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ESTIMATING THE CONDITIONAL DENSITY BY HISTOGRAM
TYPE ESTIMATORS AND MODEL SELECTION

Mathieu Sart1

Abstract. We propose a new estimation procedure of the conditional density for independent and
identically distributed data. Our procedure aims at using the data to select a function among arbitrary
(at most countable) collections of candidates. By using a deterministic Hellinger distance as loss,
we prove that the selected function satisfies a non-asymptotic oracle type inequality under minimal
assumptions on the statistical setting. We derive an adaptive piecewise constant estimator on a random
partition that achieves the expected rate of convergence over (possibly inhomogeneous and anisotropic)
Besov spaces of small regularity. Moreover, we show that this oracle inequality may lead to a general
model selection theorem under very mild assumptions on the statistical setting. This theorem guarantees
the existence of estimators possessing nice statistical properties under various assumptions on the
conditional density (such as smoothness or structural ones).
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1. Introduction

Let (Xi, Yi)1≤i≤n be n independent and identically distributed random variables defined on an abstract
probability space (Ω, E ,P ) with values in X × Y. We suppose that the conditional law L(Yi | Xi) admits a
density s(Xi, ·) with respect to a known σ-finite measure μ. In this paper, we address the problem of estimating
the conditional density s on a given subset A ⊂ X × Y.

When (Xi, Yi) admits a joint density f(X,Y ) with respect to a product measure ν ⊗ μ, one can rewrite s as

s(x, y) =
f(X,Y )(x, y)
fX(x)

for all x, y ∈ X × Y such that fX(x) > 0,

where fX stands for the density of Xi with respect to ν. A first approach to estimate s was introduced in
the late 60’s by Rosenblatt [28]. The idea was to replace the numerator and the denominator of this ratio
by Kernel estimators. We refer to [25] for a study of its asymptotic properties. An alternative point of view
is to consider the conditional estimation density problem as a non-parametric regression problem. This has
motivated the definition of local parametric estimators which have been asymptotically studied in [16, 20, 26].
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Another approach was proposed by [22]. He showed asymptotic results for his copula based estimator under
smoothness assumptions on the marginal density of Y and the copula function.

The aforementioned procedures depend on some parameters that should be tuned according to the (usually
unknown) regularity of s. The practical choice of these parameters is for instance discussed in [21] (see also
the references therein). Nonetheless, adaptive estimation procedures are rather scarce in the literature. We can
cite the procedure of [18] which yields an oracle inequality for an integrated L

2 loss. His estimator is sharp
minimax under Sobolev type constraints. Bott and Kohler [12] adapted the combinatorial method of [17] to the
problem of bandwidth selection in kernel conditional density estimation. They showed that this method allows
to select the bandwidth according to the regularity of s by proving an oracle inequality for an integrated L

1 loss.
The papers of [2, 13] are based on the minimisation of a penalized L

2 contrast inspired from the least squares.
They established a model selection result for an empirical L

2 loss and then for an integrated L
2 loss. These

procedures build adaptive estimators that may achieve the minimax rates over Besov classes. The paper of [14]
is based on projection estimators, Goldenshluger and Lepski methodology and a transformation of the data.
She showed an oracle inequality for an integrated L

2 loss from which she deduced that her estimator is adaptive
and reaches the expected rate of convergence under Sobolev constraints on an auxiliary function. Cohen and
Le Pennec [15] gave model selection results for the penalized maximum likelihood estimator for a loss based on
a Jensen−Kullback−Leibler divergence and under bracketing entropy type assumptions on the models.

Another estimation procedure that can be found in the literature is the one of T -estimation (T for test)
developed by [9]. It leads to much more general model selection theorems, which allows the statistician to model
finely the knowledge he has on the target function to obtain accurate estimates. It is shown in [11] that one can
build a T -estimator of the conditional density. We now define the loss used in that paper to compare it with
ours. We suppose henceforth that the distribution of Xi is absolutely continuous with respect to a known σ-
finite measure ν. Let fX be its Radon–Nikodym derivative. We denote by L

1
+(A, ν⊗μ) the cone of non-negative

integrable functions on X×Y with respect to the product measure ν⊗μ vanishing outside A. Birgé [11] measured
the quality of his estimator by means of the Hellinger deterministic distance δ defined by

δ2(f, g) =
1
2

∫
A

(√
f(x, y) −

√
g(x, y)

)2

dν(x) dμ(y) for all f, g ∈ L
1
+(A, ν ⊗ μ).

It is assumed in that paper that the marginal density fX of X is bounded from below by a positive constant.
This classical assumption seems natural in the sense that the estimation of s is better in regions of high value
of fX than regions of low value as stressed for instance in [8]. In the present paper, we bypass this assumption
by measuring the quality of our estimators through the Hellinger distance h defined by

h2(f, g) =
1
2

∫
A

(√
f(x, y) −

√
g(x, y)

)2

fX(x) dν(x) dμ(y) for all f, g ∈ L
1
+(A, ν ⊗ μ).

The marginal density fX can even vanish, in contrast to most of the papers cited above. We propose a new and
data-driven (penalized) criterion adapted to this unknown loss. Its definition is in the line of the ideas developed
in [3, 7, 29].

The main result is an oracle type inequality for (at most) countable families of functions of L
1
+(A, ν ⊗ μ).

This inequality holds true without additional assumptions on the statistical setting. We use it a first time as
an alternative to resampling methods to select among families of piecewise constant estimators. We deduce an
adaptive estimator that achieves the expected rates of convergence over a range of (possibly inhomogeneous and
anisotropic) Besov classes, including the ones of small regularities. A second application of this inequality leads
to a new general model selection theorem under very mild assumptions on the statistical setting. We propose 3
illustrations of this result. The first shows the existence of an adaptive estimator that attains the expected rate
of convergence (up to a logarithmic term) over a very wide range of (possibly inhomogeneous and anisotropic)
Besov spaces. This estimator is therefore able to cope in a satisfactory way with very smooth conditional densities
as well as with very irregular ones. The second illustration deals with the celebrated regression model. It shows
that the rates of convergence can be faster than the ones we would obtain under pure smoothness assumptions
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on s when the data actually obey to a regression model (not necessarily Gaussian). The last illustration concerns
the case where the random variables Xi lie in a high dimensional linear space, say X = R

d1 with d1 large. In
this case, we explain how our procedure can circumvent the curse of dimensionality.

