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Introduction

The aim of this work is the design of an interacting particle approach for the numerical estimation of the
Lyapunov exponent associated to Feynman–Kac type semigroups on some classical functional Banach spaces.
These important spectral quantities characterize decay properties and in some situations they coincide with the
principal eigenvalues of Schrödinger generators.

Except in some particular situations such as for the well known harmonic oscillator, explicit descriptions of
these quantities are generally not available and we have to resort to some kind of approximations. To motivate
this article and show the impact of the particle interpretations presented in this article we give next a brief
comparison with different existing “numerical” or “analytic” approximating strategies.

For instance the generator Lv = L+V can be treated as the perturbation of the operator L by a potential V .
In some situations the perturbation theory proposes analytic expansions of isolated eigenvalues (see for instance
Kato [12]).

Donsker and Varadhan have also presented in a series of papers (see for instance [9]) a theory of large
deviations which expresses the well known Raleigh–Ritz representation of the top eigenvalue of Lv in terms of a
variational problem in distribution space. In some situations this optimization problem can be solved by using
for instance some kind of stochastic global search algorithm or specific Hilbert projection techniques.

Our strategy consists in expressing these spectral exponents in term of the fixed point of a suitably chosen
nonlinear dynamical system in distribution space. These key representations bring some new light on connections
between spectral theory of Schrödinger operators and nonlinear measure valued processes. There are also the
stepping stone of our methodology to produce interacting particle approximating models. To our knowledge the
particle Lyapunov approximating exponents described in this article have never been covered in the literature
on the subject.

A precise analytic or numerical comparison between particle interpretations with other numerical or analytical
methods such as the ones discussed above is an important open problem. The accuracy of these methods depends
on the nature of the state space and the form of the generator Lv. Nevertheless we underline that the particle
Monte-Carlo strategy does not depend on the dimension of the state space nor on the linearity of the potential
function V . Another advantage is that it gives a natural microscopic particle interpretation of these spectral
quantities. Furthermore the theoretical uniform estimates presented in this article seem to indicate that these
novel particle interpretations will lead in a near future to new practical improvements in the numerical analysis
of Feynman–Kac Schrödinger semigroups.

We will present two different types of results:
First we relate the description of the Lyapunov exponent with the asymptotic stability of a nonlinear equation

in distribution space. We propose a precise description of the Lyapunov exponent in terms of a fixed point of
the corresponding evolution semigroup. We also give rather precise estimates of the decays to equilibrium
related to this fixed point representation. We mention that these nonlinear equations arise in various areas and
particularly in advanced signal processing and biology. The interesting reader is referred to [4] and references
therein.

In the second part of the paper we propose a novel particle strategy to approximate these Lyapunov exponents.
This approach has been influenced by the recent works of Burdzy et al. [1, 2], Sznitman [14] and previous

works of the authors [4, 6] and earlier joint work of one of the authors with Guionnet [3].
The first two referenced papers propose a Moran/Fleming–Viot approximation of the eigenvalues and eigen-

functions corresponding to the Laplacian with Dirichlet boundary condition on a domain of Rd. As the authors
indicate, this study is intimately and essentially related to the properties of the underlying Brownian motion.
Furthermore the authors provide no precise rates of convergence. In [14] the author also pointed out the impor-
tance of the principal eigenvalue of the Dirichlet Laplacian in the study of the asymptotic behavior of a Brownian
particle in a random environment with Poissonnian obstacles. In the last three referenced articles [3, 4, 6] the
authors study a class of branching and interacting particle approximations of Feynman–Kac distribution flows
with discrete or continuous time index. These articles are essentially concerned around non linear filtering
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problems and they do not discuss the spectral analysis of Feynman–Kac semigroups and Schrödinger operators.
Some comments on applications to physics and biology can be found in [3].

These apparently distinct studies can be related one each other by first expressing the desired eigenvalue in
terms of the distribution of a killed Markov particle conditioned by non-extinction and then by applying an
interacting particle schemes to solve numerically the evolution of these conditional distributions. Heuristically
Dirichlet boundary conditions can also be related to killing at a given rate V by considering the particle among
an environment with obstacles. In “soft obstacles” the particle is killed at a rate specified by a nonnegative and
“nice” potential V . In regions where the potential function is large the particle will more likely be killed. At
the opposite situation when the particle hits an “hard obstacle” it is instantly killed. Intuitively speaking this
corresponds to the singular situation where the potential is infinite on the boundary of the obstacle.

These results complement the ones obtained in [3, 4, 6] with providing a novel interpretation of the spectral
quantities of Schrödinger operators in terms of the limiting distributions of a non linear Feynman–Kac dis-
tribution flow. The class of particle approximating models presented here extend the one discussed in earlier
studies. In general this new model contains less randomness than the Moran particle model proposed in [6].
Furthermore, in some situations we will prove that the fluctuation covariance function of these new models
remains uniformly bounded with respect to the time parameter. In contrast, this will not be the case for the
Moran particle model introduced in [6], for which nontrivial variances converge to infinity as time increases. We
also mention that these novel particle interpretations extend the one of Burdzy et al. [1, 2] to the soft obstacle
situation. We develop a strategy to study the asymptotic behavior of these approximating models in the spirit
of [3, 4]. We provide precise uniform estimates yielding what seems to be the first results of this kind in the
literature on the subject.

0.1. Description of the models

In this study we consider a discrete or continuous time index set I = N or I = R+ and in general
we will use the subscript t ∈ R+ or n ∈ N to distinguish the continuous and discrete time index. By
(Ω, (Xt)t∈I , (Ft)t∈I , (Px)x∈E) we denote a time homogeneous progressively measurable Markov process with
time index I taking values in a measurable space (E, E) and whose associated transition semigroup will be
designated by P

def.= (Pt)t∈I (for a rigorous definition of this setting, see [7], where a detailed discussion of
the required properties is given). The latter operators are considered as acting in the Banach space Bb(E) of
bounded E-measurable functions f : E → R endowed with the supremum norm

‖f‖ = sup
x∈E

|f(x)|.

We use the notation Ex(.) for the expectation with respect to Px and by P(E), the set of probability measures
on (E, E) with the total variation distance

‖µ− ν‖tv = sup
A∈E

|µ(A) − ν(A)| = 1
2

sup
‖f‖≤1

|µ(f)− ν(f)|

where the supremum in the right hand side is over the class of f ∈ Bb(E) with ‖f‖ ≤ 1. As usual, for a finite
measure µ, a numerical function f , an integral operator K(x,dy) on E (and whenever they exist) we denote by
µ(f), K(f), µK the number, the function and the finite measure defined respectively by

µ(f) =
∫

f(x) µ(dx) , K(f)(x) =
∫

K(x,dy) f(y) , µK(dy) =
∫
µ(dx) K(x,dy).



174 P. DEL MORAL AND L. MICLO

This study is concerned with Schrödinger and Feynman–Kac semigroups on the Banach space Bb(E) and
expressed in terms of the following path integral formulas, for any f ∈ Bb(E), x ∈ E and t, n ∈ I,

P v
t (f)(x) = Ex

[
f(Xt) exp

(∫ t

0

V (Xs)ds
) ]

when I = R+

P v
n (f)(x) = Ex

[
f(Xn) exp

(
n−1∑
p=0

V (Xp)

) ]
when I = N. (1)

Throughout this paper the above appearing potential function V is assumed to belong to Bb(E) and we write
osc(V ) = sup{V (x)− V (y) ; (x, y) ∈ E2} its oscillations. There exist several ways to extend these formulas to
more general potential, the interested reader is referred to the book of Sznitman [14] and Section X.11 in Reed
and Simon [13].

In discrete time settings P v
n is clearly the n-time iterate of the integral operator

P v
1 (x,dy) = eV (x) P1(x,dy).

In the continuous time case, using problems of martingales, it is possible to associate to the above Markov
process a natural notion of weak infinitesimal generator L acting on a subspace D(L) of Bb(E) (by an approach
similar to that of [7], but forgetting there the inhomogeneous time aspect). Then we can give a weak signification
(sufficient for our purposes) to the intuition that the generator of the semigroup P v is the Schrödinger operator
defined by

∀ f ∈ D(L), Lv(f) = L(f) + V f ∈ Bb(E).

We mention that the convergence estimates presented in this article are valid in the extended and general set-up
described in [7]. To clarify the presentation and underline the main ideas of our constructions we will work here
with the following heavier system of assumptions:

- D(L) is a sub-algebra of Bb(E) generating the underlying σ-algebra E and V ∈ D(L);
- for any t ≥ 0, the operators Pt and P v

t leave D(L) invariant;
- L : D(L) → D(L) is an operator such that in the sense of the norm ‖·‖, we have

∀ f ∈ D(L), ∂tPt(f) = L[Pt(f)] = Pt(L[f ]);

- for any time T ≥ 0 and any function f ∈ D(L), the following mapping is bounded

[0, T ]× E 3 (t, x) 7→ L[(P v
t [f ])2](x).

These regularity conditions are not really restrictive. For instance they are met for pure jump processes with
bounded rates and D(L) = Bb(E) as well as for Euclidean diffusions with regular and Lipschitzian coefficients,
by considering for D(L) the set of C∞ functions whose derivatives (and the function itself) are decreasing at
infinity faster than any polynomial.

We will rather refer to (D(L), L) as a pregenerator, as in general this operator will not be closed. The
advantage of this set of assumptions is that it enables to introduce the “carré du champ” in order to evaluate
the quadratic variations of the martingales which will appear. Nevertheless, these computations should only be
seen as a heuristic for the general case, as the method developed in [7] permits to dispense with the use of this
notion in studies of evolution of empirical measures (by resorting to their tensorizations).

Since the potential is bounded one finds that P v = (P v
t )t∈I is a collection of bounded operators on Bb(E)

with norm
|||P v

t ||| = sup
‖f‖=1

‖P v
t (f)‖ = ‖P v

t (1)‖ (≤ exp (t‖V ‖))
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where 1 stands for the unit function. The Lyapunov exponent Lyap(P v) ∈ [0,+∞] of the semigroup P v on the
Banach space Bb(E) is the quantity defined by sub-additive arguments as

Lyap(P v) = lim
t→∞ |||P v

t |||1/t = inf
t≥0

|||P v
t |||1/t.

In the discrete time case the Lyapunov exponent Lyap(P v) coincides with the spectral radius of the one step
transition P v

1 , that is

Spr(P v
1 ) = lim

n→∞ |||P v
n |||1/n.

It will be convenient to consider also the logarithmic Lyapunov exponent defined by

λ(P v) = ln[Lyap(P v)] ∈ R̄.

In Section 1 we will discuss some links with the corresponding L2-spectral quantities, in particular we will see
that they coincide under some mixing and symmetry assumption on the semigroup P .

0.2. Statement of some results

Our first result concerns the representation of the Lyapunov exponents in terms of the normalized Feynman–
Kac distribution flow η = (ηt)t∈I defined by

ηt(f) = γt(f)/γt(1) , with γt(f) = η0P
v
t (f).

The choice of the initial distribution η0 ∈ P(E) may vary. When η0 = δx sometimes we write γ(x)
t and η

(x)
t

the corresponding measures. To describe these models it is convenient to introduce the nonlinear evolution
semigroup Φ = (Φt)t∈I associated to the flow η, namely for s, t ∈ I,

Φt(ηs) = ηs+t.

As mentioned in the introduction, the Lyapunov exponent will be expressed in terms of the fixed point of the
semigroup Φ. But its existence and the possibility to approximate such a representation will depend on the
asymptotic stability properties of Φ. We will use the following assumption:
(Φ) The semigroup Φ is contractive in the sense that

‖Φt(µ)− Φt(ν)‖tv ≤ αt(Φ) ‖µ− ν‖tv (2)

for any t ≥ t0 ≥ 0, µ, ν ∈ P(E) and some t0 ∈ I and αt(Φ) < 1. In addition, we assume that in discrete time
case,

α(Φ) def.=
∑
n≥t0

αn(Φ) <∞

and in continuous time, that R+ 3 t 7→ αt(Φ) is measurable and that

α(Φ) def.=
∫ ∞

t0

αt(Φ) dt <∞.
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Such a regularity property is difficult to check in practice. In [4, 5] several sufficient conditions are proposed.
Nevertheless most of these conditions are related to a strong mixing condition, namely:

(P1) The probability measures P1(x, .), x ∈ E, are mutually absolutely continuous and for some ε > 0 we
have for all x, x′ ∈ E, P1(x′, ·)-a.s. in y ∈ E,

∀ x, x′, y ∈ E, dP1(x, .)
dP1(x′, .)

