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ADAPTIVE TESTS OF QUALITATIVE HYPOTHESES
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Abstract. We propose a test of a qualitative hypothesis on the mean of a n-Gaussian vector. The
testing procedure is available when the variance of the observations is unknown and does not depend
on any prior information on the alternative. The properties of the test are non-asymptotic. For testing
positivity or monotonicity, we establish separation rates with respect to the Euclidean distance, over
subsets of Rn which are related to Hölderian balls in functional spaces. We provide a simulation study
in order to evaluate the procedure when the purpose is to test monotonicity in a functional regression
model and to check the robustness of the procedure to non-Gaussian errors.
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1. Introduction

We consider the statistical model

YYY = fff + εεε, (1)

where fff is an unknown vector of R
n and εεε is a Gaussian vector with i.i.d. components of mean 0 and unknown

variance σ2. Let C be some set in R
n containing 0 and satisfying the following condition:

Condition (A): For all ggg,hhh ∈ C, ggg + hhh ∈ C.

We call such a set C a cone.
We want to test that fff belongs to C against that it does not. For illustration of sets C, one can take

C≥0 = {fff ∈ R
n, ∀i ∈ {1, ..., n}, fi ≥ 0} ,

to test that the coordinates of fff are nonnegative, or

C↗ = {fff ∈ R
n, f1 ≤ f2 ≤ ... ≤ fn} ,

to test that the sequence of the coordinates of fff is nondecreasing.
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Our test relies on the following idea: we consider a suitable collection {Sm, m ∈M} of linear subspaces of R
n

and, denoting by Πm the orthogonal projector onto Sm, we reject the null hypothesis if there exists some m in
M such that the Euclidean distance d(., .) between ΠmYYY and C is large. Our results are non asymptotic: under
the assumption that the εi’s are Gaussian, for each n and for each α ∈]0, 1[, we propose a level-α test and we
characterise a class of vectors over which the test achieves some prescribed power.

As a particular case, we consider the functional regression model

Yi = F (xi) + εi, i = 1 . . . , n,

where the xi’s are deterministic points in [0, 1] and F is an unknown function from [0, 1] into R. Model (1)
includes this model by taking fff = (F (x1), . . . , F (xn))′. For each s ∈]0, 1] and L > 0, we define the Hölderian
ball Hs(L) by

Hs(L) =
{
F : [0, 1] → R, ∀(x, y) ∈ [0, 1]2, |F (x) − F (y)| ≤ L|x− y|s} · (2)

In the case where C = C≥0 or C = C↗ and under the a posteriori assumption that F belongs to Hs(L) for some
s ∈]0, 1] and L > 0, our test rejects the null hypothesis with probability larger than 1− β when d(fff, C)/

√
n is

larger than CL1/1+2s(σ2/n)s/1+2s where C denotes some constant depending on α and β only. This result is
free from any assumption on the design points xi’s.

Given some estimator f̂ff of fff , a natural idea to test the hypothesis “fff ∈ C” is to consider the Euclidean
distance between f̂ff and C, denoted by d(f̂ff , C), and to reject the null when this quantity is large. The problem
is to find a threshold, say tα, such that the test is of level α, that is

sup
fff∈C

Pfff

(
d(f̂ff ,fff) > tα

)
≤ α.

The difficulty is to control the probability of error when fff runs among the whole set C. Under the condition

κ2 = sup
fff∈C

E
[
d2(f̂ , f)

]
< +∞, (3)

the problem is solved by taking tα = κ/
√

α and using Markov’s inequality. Such a test is usually called a plug-in
procedure. Unfortunately, Condition (3) cannot be satisfied when C is large, namely when C = C≥0 or C = C↗,
making thus the use of plug-in procedures impossible in these cases.

Our test is not based on a plug-in procedure, but rather on multiple testing. The test statistic we consider
has the property to be stochastically bounded under the null independently of fff . It is thus possible to derive
uniform separation rates without any prior knowledge of both s and L. Moreover, our test does not depend on
any estimation of σ.