The paper is organized as follows. In Section 2, we carry out the estimation procedure and the oracle inequality.
We use it to select among a family of piecewise constant estimators and study the quality of the selected
estimator. Section 3 is dedicated to the general model selection theorem and its applications. The proofs are
postponed to Section 4.

We now introduce the notations that will be used all along the paper. We set N
� = N \ {0}, R+ = [0,+∞),

R
�
+ = (0,+∞). For x, y ∈ R, x∧y (respectively x∨y) stands for min(x, y) (respectively max(x, y)). The positive

part of a real number x is denoted by x+ = x∨ 0. The distance between a point x and a set A in a metric space
(E, d) is denoted by d(x,A) = infy∈A d(x, y). The cardinality of a finite set A is denoted by |A|. The restriction
of a function f to a set A is denoted by f A. The indicator function of a set A is denoted by �A. The notations
c, C, c′, C′, c1, C1, c2, C2, . . . are for the constants. These constants may change from line to line.

2. Selection among points and hold-out

Throughout the paper, n > 3 and A is of the form A = A1 ×A2 with A1 ⊂ X, A2 ⊂ Y.

2.1. Selection rule and main theorem

Let L(A, μ) be the subset of L
1
+(A, ν ⊗ μ) defined by

L(A, μ) =
{
f ∈ L

1
+(A, ν ⊗ μ), sup

x∈A1

∫
A2

f(x, y) dμ(y) ≤ 1
}
,

and let S be an at most countable subset of L(A, μ). The aim of this section is to use the data (Xi, Yi)1≤i≤n

in order to select a function ŝ ∈ S close to the unknown conditional density s. We begin by presenting the
procedure. The underlying motivations will be further discussed below.

Let Δ̄ be a map on S satisfying

∀f ∈ S, Δ̄(f) ≥ 1 and
∑
f∈S

e−Δ̄(f) ≤ 1.

We define the function T on S2 by

T (f, f ′) =
1
n

n∑
i=1

√
f ′(Xi, Yi) −

√
f(Xi, Yi)√

f(Xi, Yi) + f ′(Xi, Yi)

+
1
2n

n∑
i=1

∫
A2

√
f(Xi, y) + f ′(Xi, y)

(√
f ′(Xi, y) −

√
f(Xi, y)

)
dμ(y)

+
1√
2n

n∑
i=1

∫
A2

(f(Xi, y) − f ′(Xi, y)) dμ(y),

where the convention 0/0 = 0 is used. We set for L > 0,

γ(f) = sup
f ′∈S

{
T (f, f ′) − L

Δ̄(f ′)
n

}
·

We finally define our estimator ŝ ∈ S as any element of S such that

γ(ŝ) + L
Δ̄(ŝ)
n

≤ inf
f∈S

{
γ(f) + L

Δ̄(f)
n

}
+

1
n
· (2.1)
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Remark 2.1. The definition of T comes from a decomposition of the Hellinger distance initiated by [3] and
taken back in [4,7,29,30]. We shall show in the proof of Theorem 2.2 that for all f, f ′ ∈ L(A, μ), ξ > 0, the two
following assertions hold true with probability larger than 1 − e−nξ:

• If T (f, f ′) ≥ 0, then h2(s, f ′) ≤ c1h
2(s, f) + c2ξ

• If T (f, f ′) ≤ 0, then h2(s, f) ≤ c1h
2(s, f ′) + c2ξ.

In the above inequalities, c1 and c2 are positive universal constants. The sign of T (f, f ′) allows thus to know
which function among f and f ′ is the closest to s (up to the multiplicative constant c1 and the remainder term
c2ξ). Note that comparing directly h2(s, f) to h2(s, f ′) is not straightforward in practice since s and h are both
unknown to the statistician.

The definition of the criterion γ looks like the one proposed in Section 4.1 of [29] for estimating the transition
density of a Markov chain as well as the one proposed in [7] for estimating one or several densities. The
underlying idea is that γ(f) + LΔ̄(f)/n is roughly between h2(s, f) and h2(s, f) + LΔ̄(f)/n. It is thus natural
to minimize γ(·) +LΔ̄(·)/n to define an estimator ŝ of s. To be more precise, when L is large enough, the proof
of Theorem 2.2 shows that for all ξ > 0, the following chained inequalities hold true with probability larger
than 1 − e−nξ uniformly for f ∈ S,

(1 − ε)h2(s, f) −R1(ξ) ≤ γ(f) + L
Δ̄(f)
n

≤ (1 + ε)h2(s, f) + 2L
Δ̄(f)
n

+R2(ξ)

where

R1(ξ) = inf
f ′∈S

{
(1 + ε)h2(s, f ′) + L

Δ̄(f ′)
n

}
+ c3ξ

R2(ξ) = −(1 − ε)h2(s, S) + c4ξ

for universal constants c3 > 0, c4 > 0, ε ∈ (0, 1). We recall that h2(s, S) is the square of the Hellinger distance
between the conditional density s and the set S, h2(s, S) = inff∈S h

2(s, f). Therefore, as ŝ satisfies (2.1),

(1 − ε)h2(s, ŝ) ≤ γ(ŝ) + L
Δ̄(ŝ)
n

+R1(ξ)

≤ inf
f∈S

{
γ(f) + L

Δ̄(f)
n

}
+ 1/n+R1(ξ)

≤ inf
f∈S

{
(1 + ε)h2(s, f) + 2L

Δ̄(f)
n

}
+ 1/n+R1(ξ) +R2(ξ).

Rewriting this last inequality and using that Δ̄ ≥ 1 yields:

Theorem 2.2. There exists a universal constant L0 such that if L ≥ L0, any estimator ŝ ∈ S satisfying (2.1)
satisfies

∀ξ > 0, P

[
h2(s, ŝ) ≤ C1 inf

f∈S

{
h2(s, f) + L

Δ̄(f)
n

}
+ C2ξ

]
≥ 1 − e−nξ, (2.2)

where C1, C2 are universal positive constants. In particular,

E
[
h2(s, ŝ)

] ≤ C3 inf
f∈S

{
h2(s, f) + L

Δ̄(f)
n

}
,

where C3 > 0 is universal.
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Note that the marginal density fX influences the performance of the estimator ŝ through the Hellinger loss h
only. Moreover, no information on fX is needed to build the estimator.