(y) ≥ ε > 0. (3)

Under (P1) condition (Φ) is met and the semigroup Φ is exponentially contractive. In the further development
of Section 2.3 we will explicit the dependence of αt(Φ) on the parameter ε and on the potential function V . We
mention that (P1) can be relaxed in some ways but we do not detail these extensions, this would be a too great
digression here. The interested reader is recommended to consult [4, 5]. The abstract condition (Φ) guarantees
the existence of a unique fixed point η∞ ∈ P(E) such that for any t ∈ I

Φt(η∞) = η∞.

We are now in position to state our representation of the Lyapunov exponents in terms of the fixed point η∞ and
the mean time average of the flow ηt. The next two theorems give respectively the Feynman–Kac representation
of these exponents for discrete and continuous time semigroups.

Theorem 0.1 (discrete time). Suppose (Φ) holds for some t0 ≥ 0 with αn(Φ) ∈ (0, 1) for n ≥ t0. We have
λ(P v) = ln η∞(expV ) and for any x ∈ E and n ≥ t0,

n |λ(x)
n (P v)− λ(P v)| ≤ t0 osc(V ) + 2e‖V ‖α(Φ) (4)

with

λ(x)
n (P v) =

1
n

n−1∑
p=0

ln η(x)
p (expV ).

Suppose there exist a P1-reversible probability measure µ and a positive eigenfunction hv ∈ Bb(E) such that
P v

1 (hv) = eλ(P v) hv, then

η∞(f) = µ(hv P1(f))/µ(hv).

Theorem 0.2 (continuous time). Suppose (Φ) holds for some t0 ≥ 0 with αt(Φ) ∈ (0, 1) for t ≥ t0. We have
λ(P v) = η∞(V ) and for any x ∈ E and t ≥ t0

t |λ(x)
t (P v)− λ(P v)| ≤ t0 osc(V ) + ‖V ‖α(Φ) (5)

with

λ
(x)
t (P v) =

1
t

∫ t

0

η(x)
s (V )ds.

Suppose there exist a P -reversible probability measure µ and a positive eigenfunction hv ∈ D(Lv) such that
Lv(hv) = λ(P v) hv, then the fixed point η∞ is defined for any f ∈ D(Lv) by

η∞(f) = µ(hv f)/µ(hv).

Remark 0.3. When the state space is compact Feng and Kurtz also prove in [10] that this condition (P1) also
guarantees the existence of positive eigenfunctions as needed in Theorem 0.1 and Theorem 0.2.
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The interacting particle approximating models are defined in terms of a sequence of Markov processes ξ =
(ξt)t∈I on a product space EN and time index I. The particle models are chosen so that the corresponding
empirical measures

ηN
t =

1
N

N∑
i=1

δξi
t

converge in some sense, as N tends to infinity, to the desired distribution ηt. To define these interacting particle
interpretations we need to introduce the nonlinear dynamics of the flows η = (ηt)t∈I .

In the discrete time case they are given by an equation in distribution space the form

ηn+1 = ηnKηn

where (Kη)η∈P(E) is a (non unique) collection of Markov transitions on E such that

ηKη(f) = η
(
eV P1(f)

)
/η
(
eV
)
.

The discrete generation particle model associated to a given collection of Markov transitionsKη is the EN -valued
Markov chain ξ = (ξn)n≥0 with elementary transitions

P (ξn+1 ∈ dy|ξn = x) =
N∏

i=1

Km(x)(xi, dyi) with m(x) =
1
N

N∑
i=1

δxi

where dy = dy1 × · · · × dyN stands for an infinitesimal neighborhood of the point y = (y1, . . . , yN) ∈ EN ,
x = (x1, . . . , xN ) ∈ EN .

In the continuous time case the distribution flow ηt satisfies for any f ∈ D(L) an equation of the type

d
dt
ηt(f) = ηt(Lηt(f))

for a (non unique) collection (Lη)η∈P(E) of pregenerators on D(L) such that

η(Lη(f)) = η(L(f)) + η(fV )− η(f)η(V ).

In this case the infinitesimal pregenerator of ξt is defined for sufficiently regular test function as

L(ϕ)(x1, . . . , xN ) =
N∑

i=1

L
(i)
m(x)ϕ(x1, . . . , xi, . . . , xN )

where the superscript (i) indicates that we let Lm(x) act on the ith coordinate xi, for 1 ≤ i ≤ N .
In both discrete and continuous time situations we suppose the initial system consists of N independent

particles with common law η0. When η0 = δx for some x ∈ E we write sometimes η(x,N)
t the empirical measures

associated to the corresponding systems.
As noticed the choice of the transitions Kη and the pregenerators Lη is not unique. The particle models we

have chosen to describe in the present work are related to selection/mutation genetic algorithms and Moran
particle systems. The precise description of these discrete and continuous time particle models will be given in
Section 3. An heuristic comparison between our interacting particle models and the one presented in [2] is given
in the end of Section 3.2.1. Although we do not come into the details we already mention that both particle
models can be regarded as the motion of N -particles in an environment with obstacles associated to a potential
function V . Our particle models corresponds to the “soft obstacles” situation and the one of Burdzy et al. is
related the boundary “hard obstacles” case.
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There are many ways to describe the quality of the N -particle approximating measures ηN
t including central

limit theorems, large deviations principles and empirical process convergence theorems (see for instance [4]).
Here the most convenient way to guarantee the quality of the particle Lyapunov exponent approximating model
is to obtain uniform estimates with respect to the time parameter. This task is extremely difficult and many
efforts have been made recently in this direction under the mixing condition (P1). The discrete time particle
model is known to converge to the desired distribution and uniform Lp rates of natural fluctuation order 1/

√
N

have been obtained in [3, 4].
In the continuous time case similar uniform Lp-rates exist with an order Nα with 1 ≤ α ≤ 1/2. This

estimates have been proved in [4] for a particular Moran particle model. As announced previously we will
extend the analysis to a more general class of particle scheme including the soft obstacle version of the model
introduced by Burdzy et al. in [2]. It is still an open problem to extend the forthcoming estimates to hard
obstacle models. Although our approach does not depend on the form of underlying process X it strongly
depends on the boundedness of the potential function V . We believe these two models can be treated in a
similar fashion but we have not yet succeed to analyze “hard obstacles” with degenerate potentials with our
semigroup methodology.

Theorem 0.4 (discrete time). Suppose the semigroup P satisfies condition (P1) for some ε > 0. If we take
the particle approximating Lyapunov exponent

λ(x,N)
n (P v) =

1
n

n∑
q=0

ln η(x,N)
q (expV )

then we have the unbias property

E(exp (nλ(x,N)
n (P v))) = exp (nλ(x)

n (P v))

and for any p ≥ 1 we have the uniform estimate

sup
n≥1

E[|λ(x,N)
n (P v)− λ(x)

n (P v)|p]1/p ≤ b(p)cv(ε)√
N

(6)

for some universal constant b(p) which only depends on p and for some finite constant cv(ε) depending on ε
and V . In addition, if there exists a P -reversible probability measure µ and a positive eigenfunction hv ∈ Bb(E)
then for any f ∈ Bb(E) with ‖f‖ ≤ 1

sup
n≥(ln N)/(2ε2)

√
N E(|ηN

n (f)− µ(hv P1(f))/µ(hv)|p)
1/p

<∞. (7)

If we combine Theorem 0.1 with Theorem 0.4 we clearly obtain the following estimate

sup
n≥√N,x∈E

√
N E[|λ(x,N)

n (P v)− λ(P v)|p]1/p <∞.

Theorem 0.5 (continuous time). Let λ(x,N)
t (P v) be the particle approximating Lyapunov exponent defined by

λ
(x,N)
t (P v) =

1
t

∫ t

0

η(x,N)
s (V ) ds.

then we have the unbias property

E(exp (tλ(x,N)
t (P v))) = exp (tλ(x)

t (P v)).
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If the semigroup Φ is exponentially stable then we have the uniform estimate

sup
t≥0

E(|λ(x,N)
t (P v)− λ

(x)
t (P v)|2)1/2 ≤ c/Nβ/2

for some universal constant c < ∞ and some exponent β ∈ (0, 1] depending on V . In addition, if there exists
a P -reversible probability measure µ and a positive eigenfunction hv ∈ D(Lv) then for any f ∈ Bb(E) with
‖f‖ ≤ 1 we have

sup
t≥d ln N

Nβ/2 E(|ηN
t (f)− µ(hv f)/µ(hv)|2)1/2

<∞ (8)

for some constant d depending on the potential V .

In the continuous time case Theorem 0.2 and Theorem 0.5 lead to the following estimate

sup
N≥1

N sup
x∈E

E[|λ(x,bN1/βc)
N (P v)− λ(P v)|2] < +∞

where b·c stands for the integer part.

1. Spectral interpretations

Our objective in this section is to discuss spectral aspects of the Lyapunov exponent, specially when some
properties of reversibility are available. The connection between Lyapunov exponents with the L∞ or L2 spectral
radii discussed in this section are probably well known. Nevertheless we have not find a precise reference in the
literature which connects precisely these quantities. For these reasons and for the convenience of the reader we
have chose to devote a short section on the spectral interpretations of these exponents. The forthcoming analysis
also underlines in a precise way various situations in which the particle approximating strategies developed in
this article apply.

First we undertake an abstract formulation. Let Q be a bounded operator on the Banach space (Bb(E), ‖·‖)
associated to a general underlying measurable space (E, E). We denote by ||| · ||| its operator norm and by
definition its spectral radius Spr(Q) is the quantity

Spr(Q) def.= lim
n→∞ |||Qn|||1/n = inf

n≥1
|||Qn|||1/n.

From now on, we will also assume that Q is non-negativity preserving, in the sense that if f ∈ Bb(E) is a
nonnegative function, then the same is true for Q(f) (thus Q is almost a generalized Markov operator, only the
renormalisation property Q(1) = 1 is missing). This property permits to give an other characterization of the
spectral radius:

Lemma 1.1. Under the above setting, we have

Spr(Q) = lim
n→∞ ‖Qn(1)‖1/n = inf

n≥1
‖Qn(1)‖1/n .

Proof. It is sufficient to see that in fact, |||Q||| = ‖Q(1)‖ as the iterates Qn, n ∈ N∗, verify the same conditions
as Q. The bound |||Q||| ≥ ‖Q(1)‖ is always satisfied, as ‖1‖ = 1, and for the reciproque, we take into account
the non-negativity preserving property, which shows that for any f ∈ Bb(E),

Q(f) ≤ Q(‖f‖ 1) = ‖f‖Q(1)

and in the same manner that Q(f) ≥ −‖f‖Q(1), thus trivially implying that |||Q||| ≤ ‖Q(1)‖. �
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The above hypothesis admits as another usual consequence that Cauchy–Schwartz inequalities are satisfied:

∀ f, g ∈ Bb(E), Q(fg) ≤
√
Q(f2)Q(g2).

Next we furthermore make the assumption that there exist a probability µ on (E, E) and a constant K ≥ 0
such that the following inequalities are verified

∀ f ∈ Bb(E), µ(|Q(f)|) ≤ Kµ(|f |). (9)

In particular, the imageQ(f) of a function f ∈ Bb(E) negligeable with respect to µ remains negligeable, property
which permits to see Q as an operator on L∞(µ). Due to the above bound, the latter can be further uniquely
extended as a bounded operator on L1(µ). Even on L2(µ), as we note that for any f ∈ Bb(E),

µ(Q(f)2) ≤ µ(Q(f2)Q(1)) ≤ ‖Q(1)‖µ(Q(f2)) ≤ K ‖Q(1)‖µ(Q(f2)).

Thus we are led to consider the corresponding notion of spectral radius,

Spr2,µ(Q) def.= lim
n→∞ |||Qn|||1/n

2,µ = inf
n≥1

|||Qn|||1/n
2,µ

where clearly

|||Qn|||22,µ
def.= sup

f∈L2(µ)\{0}

µ[(Q(f))2]
µ[f2]

·

If E is finite and µ gives positive weight to any of its point, then the equivalence of norms on finite dimensional
space (in this case the algebra of E × E matrices) enables to see that

Spr(Q) = Spr2,µ(Q)

but this equality is not always satisfied, even when E is finite, as it is easy to device an example for which
|||Q||| > |||Q|||2,µ with a probability µ not charging the whole set E (what is always true in this finite context is
that |||Q|||∞,µ = |||Q|||2,µ).

Nevertheless, under a symmetry assumption, there is a general bound in that direction:

Lemma 1.2. Assume that indeed Q is auto-adjoint in L2(µ), then we are assured of

Spr(Q) ≥ Spr2,µ(Q).

Proof. Let a function f ∈ L2(µ) and an integer n ≥ 1 be given, using the symmetry of Qn we obtain

µ[(Qn(f))2] ≤ µ[Qn(f2)Qn(1)] = µ[f2Q2n(1)] ≤ ∥∥Q2n(1)
∥∥µ[f2].