Testing that fff belongs to a cone against that the Euclidean distance between fff and the cone is large, had
never been treated before. In the Gaussian white noise model, under a priori assumptions, both under the null
and the alternative, on the regularity of the signal, Juditsky and Nemiroski [10] established minimax rates of
testing.

The problem of testing qualitative hypotheses (monotonicity, positivity, convexity) has also been treated by
Dümbgen and Spoköıny [5] in the Gaussian white noise model. Their test is asymptotically optimal in the sense
that for any Lipschitz class H1(L), with L > 0, the optimal separation rate L1/3(log(n)/n)1/3 (with respect to
the supremum norm) is achieved.

In the literature, the problem of testing monotonicity in the functional regression model has been mostly
studied. Let us mention the work of Gijbels et al. [7], Hall and Heckman [8], Ghosal et al. [6] and Baraud
et al. [3]. A common feature of those papers lies on the fact that the proposed tests are sensitive to local
discrepancies to the null. In contrast, the procedure we propose aims at detecting discrepancies to the null with
respect to the Euclidean distance.
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The paper is organised as follows. Section 2 presents the testing procedure. Section 3 contains our main result
on the theoretical performances of the test. Section 4 contains simulations showing the practical implementation
of the procedure, its performances and the robustness with respect to non-Gaussian errors. Finally, Section 5
is devoted to the proofs.

2. The testing procedure

Let us consider the regression model given by (1) and let C be some set in R
n satisfying Condition (A) and

containing 0. We aim at testing the hypothesis H0: “fff ∈ C”. For that purpose, we introduce a collection
{Sm, m ∈ M} of linear subspaces of R

n, and for each m ∈ M, we denote by Dm the dimension of Sm. We
assume that the following property holds:

Property (S): For any m ∈M, Πm(C) ⊂ C, where Πm denotes the orthogonal projector onto Sm.

Let Sn be some linear subspace of R
n of dimension denoted by Dn < n, such that for any m ∈ M, Sm ⊆ Sn.

We denote by ΠSn the orthogonal projector onto Sn.
Let us define dn(., .) = d(., .)/

√
n where d(., .) denotes the Euclidean distance in R

n and let dn(fff, C) be the
distance between fff and C defined by

dn(fff, C) = inf
ggg∈C

dn(fff,ggg).

For some α ∈]0, 1[, we consider the test statistic Tα defined by

Tα = sup
m∈M

(
d2

n(ΠmYYY , C)
d2

n(YYY ,Sn)/(n−Dn)
− qm(uα)

)
, (4)

where for each u ∈]0, 1[, qm(u) is defined as the 1− u quantile of the random variable

Zm =
d2

n(Πmεεε, C)
d2

n(εεε,Sn)/(n−Dn)
,

and uα is defined by

uα = sup
{

u ∈]0, 1[, P

(
sup

m∈M
(Zm − qm(u)) > 0

)
≤ α

}
·

We reject the null hypothesis if Tα is positive.
In the particular case where C is a linear subspace of R

n the procedure is similar to that described in Baraud
et al. [2].

3. Non asymptotic performances of the test

3.1. Level and power of the test

In this section, we show that our test is of level α for all n, and we describe a subset En(β) of R
n over which

the power of the test is greater than 1− β. In the sequel we denote by Pfff the law of the observation YYY drawn
from the regression model (1) and we denote respectively by χD(u) and Φ(u) the probability for a chi-square
statistic with D degrees of freedom and for a standard normal variable to be larger than u.

Theorem 1. Let C be some set in R
n containing 0 and satisfying Condition (A), Sn a linear subspace of R

n

and {Sm, m ∈M} a collection of linear subspaces of Sn, which satisfies Property (S).
For α ∈]0, 1[, we define the test statistic Tα by (4) and we decide to reject the null hypothesis when Tα is

positive. Then we have
∀fff ∈ C, Pfff (Tα > 0) ≤ α.
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For β ∈]0, 1[, we define

v2
m(β) =

[
χ−1

Dm
(β/2) + 2qm(uα)

χ−1
(n−Dn)(β/2)

n−Dn

]
σ2

n
+ 2d2

n(fff,Sn)
qm(uα)
n−Dn

,

and
ρ2

n(fff, β) = 3 inf
m∈M

[
d2

n(fff, Sm) + v2
m(β)

]
.