We can interpret the condition
∑

f∈S e−Δ̄(f) ≤ 1 as a (sub)-probability on S. The more complex S, the larger
the weights Δ̄(f). When S is finite, one can choose Δ̄(f) = | logS|, and the above inequality becomes

P

[
h2(s, ŝ) ≤ C1

(
h2(s, S) + L

| logS|
n

)
+ C2ξ

]
≥ 1 − e−nξ.

The Hellinger quadratic risk of the estimator ŝ can therefore be bounded from above by a sum of two terms
(up to a multiplicative constant): the first one stands for the bias term while the second one stands for the
estimation term.

Let us mention that assuming that S is a subset of L(A, μ) is not restrictive. Indeed, if f belongs to L
1
+(A, ν⊗

μ) \ L(A, μ), we can set

π(f)(x, y) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f(x, y)∫
A2
f(x, t) dμ(t)

if
∫

A2
f(x, t) dμ(t) > 1 and

∫
A2
f(x, t) dμ(t) <∞

f(x, y) if
∫

A2
f(x, t) dμ(t) ≤ 1

0 if
∫

A2
f(x, t) dμ(t) = ∞.

The function π(f) belongs to L(A, μ) and does always better than f :

Proposition 2.3. For all f ∈ L
1
+(A, ν ⊗ μ),

h2(s, π(f)) ≤ h2(s, f).

Thereby, if S is only assumed to be a subset of L
1
+(A, ν ⊗ μ), the procedure applies with S′ = {π(f), f ∈ S} ⊂

L(A, μ) in place of S (and with Δ̄(π(f)) = Δ̄(f)). The resulting estimator ŝ ∈ S′ then satisfies (2.2).

Remark 2.4. the procedure does not depend on the dominating measure ν. However, the set S, which must
be chosen by the statistician, must satisfy the above assumption S ⊂ L

1
+(A, ν ⊗ μ), which usually requires

the knowledge of ν. Actually, this assumption can be slightly strengthened to deal with an unknown, but finite
measure ν. This may be of interest when ν is the (unknown) marginal distribution of Xi (in which case fX = 1).
More precisely, let L

1
+,sup(A, μ) be the set of non-negative measurable functions vanishing outside A such that

sup
x∈A1

∫
A2

f(x, y) dμ(y) <∞.

The assumption S ⊂ L
1
+,sup(A, μ) can be satisfied without knowing ν and implies S ⊂ L

1
+(A, ν ⊗ μ).

2.2. Hold-out

As a first application of our oracle inequality, we consider the situation in which the set S is a family of
estimators built on a preliminary sample. We suppose therefore that we have at hand two independent samples
of Z = (X,Y ): Z1 = (Z1, . . . , Zn) and Z2 = (Zn+1, . . . , Z2n). This is equivalent to splitting an initial sample
(Z1, . . . , Z2n) of size 2n into two equal parts: Z1 and Z2.

Let Ŝ = {ŝλ, λ ∈ Λ} ⊂ L
1
+(A, ν ⊗ μ) be an at most countable collection of estimators based only on the first

sample Z1. In view of Proposition 2.3, we may assume, without loss of generality, that for all λ ∈ Λ,

∀x ∈ A1,

∫
A2

ŝλ(x, y) dμ(y) ≤ 1.

Let Δ ≥ 1 be a map defined on Λ such that
∑

λ∈Λ e−Δ(λ) ≤ 1.
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Conditionally to Z1, Ŝ is a deterministic set. We can therefore apply our selection rule to S = Ŝ, Δ̄(ŝλ) = Δ(λ)
and to the sample Z2 to derive an estimator ŝ such that:

∀ξ > 0, P

[
h2(s, ŝ) ≤ C1 inf

λ∈Λ

{
h2(s, ŝλ) + L

Δ(λ)
n

}
+ C2ξ

∣∣∣ Z1

]
≥ 1 − e−nξ.

By taking the expectation with respect to Z1, we then deduce:

∀ξ > 0, P

[
h2(s, ŝ) ≤ C1 inf

λ∈Λ

{
h2(s, ŝλ) + L

Δ(λ)
n

}
+ C2ξ

]
≥ 1 − e−nξ. (2.3)

Note that there is almost no assumption on the preliminary estimators. It is only assumed that ŝλ ∈ L
1
+(A, ν⊗μ).

Besides, the non-negativity of ŝλ can always be fixed by taking its positive part if needed. We may therefore
select among Kernel estimators (to choose the bandwith for instance), local polynomial estimators, projection
estimators . . . It is also possible to mix in the collection {ŝλ, λ ∈ Λ} several type of estimators. From a numerical
point of view, the procedure can be implemented in practice provided that |Λ| is finite and not too large.

We shall illustrate this result by applying it to some families of piecewise constant estimators. As we shall
see, the resulting estimator ŝ will be optimal and adaptive over some range of possibly anisotropic Höder and
possibly inhomogeneous Besov classes.

2.3. Histogram type estimators

We now define the piecewise constant estimators. Let m be a (finite) partition of A ⊂ X × Y, and

ŝm(x, y) =
∑

K∈m

∑n
i=1 �K(Xi, Yi)∑n

i=1 (δXi ⊗ μ) (K)
�K(x, y),

where the conventions 0/0 = 0, x/∞ = 0 are used. Györfi and Kohler [23] established an integrated L
1 risk bound

for ŝm under Lipschitz conditions on s. We are nevertheless unable to find in the literature a non-asymptotic
risk bound for the Hellinger deterministic loss h. We propose the following result (which is assumption free
on s):

Proposition 2.5. Let m be a (finite) partition of A such that each K ∈ m is of the form I × J with I ⊂ A1,
J ⊂ A2 and μ(J) < ∞. Let Vm be the cone of non-negative piecewise constant functions on the partition m
defined by

Vm =

{∑
K∈m

aK�K , ∀K ∈ m, aK ∈ [0,+∞)

}
.

Then,

E
[
h2(s, ŝm)

] ≤ 4h2(s, Vm) + 4
|m|
n

·

This result shows that the Hellinger quadratic risk h2(s, ŝm) of the estimator ŝm can be bounded by a sum of
two terms. The first one h2(s, Vm) corresponds to a bias term whereas the second one |m|/n corresponds to a
variance or estimation term. A deviation bound can also be established for some partitions:

Proposition 2.6. Assume that m is a (finite) partition of A of the form

m = {I × J, I ∈ I, J ∈ JI} ,
where I is a (finite) partition of A1, and, for each I ∈ I, JI is a (finite) partition of A2 such that μ(J) < ∞
for all J ∈ JI .