Taking a supremum over f ∈ L2(µ) \ {0}, this shows that

|||Qn|||1/n
2,µ ≤ ∥∥Q2n(1)

∥∥1/(2n)

thus letting n go to infinity we conclude to the previous bound. �
In order to prove a reverse inequality, we assume that Q can be written as a density kernel with respect to µ,

namely that there exist a measurable mapping q : E × E → R+ such that

∀ f ∈ Bb(E), ∀ x ∈ E, Q[f ](x) =
∫
q(x, y)f(y)µ(dy).
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Lemma 1.3. Under the hypothesis that

sup
x∈E

∫
q(x, y)2 µ(dy) < +∞

we have

Spr(Q) ≤ Spr2,µ(Q).

In particular, if Q is furthermore auto-adjoint (i.e. q is symmetric, µ⊗ µ-a.s.), then

Spr(Q) = Spr2,µ(Q).

Proof. We have for any integer number n ≥ 1 and point x ∈ E, by the Cauchy–Schwartz inequality,

Qn(1)(x) =
∫
q(x, y)Qn−1(1)(y)µ(dy) ≤

√∫
q(x, y)2 µ(dy)

√
µ[Qn−1(1)2] ≤

√∫
q(x, y)2 µ(dy)|||Qn−1|||2,µ.

Thus considering the supremum over x ∈ E, taking the nth root and letting n be large, we conclude to the
affirmations of the lemma. �

Remarks 1.4.
a) Observe that under both hypotheses of the lemma, the auto-adjoint operator Q is Hilbert–Schmidt in L2(µ)
and Spr2,µ(Q) is indeed its largest eigenvalue.

b) It is sufficient that one of the iterates Qp, for some p ≥ 1, satisfies the above hypotheses to derive the same
conclusions.

Let S def.= (Sn)n≥0 be a semigroup of non-negativity preserving bounded operators (a priori on (Bb(E), ‖·‖)).
Since by definition,

Lyap(S) = Spr(S1)

the above considerations gives conditions for this quantity to be interpreted as a L2 spectral radius.
Now we are rather interested in a continuous time semigroup S

def.= (St)t≥0 of non-negativity preserving
bounded operators and more precisely in its associated Lyapunov constant,

Lyap(S) = lim
t→+∞ |||St|||1/t.

As the rhs is a true limit, we also have for any fixed t0 > 0,

Lyap(S) = lim
p→+∞, p∈N∗

|||Spt0 |||1/(pt0) = Spr(St0)
1/t0

(in fact a similar equality also holds in the discrete time case), and under the previous restrictions, this can be
used to furnish alternative characterizations of the Lyapunov exponent.

To go a little further, we will work under a stronger hypothesis: assume that S can also be seen as strongly
continuous semigroup of auto-adjoint operators on some L2(µ) space (as above). Then we can make use of
classical spectral calculus (cf. for instance [12]). Let LS be the generator of S; its domain D(LS) is the set of
f ∈ L2(µ) such that (St(f)− f)/t converges for small t > 0 and the limit is by definition LS(f).
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This operator is itself auto-adjoint in L2(µ) and applying to its opposite the spectral decomposition theorem,
we find a spectral family of projections (Eλ)λ∈R such that we can write

D(LS) =
{
f ∈ L2(µ) :

∫
λ2 dµ(Eλ(f)f) < +∞

}
∀ f ∈ D(LS), −LS(f) =

∫
λdEλ(f).

Then for any t0 ≥ 0, we are assured of the representation

St0 =
∫

exp(−t0λ) dEλ

from which we easily deduce that

|||St0 |||2,µ =
√

sup{exp(−2t0r(f)) : f ∈ L2(µ), µ(f2) = 1}

(using the fact that dµ(Eλ(f)f) is a probability on R if µ(f2) = 1), where for any f ∈ L2(µ), we have defined

r(f) def.= sup

{
l ∈ R :

∫ l

−∞
exp(−t0λ) dµ(Eλ(f)f) = 0

}

= sup

{
l ∈ R :

∫ l

−∞
dµ(Eλ(f)f) = 0

}
= sup {l ∈ R : µ(El(f)f) = 0} ·

In order to give an alternative formulation, let us introduce the associated Dirichlet form ES ; on the domain

D(ES) =
{
f ∈ L2(µ) :

∫
|λ| dµ(Eλ(f)f) < +∞

}
it is defined by

∀ f ∈ D(ES), ES(f, f) =
∫
λdµ(Eλ(f)f).

Then it appears without much difficulties that we also have

inf{r(f) : f ∈ L2(µ) \ {0}} = inf
f∈L2(µ)\{0}

ES(f, f)√
µ(f2)

(by convention ES(f, f) = +∞ if f ∈ L2(µ) \ D(ES)), and thus we get that for any t0 > 0,

1
t0

ln(|||St0 |||2,µ) = λ2,µ(S) def.= − inf
f∈L2(µ)\{0}

ES(f, f)√
µ(f2)

and by consequence, we also obtain Spr2,µ(St0)1/t0 = |||St0 |||1/t0
2,µ = Lyap2,µ(S) = exp(λ2,µ(S)).

Finally, putting together the previous results, we have shown the next spectral interpretation of the logarith-
mic Lyapunov exponent.
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Proposition 1.5. Let S = (St)t≥0 be a semigroup of non-negativity preserving bounded operators which can
also be seen as a strongly continuous L2(µ)-semigroup. Assume there exist a time t0 > 0 and a measurable
function qt0 : E × E → R+ such that the following representation holds

∀ f ∈ Bb(E), ∀ x ∈ E, St0 [f ](x) =
∫
qt0(x, y)f(y)µ(dy)

with supx∈E

∫
qt0(x, y)2 µ(dy) < +∞ Then we have

λ(S) def.= ln (Lyap(S)) = λ2,µ(S).

It is time now to investigate the consequences for the models presented in the previous section.
First in the discrete time setting: we associate to our Markovian semigroup (Pn)n≥0 and our bounded

measurable potential V another operator Qv acting on Bb(E) by

∀ f ∈ Bb(E), Qv(f) def.= exp(V/2)P1[f exp(V/2)].

Using the fact that we can write,

∀ f ∈ Bb(E), P v
1 (f) def.= exp(V/2)Qv[f exp(−V/2)]

and that the mapping

Bb(E) 3 f 7→ exp(V/2)f ∈ Bb(E)

is an isomorphism of Bb(E), it is clear that P v
1 and Qv have the same spectrum, the same eigenvalues and the

same spectral radius (notions to be understood in the Banach space Bb(E), cf. for instance Kato [12]).
Meanwhile, the advantage of Qv is that if P1 is reversible with respect to a probability µ, namely

∀ f, g ∈ Bb(E), µ(fP1(g)) = µ(gP1(f))

then the same is true for Qv, fact which implies that (10) is satisfied with Q = Qv and K = 1, so Qv can be
extended as an operator auto-adjoint in L2(µ).

Thus if we assume further that for any x ∈ E, P1(x, ·) ∼ µ and supx∈E ‖dP1(x, ·)/dµ‖L2(µ)

< +∞, then these properties will also be verified by Qv due to the boundedness of V and we end up with

Lyap(P v) = Spr(P v
1 ) = Spr(Qv) = Spr2,µ(Qv).

Now we turn to the continuous time case (this is one of the two places in this article where our strong assumptions
on the pregenerator (D(L), L) are really needed, the other one will be at the end of the paper, for Prop. 3.7).
For that purpose, let us assume furthermore that there exists a probability µ for which the semigroup P is
reversible:

∀ t > 0, ∀ f, g ∈ Bb(E), µ(fPt(g)) = µ(gPt(f))

(in particular µ is invariant for the semigroup P and (9) is satisfied with Q = Pt and K = 1, for all t ≥ 1). By
density of Bb(E) in L2(µ), the above symmetry property and the Cauchy–Schwartz inequality, the operators Pt,
for t ≥ 0, can be extended to L2(µ), where they act as non-negativity preserving self-adjoint contractions.
Furthermore, since D(L) is an algebra generating the underlying σ-algebra E , it is also dense in L2(µ) and
we easily deduce from this fact that (Pt)t≥0 is strongly continuous in L2(µ) (and that D(L) is included in the
domains D(LP ) and D(EP ) of the associated generator and Dirichlet form).
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Our next objective is to verify directly that the same is true for the semigroup (P v
t )t≥0. First we note that

for any time t ≥ 0, any function f ∈ Bb(E) and any point x ∈ E,

P v
t (f)(x) = Pt(f)(x) +

∫ t

0

Ps( V P v
t−s(f) )(x)ds. (10)

Indeed, by our measurability assumption, we have

exp
(∫ t

0

V (Xs) ds
)
− 1 =

∫ t

0

V (Xs) exp
(∫ t

s

V (Xu) du
)

ds

so integrating with respect to Px and using the Markov property at times 0 ≤ s ≤ t, we obtain the previous
affirmation, which can be rewritten in the form

P v
t (f)− f = Pt(f)− f +

∫ t

0

Ps(V P v
t−s(f))ds. (11)

Taking into account the locally uniform (with respect to t ≥ 0) boundedness of the operators P v
t in L2(µ)

(which is deduced at once from the uniform boundedness of V and Pt, for t ≥ 0) and the strong continuity
of (Pt)t≥0, the above formula convinces us that for f ∈ Bb(E), the mapping R+ 3 t 7→ P v

t (f) ∈ L2(µ) is also
continuous. Without difficulty, this result is next seen to hold for any f ∈ L2(µ).

So (P v
t )t≥0 already appears as a strongly continuous semigroup of bounded operators in L2(µ). Let us show

that they are in fact auto-adjoint. For that we remark that by reversibility of µ, for any t ≥ 0, the couple (X0,
Xt) has the same law that (Xt, X0) under

Pµ[ · ] def.=
∫

E

µ(dx) Px[ · ].

A standard recursive procedure based on the Markov property proves then that for any n ∈ N, any 0 ≤ t1
≤ t2 ≤ · · · ≤ tn ≤ t and any measurable function F : En → R, the law of (X0, F (Xt1 , Xt2 , . . . , Xtn), Xt) is
the same as that of (Xt, F (Xtn , Xtn−1 , . . . , Xt1), X0). Having resort to a monotonous class argument (and a
measurability assumption on the space of possible trajectories, cf. [7], which is trivially satisfied if the state
space is assumed to be topological and the paths of our Markov process are càdlàg), it appears that the law of
(X0,

∫ t

0
V (Xs) ds,Xt) is that of (Xt,

∫ t

0
V (Xt−s) ds,X0) = (Xt,

∫ t

0
V (Xs) ds,X0) (always under Pµ, of course).

The symmetry of P v
t in L2(µ), for t ≥ 0, follows at once from this equality in law:

∀ f, g ∈ L2(µ), µ(fP v
t (g)) = Eµ

[
f(X0) exp

(∫ t

0

V (Xs) ds
)
g(Xt)

]
= Eµ

[
g(X0) exp

(∫ t

0

V (Xs) ds
)
f(Xt)

]
= µ(gP v

t (f)).

We notice that if there exists a time t0 > 0 such that for all x ∈ E,

Pt0(x, ·) ∼ µ and sup
y∈E

‖dPt0(y, ·)/dµ‖L2(µ) < +∞

then the same will be true for the kernel P v
t0 (due one more time to the boundedness of V ), thus we are in

position to apply the previous proposition, which shows that in this case,

λ(P v) = − inf
f∈L2(µ)\{0}

EP v (f, f)√
µ(f2)

·
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But let us recall that D(EP v ) is also the set of functions f ∈ L2(µ) such that µ[f(P v
t (f) − f)]/t converge for

small t > 0 and that the limit is then EP v(f, f). Using the formula (11), we see that D(EP v ) = D(EP ) and that

∀ f ∈ D(EP ), EP v (f, f) = EP (f, f) + µ(V f2).

Thus we end up with the Schrödinger spectral interpretation of the logarithmic Lyapunov exponent:

λ(P v) = − inf
f∈L2(µ)\{0}

EP (f, f) + µ(V f2)√
µ(f2)

which is also equal to

− inf
f∈D(L)\{0}

µ[f(L(f) + V f)]√
µ(f2)

if we assume that D(L) is dense in D(EP ) for its natural norm
√EP (·, ·) + ‖ · ‖L2(µ).

Remark 1.6. Coming back to our pregenerator (D(L), L) and using formula (10), we can show that in
(Bb(E), ‖·‖),

∀ t ≥ 0, ∀ f ∈ D(L), ∂tP
v
t (f) = P v

t (L(f) + V f)

and furthermore taking into account that the operators P v
t , for t > 0, leave invariant the domain D(L), we

also get

∀ t ≥ 0, ∀ f ∈ D(L), ∂tP
v
t (f) = L[P v

t (f)] + V P v
t (f).