If fff ∈ R
n satisfies that d2

n(fff, C) ≥ ρ2
n(fff, β), then

Pfff (Tα ≤ 0) ≤ β.

Comments. We immediately deduce from the theorem that
- the size of the test, supfff∈C Pfff (Tα > 0), is exactly α, this supremum being achieved for fff = 0 ∈ C;
- the test is powerful over the class of vectors,

En(β) =
{
fff ∈ R

n, d2
n(fff, C) ≥ ρ2

n(fff, β)
} ·

Moreover, let us give some comments on the order of magnitude of ρ2
n(fff, β). We shall see that under suitable

conditions on the Sm’s (see the comment in Sect. 5.3), v2
m(β) + d2

n(fff, Sm) is of order Dm/n + d2
n(fff, Sm). For

the sake of simplicity, let us now assume that the collection of spaces {Sm, m ∈ M} is totally ordered for the
inclusion, so that d2

n(fff, Sm) decreases with the dimension Dm. Therefore, ρ2
n(fff, β) is of order Dm∗/n where m∗

realizes among M the best trade-off between d2
n(fff, Sm) and v2

m(β). For each fff , the quantity ρ2
n(fff, β) provides

an upper bound for the (squared) separation rate of our test. This rate is of the same order as the quadratic
risk of the penalised estimator of fff proposed by Baraud [1].

In the particular case where C is a linear subspace of R
n, adequate calculations allow to improve this rate of

testing, namely the quantity v2
m(β)+ d2

n(fff, Sm) is of order
√

Dm/n+ d2
n(fff, Sm), we refer to the work of Baraud

et al. [2]. Then the best compromise between the terms d2
n(fff, Sm) and v2

m(β) leads to separation rates that are
similar to the estimation rates of ‖fff‖2n, see Laurent and Massart [11].

3.2. Uniform rates of testing

In this section we establish uniform rates of testing over Hölderian balls of functions. More precisely, let
s ∈]0, 1], L > 0 and define Hs(L) as follows:

Hs(L) = {(F (x1), . . . , F (xn))′/F ∈ Hs(L)} ,

where Hs(L) is defined by equation (2) and the xi’s are deterministic points in [0, 1]. The aim of this section is
to compute some quantity ρ2

s,L(β) such that for all fff ∈ Hs(L) satisfying d2
n(fff, C) ≥ ρ2

s,L(β), our test rejects the
null hypothesis with probability greater than 1− β. We derive such ρ2

s,L(β) by computing an upper bound for
the supremum of ρ2

n(fff, β) over fff ∈ Hs(L) and by applying Theorem 1.
Since we deal with a collection of vectors fff such that each component fi is defined as the value of a function F

at point xi, we consider a collection of linear spaces defined from functional spaces. We apply Theorem 1 with the
collection {Sm, m ∈ M} defined as follows. For n > 4, let M = {2l, l ≤ ln}, where ln = sup

{
l, 2l ≤ n/2 + 2

}
.

For each m ∈M, Sm is the linear space spanned by the vectors{(
1I] j−1

m , j
m ](x1), ..., 1I] j−1

m , j
m ](xn)

)′
, j = 1, ..., m

}
·

We choose Sn = S2ln which satisfies Dn < n.
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Corollary 1. Assume that the set C satisfies the assumptions of Theorem 1 and that Property (S) holds for the
collection of Sm’s defined above. Let α ∈]0, 1[, s ∈]0, 1], L > 0 and assume that n satisfies n ≥ 4(2L/σ)1/s. For
all β ∈]0, 1[, let

ρ2
s,L(β) = C(α, β)

[
L2/1+2s

(
σ2

n

)2s/1+2s

+
log log(n)

n
σ2

]
,

where C(α, β) is some constant depending on α and β only. Then for all fff ∈ Hs(L) such that d2
n(fff, C) ≥ ρ2

s,L(β),
we have

Pfff (Tα > 0) ≥ 1− β.