Then, there exist universal constants C1, C2 > 0 such that for all ξ > 0,

P

[
h2(s, ŝm) ≤ 4h2(s, Vm) + C1

|m|
n

+ C2ξ

]
≥ 1 − e−nξ.
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2.4. Selecting among piecewise constant estimators by Hold-out

The risk of a histogram type estimator ŝm depends on the choice of the partition m: the thinner m, the
smaller the bias term h2(s, Vm) but the larger the variance term |m|/n. Choosing a good partition m, that is a
partition that realizes a good trade-off between the bias and variance terms is difficult in practice since h2(s, Vm)
is unknown (as it involves the unknown conditional density s and the unknown distance h). Nevertheless,
combining (2.3) and Proposition 2.5 immediately entails the following corollary.

Corollary 2.7. Let M be an at most countable collection of finite partitions m of A. Assume that each K ∈ m
is of the form I × J with I ⊂ A1, J ⊂ A2 and μ(J) <∞. Let Δ ≥ 1 be a map on M satisfying∑

m∈M
e−Δ(m) ≤ 1.

Then, there exists an estimator ŝ such that

E
[
h2 (s, ŝ)

] ≤ C inf
m∈M

{
h2 (s, Vm) +

|m| +Δ(m)
n

}
, (2.4)

where C is a universal positive constant.

The novelty of this oracle inequality lies in the fact that it holds for an (unknown) deterministic Hellinger
loss under very mild assumptions both on the partitions and the statistical setting. We avoid some classical
assumptions that are required in the literature to prove similar inequalities (see, for instance, Thm. 3.1 of [2]
for a result with respect to a L

2 loss).

2.5. Minimax rates over Höder and Besov spaces

We can now deduce from (2.4) estimators with nice statistical properties under smoothness assumptions on
the conditional density. Throughout this section, X × Y = R

d, A = [0, 1]d and μ is the Lebesgue measure.

2.5.1. Höder spaces

Given α ∈ (0, 1], we recall that the Hölder space Hα([0, 1]) is the set of functions f on [0, 1] for which there
exists |f |α > 0 such that

|f(x) − f(y)| ≤ |f |α|x− y|α for all x, y ∈ [0, 1]. (2.5)

Given α = (α1, . . . , αd) ∈ (0, 1]d, the Höder space Hα([0, 1]d) is the set of functions f on [0, 1]d such that for
all (x1, . . . , xd) ∈ (0, 1]d, j ∈ {1, . . . , d},

fj(·) = f(x1, · · · , xj−1, ·, xj+1, . . . xd)

satisfies (2.5) with some constant |fj |αj independent of x1, . . . , xj−1, xj+1, . . . , xd. We then set |f |α =
max1≤j≤d |fj |αj . When all the αj are equals, the Höder space Hα([0, 1]d) is said to be isotropic and anisotropic
otherwise.

Choosing suitably the collection M of partitions allows to bound from above the right-hand side of (2.4)
when

√
s [0,1]d is Hölderian. More precisely, for each integer N ∈ N

�, let mN be the regular partition of [0, 1]
with N pieces

mN = {[0, 1/N ] , [1/N, 2/N [ , . . . , [(N − 1)/N, 1]} .
We may define for each multi-integer N = (N1, . . . , Nd) ∈ (N�)d,

mN =

⎧⎨
⎩

d∏
j=1

Ij , ∀j ∈ {1, . . . , d}, Ij ∈ mNj

⎫⎬
⎭ .
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We now choose M =
{
mN, N ∈ (N�)d

}
, Δ(mN) = |mN| to deduce (see, for instance, Lem. 4 and Cor. 2 of [10]

among numerous other references):

Corollary 2.8. There exists an estimator ŝ such that for all α ∈ (0, 1]d and
√
s [0,1]d ∈ Hα([0, 1]d),

E
[
h2 (s, ŝ)

] ≤ C
[∣∣√s [0,1]d

∣∣ 2d
d+2ᾱ

α
n− 2ᾱ

2ᾱ+d + n−1
]
,

where ᾱ stands for the harmonic mean of α

1
ᾱ

=
1
d

d∑
i=1

1
αi
,

and where C is a positive constant depending only on d.

The estimator ŝ achieves therefore the optimal rate of convergence over the anisotropic Höder classes Hα([0, 1]d),
α ∈ (0, 1]d. It is moreover adaptive since its construction does not involve the smoothness parameter α.

2.5.2. Besov spaces

The preceding result may be generalized to the Besov classes under a mild assumption on the design density.
We refer to Section 2.3 of [1] for a precise definition of the Besov spaces. According to the notations developed

in this paper, Bα
q (Lp([0, 1]d)) stands for the Besov space with parameters p > 0, q > 0, and smoothness index

α ∈ (R�
+)d. We denote its semi norm by | · |α,p,q. This space is said to be homogeneous when p ≥ 2 and

inhomogeneous otherwise. It is said to be isotropic when all the αj are equals and anisotropic otherwise. We
now set for p ∈ (0,+∞],

Bα(Lp([0, 1]d)) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Bα∞(Lp([0, 1]d)) if p ∈ (0, 1]

Bα
p (Lp([0, 1]d)) if p ∈ (1, 2)

Bα∞(Lp([0, 1]d)) if p ∈ [2,+∞)

Hα([0, 1]d) if p = ∞

and denote by | · |α,p the semi norm associated to the space Bα(Lp([0, 1]d)).
The algorithm of [1] provides a collection M of partitions m that allows to bound the right-hand side of (2.4)

from above when
√
s [0,1]d belongs to a Besov space. More precisely:

Corollary 2.9. Suppose that the (possibly unknown) density fX of Xi is upper bounded by a (possibly unknown)
constant κ and that ν is the Lebesgue measure.

Then, there exists an estimator ŝ such that, for all p ∈ (2d/(d+2),+∞], α ∈ (0, 1)d, ᾱ > d(1/p− 1/2)+ and√
s [0,1]d ∈ Bα(Lp([0, 1]d)),

E
[
h2 (s, ŝ)

] ≤ C
[∣∣√s [0,1]d

∣∣ 2d
d+2ᾱ

α,p
n− 2ᾱ

2ᾱ+d + n−1
]
, (2.6)

where C > 0 depends only on κ,d,α,p and where ᾱ denotes the harmonic mean of α.