Nevertheless, let us mention that the corresponding stability property of D(L) by the semigroup P v is always
verified if we work under the setting presented in [7].

2. Feynman–Kac representations

This section is essentially concerned with the proof of Theorem 0.1 and Theorem 0.2. In Section 2.1 we
present the continuous and discrete time measure valued equations associated to the Feynman–Kac non linear
semigroups Φ = (Φt)t∈I . Section 2.2 focuses on the long time behavior and the fixed point of these distribution
flows. We also examine the situation where the semigroup P is reversible with respect to some distribution.
We propose a representation of the limiting fixed point of Φ in terms of the “eigenvector” associated to the
Lyapunov exponent. In Section 2.3 we characterize these exponents in terms of the mean time average of non
linear Feynman–Kac distribution flow models. In both Sections 2.2 and 2.3 we design a general and unique
strategy to treat in the same fashion the discrete and continuous time case. We mention that the continuous
time or discrete generation models described respectively in Section 2.1.1 and Section 2.1.2 extend the ones
studied in [3, 4, 6]. They will be also used in the forthcoming development of Section 3 to design a class of
particle approximating models. We finally notice that the addition of a constant to the potential V admits
as an immediate consequence to add the same constant to the logarithmic Lyapunov exponent. Thus for our
purposes there is no real loss of generality in assuming from now on that V is nonnegative.

2.1. Nonlinear measure valued equations

2.1.1. Continuous time models

In this short section we briefly present a collection of non linear measure valued evolution models associated
to the continuous time semigroup (Φt)t≥0. We start by noting that in the Radon–Nykodim sense we have the
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formula

d
dt

ln γt(1) =
1

γt(1)
γt(V ) = ηt(V ) and γt(1) = exp

(∫ t

0

ηs(V ) ds
)
. (12)

One of the consequences of the above exponential formula is the following statement:

Proposition 2.1. For any ρ ∈ [0, 1] the distribution flow (ηt)t∈R+ satisfies for any f ∈ D(L) the following time
evolutions

d
dt
ηt(f) = ηt(Lρ

ηt
(f)) with Lρ

η = ρ Lη + (1− ρ) L′η

and where (Lη)η∈P(E) and (L′η)η∈P(E) are two collections of operators on D(L) defined for any f ∈ D(L) and
x ∈ E by

Lη(f)(x) = L(f)(x) +
∫

(f(y)− f(x)) V (y) η(dy)

L′η(f)(x) = L(f)(x) + V ′(x)
∫

(f(y)− f(x)) η(dy)

for some bounded nonnegative function V ′ such that V ′(x) + V (x) = c ∈ R.

Proof. We associate to each f ∈ D(L) the Pη0 -martingale

Mt(f) = f(Xt)− f(X0)−
∫ t

0

L(f)(Xs)

and we write

Zη,t = exp
∫ t

0

[V (Xs)− ηs(V )]ds.

The stochastic integration by parts formula gives

d(Zη,tf(Xt)) = Zη,t [L(f)(Xt) + f(Xt) [V (Xt)− ηt(V )]dt+ Zη,t dMt(f).

Hence from the above we have

Zη,tf(Xt) = f(X0) +
∫ t

0

Zη,s [L(f)(Xs) + f(Xs) [V (Xs)− ηs(V )] ds+
∫ t

0

Zη,t dMt(f).

Integrating by definition of the flow ηt we end up with

ηt(f) = η0(f) +
∫ t

0

ηs(L(f) + f [V − ηs(V )]) ds.

We end the proof by noting that for any η ∈ P(E) and f ∈ D(L)

η(L(f) + f [V − η(V )]) = η(Lη(f)) = η(L′η(f)). �
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Remarks 2.2.

• Clearly the potential V ′ is only determined up to an additive constant. It is also instructive to notice
that the normalized Feynman–Kac formulas remain unchanged if we replace V by −V ′. But from now
on, we will further assume that V ′ is nonnegative (for instance by asking that c ≥ ‖V ‖ in the previous
proposition), so that Lη′ could be considered as a pregenerator.

• The collection of operators Lη and L′η are related to nonlinear martingale problems. Their solutions
consists of a canonical time inhomogeneous process X under two probability measures Q and Q′ with
respective infinitesimal pregenerators (Lηt)t≥0 and (L′ηt

)t≥0 and with time marginals

Q ◦ X−1
t = Law(Xt) = ηt = Q′ ◦ X−1

t

for all t ≥ 0.
The measure Q is called the McKean measure associated to Lη. We will not come into more details of
these problems, this would be a too great digression. We only mention that the choice of the potential V
or V ′ may lead to distinct McKean measure with the same time marginals ηt.

• We also notice that Lρ
η can be rewritten as follows

Lρ
η(f)(x) = L(f)(x) +

∫
(f(y)− f(x)) V ρ(x, y) η(dy)

with

V ρ(x, y) = ρ V (y) + (1− ρ) V ′(x).

2.1.2. Discrete time models

This short section focuses on the dynamical structure of the discrete time non linear semigroup (Φn)n≥0. In
the discrete time case we also have a nonlinear evolution description.

Proposition 2.3. The Feynman–Kac distribution flow η = (ηn)n∈N satisfies a nonlinear dynamical system

ηn+1 = ηnKηn (13)

where (Kη)η∈P(E) is a collection of Markov transitions on E defined by the composition

Kη(x,dz) = (SηP1)(x,dz) =
∫

E

Sη(x,dy) P1(y, dz)

Sη(x,dy) =
eV −

(x)
η(eV )

δx(dy) +

(
1− eV −(x)

η(eV )

)
Ψ+(η)(dy)

for any pair of functions (V +, V −) with

V (x) > V −(y), Ψ+(η)(f) = η(feV +
)/η(eV +

) and eV = eV −
+ eV +

.

For V + = V we take the convention Sη(x,dy) = Ψ+(η)(dy).

Proof. By the Markov property and by definition of γn we have that

ηn(f) =
γn(f)
γn(1)

=
γn−1(eV P1(f))

γn−1(eV )
·
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Clearly this implies that

ηn(f) =
ηn−1(eV P1(f))

ηn−1(eV )
= Ψ(ηn−1)P1(f) with Ψ(η)(f) = η(feV )/η(eV ).

On the other hand we check easily that Ψ(η)(f) = η(Sη(f)) and the proof is completed. �

Remarks 2.4. a) In the discrete time case the McKean measure associated to Kη and with initial condition η0
is the probability measure Qη0 on EN with marginals Qη0,[0,n] on En+1

Qη0,[0,n](d(x0, . . . , xn)) = η0(dx0) Kη0(x0, dx1) . . . Kηn−1(xn−1, dxn). (14)

Note that for V + = V our convention leads to the tensor product McKean measure

Qη0 = ⊗n≥0ηn.

b) Since eV = eV −
+eV +

with V (x) > V −(y) we have eV −(x) ≤ η(eV ). It does follow that Sη(x,dy) is a Markov
transition.

c) For any c ≥ osc(V ) we have

V −(x) = V (x)− c ≤ V (x).

Therefore we can choose V − = V − c and V + = V + ln(1 − e−c). In this situation we obtain Ψ+ = Ψ and

Sη(x,dy) = e−c eV (x)
η(eV )

δx(dy) +
(

1− e−c eV (x)

η(eV )

)
Ψ(η)(dy).

We end by noting that for any f ∈ Bb(E) with ‖f‖ ≤ 1 we have

‖Sη(f)−Ψ(η)(f)‖ ≤ 2 e−c+osc(V ) and ‖Sη(x, .)−Ψ(η)‖tv ≤ e−c+osc(V ) −−−−−→
c→∞

0.

2.2. Fixed point measures

When condition (Φ) is satisfied for some t0 ∈ I and αt(Φ) < 1 for all t ≥ t0, then the Banach fixed point
theorem tells us that there exists an unique fixed point η∞ ∈ P(E) with Φt(η∞) = η∞. This implies that for
any s ∈ I \ {0} the measure η∞ is also the unique fixed point of Φs. Indeed we have that

Φs(Φt(η∞)) = Φs(η∞) (Φt(η∞) = η∞)
= Φt(Φs(η∞)) (semi-group property)

and therefore Φs(η∞) is a fixed point of Φt. By the uniqueness property we end up with Φs(η∞) = η∞. The
proof of the uniqueness is also clear (first for s ≥ t0 and next for all s > 0, using iterations).

Next we suppose the semigroup P = (Pt)t∈I is reversible with respect to some measure µ ∈ P(E).

In the discrete time case we suppose there exists positive eigenvector hv ∈ Bb(E) such that P v
1 (hv) =

eλ(P v) hv. Let us check that

µv(f) = µ(hv P1(f))/µ(hv)
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is a fixed point of Φ1. To prove this claim we simply observe that

Φ1(µv)(f) = µv(eV P1(f))/µv(eV )
= µ(hv P1(eV P1(f)))/µ(hv P1(eV )) (definition of µv)
= µ(eV P1(f) P1(hv))/µ(eV P1(hv)) (reversibility)
= µ(P1(f) P v

1 (hv))/µ(P v
1 (hv)) (definition of P v

1 )
= µ(P1(f) hv)/µ(hv) = µv(f) (hv eigenvector).

Thus µv is a fixed point and by uniqueness we have that µv = η∞.
In the continuous time case we suppose there exists strictly positive eigenvector hv ∈ D(L) such that

Lv(hv) = L(hv) + V hv = λ(P v) hv. (15)

Let us check that the distribution

µv(f) = µ(hv f)/µ(hv)

is a fixed point of the nonlinear equation (2.1), that is

∀f ∈ D(L) , µv[Lµv(f)] = µv[L(f) + f(V − µv(V ))] = 0.

First we use the P -reversibility of µ to check that

µv[Lµv (f)] =
µ(hv L(f))
µ(hv)

+
µ(hv f V ))
µ(hv)

− µ(hv V )
µ(hv)

µ(hv f)
µ(hv)

=
1

µ(hv)

[
µ([L(hv) + V hv] f)− µ(hv V )

µ(hv)
µ(hv f)

]
.

From (15) we get

µ([L(hv) + V hv] f) = λ(P v) µ(hv f)
µ(hv V )
µ(hv)

= −µ(L(hv))
µ(hv)

+ λ(P v) = λ(P v).

The last assertion is again due to the P -reversibility of µ (since in this case we recall that µL = 0). If we
combine these two results we end up with µv[Lµv (f)] = 0 and the proof is completed.

2.3. Time average models

The exponential formula (12) leads to the time average description

1
t

lnP v
t (1)(x) =

1
t

ln γ(x)
t (1) =

1
t

∫ t

0

η(x)
s (V ) ds

whose limit for large t > 0 is η∞(V ). Analogously in discrete time settings we have that

γn(1) = γn−1(eV ) = ηn−1(eV ) γn−1(1) and γn(1) =
n−1∏
p=0

ηp(eV ).
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We also find a time average representation

1
n

lnP v
n (1)(x) =

1
n

ln γ(x)
n (1) =

1
n

n−1∑
p=0

ln η(x)
p [exp(V )].

As the potential V is nonnegative, we have that eV ≥ 1. To prove (4) we write for n ≥ t0,

1
n

n−1∑
p=0

[ln η(x)
p (eV )− ln η∞(eV )] =

1
n

t0−1∑
p=0

[ln η(x)
p (eV )− ln η∞(eV )] +

1
n

n−1∑
p=t0

[ln η(x)
p (eV )− ln η∞(eV )].

Using the inequality

| lnx− ln y| ≤ |x− y|/(x ∧ y) (16)

we arrive at ∣∣∣∣∣ 1n
n−1∑
p=0

[ln η(x)
p (eV )− ln η∞(eV )]

∣∣∣∣∣ ≤ 1
n

(t0 osc(V ) + 2 exp(‖V ‖)α(Φ)).

To prove (5) we write for n ≥ t0

1
t

∫ t

0

[η(x)
s (V )ds− η∞(V )] =

1
t

∫ t0

0

[η(x)
s (V )ds− η∞(V )] +

1
t

∫ t

t0

[η(x)
s (V )ds− η∞(V )]

and under (Φ) we end up with∣∣∣∣1t
∫ t

0

η(x)
s (V )ds− η∞(V )

∣∣∣∣ ≤ 1
t

(t0 osc(V ) + 2‖V ‖α(Φ)).

This clearly ends the proof of Theorem 0.2.
To illustrate condition (Φ) we present an easily verifiable sufficient condition and some useful exponential

estimates whose proof are essentially given in [4].

Proposition 2.5 [4, 5]. Suppose P1 satisfies the mixing condition (P1) for some ε > 0. Then condition (Φ) is
met for any t ≥ t0 = 2 with

αt(Φ) = aε,v exp−(bε,v t) and α(Φ) ≤ aε,v/bε,v.