Comment. When C = C≥0 and C = C↗, the Sm’s satisfy Property (S), and Corollary 1 applies.
By taking σ2 = 1, fixing the value of L and letting n grow towards infinity, we obtain the asymptotic

separation rate rn(s, L) = L1/(1+2s)n−s/(1+2s). This rate corresponds to the minimax estimation rate over
Hs(L).

In the Gaussian white noise model, when C = C≥0, Juditsky and Nemirovski [10] considered the test of
F ∈ C≥0 ∩Hs(L, R) where

Hs(L, R) = Hs(L) ∩
{

sup
x∈[0,1]

|F (x)| ≤ R

}
, with R ≥ 2L

against F ∈ Hs(L, R). They showed that the minimax separation rate for this problem is of the form
rn(s, L)(log(n))−θ, for some positive θ depending on s.

Let us now turn to the case C = C↗.
We first consider the case where s = 1. By taking σ2 = 1, fixing the value of L and letting n grow towards

infinity, we obtain the asymptotic separation rate rn(1, L) = L1/3n−1/3.
In the Gaussian white noise model, for the problem of testing F ∈ C↗ ∩ H1(L, R) against F ∈ H1(L, R),

Juditsky and Nemirovski [10] showed that the minimax separation rate is bounded from below by
rn(1, L)(log(n))−θ, for some positive θ.

In the case where s < 1, the minimax separation rate and a fortiori the adaptive rate of testing are unknown.

4. Examples and simulations

In this section we describe how to implement the test for testing fff ∈ C↗ and we carry out a simulation study
in order to evaluate the performances of our test both when the errors are Gaussian and when they are not.
We first describe how the testing procedure is performed, then we present the simulation experiment and finally
the results of the simulation study.

4.1. The testing procedure

Let Sn be the linear space with dimension Dn < n, spanned by the vectors {VVV l, l = 1, . . . ,Dn, } defined as
follows:

VVV l =
∑
i∈Il

eeei where Il =
{

i ∈ {1, . . . , n} ,
l − 1
Dn

<
i

n
≤ l

Dn

}
and (eee1, . . . , eeen) denotes the canonical basis of R

n.
Next, let M = {2, . . . , Mn} for some Mn ≤ Dn. For each m ∈ M we choose Sm as the linear space spanned

by the vectors {WWWm,j, j = 1, . . . , m} defined as

WWWm,j =
∑

l∈Jm,j

VVV l where Jm,j =
{

l ∈ {1, . . . ,Dn} ,
j − 1
m

<
l

Dn
≤ j

m

}
·
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Table 1. Testing monotonicity: simulated functions F ; the ratio signal/noise equals d2
n(fff, C)/σ2.

F σ2 Ratio signal/noise
F0(x) = 0 0.01 0
F1(x) = −0.15x 0.01 0.18
F2(x) = −0.2 exp(−50(x− 0.5)2) 0.01 0.36
F3(x) = 0.1x + F2(x) 0.01 0.23
F4(x) = 0.1 cos(6πx) 0.01 0.44
F5(x) = 0.1x + F4(x) 0.01 0.36
F6(x) = 0.5x 0.01 0
F7(x) = 0.5x + F2(x) 0.0006 0.47
F8(x) = 0.5x + F4(x) 0.003 0.47

It is easy to check that for such a collection the Property (S) is fulfilled and that for any m ∈M, Sm ⊆ Sn.
To compute the test statistic, we need to compute dn(yyy, C) for some yyy ∈ R

n. This is done by calculating the
orthogonal projection, Π↗yyy, of yyy onto the convex set C↗. For further details on the computation of Π↗yyy we
refer to Brunk [4].