Remark 2.10. the control of the bias term h(s, Vm) in (2.4) naturally involves a smoothness assumption on
the square root of s instead of s. However, the regularity of the square root of s may be deduced from that
of s. Indeed, we can prove that if s ∈ Bα

q (Lp([0, 1]d)) with α ∈ (0, 1)d then
√
s ∈ B

α/2
2q (L2p([0, 1]d)) and

|√s|α/2,2p,2q ≤√|s|α,p,q. If, additionally, s is positive on [0, 1]d, then
√
s also belongs to Bα

q (Lp([0, 1]d)) and

|√s|α,p,q ≤ |s|α,p,q

2
√

infx∈[0,1]d s(x)
·
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Under the assumption of Corollary 2.9, we deduce that if s ∈ Bα∞(Lp([0, 1]d)) for some p ∈ (2d/(d + 2),+∞],
α ∈ (0, 1)d, ᾱ > d(1/p− 1/2)+,

E
[
h2(s, ŝ)

] ≤ C

⎡
⎣min

⎧⎨
⎩
( ∣∣s [0,1]d

∣∣
α,p,∞(

infx∈[0,1]d s(x)
)1/2

) 2d
d+2ᾱ

n− 2ᾱ
2ᾱ+d ,

∣∣s [0,1]d
∣∣ d

d+ᾱ

α,p,∞ n− ᾱ
ᾱ+d

⎫⎬
⎭+ n−1

⎤
⎦ ,

where C > 0 depends only on κ,d,α,p.

3. Model selection

The construction of adaptive and optimal estimators over Höder and Besov classes follows from the oracle
inequality (2.4). This inequality is itself deduced from Theorem 2.2. Actually, this latter theorem can be applied
in a different way to deduce a more general oracle inequality. We can then derive adaptive and (nearly) optimal
estimators over more general classes of functions.

3.1. A general model selection theorem

From now on, the following assumption holds.

Assumption 3.1. The (possibly unknown) density fX of Xi is bounded above by a (possibly unknown) con-
stant κ. Moreover, ν(A1) ≤ 1.

Let L
2(A, ν ⊗ μ) be the space of square integrable functions on A with respect to the product measure ν ⊗μ

endowed with the distance

d2
2(f, f

′) =
∫

A

(f(x, y) − f ′(x, y))2 dν(x) dμ(y) for all f, f ′ ∈ L
2(A, ν ⊗ μ).

We say that a subset V of L
2(A, ν ⊗ μ) is a model if it is a finite dimensional linear space.

The discretization trick described in Section 4.2 of [29] can be adapted to our statistical setting. It leads to
the theorem below.

Theorem 3.2. Suppose that Assumption 3.1 holds. Let V be an at most countable collection of models. Let
Δ ≥ 1 be a map on V satisfying ∑

V ∈V

e−Δ(V ) ≤ 1.

Then, there exists an estimator ŝ such that for all ξ > 0

P

[
h2(s, ŝ) ≤ C

(
inf

V ∈V

{
κd2

2

(√
s, V
)

+
Δ(V ) + dim(V ) logn

n

}
+

κ

n2
+ ξ

)]
≥ 1 − e−nξ, (3.1)

where C > 0 is universal. In particular,

E
[
h2(s, ŝ)

] ≤ C′ inf
V ∈V

{
d2
2

(√
s, V
)

+
Δ(V ) + dim(V ) logn

n

}
,

where C′ > 0 depends only on κ.

As in Theorem 2.2, the condition
∑

V ∈V
e−Δ(V ) ≤ 1 has a Bayesian flavour since it can be interpreted as a (sub)-

probability on V. When V does not contain too many models per dimension, we can set Δ(V ) = (dimV ) logn,
in which case (3.1) becomes

P

[
h2(s, ŝ) ≤ C′′

(
inf

V ∈V

{
κd2

2

(√
s, V
)

+
dim(V ) log n

n

}
+

κ

n2
+ ξ

)]
≥ 1 − e−nξ,

where C′′ is universal.
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This theorem is more general than Corollary 2.7 since it enables us to deal with more general models V .
Moreover, it provides a deviation bound for h2(s, ŝ), which is not the case of Corollary 2.7. As a counterpart, it
requires an assumption on the marginal density fX and the bound involves a logarithmic term and κ.

Another difference between this theorem and Corollary 2.7 lies in the computation time of the estimators.
The estimator of Corollary 2.7 may be built in practice in a reasonable amount of time if |M| is not too large.
On the opposite, the procedure leading to the above estimator (which is described in the proof of the theorem)
is numerically very expensive, and it is unlikely that it could be implemented in a reasonable amount of time.
This estimator should therefore be only considered for theoretical purposes.

3.2. From model selection to estimation

It is recognized that a model selection theorem such as Theorem 3.2 is a bridge between statistics and
approximation theory. Indeed, it remains to choose models with good approximation properties with respect to
the assumptions we wish to consider on s to automatically derive a good estimator ŝ.

A convenient way to model these assumptions is to consider a class F of functions of L
2(A, ν ⊗ μ) and to

suppose that
√
s A belongs to F . The aim is then to choose (V, Δ) and to bound

εF (f) = inf
V ∈V

{
d2
2 (f, V ) +

Δ(V ) + dim(V ) logn
n

}
for all f ∈ F

from above since

E
[
h2(s, ŝ)

] ≤ C′εF (
√
s)

P
[
h2(s, ŝ) ≤ C′′εF (

√
s) + C′′′ξ

] ≥ 1 − e−nξ for all ξ > 0

where C′, C′′ depend only on κ and where C′′′ is universal. This work has already been carried out in the litera-
ture for different classes F of interest. The flexibility of our approach enables the study of various assumptions
as illustrated by the three examples below. We refer to [5,29] for additional examples. In the remainder of this
section, μ and ν stand for the Lebesgue measure.

Besov classes.

We suppose that X × Y = R
d, A = [0, 1]d and that F is the class of smooth functions defined by

F = B([0, 1]d) =
⋃

p∈(0,+∞)

⎛
⎜⎜⎜⎝

⋃
α∈(0,+∞)d

ᾱ>d(1/p−1/2)+

Bα(Lp([0, 1]d))

⎞
⎟⎟⎟⎠ .