In addition we have

‖Φt(µ)− Φt(ν)‖tv ≤ exp−(bε,v t).

In the discrete time case bε,v = ε2, in the continuous time bε,v = ε2

2 e−2‖V ‖ and in both situations aε,v = 2ε−2e4‖V ‖.

Proof. In the discrete time case the proof is a combination of Theorems 2.3 and 2.7 (pp. 24 and 29) in [4]. In
the continuous time case the analog Lipschitz estimate stated in Theorem 2.7 (p. 29) in [4] is proved using the
same line of arguments as in the discrete time case. When using Theorem 3.15 (p. 90) in [4] we end up with
the same aε,v but with a constant bε,v depending on the potential. �
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Next we examine two particular situations in which explicit calculations can be done. First of all if the
process X does not move, that is L = 0 and X0 = Xt then ηt is the Boltzmann–Gibbs measure with potential V
and inverse temperature parameter t, namely

dηt(x) =
1

η0(etV )
etV dη0(x).

Now suppose L is a trivial generator in the sense that L = µ − Id for some µ ∈ P(E) and assume that V a
potential function such that V 2 = V (which means that V is the indicator function of a measurable subset). In
this case we have that

d
dt
ηt(V ) = ηt(L(V )) + ηt(V (V − ηt(V ))

= µ(V )− ηt(V ) + ηt(V )− ηt(V )ηt(V ) = µ(V )− [ηt(V )]2. (17)

We also notice that the constant function
√
µ(V ) satisfies (17) since 0 = µ(V ) − [

√
µ(V )]2. With some easy

computations we can check that the solution of (17) is given by

ηt(V ) =
√
µ(V )

a(V )e2t
√

µ(V ) + b(V )

a(V )e2t
√

µ(V ) − b(V )

with
a(V ) = η0(V ) +

√
µ(V ) and b(V ) = η0(V )−

√
µ(V ).

Thus, for sufficiently large t we conclude that

lim
t→∞ ηt(V ) = λ(P v) =

√
µ(V ) and |ηt(V )− λ(P v)| ≤ 2 |b(V )| e−2

√
µ(V )t.

3. Interacting particle approximating models

In this section we describe and we analyze the asymptotic behavior of a class of discrete and continuous time
particle approximating models. The study of the discrete generation models is technically less involved than
their continuous time versions. For these reasons we have devoted a separate section to treat each of these
situations. Section 3.1 focuses on discrete time genetic type models. We apply the Lp-mean error estimates
obtained in earlier studies [4] to obtain uniform convergence estimates for the particle Lyapunov exponents. The
final Section 3.2 is concerned with continuous time and Moran type particle models. In a first Section 3.2.1 we
connect these novel particle models with the ones presented in [4, 6] and with the Fleming–Viot interpretation
introduced in [1,2] in the hard obstacle situation. The second Section 3.2.2 focuses on the asymptotic behavior of
the particle models as the size of the system tends to infinity. We extend and simplify the semigroup techniques
presented in [4] to derive a collection of L2-estimates for the convergence of these novel particle schemes. We
also mention that this semigroup approach gives a natural and transparent proof of the unbias properties stated
in Theorem 0.4 and Theorem 0.5. Section 3.2.3 is concerned with a comparison between the covariance function
associated to the particle models presented in the former article and the ones associated to the particle models
presented in [4] and [6].

3.1. Discrete time and genetic type particle models

The particle approximating model associated to (13) is the Markov chain ξn = (ξ1n, . . . , ξ
N
n ) on the product

space EN with transitions

P (ξn ∈ dy|ξn−1 = x) =
N∏

i=1

Km(x)(xi, dyi) with m(x) =
1
N

N∑
i=1

δxi . (18)
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Here dy = dy1 × · · · × dyN stands for an infinitesimal neighborhood of the point y = (y1, . . . , yN ) ∈ EN ,
x = (x1, . . . , xN ) ∈ EN and δa denotes the Dirac measure on a ∈ E.

• By convention if we choose V = V + then we have

Kη(u, dv) = Ψ(η)P1(dv) and Km(x)(u, .) = Φ(m(x)) =
N∑

i=1

eV (xi)∑N
j=1 eV (xj)

P1(xi, .)

We see that each transition ξn → ξn+1 is decomposed into two separate genetic type mechanisms

ξn
Selection−−−−−−−−−−−−−→ ξ̂n

Mutation−−−−−−−−−−−−−→ ξn+1.

Given ξn the system ξ̂n = (ξ̂1n, . . . , ξ̂
N
n ) consists of N i.i.d. random variables with common law Ψ(m(ξn)).

During the mutation each particle ξ̂i
n evolves according the transition P1. In other words ξn+1 consists

of N independent variables ξi
n+1 with law P1(ξ̂i

n, .).
• For more general functions V + we again obtain a two step transition. The mutation stage remains the

same but we have a slightly distinct selection mechanism.
In this situation and given ξn the system ξ̂n consists of N independent random variables ξ̂i

n with law

Sm(ξn)(ξi
n, .) = eV −(ξi

n)/m(ξn)(eV ) δξi
n

+ (1− eV −(ξi
n)/m(ξn)(eV )) Ψ+(m(ξn))(dy).

In contrast to the latter selection stage each particle ξ̂i
n has now a larger probability to remain in the same

location.
In some sense, if the initial system consists of N i.i.d. particles with common law η0 then the empirical measures

ηN
n =

1
N

N∑
i=1

δξi
n

and ηN
[0,n] =

1
N

N∑
i=1

δ(ξi
0,... ,ξi

n)

converge as N → ∞ respectively to the Feynman–Kac measures ηn and to the n-marginal of the McKean
measure Qη0,[0,n] defined in (14) (and corresponding to the choice of the transitions Kη). Several asymptotic
results including central limit theorems, exponential and large deviations as well as Glivenko or Donsker’s type
theorems and propagation of chaos for increasing block size and time horizon can be found in [4] and [8]. Here
we will use the following uniform convergence estimate:

Lemma 3.1 [4]. For any n ∈ N and p ≥ 1 there exists some finite constants b(p) and c(n) such that for any
f ∈ Bb(E), ‖f‖ ≤ 1,

E(|ηN
n (f)− ηn(f)|p)1/p ≤ 1√

N
b(p) c(n). (19)

Suppose P1 satisfy the mixing condition (P1) and (3) holds for some ε > 0. Then we have the uniform estimates
with respect to the time parameter

sup
n≥0

E(|ηN
n (f)− ηn(f)|p)1/p ≤ b(p)

e2osc(V )

ε4
√
N

· (20)

Suppose the mixing condition (3) holds for some ε > 0. When the initial particles start at the same point x,
Lemma 3.1 tells us that for any p ≥ 1 there exists some universal and finite constant b(p) such that

sup
x∈E

sup
n≥0

E(|η(N,x)
n (expV )− η(x)

n (expV )|p)1/p ≤ b(p)
e2osc(V )+‖V ‖

ε4
√
N

·
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Using the inequality (16) we conclude that

sup
n≥1

E[|λ(x,N)
n (P v)− λ(x)

n (P v)|p]1/p ≤ b(p)
e2osc(V )+‖V ‖

√
Nε4

with

λ(x,N)
n (P v) =

1
n

n∑
q=0

ln ηN
q (expV ) and λ(x)

n (P v) =
1
n

n∑
q=0

ln η(x)
q (expV ).

This yields the estimate (6) with cv(ε) = exp (2osc(V ) + ‖V ‖)/ε4. If we combine this inequality with the
estimate stated in theorem 0.1 we end up with (for n ≥ t0),

E[|λ(x,N)
n (P v)− λ(P v)|p]1/p ≤ b(p)√

N

e2osc(V )+‖V ‖

ε4
+

2
n

(
osc(V ) +

e4‖V ‖

ε4

)
·

To prove (7) we suppose the conditions stated in Theorem 0.4 are satisfied. Using Proposition 2.5 we obtain
for any f ∈ Bb(E), ‖f‖ ≤ 1, and n ≥ 1 the estimate

|ηn(f)− η∞(f)| ≤ 2 exp−(ε2n).

From (20) we conclude that

E(|ηN
n (f)− ηn(f)|p)1/p ≤ b(p)

e2osc(V )

ε4
√
N

+ 2 exp−(ε2n).

If we choose n = n(N) ≥ (lnN)/(2ε2) so that e−nε2 ≤ 1/
√
N we end up with

sup
n≥(lnN)/(2ε2)

√
NE(|ηN

n (f)− µ(hv P1(f))/µ(hv)|p)1/p ≤ 2 + b(p)cv(ε).

3.2. Continuous time and Moran type particle systems

3.2.1. Description of the models

As seen in Remark 1.6, under our strong conditions, we have that for any f ∈ D(L), the mappings R+ 3 t 7→
Pt(f) ∈ D(L) and R+ 3 t 7→ P v

t (f) ∈ D(L) belong to C1([0,∞), D(L)) with

d
dt
Pt(f) = L(Pt(f)) = Pt(L(f)) and

d
dt
P v

t (f) = Lv(P v
t (f)) = P v

t (Lv(f)) (21)

(in zero, only the right derivatives are considered). Starting from a collection of operators

Lρ
η = ρ Lη + (1− ρ) L′η η ∈ P(E)

with ρ ∈ [0, 1] and (Lη, L
′
η) defined in Proposition 2.1 we consider an interacting particle approximating model

ξ = (ξt)t∈R+ which is a Markov process on a product space EN with infinitesimal pregenerator

L(ϕ)(x1, . . . , xN ) =
N∑

i=1

L
(ρ,i)
m(x)ϕ(x1, . . . , xi, . . . , xN )
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acting on functions ϕ ∈ D(L)(⊂ Bb(EN )), the algebra spanned by linear combinations of functions ϕ of the
form

ϕ(x1, . . . , xN ) =
N∏

p=1

fi(xi) with f1, . . . , fN ∈ D(L).

We recall that we use the notation L(ρ,i)
m(x) instead of Lρ

m(x) when it acts on the i-th coordinate of ϕ(x1, . . . , xi, . . . ,
xN ) and that for any probability η on (E, E), Lρ

η is given by

Lρ
η(f)(u) = L(f)(u) +

∫
(f(v)− f(u)) V ρ(u, v) η(dv)

with V ρ(u, v) = ρV (v) + (1− ρ)V ′(u). It can be rewritten as

Lρ
η(f)(u) = L(f)(u) + aρ

η(u)
∫

(f(v)− f(u)) Kρ
η (u, dv) (22)

with aρ
η(u) = ρη(V ) + (1− ρ)V ′(u) and Kρ

η (u, dv) =
ρ V (v) + (1− ρ)V ′(u)
ρη(V ) + (1− ρ)V ′(u)

η(dv).

The choice of aη and Kη is not unique, we can alternatively write

Lρ
η(f)(u) = L(f)(u) + bρ

∫
(f(v)− f(u)) Gρ

η(u, dv)

with for any ‖V ‖ ≤ b, ‖V ′‖ ≤ b′

bρ = ρb+ (1 − ρ)b′ and Gρ
η(u, dv) = (aρ

η(u)/bρ) Kρ
η (u, dv) + (1− aρ

η(u)/bρ) δu(dv).

We notice that

η(Lρ
η(f)) = η(L(f)) + η(fV )− η(f)η(V )

and the “carré du champ” ΓLρ
η

associated to Lρ
η is given by

ΓLρ
η
(f, f)(u) = ΓL(f, f)(x) + aρ

η(u)
∫

(f(v) − f(u))2 Kρ
η (u, dv)

= ρ ΓLη(f, f)(u) + (1− ρ) ΓL′
η
(f, f)(u). (23)

For ρ = 1 and ρ = 0 we also have that

η(ΓLη (f, f)) = η(ΓL(f, f)) + η(V f2) + η(V )η(f2)− 2η(V f)η(f) (24)

η(ΓL′
η
(f, f)) = η(ΓL(f, f)) + η(V ′f2) + η(V ′)η(f2)− 2η(V ′f)η(f) (25)

= η(ΓL(f, f)) + 2c η((f − η(f))2)− [η(V f2) + η(V )η(f2)− 2η(V f)η(f)].

To have some “local” comparison let us mention that

c ≥ 2‖V ‖ =⇒ V ′ ≥ V =⇒ η(ΓL′
η
(f, f)) ≥ η(ΓLη (f, f)).

If the potential V is constant then for the choice c ≡ V (x) we have

η(ΓL′
η
(f, f)) = η(ΓL(f, f)) but η(ΓLη (f, f)) = η(ΓL(f, f)) + 2c η((f − η(f))2).
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When the potential V is constant V (x) = a the pregenerators Lη still contain a jump part

Lη(f)(u) = L(f)(u) + a

∫
(f(v)− f(u)) η(du)

but if we choose c = a we have V ′(x) = 0 and L′η = L. (Nevertheless, the case of constant V can also be reduced
directly to V ≡ 0, via the observation at the beginning of Sect. 2.)