For each m the quantiles qm(u) are calculated by simulations for u varying on a grid of values u1, . . . ul. Then
for each uj, we compute the quantity

p(uj) = P

(
sup

m∈M

{
d2

n(Πmεεε, C)
d2

n(εεε,Sn)
− qm(uj)

}
> 0
)

,

by simulations, εεε being a n-sample of N (0, 1) and we take uα as

uα = max {uj , p(uj) ≤ α} ·

4.2. The simulation experiment

We consider three distributions of the errors εi, with expectation zero and variance σ2 (that were already
considered by Horowitz and Spokoiny, 2000).

1. The Gaussian distribution: εi ∼ N (0, σ2).
2. The mixture of Gaussian distributions: εi is distributed as πX1 + (1 − π)X2 where π is distributed

as a Bernoulli variable with expectation 0.9, X1 and X2 are centred Gaussian variables with variance
respectively equal to 0.039σ and 0.625σ. π, X1 and X2 are independent. This distribution has heavy tails.

3. The type I distribution: εi has density (s/σ)fX(µ + (s/σ)x) where fX(x) = exp{−x − exp(−x)}, and
where µ and s2 are the expectation and the variance of a variable X with density fX . This distribution
is asymmetrical.

The number of observations n equals 100, and xi = i/(n+1), for i = 1, . . . , n. We choose Dn = 50 and Mn = 20.
We consider several functions F presented in Table 1, and for each of them, we set fi = F (xi) and simulate the
observations Yi = fi + εi. The variance of the errors as well as the ratio signal/noise equal to d2

n(fff, C)/σ2 are
displayed in Table 1.

In Figure 1 we have displayed the functions F` for ` = 0, . . . , 8 and for each of them one sample simulated
with Gaussian errors and the corresponding value of the test statistic Tα for α = 5%.

4.3. Results of the simulation study

The results of the simulation experiment, based on 1000 simulations, are presented in Table 2. The calculation
of uα is based on B = 40 000 simulations: B/2 simulations are used for calculating the values of the p(uj)’s, the
uj’s, j = 1, . . . , l being chosen uniformly between 99.2% and 99.6% for l = 20, and B/2 simulations are used for
calculating uα. Note that uα does not depend on (xi, i = 1, . . . , n), but only on the number of observations n.
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Figure 1. For each function F`, ` = 0, . . . , 8, the simulated data Yi = F`(xi) + εi for
i = 1, . . . n are displayed. The errors εi are Gaussian centred variables with variance σ2. The
value of the test statistic Tα, with α = 5%, is given for each example. The hypothesis fff ∈ C↗
is rejected for all functions F , except for the functions F0 and F6 that belong to the null
hypothesis.
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Table 2. Testing monotonicity: percentage of rejection.

errors distribution
F Normal Mixture Type I
F0(x) 0.044 0.044 0.058
F1(x) 0.938 0.941 0.944
F2(x) 0.997 0.991 0.993
F3(x) 0.909 0.912 0.914
F4(x) 0.975 0.964 0.965
F5(x) 0.909 0.906 0.929
F6(x) 0 0.001 0
F7(x) 0.966 0.945 0.950
F8(x) 0.955 0.927 0.948

As expected, when the distribution of the errors is Gaussian, the level of the test calculated for the func-
tion F0(x) = 0 is (nearly) equal to α.

For the distributions “Mixture” and “Type I”, it has also the desired level, showing the robustness of the
procedure with respect to non-Gaussian errors.

Looking at the results corresponding to the functions F1 to F5, it appears that the test is powerful for
detecting discrepancies to a constant function or to a function that increases slowly.

The quantiles qm(uα) introduced in the test statistic defined in equation (4) are calculated when the vector
of expectation fff equals zero. This corresponds to the worse case under the null hypothesis “fff belongs to C↗”.
It follows that if the vector in C↗ is strongly increasing, the size of the test is zero. This fact is confirmed by
the simulation study for the function F6. As a consequence, the test is powerful for detecting a discrepancy to a
strongly increasing function if the variance of the errors is small. This is exactly what we get in the simulation
study for the functions F7 and F8.