It is then shown in [29] that one can choose a collection V provided by Theorem 1 of [1] to get:

for all f ∈ B([0, 1]d), εF (f) ≤ C

[
|f |2d/(d+2ᾱ)

α,p

(
logn
n

)2ᾱ/(2ᾱ+d)

+
logn
n

]
, (3.2)

where p ∈ (0,+∞), α ∈ (0,+∞)d, ᾱ > d(1/p − 1/2)+ are such that f ∈ Bα(Lp([0, 1]d)) and where C > 0
depends only on d, p, α.

With this choice of models, the estimator ŝ of Theorem 3.2 converges at the expected rate (up to a logarithmic
term) for the Hellinger deterministic loss h over a very wide range of possibly inhomogeneous and anisotropic
Besov spaces. It is moreover adaptive with respect to the (possibly unknown) regularity index α of

√
s [0,1]d .



44 M. SART

Regression model.

We can also tackle the celebrated regression model Yi = g(Xi)+εi where g is an unknown function and where εi

is an unobserved random variable. For the sake of simplicity, X = Y = R, A1 = A2 = [0, 1]. The conditional
density s is of the form s(x, y) = ϕ (y − g(x)) where ϕ is the density of εi with respect to the Lebesgue measure.

Since ϕ and g are unknown, we can, for instance, suppose that these functions are smooth, which amounts
to saying that

√
s [0,1]2 belongs to

F =
⋃
α>0

{f, ∃φ ∈ Hα(R), ∃g ∈ B([0, 1]), ‖g‖∞ <∞, ∀x, y ∈ [0, 1], f(x, y) = φ(y − g(x))} .

Here, Hα(R) stands for the space of Hölderian functions on R with regularity index α ∈ (0,+∞) and semi norm
| · |α,∞. The notation ‖ ·‖∞ stands for the supremum norm: ‖g‖∞ = supx∈[0,1] |g(x)|. An upper bound for εF (f)
may be found in Section 4.4 of [29]. Actually, we show in Section 4.6 that this bound can be slightly improved.
To be more precise, the result is the following: for all α > 0, p ∈ (0,+∞], β > (1/p − 1/2)+, φ ∈ Hα(R),
g ∈ Bβ(Lp([0, 1])), such that ‖g‖∞ <∞, and all function f ∈ F of the form f(x, y) = φ(y − g(x)),

εF (f) ≤ C1

(
logn
n

) 2β(α∧1)
2β(α∧1)+1

+ C2

(
logn
n

) 2α
2α+1

, (3.3)

where C1 depends only on p, β, α, |g|β,p, ‖g‖∞, |φ|α∧1,∞ and where C2 depends only on α, ‖g‖∞, |φ|α,∞.
In particular, if φ is more regular than g in the sense that α ≥ β ∨ 1, then the rate for estimating the

conditional density s is the same as the one for estimating the regression function g (up to a logarithmic term).
As shown in [29], this rate is always faster than the rate we would obtain under smoothness assumptions only
that would ignore the specific form of s.

Remark 3.3. The reader could find in [29] a bound for εF when F corresponds to the heteroscedastic regres-
sion model Yi = g1(Xi) + g2(Xi)εi, where g1, g2 are smooth unknown functions.

A single index type model.

In this last example, we investigate the situation in which the explanatory random variables Xi lie in a high
dimensional linear space, say X = R

d1 with d1 large. On the contrary, the random variables Yi lie in a small
dimensional linear space, say Y = R

d2 with d2 small. Our aim is then to estimate s on A = A1 × A2 =
[0, 1]d1 × [0, 1]d2.

It is well known (and this appears in (3.2)) that the curse of dimensionality prevents us to get fast rate of
convergence under pure smoothness assumptions on s. A solution to overcome this difficulty is to use a single
index approach as proposed by [19, 24], that is to suppose that the conditional distribution L(Yi | Xi = x)
depends on x through an unknown parameter θ ∈ R

d1 . More precisely, we suppose in this section that s is of the
form s(x, y) = ϕ (< θ, x >, y) where < ·, · > denotes the usual scalar product on R

d1 and where ϕ is a smooth
unknown function. Without loss of generality, we can suppose that θ belongs to the unit �1 ball of R

d1 denoted
by B1(0, 1). We can reformulate these different assumptions by saying that

√
s [0,1]d1+d2 belongs to the set

F =
⋃

α∈(0,+∞)1+d2

{
f, ∃g ∈ Hα([0, 1]1+d2), ∃θ ∈ B1(0, 1), ∀(x, y) ∈ [0, 1]d1+d2 , f(x, y) = g(< θ, x >, y)

}
.

A collection of models V possessing nice approximation properties with respect to the elements f of F can
be built by using the results of [5]. We prove in Section 4.6 that we can bound εF (f) as follows: for all
α ∈ (0,+∞)1+d2 , g ∈ Hα([0, 1]1+d2), θ ∈ B1(0, 1), and all function f ∈ F of the form f(x, y) = g(< θ, x >, y),

εF (f) ≤ C1 |g|
2(1+d2)

1+d2+2ᾱ

α,∞

(
logn
n

) 2ᾱ
2ᾱ+1+d2

+ C2d1

logn ∨ log
(|g|2α1∧1,∞/d1

)
n

, (3.4)
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where C1 depends only on d2, α, and where C2 depends only on d2, α1. Although s is a function of d1 + d2

variables, the rate of convergence of ŝ corresponds to the estimation rate of a smooth function g of 1 + d2

variables only (up to a logarithmic term).

4. Proofs

4.1. Proof of Theorem 2.2

Lemma 4.1. For all f, f ′ ∈ S, and ξ > 0, there exists an event Ωξ(f, f ′) such that P [Ωξ(f, f ′)] ≥ 1 − e−nξ

and on which:

(1 − ε)h2 (s, f ′) + T (f, f ′) ≤ (1 + ε)h2 (s, f) + L1ξ,

where L1 > 0, ε ∈ (0, 1) are positive universal constants.

Proof. Let ψ1 and ψ2 be the functions defined on (R+)2 by

ψ1(x, y) =
√
y −√

x√
x+ y

ψ2(x, y) =

√
x+ y

2
− (√x+

√
y
)

where the convention 0/0 = 0 is used. Let

T1,i(f, f ′) = ψ1 (f(Xi, Yi), f ′(Xi, Yi))

T2,i(f, f ′) =
1√
2

∫
A2

ψ2 (f(Xi, y), f ′(Xi, y))
(√

f ′(Xi, y) −
√
f(Xi, y)

)
dμ(y).