Since the potentials V and V ′ are bounded positive functions, it is possible to rewrite their pregenerators in
the following form

Lρ = L̃+ L̂ρ with L̃(ϕ)(x) =
N∑

i=1

L(i)(ϕ)(x)

and the interacting jump part

L̂ρ(ϕ)(x) = dρ(x)
∫

EN

(ϕ(y)− ϕ(x)) Kρ(x,dy)

with

dρ(x) = N m(x)⊗2(V ρ) (= N [ρ m(x)(V ) + (1 − ρ) m(x)(V ′)])

Kρ(x,dy) =
N,N∑
i,j=1

V ρ(xi, xj)∑N,N
k,l=1 V

ρ(xk, xl)
δx(i,j)(dy)

(we make the convention that Kρ(x,dy) = δx(dy) if the denominator (= dρ(x)) in the rhs is null), and where
for 1 ≤ i, j ≤ N and x = (x1, · · · , xN ) ∈ EN , x(i,j) is defined by replacing in x the i-th coordinate xi by the
j-th coordinate xj , that is

∀k 6= i xk
(i,j) = xk and xi

(i,j) = xj .

In particular when V ρ ≡ 0 (for instance if ρ = 0 and V ′ ≡ 0 or ρ = 1 and V ≡ 0), we have Lρ = L̃.

Remarks 3.2. Alternatively we can also use the next two equivalent formulations

1) L̂ρ(ϕ)(x) =
N∑

i=1

aρ
m(x)(x

i)
∫

EN

(ϕ(y)− ϕ(x)) K(ρ,i)
m(x)(x

i, dy)

with

K
(ρ,i)
m(x)(x

i, dy) =
N∑

j=1

ρ V (xj) + (1− ρ)V ′(u)∑N
k=1 ρV (xk) + (1− ρ)NV ′(xi)

δx(i,j)(dv)

2) L̂ρ(ϕ)(x) = (Nbρ)
∫

EN

(ϕ(y)− ϕ(x)) Gρ(x,dy) (26)

with ‖V ‖ ≤ b, ‖V ′‖ ≤ b′, bρ = ρb+ (1 − ρ)b′ and

Gρ(x,dy) = m(x)⊗2 (V ρ/bρ) Kρ(x,dy) +
(
1−m(x)⊗2 (V ρ/bρ)

)
δx(dy).



196 P. DEL MORAL AND L. MICLO

In view of previous observations there exists different equivalent descriptions of the motion of the particles. We
have chosen to present the one associated to the representation (26) and to the particular choice ρ = 1.

As in the discrete time situation the motion is decomposed into two separate mechanisms. Let τn , n ≥ 1,
be a collection of independent and exponential random times with common intensity (Nb).

• Between theses dates each particle evolves independently of each other (and independently of the previ-
ously defined random times) according to an L-motion.

• At each random times τn with a probability m(ξτn−) (V/b) we sample a new configuration ζn with prob-
ability K(ξτn−, .) and a we set ξτn = ζn and with a probability 1−m(ξτn−) (V/b) the configuration does
not change and we set ξτn = ξτn− (as our state space is not assumed to be topological, ξτn− designates
the position of the system if we would have not considered a resampling at time τn, cf. [7]).

In our framework the particle model presented in the hard obstacle case in [2] corresponds to the interacting
particle systems with ρ = 0. More precisely the particle model with pregenerator L0 is the analog of the one
of [2] in the “soft obstacle” case. To clarify the connections between these two models we briefly indicate how the
N particles evolve in such an environment. When a particle ξi

τ has just been born at a given time τ we sample
a reference exponential random variable ei

τ with parameter 1. Then it evolves randomly with an L-motion up
to its death time

ζi = inf
{
t ≥ τ ;

∫ t

τ

V (ξi
s)ds ≥ ei

τ

}
·

When it is killed a different particle instantly splits into two offsprings.

In the first algorithm (ρ = 1) the interacting jump pregenerator L̂1 is intended to improve the quality of
the system by giving to individuals with higher V -fitness more chance to be copied in the next generation. In
the second model (ρ = 0) the interacting jump pregenerator L̂0 prevents particles from visiting death living
regions with higher V ′-obstacles. Recalling that V (x)+V ′(x) = c these two interaction mechanisms lead to the
same competitive selection by allocating reproductive opportunities to individuals living in regions with higher
V -fitness.

When V is a constant function the flow ηt represents the state distributions of Markov process Xt at time t.
In this degenerate situation we can choose a null potential V ′ = 0 and the N -particle approximating model with
ρ = 0 consists of N independent copies of the Markov process X . In contrast to this situation for ρ = 1 the
motion of the particles still contain an interacting jump part. In this sense we can say that the latter contains
an extra degree of randomness.

3.2.2. L2-estimates

To each ϕ ∈ C1(R+, D(L)) we associate an F -martingale M(ϕ)

Mt(ϕ) = ϕ(t, ξt)− ϕ(0, ξ0)−
∫ t

0

[
∂ϕ

∂s
(s, .) + Lρ(ϕ(s, .))

]
(ξs) ds (27)

with increasing process 〈M(ϕ)〉

〈M(ϕ)〉t =
∫ t

0

ΓLρ(ϕ(s, .), ϕ(s, .))(ξs) ds

where ΓLρ is the “carré du champ” associated to Lρ and defined for any ψ ∈ D(L) by

∀ x ∈ EN , ΓLρ(ψ, ψ)(x) = Lρ(ψ2)(x) − 2ψ(x)Lρ(ψ)(x) = Lρ
(
[ψ − ψ(x)]2

)
(x).
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For test functions of the form ψ(x) = m(x)(f), f ∈ D(L), we find that

Lρ(ψ)(x) = m(x)[Lρ
m(x)(f)]

ΓLρ(ψ, ψ)(x) = Lρ
(
[ψ − ψ(x)]2

)
(x) =

1
N2

N∑
i=1

Lρ
m(x)

([
f − f(xi)

]2)
(xi)

=
1
N

m(x)(ΓLρ
m(x)

(f, f)).

If we introduce the notation ηN
t = m(ξt) then for ϕ(t, x) = m(x)(f(t, .)) and f ∈ C1(R+, D(L)), we have

Mt(ϕ) = ηN
t (f(t, .)) − ηN

0 (f(0, .))−
∫ t

0

ηN
s

[
∂f

∂s
(s, .) + Lρ

ηN
s

(f(s, .))
]

ds (28)

and

〈M(ϕ)〉t =
1
N

∫ t

0

ηN
s ΓLρ

ηN
s

(f(s, .), f(s, .)) ds.

Let Φ = (Φs,t)0≤s≤t be the nonlinear semigroup on distribution space and associated to the flow ηt, that is

Φs,t(ηs)(f) = ηt(f) =
Es,ηs(f(Xt) exp

∫ t

s

V (Xu)du)

Es,ηs(exp
∫ t

s

V (Xu)du)

where Es,µ(.), s ∈ R+, µ ∈ P(E), denotes the expectation with respect to the distribution Ps,µ =
∫
µ(dx) Ps,x

and Ps,x = P0,x ◦ θ−1
s with the usual shifting operators θs, s ∈ R+.

To clarify notations we also write P v
s,t instead of P v

t−s, that is

P v
s,t(f)(x) = Es,x

(
f(Xt) exp

∫ t

s

V (Xu)du
)
·

With this notations we have for any distribution µ ∈ P(E) and f ∈ Bb(E)

Φs,t(µ)(f) =
µP v

s,t(f)
µP v

s,t(1)
·

Arguing as in Section 2.1 we notice that for any f ∈ Bb(E)

γt(f) = ηt(f) exp
∫ t

0

ηs(V )ds.

It is therefore natural to define the N -approximating measures and the F -martingale N (ϕ)

γN
t (f) = ηN

t (f) exp
∫ t

0

ηN
s (V )ds and Nt(ϕ) =

∫ t

0

γN
s (1) dMs(ϕ).

Until the end of this section and unless otherwise stated we fix a final time horizon T ≥ 0, a test
function f ∈ D(L) such that ‖f‖ ≤ 1. For any x ∈ EN and 0 ≤ t ≤ T we write

ϕ(0)(t, x) = m(x)(P v
t,T (1)) , ϕ(1)(t, x) = m(x)(P v

t,T (f)) , ϕ(2)(t, x) = m(x)([P v
t,T (f)]2).
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When there is no possible confusion, we slightly abuse notations and we write E(.) the expectation
with respect to the law of the process ξ. We also fix a parameter ρ ∈ [0, 1] and we set v(ρ) =
(1/2 + ρ) ‖V ‖+ (1− ρ) ‖V ′‖.
Lemma 3.3. For any time 0 ≤ t ≤ T we have

γN
t (P v

t,T (f)) = ηN
0 (P v

0,T (f)) +Nt(ϕ(1)) and N sup
t≤T

E(〈N (ϕ(1))〉t) ≤ exp (4Tv(ρ)).

Proof. With some obvious abusive notations we first use (21) and we observe that for µ ∈ P(E)(
∂

∂t
+ Lµ

)
(P v

t,T (f)) = −(L+ V )(P v
t,T (f)) + L(P v

t,T (f)) + µ(V P v
t,T (f))− µ(V )P v

t,T (f)

= µ(V P v
t,T (f))− V (P v

t,T (f))− µ(V )P v
t,T (f). (29)

In much the same way, recalling that V ′ = c− V , we get(
∂

∂t
+ L′µ

)
(P v

t,T (f)) = −(L+ V )(P v
t,T (f)) + L(P v

t,T (f)) + V ′ [µ(P v
t,T (f))− P v

t,T (f)]

= −V µ(P v
t,T (f)) + c [µ(P v

t,T (f))− P v
t,T (f)]. (30)

For any ρ ∈ [0, 1], this yields that

µ

[(
∂

∂t
+ Lρ

µ

)
(P v

t,T (f))
]

= −µ(V )µ(P v
t,T (f)).

Hence by (28) we conclude that

dηN
t (P v

t,T f) = ηN
t

[(
∂

∂t
+ Lρ

ηN
t

)
(P v

t,T (f))
]

dt+ dMt(ϕ(1))

= −ηN
t (V )ηN

t (P v
t,T (f)) dt+ dMt(ϕ(1))

and therefore

dγN
t (P v

t,T f) = γN
t (1) dMt(ϕ(1)) = dNt(ϕ(1)).

This completes the proof of the first part of the lemma. By (29) we also notice that

ΓLµ(P v
t,T f, P

v
t,T f) =

(
∂

∂t
+ Lµ

)
(P v

t,T (f)2)− 2P v
t,T (f)

(
∂

∂t
+ Lµ

)
(P v

t,T (f))

=
(
∂

∂t
+ Lµ

)
(P v

t,T (f)2)− 2P v
t,T (f)[µ(V P v

t,T (f))− V (P v
t,T (f))− µ(V )P v

t,T (f)]

and hence

µ[ΓLµ(P v
t,T f, P

v
t,T f)] = µ

(
∂

∂t
+ Lµ

)
((P v

t,T f)2) + 2[µ(V (P v
t,T (f))2)

+ µ(V )µ((P v
t,T (f))2)− µ(V P v

t,T (f))µ(P v
t,T (f))]. (31)
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In an equivalent way of reasoning we get by (30)

ΓL′
µ
(P v

t,T f, P
v
t,T f) =

(
∂

∂t
+ L′µ

)
(P v

t,T (f)2)− 2P v
t,T (f)

(
∂

∂t
+ L′µ

)
(P v

t,T (f))

=
(
∂

∂t
+ L′µ

)
(P v

t,T (f)2)− 2P v
t,T (f)[−V µ(P v

t,T (f)) + c [µ(P v
t,T (f))− P v

t,T (f)]]

and thus

µ[ΓL′
µ
(P v

t,T f, P
v
t,T f)] = µ

(
∂

∂t
+ L′µ

)
((P v

t,T f)2) + 2[µ(V P v
t,T f)µ(P v

t,T f) + c µ([P v
t,T f − µ(P v

t,T f)]2)]. (32)

By (23) we combine (31) and (32) to conclude that

µ[ΓLρ
µ
(P v

t,T f, P
v
t,T f)] = µ

(
∂

∂t
+ Lρ

µ

)
((P v

t,T f)2) + 2ρ[µ(V (P v
t,T (f))2) + µ(V )µ((P v

t,T (f))2)

− µ(V P v
t,T (f))µ(P v

t,T (f))] + 2(1− ρ)[µ(V P v
t,T f)µ(P v

t,T f) + c µ([P v
t,T f − µ(P v

t,T f)]2)]. (33)

On the other hand from (33) we notice that the increasing process 〈N (ϕ(1))〉 may be rewritten as

Nd〈N (ϕ(1))〉t = γN
t (1)2 Nd〈M(ϕ(1))〉t = γN

t (1)2 ηN
t (ΓLρ

ηN
t

(P v
t,T f, P

v
t,T f)dt

= γN
t (1)2 dηN

t ((P v
t,T f)2)− γN

t (1)2 dMt(ϕ(2)) + 2γN
t (1)2 ρ [ηN

t (V (P v
t,T (f))2)

+ ηN
t (V ) ηN

t ((P v
t,T (f))2)− ηN

t (V P v
t,T (f)) ηN

t (P v
t,T (f))]

+ 2γN
t (1)2 (1− ρ) [ηN

t (V P v
t,T f)ηN

t (P v
t,T f) + c ηN

t ([P v
t,T f − ηN

t (P v
t,T f)]2)].