The tests proposed by Baraud et al. [3] aim at detecting local discrepancies to the null. Since the procedure
proposed in this paper aims at detecting a “global” discrepancy, it is worth to provide an example where it
performs better. In the case of the function F8, the tests proposed by Baraud et al. [3] have a power that is not
larger than 89%, while the above test achieves a power larger than 95%.

5. Proof of Theorem 1

5.1. Level of the test

In this section we show that the level of the test is smaller than α. We start with the following lemma which
compares the repartition functions of a central and a non central χ2 random variables with the same degrees of
freedom.

Lemma 1. Let T be a χ2 variable with D degrees of freedom and let T ′ be a non central χ2 variable with D
degrees of freedom and non centrality parameter a > 0. Then for all u > 0

P (T ′ ≤ u) ≤ P (T ≤ u).

The proof of the lemma is postponed to the end of the section.
To start with, note that by Property (S) and under H0, Πmfff belongs to C for all m ∈ M. Now, thanks to

Condition (A) for all ggg ∈ C,

dn(ΠmYYY , C) ≤ dn(ΠmYYY , Πmfff + ggg) = dn(Πmεεε,ggg),
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which leads to
d2

n(ΠmYYY , C) ≤ d2
n(Πmεεε, C).

It follows that for all fff ∈ C,

Pfff (Tα > 0) = Pfff

(
sup

m∈M

{
d2

n(ΠmYYY , C)
d2

n(YYY ,Sn)/(n−Dn)
− qm(uα)

}
> 0
)

≤ Pfff

(
sup

m∈M

{
d2

n(Πmεεε, C)
d2

n(YYY ,Sn)/(n−Dn)
− qm(uα)

}
> 0
)

≤ Pfff

(
d2

n(YYY ,Sn) < (n−Dn) sup
m∈M

d2
n(Πmεεε, C)
qm(uα)

)
·

Note that the random variable nd2
n(YYY ,Sn)/σ2 is distributed as a non central χ2 random variable with n−Dn

degrees of freedom and non centrality parameter
√

ndn(fff,Sn)/σ. We deduce from Lemma 1 that for all u > 0,

P
(
d2

n(YYY ,Sn) ≤ u
) ≤ P

(
d2

n(εεε,Sn) ≤ u
)
.

Since for all m ∈ M, Sm ⊆ Sn, it follows from Cochran’s theorem that d2
n(YYY ,Sn) is independent of the random

variable supm∈M
(
d2

n(Πmεεε, C)/qm(uα)
)
. Then by conditioning and applying Lemma 1 we obtain

Pfff (Tα > 0) ≤ P

(
d2

n(εεε,Sn) < (n−Dn) sup
m∈M

d2
n(Πmεεε, C)
qm(uα)

)
≤ P

(
sup

m∈M

(
d2

n(Πmεεε, C)
d2

n(εεε,Sn)/(n−Dn)
− qm(uα)

)
> 0
)

≤ α,

by definition of uα.

Proof of Lemma 1. This result has already been shown by Anderson in a more general setting [9] (p. 155). In
the particular case of χ2 variables, the proof is very simple and is given below.

Let U1, . . . , UD be i.i.d. N (0, 1) random variables. T is distributed as U2
1 + . . . + U2

D and T ′ as (U1 + a)2

+ . . . + U2
D. We just have to prove that ∀u > 0,

P (|U1 + a| ≤ u) ≤ P (|U1| ≤ u).

Let hu(a) = P (|U1 + a| ≤ u) = Φ(u− a)−Φ(−a−u), where Φ denotes the repartition function of U1. Denoting
by φ the density of U1, we have h′u(a) = −φ(u − a) + φ(−a − u), h′u(0) = 0 and h′u(a) < 0 for a > 0, which
proves that hu admits a maximum for a = 0 and concludes the proof.