We decompose T (f, f ′) as

T (f, f ′) =
1
n

n∑
i=1

(T1,i(f, f ′) + T2,i(f, f ′))

and define Z(f, f ′) = T (f, f ′) − E[T (f, f ′)].
We need the claim below whose proof requires the same arguments than those developed in the proofs of

Corollary 1 and Proposition 3 of [3]. As these arguments are short, we make them explicit at the end of this
section to make the paper self contained.

Claim 4.2. For all f, f ′ ∈ S,(√
2 − 1

)
h2 (s, f ′) + T (f, f ′) ≤

(
1 +

√
2
)
h2 (s, f) + Z (f, f ′) (4.1)

E
[
T 2

1,i (f, f ′)
] ≤ 6

[
h2(s, f) + h2(s, f ′)

]
. (4.2)

By using Cauchy−Schwarz inequality,

(T2,i(f, f ′))2 ≤
(∫

A2

(ψ2 (f(Xi, y), f ′(Xi, y)))
2 dμ(y)

)
×
(

1
2

∫
A2

(√
f ′(Xi, y) −

√
f(Xi, y)

)2

dμ(y)
)
. (4.3)

Note that the function

z ∈ [0,∞) �→
√

1 + z

1 +
√
z
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is bounded below by 1/
√

2 and bounded above by 1. Therefore, for all z ≥ 0,

1√
2
≤

√
1 + z

1 +
√
z
≤ 1 ⇐⇒ 1 +

√
z

2
≤
√

1 + z

2
≤ 1 +

√
z√

2

⇐⇒ −1 +
√
z

2
≤
√

1 + z

2
− (1 +

√
z) ≤ 1 −√

2√
2

(
1 +

√
z
)

=⇒
∣∣∣∣∣
√

1 + z

2
− (1 +

√
z)

∣∣∣∣∣ ≤ 1 +
√
z

2
.

For all x, y ≥ 0, we derive from this inequality with z = x/y that

|ψ2(x, y)| ≤
√
x+

√
y

2
for all x, y ≥ 0.

Thereby,

(ψ2(x, y))
2 ≤ (

√
x+

√
y)2

4
≤ x+ y

2
,

which together with f, f ′ ∈ L(A, μ) and (4.3) yields

E

[
(T2,i(f, f ′))2

]
≤ h2(f, f ′)

≤ 2h2(s, f) + 2h2(s, f ′).

By using (4.2), we get

E

[
(T1,i(f, f ′) + T2,i(f, f ′))2

]
≤ 2E

[
(T1,i(f, f ′))2 + (T2,i(f, f ′))2

]
≤ 16h2(s, f) + 16h2(s, f ′).

Now, T1,i(f, f ′) ≤ 1 as ψ1 is bounded by 1 and

T2,i(f, f ′) ≤ 1√
2

∫
A2

∣∣∣∣∣
√
f ′(Xi, y) +

√
f ′(Xi, y)

2

∣∣∣∣∣
∣∣∣√f ′(Xi, y) −

√
f(Xi, y)

∣∣∣ dμ(y)

≤ 1√
2

∫
A2

f ′(Xi, y) + f(Xi, y)
2

dμ(y)

≤ 1√
2
.

Bernstein’s inequality and more precisely equation (2.20) of [27] shows that for all ξ > 0,

P

[
Z(f, f ′) ≤

√
32 (h2(s, f) + h2(s, f ′)) ξ + (1 + 1/

√
2)ξ/3

]
≥ 1 − e−nξ.

Using now that
2
√
xy ≤ αx+ α−1y for all x, y ≥ 0 and α > 0,

we get with probability larger than 1 − e−nξ,

Z(f, f ′) ≤ α
√

8
(
h2(s, f) + h2(s, f ′)

)
+
(
(1 + 1/

√
2)/3 +

√
8α−1

)
ξ.

Therefore, we deduce from (4.1),(√
2 − 1 − α

√
8
)
h2 (s, f ′) + T (f, f ′) ≤

(√
2 + 1 + α

√
8
)
h2 (s, f) +

(
(1 + 1/

√
2)/3 +

√
8α−1

)
ξ.

It remains to choose α to complete the proof. Any value α ∈ (0, (
√

2 − 1)/
√

8) works. �
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Lemma 4.3. For all ξ > 0 and f ∈ S, there exists an event Ωξ(f) such that P [Ωξ(f)] ≥ 1 − e−nξ and on
which:

∀f ′ ∈ S, (1 − ε)h2 (s, f ′) + T (f, f ′) ≤ (1 + ε)h2 (s, f) + L1
Δ̄(f ′)
n

+ L1ξ, (4.4)

where L1 > 0, ε ∈ (0, 1) are given in Lemma 4.1. Moreover, there exists an event Ωξ such that P [Ωξ] ≥ 1−e−nξ

and on which:

∀f, f ′ ∈ S, (1 − ε)h2 (s, f ′) + T (f, f ′) ≤ (1 + ε)h2 (s, f) + L1
Δ̄(f ′)
n

+ L1
Δ̄(f)
n

+ L1ξ. (4.5)

Proof. The result follows easily from Lemma 4.1 by setting
Ωξ(f) =

⋂
f ′∈S

Ω
ξ+ Δ̄(f′)

n

(f, f ′) and Ωξ =
⋂
f∈S

Ω
ξ+ Δ̄(f)

n

(f). �

Lemma 4.4. Set L0 = (1 + log 2)L1 where L1 is given in Lemma 4.1. For all ξ > 0, the following holds with
probability larger than 1 − e−nξ: if L ≥ L0, for all f ∈ S,

(1 − ε)h2(s, f) −R1(ξ) ≤ γ(f) + L
Δ̄(f)
n

≤ (1 + ε)h2(s, f) + 2L
Δ̄(f)
n

+R2(ξ) (4.6)

where

R1(ξ) = inf
f ′∈S

{
(1 + ε)h2(s, f ′) + L

Δ̄(f ′)
n

}
+ c1ξ

R2(ξ) = −(1 − ε)h2(s, S) + c2ξ

and where ε is given in Lemma 4.1, and c1 and c2 are universal positive constants (c1 = 2L1 and c2 = L1).