Since

dγN
t (1)2 = 2ηN

t (V ) γN
t (1)2dt

a simple integration by part yields

γN
t (1)2 dηN

t ((P v
t,T f)2) = −2ηN

t (V )γN
t (1)2ηN

t ((P v
t,T f)2)dt+ d(γN

t (1)2 ηN
t ((P v

t,T f)2))

and

Nd〈N (ϕ(1))〉t = d[γN
t (1)2 ηN

t ((P v
t,T f)2)]− γN

t (1)2 dMt(ϕ(2))

+2ργN
t (1)2 [ηN

t (V (P v
t,T (f))2)− ηN

t (V P v
t,T (f)) ηN

t (P v
t,T (f))]dt

+2(1− ρ)γN
t (1)2 [ηN

t (V P v
t,T (f))ηN

t (P v
t,T (f))− ηN

t (V ) ηN
t ((P v

t,T (f))2)]dt

+2(1− ρ)γN
t (1)2 cηN

t ([P v
t,T (f)− ηN

t (P v
t,T f)]2)dt.

By definition of V ′ we arrive at

Nd〈N (ϕ(1))〉t = d[γN
t (1)2 ηN

t ((P v
t,T f)2)]− γN

t (1)2 dMt(ϕ(2))

+2ργN
t (1)2 [ηN

t (V (P v
t,T (f))2)− ηN

t (V P v
t,T (f)) ηN

t (P v
t,T (f))]dt

+2(1− ρ)γN
t (1)2 [ηN

t (V ′) ηN
t ((P v

t,T (f))2)− ηN
t (V ′P v

t,T (f))ηN
t (P v

t,T (f))]dt.
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This implies (after noting that M(ϕ(2)) is a bounded martingale according to our last hypothesis on the
pregenerator L) that

NE(〈N (ϕ(1))〉t) = E(γN
t (1)2 ηN

t ((P v
t,T f)2))− E(ηN

0 ((P v
0,T f)2))

+2ρE
(∫ t

0

γN
s (1)2 [ηN

s (V (P v
s,T (f))2)− ηN

s (V P v
s,T (f)) ηN

s (P v
s,T (f))]ds

)
+2(1− ρ)E

(∫ t

0

γN
s (1)2 [ηN

s (V ′) ηN
s ((P v

s,T f)2)− ηN
s (V ′P v

s,T f)ηN
s (P v

s,T f)]ds
)

(34)

and clearly

NE(〈N (ϕ(1))〉t) ≤ e2t‖V ‖+2(T−t)‖V ‖

+ 4ρ ‖V ‖
∫ t

0

e2‖V ‖s+2(T−s)‖V ‖ds+ 4(1− ρ) ‖V ′‖
∫ t

0

e2‖V ‖s+2(T−s)‖V ‖ds

= e2T‖V ‖(1 + 4(ρ ‖V ‖+ (1− ρ) ‖V ′‖)T ) ≤ exp (4Tv(ρ)). �

Proposition 3.4. The N -approximating measures γN
t have no bias, namely E(γN

t (f)) = γt(f), and we have
the mean square estimates

√
N E

(
sup
t≤T

|γN
t (P v

t,T f)− γt(P v
t,T f)|2

)1/2

≤ 3 exp (2v(ρ)T ).

Proof. The first assertion is a direct consequence of Lemma 3.3. To prove the mean square estimates we use
the decomposition

γN
t (P v

t,T f)− γt(P v
t,T f) = γN

t (P v
t,T f)− ηN

0 (P v
0,T f) + ηN

0 (P v
0,T f)− η0(P v

0,T f)

= ηN
0 (P v

0,T f)− η0(P v
0,T f) +Nt(ϕ(1)).

Using Burkholder–Davis–Gundy inequality and Lemma 3.3 we get

E

(
sup
t≤T

N 2
t (ϕ(1))

)
≤ 4 E(〈N (ϕ(1))〉T ) ≤ 4

N
exp (4Tv(ρ)).

Since the initial configuration consists of N -independent random variables with law η0 by the weak law of large
numbers we also have that

E([ηN
0 (P v

0,T f)− η0(P v
0,T f)]2) =

1
N

η0([P v
0,T f − η0(P v

0,T f)]2) ≤ e2T‖V ‖

N
·

If we combine these two upper bounds we end up with the desired estimate. More precisely we have that

E

(
sup
t≤T

|γN
t (P v

t,T f)− γt(P v
t,T f)|2

)1/2

≤ E([ηN
0 (P v

0,T f)− η0(P v
0,T f)]2)1/2 + E

[
sup
t≤T

N 2
t (ϕ(1))

]1/2

≤ 1√
N

(eT‖V ‖ + 2e2Tv(ρ))

and the end of the proof of the proposition is now clear. �
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Proposition 3.5. For any fixed time parameters s ≤ T , we have

√
N E

(
sup
t≤T

|Φt,T (ηN
t )(f)− Φt,T (ηt)(f)|2

)1/2

≤ 6 exp ([‖V ‖+ 2v(ρ)]T ) (35)

√
N E

(
sup

s≤t≤T
|Φt,T (ηN

t )(f)− Φs,T (ηN
s )(f)|2|Fs

)1/2

≤ 4 exp (2v(ρ)(T − s)). (36)

Proof. To prove the first estimate we use the decomposition

Φt,T (ηN
t )(f)− Φt,T (ηt)(f) =

γN
t (P v

t,T f)
γN

t (P v
t,T 1)

− γT (f)
γT (1)

=
γT (1)

γN
t (P v

t,T 1)
× γN

t P
v
t,T

(
1

γT (1)
(f − ηT (f))

)
.

It is clear that

0 ≤ γT (1)/γN
t (P v

t,T 1) ≤ eTosc(V ) and ‖(f − ηT (f))/γT (1)‖ ≤ 2.

By Proposition 3.4 we conclude that

√
N E

(
sup
t≤T

|Φt,T (ηN
t )(f)− Φt,T (ηt)(f)|2

)1/2

≤ 2eTosc(V ) 3e2v(ρ)T = 6e[‖V ‖+2v(ρ)]T .

To prove (36) we first recall that

γN
t (P v

t,T f)− γN
s (P v

s,T f) =
∫ t

s

γN
r (1) dMr(ϕ(1))

and dividing by γN
s (1) this implies that

γN
t (1)
γN

s (1)
ηN

t (P v
t,T f)− ηN

s (P v
s,T f) =

1
γN

s (1)
[Nt(ϕ(1))−Ns(ϕ(1))] =

∫ t

s

γN
r (1)
γN

s (1)
dMr(ϕ(1)).

If we define

γN
s,t(1) = γN

t (1)/γN
s (1) and N s,t =

1
γN

s (1)
[Nt −Ns]

we obtain the following decomposition

Φt,T (ηN
t )(f)− Φs,T (ηN

s )(f) =
γN

s,t(1)ηN
t (P v

t,T f)
γN

s,t(1)ηN
t (P v

t,T 1)
− ηN

s (P v
s,T f)

ηN
s (P v

s,T 1)

=
1

ηN
s (P v

s,T 1)
[(γN

s,t(1)ηN
t (P v

t,T f)− ηN
s (P v

s,T f)) + Φt,T (ηN
t )(f)(ηN

s (P v
s,T 1)− γN

s,t(1)ηN
t (P v

t,T 1))]

thus,

Φt,T (ηN
t )(f)− Φs,T (ηN

s )(f) =
1

ηN
s (P v

s,T 1)
[N s,t(ϕ(1))− Φt,T (ηN

t )(f) N s,t(ϕ(0))].
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Since

ηN
s (P v

s,T 1) ≥ 1

it does follows that

|Φt,T (ηN
t )(f)− Φs,T (ηN

s )(f)| ≤ |N s,t(ϕ(1))|+ |N s,t(ϕ(0))|. (37)

On the other hand using Burkholder–Davis–Gundy inequality we have

E

(
sup

s≤t≤T
N 2

s,t(ϕ
(1))|Fs

)
=

1
γN

s (1)2
E( sup

s≤t≤T
(Nt(ϕ(1))−Ns(ϕ(1)))2|Fs)

≤ 4
γN

s (1)2
E(〈N (ϕ(1))〉T − 〈N (ϕ(1))〉s|Fs).

Using (34) we obtain

NE( sup
s≤t≤T

N 2

s,t(ϕ
(1))|Fs) ≤ 4E(e2

R
T
s

ηN
r (V )dr ηN

T (f2)|Fs)− 4ηN
s ((P v

s,T f)2)

+ 8ρE

(∫ T

s

e2
R

r
s

ηN
u (V )du[ηN

r (V (P v
r,T (f))2)− ηN

r (V P v
r,T (f)) ηN

r (P v
r,T (f))]dr|Fs

)

+ 8(1− ρ)E

(∫ T

s

e2
R r

s
ηN

u (V )du[ηN
r (V ′)ηN

r ((P v
r,T (f))2)− ηN

r (V ′P v
r,T (f)) ηN

r (P v
r,T (f))]dr|Fs

)
.

From the above we get the upper bound

N E( sup
s≤t≤T

N 2

s,t(ϕ
(1))|Fs) ≤ 4

[
e2(T−s)‖V ‖ + 4 ‖V ‖ ρ

∫ T

s

e2(r−s)‖V ‖+2(T−r)‖V ‖dr

+4 ‖V ′‖ (1− ρ)
∫ T

s

e2(r−s)‖V ‖+2(T−r)‖V ‖dr

]
= 4e2(T−s)‖V ‖(1 + 4(T − s)(ρ ‖V ‖+ (1 − ρ) ‖V ′‖)) ≤ 4e4(T−s)v(ρ).

By (37) and the triangle inequality we conclude that

√
N E

(
sup

s≤t≤T
|Φt,T (ηN

t )(f)− Φs,T (ηN
s )(f)|2|Fs

)1/2

≤ 4e2(T−s)v(ρ)

and the proof is completed. �

3.2.3. Uniform estimates and related fluctuations

Theorem 3.6. Suppose the semigroup Φ is exponentially stable in the sense that for any µ, ν ∈ P(E) and
t ≥ t0

1
t

ln ‖Φt(µ)− Φt(ν)‖tv ≤ −σ
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for some t0 > 0 and some parameter σ > 0. Then for any lnN ≥ 2t0(σ + 2v(ρ) + ‖V ‖) and f ∈ D(L) with
‖f‖ ≤ 1 and ρ ∈ [0, 1] we have the uniform estimate

sup
t≥0

E(|ηN
t (f)− ηt(f)|2)1/2 ≤ 8/Nβ(ρ)/2 with β(ρ) = σ/(σ + 2v(ρ) + ‖V ‖).

Proof. Using Proposition 3.5 we have for any t ≤ h ≥ t0

E(|ηN
t (f)− ηt(f)|2)1/2 ≤ 6√

N
e[2v(ρ)+‖V ‖]h.

Next we introduce the decomposition

ηN
t+h − ηt+h = ηN

t+h − φh(ηN
t ) + φh(ηN

t )− φh(ηt)

for any t ≥ 0 and h ≥ t0. Again from Proposition 3.5 we obtain

E(|ηN
t+h(f)− Φh(ηN

t )(f)|2)1/2 ≤ 4√
N

e2hv(ρ) ≤ 6√
N

e[2v(ρ)+‖V ‖]h

and

|Φh(ηN
t )(f)− Φh(ηt)(f)| ≤ 2e−σh.

This clearly implies that

E(|ηN
t+h(f)− ηt+h(f)|2)1/2 ≤ 6√

N
e[2v(ρ)+‖V ‖]h + 2e−σh.

Therefore we conclude that for any h ≥ t0

sup
t≥0

E(|ηN
t (f)− ηt(f)|2)1/2 ≤ 6√

N
e[2v(ρ)+‖V ‖]h + 2e−σh.