5.2. The power of the test

Let us evaluate the risk of second kind for fff such that dn(fff, C) ≥ ρn(fff, β).

Pfff (Tα ≤ 0) = Pfff

(
∀m ∈M,

d2
n(ΠmYYY , C)

d2
n(YYY ,Sn)/(n−Dn)

≤ qm(uα)
)

≤ inf
m∈M

Pfff

(
d2

n(ΠmYYY , C)
d2

n(YYY ,Sn)/(n−Dn)
≤ qm(uα)

)
.

We decompose this probability into two terms, controlling the fluctuations of the random variable nd2
n(YYY ,Sn)/(n−

Dn) around σ2. Let

t2 =
2

n−Dn

(
d2

n(fff,Sn) + χ−1
n−Dn

(β/2)
σ2

n

)
·
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Setting,
P1(m) = Pfff

(
d2

n(ΠmYYY , C) ≤ t2qm(uα)
)

and
P2 = Pfff

(
d2

n(YYY ,Sn) ≥ (n−Dn)t2
)
,

we get

Pfff

(
d2

n(ΠmYYY , C)
d2

n(YYY ,Sn)/(n−Dn)
≤ qm(uα)

)
≤ P1(m) + P2.

In the sequel we choose m among M such that

ρ2
n(fff, β) = 3

(
d2

n(fff, Sm) + v2
m(β)

)
= 3

(
d2

n(fff, Sm) + t2qm(uα) + χ−1
Dm

(β/2)
σ2

n

)

≥
(

dn(fff, Sm) + t
√

qm(uα) +

√
χ−1

Dm
(β/2)

σ2

n

)2

· (5)

Upper bound for P1

Since the function dn(·, C) is 1-Lipschitz, namely

∀hhh,hhh′ ∈ R
n, |dn(hhh, C)− dn(hhh′, C)| ≤ dn(hhh,hhh′),

we have that
dn(ΠmYYY , C) ≥ dn(Πmfff, C)− dn(Πmεεε, 0)

and as dn(fff, C) ≥ ρn(fff, β) we get

dn(Πmfff, C) ≥ dn(fff, C)− dn(fff, Sm)
≥ ρn(fff, β)− dn(fff, Sm).

This leads to

P1(m) ≤ Pfff

(
dn(Πmεεε, 0) ≥ dn(Πmfff, C)− t

√
qm(uα)

)
≤ Pfff

(
dn(Πmεεε, 0) ≥ ρn(fff, β)− dn(fff, Sm)− t

√
qm(uα)

)
≤ Pfff

(
dn(Πmεεε, 0) ≥

√
χ−1

Dm
(β/2)

σ2

n

)

thanks to (5), which implies that P1(m) ≤ β/2.

Upper bound for P2

Since d2
n(YYY ,Sn) ≤ 2

(
d2

n(fff,Sn) + d2
n(εεε,Sn)

)
, we have that

P2 ≤ P
(
2d2

n(εεε,Sn) ≥ (n−Dn)t2 − 2d2
n(fff,Sn)

)
= β/2.

This concludes the proof of Theorem 1.
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5.3. Proof of Corollary 1

We prove the corollary showing that for all fff ∈ Hs(L)

ρ2
n(fff, β) ≤ C(α, β)

[
L2/(1+2s)

(
σ2

n

)2s/(1+2s)

+
log log(n)

n
σ2

]
. (6)

Then the result follows from Theorem 1.
To do so, we use the following lemma that is proved at the end of this section.

