then the Γ (α, 2Σ) distribution really exists.

The cumulants of distribution Γ (α, 2Σ) are the same as the cumulants of Γ (n/2, 2Σ) but for some multi-
plicative constant because the cumulant generating function is logϕ(u). Let Z = (Z1, . . . , Zm) be Γ (α, 2Σ)
distributed, then

cum (Z1, Z2, ..., Zm) = 2α cum (H2 (X1) , H2 (X2) , ..., H2 (Xm))

= 2mα
∑

(i1,... ,im−1)∈Perm(2,... ,m)

σ1i1σi1i2 . . . σim−11, (A.4)

where X = (X1, X2, . . . , Xm) is the accompanying Gaussian random vector. The cumulants (A.4) are invari-
ant under changing the signs of theX ’s, therefore the distribution Γ (α, 2Σ) does not define the accompanying
Gaussian distribution uniquely.

The authors are grateful to the referee for the careful review and the constructive attitude.
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