If we choose h = h(N) and N ≥ 1 such that

h(N) =
lnN

2(ρ+ 4 ‖V ‖) ≥ t0

we have 1√
N

exp (h(N)[2v(ρ) + ‖V ‖]) = exp−(σh(N)) and

eρh(N) = Nβ(ρ)/2 with β(ρ) = σ/(σ + 2v(ρ) + ‖V ‖).

The end of the proof is now straightforward. �
Our next objective is to study the fluctuations of the random fields W γ,N

t,T and W η,N
t,T defined by

W γ,N
t,T (f) =

√
N (γN

t (P v
t,T f)− γt(P v

t,T f)) , W ′γ,N
t,T (f) =

√
N (γ′Nt (P v

t,T f)− γt(P v
t,T f))

which are parameterized by functions f ∈ D(L). We remark that by our last hypothesis on the pregenerator L,
the mapping

[0, T ]× E 3 (t, x) 7→ Γ[P v
t,T (f), P v

t,T (f)](x)
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is easily seen to be bounded, fact which enables to show the same property for

[0, T ]× E 3 (t, x) 7→ ΓLρ
η
[P v

t,T (f), P v
t,T (f)](x)

uniformly in 0 ≤ ρ ≤ 1 and in the probability η.
The computations of Section 3.2.2 then imply that for any f ∈ D(L) and T ≥ 0, there exists a constant

KT (f) ≥ 0 such that

E[〈M(ϕ(2))〉T ] ≤ KT (f)
N

and thus using Doob’s inequality, we see that

sup
0≤t≤T

∣∣∣∣∫ t

0

(γN
s (1))2 dMs(ϕ(2))

∣∣∣∣
is converging to zero for large N , in L2 or a.s. This is the main ingredient for the proof of the next proposition.

Proposition 3.7. In the sense of convergence of finite distributions, the random field (W γ,N
t,T (f))f∈D(L), re-

spectively (W η,N
t,T (f))f∈D(L), converges as N tends to infinity to a centered Gaussian field (W γ

t,T (f))f∈D(L),
respectively (W η

t,T (f))f∈D(L), with variance functions given for all f ∈ D(L) by

E(W γ
t,T (f)2) = γt(1)γt((P v

t,T f)2)− γT (f)2 + 2ρ
∫ t

0

[γs(1) γs(V (P v
s,T f)2)− γs(V (P v

s,T f))γT (f)]ds

2(1− ρ)
∫ t

0

[γs(V ′) γs((P v
s,T f)2)− γs(V ′(P v

s,T f))γT (f)]ds

and

E(W η
t,T (f)2) = ηt([P

v

t,T (f − ηT (f))]2) + 2ρ
∫ t

0

ηs(V [P
v

s,T (f − ηT (f))]2) ds

+ 2(1− ρ)
∫ t

0

ηs(V ′) ηs([P
v

s,T (f − ηT (f))]2) ds

with the “normalized” semigroup (P
v

t,T )t≤T defined by

P
v

t,T (f)(x) =
P v

t,T (f)(x)
ηt(P v

t,T 1)
= Et,x

[
f(XT ) exp

(∫ T

t

[V (Xs)− ηs(V )]ds

)]
.

Proof. Arguing as in the proof of Lemma 3.33 (p. 107) in [4] (based on Th. 3.11, p. 432 in [11]), to get a central
limit theorem for the martingales

t ∈ [0, T ] 7→ W γ,N
t,T (f) =

√
N [ηN

0 (P v
0,T (f))− η0(P v

0,T (f))] +
√
NNt(ϕ(1))

it is sufficient to show such a result for the initial value W γ,N
0,T (f) =

√
N [ηN

0 (P v
0,T (f))−η0(P v

0,T (f))] and to verify
that the increasing process of (

√
NNt(ϕ(1)))0≤t≤T converges in probability to a deterministic and continuous

limit. The first point is clear since it is an application of the usual central limit theorem for independent and
identically distributed L2 (even bounded here) variables, and it appears that the limit variance for these terms is

η0((P v
0,T (f))2)− (η0(P v

0,T (f)))2.
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Meanwhile, in the proof of Lemma 3.3, we computed that

N〈N (ϕ(1))〉t = γN
t (1)2 ηN

t ((P v
t,T f)2)− γN

0 (1)2 ηN
0 ((P v

0,T f)2)−
∫ t

0

γN
s (1)2 dMs(ϕ(2))

+2ρ
∫ t

0

γN
s (1)2 [ηN

s (V (P v
s,T (f))2)− ηN

s (V P v
s,T (f)) ηN

s (P v
s,T (f))] ds

+2(1− ρ)
∫ t

0

γN
s (1)2 [ηN

s (V ′) ηN
s ((P v

s,T (f))2)− ηN
s (V ′P v

s,T (f))ηN
s (P v

s,T (f))] ds

which converges in probability (using for 0 ≤ s ≤ t the convergences of γN
s and ηN

s proved previously and the
observation above the proposition) to

γt(1)2 ηt((P v
t,T f)2)− γ0(1)2 η0((P v

0,T f)2) + 2ρ
∫ t

0

γs(1)2 [ηs(V (P v
s,T (f))2)− ηs(V P v

s,T (f)) ηs(P v
s,T (f))] ds

+ 2(1− ρ)
∫ t

0

γs(1)2 [ηs(V ′) ηs((P v
s,T (f))2)− ηs(V ′P v

s,T (f))ηs(P v
s,T (f))] ds.

Thus we can conclude to the first convergence announced in the proposition and to the validity of the expression
for the variance of the corresponding limit (using that for any 0 ≤ s ≤ T , ηs(P v

s,T (f)) = γT (f)/γs(1)).
To study the convergence of the random field W η,N

t,T we introduce the decomposition

Φt,T (ηN
t )(f)− Φt,T (ηt)(f) =

γN
t (P v

t,T f)
γN

t (P v
t,T 1)

− γt(P v
t,T f)

γt(P v
t,T 1)

=
γt(P v

t,T 1)
γN

t (P v
t,T 1)

× γN
t

(
P v

t,T

γt(P v
t,T 1)

(f − Φt,T (ηt)(f))

)
.

Noticing that

γt

(
P v

t,T

γt(P v
t,T 1)

(f − Φt,T (ηt)(f))

)
= 0

we see that W η,N
t,T and W γ,N

t,T are connected by the formula

W η,N
t,T (f) =

γt(P v
t,T 1)

γN
t (P v

t,T 1)
×W γ,N

t,T ((f − ηT (f))/γT (1).) .

If follows from Proposition 3.4 that

lim
N→∞

γt(P v
t,T 1)/γN

t (P v
t,T 1) = 1

in probability sense. This implies that W η,N
t,T converges as N → ∞ (and in the sense of convergence of finite

distributions) to the centered Gaussian field

W η
t,T (f) = W γ

t,T ((f − ηT (f))/γT (1)) .
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Then we are assured of

E(W η
t,T (f)2) = E([W γ

t,T ((f − ηT (f))/γT (1))]2)

= γt(1)2 ηt( (P v
t,T (f − ηT (f))/γT (1))2 )

+2ρ
∫ t

0

γs(1) γs(V (P v
s,T (f − ηT (f))/γT (1))2) ds

+2(1− ρ)
∫ t

0

γs(V ′) γs((P v
s,T (f − ηT (f))/γT (1))2) ds.

Recalling that

ηs(P v
s,T (1)) = γs(P v

s,T (1))/γs(1) = γT (1)/γs(1)

the end of the proof of the proposition is now easily completed. �

As in [7] we have not considered central limit theorems, we are not sure of the validity of the previous
proposition in its context. Nevertheless the natural conjecture is that it should be true, because the limit
variances are indeed well defined for any f ∈ Bb(E) (no “carré du champ” is entering in the formulation of the
final result).

We end this paper with a discussion on the form of the covariance functions associated to the fluctuations of
the N -approximating models ηN

t corresponding to the choice of parameter ρ = 0 and ρ = 1. We first examine
the situation where the potential function V is constant and V (x) = a for any x ∈ E.

In this case ηt is clearly the distribution of Xt and the semigroup P
v

coincides with the semigroup P . In this
simple situation and for ρ = 1 we have that (in what follows, a function f ∈ D(L) with ‖f‖ ≤ 1 is assumed to
be chosen)

E(W η
t,T (f)2) = ηt([Pt,T (f − ηT (f))]2) + 2

∫ t

0

a ηs([Ps,T (f − ηT (f))]2)ds. (38)

With the choice V ′(x) = a− V (x) = 0 the N -particle model consists of N independent copies of X and clearly
for ρ = 0

E(W η
t,T (f)2) = ηt([Pt,T (f − ηT (f))]2).

The integral term in the right hand side of the first covariance function (38) comes from the fact that the N -
particle approximating model has an interacting jump part. This extra degree of randomness induces a greater
covariance function. For instance in the degenerate situation where L = 0 we have Xt = X0, η0 = ηt and for
ρ = 1

E(W η
t,T (f)2) = (1 + 2at) η0((f − η0(f))2) −−−−−→

t→∞
∞

but for ρ = 0

E(W η
t,T (f)2) = η0((f − η0(f))2).
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In contrast to the latter situation suppose the semigroup P satisfies the mixing condition (P1) for some ε > 0.
In this situation, for any s+ 1 ≤ T and x, x′ ∈ E we have that

P v
s,T (1)(x) = Es,x

(
exp

[∫ T

s

V (Xr)dr

])

= Es,x

(
exp

[∫ s+1

s

V (Xr)dr
]

Es+1,Xs+1

(
exp

[∫ T

s+1

V (Xr)dr

]))

≤ ε−1 e‖V ‖
∫

E

P1(x′, dy) Es+1,y

(
exp

[∫ T

s+1

V (Xr)dr

])

= ε−1 e‖V ‖ Es,x′

(
Es+1,Xs+1

(
exp

[∫ T

s+1

V (Xr)dr

]))
.

As a result we get

P v
s,T (1)(x) ≤ ε−1 eosc(V ) Es,x′

(
exp

[∫ s+1

s

V (Xr)dr
]
Es+1,Xs+1(exp

[∫ T

s+1

V (Xr) dr

]
)

)
= ε−1 eosc(V ) P v

s,T (1)(x′).

This leads to the estimates

εe−osc(V ) ≤ P v
s,T (1)(x)/P v

s,T (1)(x′) ≤ ε−1 eosc(V ). (39)

From Proposition 2.5 we also know there exists some strictly positive constant α > 0 (depending on the
parameter ε and on the potential V ) such that for any t ≥ 2 and µ, ν ∈ P(E)

‖Φs,s+t(µ)− Φs,s+t(ν)‖tv ≤ e−αt. (40)

At this point it is convenient to notice that for µ ∈ P(E), x ∈ E and s ≤ T

P v
s,T

µP v
s,T (1)

(f − ηT (f))(x) =
∫

E

ηs(dx′)
P v

s,T (1)(x)
µP v

s,T (1)
P v

s,T (1)(x′)
ηsP v

s,T (1)

[
P v

s,T (f)
P v

s,T (1)
(x) − P v

s,T (f)
P v

s,T (1)
(x′)

]
.

It also follows from (40) that for s+ 2 ≤ T ,∣∣∣∣∣P v
s,T (f)
P v

s,T (1)
(x) − P v

s,T (f)
P v

s,T (1)
(x′)

∣∣∣∣∣ ≤ 2 ‖Φs,T (δx)− Φs,T (δx′)‖tv ≤ 2 e−α(T−s)

and for any µ ∈ P(E), equation (39) implies that∥∥∥∥∥ P v
s,T

µP v
s,T (1)

(f − ηT (f))

∥∥∥∥∥ ≤ 2 ε−1 eosc(V ) e−α(T−s). (41)

.
From the fluctuations presented in Proposition 3.7 we have for ρ = 1

E(W η
t,T (f)2) ≤

[
4 ε−2 e2osc(V )

] [
e−2α(T−t) + 2 ‖V ‖

∫ t

0

e−2α(T−s)ds
]

≤ 4 e−2α(T−t) [1 + ‖V ‖ /α]
[
e2osc(V )/ε2

]
.
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This leads for ρ = 1 to the following uniform bound with respect to the time parameter

sup
t≤T

E(W η
t,T (f)2)1/2 ≤ 2 [1 + ‖V ‖ /α]1/2 [ eosc(V )/ε].

In much the same way for ρ = 0 we have that

sup
t≤T

E(W η
t,T (f)2)1/2 ≤ 2 [1 + ‖V ′‖ /α]1/2 [ eosc(V )/ε].

Conjecture 3.8. From these observations, when the semigroup P satisfies the mixing condition (P1), it is
natural to conjecture that the right exponent in Theorem 3.6 is β = 1. This conjecture has been proved in
the discrete time case in [4] (p. 36) (see also Cor. 3.8 in [8] for the empirical process version). The proof is
essentially based on an particular decomposition of the errors and it seems difficult to find its analog in the
continuous time case.
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