Lemma 2. Under the assumptions of Corollary 1 the following holds: for each m ∈ M, there exists some
constant C depending on α and β only, such that

v2
m(β) ≤ C

Dm + log log(n)
n

(
σ2 + d2

n(fff,Sn)
)
. (7)

For all s ∈]0, 1], L > 0, fff ∈ Hs(L) and m ∈M

dn(fff, Sm) ≤ LD−s
m . (8)

Since for all m ∈M, Sm ⊂ Sn, the following inequalities hold

Dm + log log(n)
n

d2
n(fff,Sn) ≤ 2d2

n(fff,Sn) ≤ 2d2
n(fff, Sm) (9)

and we derive from (7) and (8) that

ρ2
n(fff, β) = 3 inf

m∈M
(
d2

n(fff, Sm) + v2
m(β)

) ≤ C′ inf
m∈M

(
Dm + log log(n)

n
σ2 + L2D−2s

m

)
for some constant C ′ depending on α and β only.

Then, we choose m among M to satisfy

1 + [(L2n/σ2)1/(1+2s)] ≤ Dm = 2l < 2 + 2[(L2n/σ2)1/(1+2s)]

which is possible under the assumption n ≥ 4(2L/σ)1/s (then 2 + 2[(L2n/σ2)1/(1+2s)] ≤ 2 + n/2). Finally, we
obtain (6) by noting that

(L2n/σ2)1/(1+2s) ≤ Dm ≤ 2(1 + (L2n/σ2)1/(1+2s)).

Comment. Note that if Dm ≥ log log(n) then we deduce from (7) and (9) that v2
m(β) + d2

n(fff, Sm) is of order
Dm/n + d2

n(fff, Sm).
Let us now prove Lemma 2.

Proof of (7). We start with proving the following inequality

qm(uα) ≤ DmF̄−1
Dm,n−Dn

(α/|M|).

On the one hand, since 0 belongs to C, we have that

Zm ≤ (n−Dn)d2
n(Πmεεε, 0)

d2
n(εεε,Sn)

= X2
m.
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The random variable X2
m/Dm being distributed as a Fisher random variable with Dm and n − Dn degrees of

freedom we get that for all u > 0,
qm(u) ≤ DmF̄−1

Dm,n−Dn
(u).

On the other hand, since

P

(
sup

m∈M
{Zm − qm(α/|M|)} > 0

)
≤

∑
m∈M

P (Zm > qm(α/|M|))

≤ α,

we have that α/|M| ≤ uα and thus

qm(uα) ≤ DmF̄−1
Dm,n−Dn

(uα) ≤ DmF̄−1
Dm,n−Dn

(α/|M|).

In the sequel we use the following inequality proved in Baraud et al. [2]: for all u ∈]0, 1[

DF̄−1
D,N (u) ≤ D + 2

√
D

(
1 +

D

N

)
log
(

1
u

)
+
(

1 + 2
D

N

)
N

2

[
exp

(
4
N

log
(

1
u

))
− 1
]

.

Taking D = Dm, N = n−Dm which is of order n, and u = uα ≥ α/|M| which is of order α/ ln(n), we get

qm(uα) ≤ DmF̄−1
Dm,n−Dn

(uα) ≤ C(α) (Dm + log log(n)) .

We now repeatedly use the following upper bound on the quantiles of a X 2 random variable which can found
in Laurent and Massart [11]: for all u ∈]0, 1[,

χ̄−1
D (u) ≤ D + 2

√
−D log(u)− 2 log(u).

We derive that

χ̄−1
Dm

(β/2) ≤ C(β)Dm and
χ̄−1

n−Dn
(β/2)

n−Dn
≤ C(β),

which leads to the result.

Proof of (8). For each j ∈ {1, ....m}, let us set Ij,m = {i/xi ∈](j − 1)/m, j/m]}, `(j) = inf Ij,m when Ij,m 6= ∅
and let fffm be the R

n vector defined by: for each i ∈ {1, ..., n}, (fffm)i = f`(j) = F (x`(j)) if i ∈ Ij,m. Clearly fffm

belongs to Sm and we have for all fff ∈ Hs(L),

d2
n(fff, Sm) ≤ 1

n

m∑
j=1

∑
i∈Ij,m

∣∣F (xi)− F (x`(j))
∣∣2

≤ L2m−2s = L2D−2s
m ,

since Dm = m.
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