Proof. Let g ∈ S be such that

(1 + ε)h2 (s, g) + L
Δ̄(g)
n

≤ inf
f ′∈S

{
(1 + ε)h2 (s, f ′) + L

Δ̄(f ′)
n

}
+ L1ξ.

We shall show that (4.6) holds on the event Ωξ+ log 2
n

(g) ∩Ωξ+ log 2
n
. We derive from (4.5) that for all f, f ′ ∈ S,

(1 − ε)h2 (s, f ′) +
(
T (f, f ′) − L

Δ̄(f ′)
n

)
≤ (1 + ε)h2 (s, f) + L1

Δ̄(f)
n

+ L1
log 2
n

+ L1ξ

≤ (1 + ε)h2 (s, f) + L
Δ̄(f)
n

+ L1ξ,

which in particular implies

γ(f) ≤ (1 + ε)h2 (s, f) + L
Δ̄(f)
n

− (1 − ε)h2(s, S) + L1ξ

≤ (1 + ε)h2 (s, f) + L
Δ̄(f)
n

+R2(ξ).

This proves the right inequality of (4.6). We now turn to the left one. We use (4.4) to get for all f ∈ S,

(1 − ε)h2 (s, f) ≤ (1 + ε)h2 (s, g) + T (f, g) + L1
Δ̄(f)
n

+ L1
log 2
n

+ L1ξ

≤ (1 + ε)h2 (s, g) + L
Δ̄(g)
n

+
(
T (f, g) − L

Δ̄(g)
n

)
+ L

Δ̄(f)
n

+ L1ξ

≤ (1 + ε)h2 (s, g) + L
Δ̄(g)
n

+ γ(f) + L
Δ̄(f)
n

+ L1ξ

≤ inf
f ′∈S

{
(1 + ε)h2 (s, f ′) + L

Δ̄(f ′)
n

}
+ γ(f) + L

Δ̄(f)
n

+ 2L1ξ.

This ends the proof. �
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The computations preceding Theorem 2.2 finally complete its proof.
Proof of Claim 4.2. Define the function g = (f + f ′)/2 and the measure ζ by

dζ(x, y) = fX(x) dν(x) dμ(y).

We have,

E [T (f, f ′)] =
1√
2

∫
A

√
f ′ −√

f√
g

s dζ +
1√
2

∫
A

√
g
(√

f ′ −
√
f
)

dζ +
1√
2

∫
A

(f − f ′) dζ

=
1√
2

(∫
A

√
f ′

g
s dζ +

∫
A

√
gf ′ dζ −

∫
A

f ′ dζ

)

− 1√
2

(∫
A

√
f

g
s dζ +

∫
A

√
gf dζ −

∫
A

f dζ

)
.

Now,

h2(s, f ′) − h2(s, f) =
(∫

A

√
sf dζ − 1

2

∫
A

f dζ
)
−
(∫

A

√
sf ′ dζ − 1

2

∫
A

f ′ dζ
)

= − 1√
2

E [T (f, f ′)] +
1
2

(∫
A

√
f ′

g
s dζ +

∫
A

√
gf ′ dζ − 2

∫
A

√
sf ′ dζ

)

−1
2

(∫
A

√
f

g
s dζ +

∫
A

√
gf dζ − 2

∫
A

√
sf dζ

)

= − 1√
2

E [T (f, f ′)] +
1
2

∫
A

√
f ′

g

(√
s−√

g
)2 dζ − 1

2

∫
A

√
f

g

(√
s−√

g
)2 dζ

≤ − 1√
2

E [T (f, f ′)] +
1
2

∫
A

√
f ′

g

(√
s−√

g
)2 dζ.

By using
√
f ′/g ≤ √

2, and a concavity argument,

1
2

∫
A

√
f ′

g

(√
s−√

g
)2 dζ ≤

√
2h2(s, g)

≤ 1√
2

(
h2(s, f) + h2(s, f ′)

)
.

We now derive from −E [T (f, f ′)] = −T (f, f ′) + Z(f, f ′) that,

h2(s, f ′) − h2(s, f) ≤ −T (f, f ′) + Z(f, f ′)√
2

+
1√
2

(
h2(s, f) + h2(s, f ′)

)
.

This proves (4.1).
We now turn to the proof of (4.2):

E
[
T 2

1,i (f, f ′)
]

=
1
2

∫
A

(√
f ′ −√

f
)2

g
s dζ

=
1
2

∫
A

(√
f ′ −

√
f
)2
(√

s−√
g√

g
+ 1
)2

dζ

≤
∫

A

(√
f ′ −√

f
)2

g

(√
s−√

g
)2 dζ +

∫
A

(√
f ′ −

√
f
)2

dζ.
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Now, (
√
f ′ −√

f)2/g ≤ 2 and hence,

E
[
T 2

1,i (f, f ′)
] ≤ 2

∫
A

(√
s−√

g
)2 dζ +

∫
A

(√
f ′ −

√
f
)2

dζ

≤ 4h2(s, g) + 2h2(f, f ′)
≤ 4h2(s, g) + 4h2(s, f) + 4h2(s, f ′).

By using a concavity argument, h2(s, g) ≤ 1/2(h2(s, f) + h2(s, f ′)). Finally,

E
[
T 2

1,i (f, f ′)
] ≤ 6

[
h2(s, f) + h2(s, f ′)

]
,

which proves (4.2). �

4.2. Proof of Proposition 2.3

As f belongs to L
1
+(A, ν ⊗μ), Fubini’s theorem says that there exists A′

1 ⊂ A1 such that ν(A1 \A′
1) = 0 and

such that
∀x ∈ A′

1,

∫
A2

f(x, y) dμ(y) <∞.

Let (L2(A2, μ), ‖ · ‖) be the linear space of square integrable functions on A2 with respect to μ.
For all x ∈ A′

1,
√
f(x, ·) belongs to L

2(A2, μ) and

√
π(f)(x, y) =

√
f(x, y)

max
(
‖√f(x, ·)‖, 1

) for all (x, y) ∈ A′
1 ×A2.

Note that
√
π(f)(x, ·) is the projection of

√
f(x, ·) onto the unit ball {g ∈ L

2(A2, μ), ‖g‖ ≤ 1}. As the projection
is Lipschitz continuous,

∥∥∥√π(s)(x, ·) −
√
π(f)(x, ·)

∥∥∥2 ≤
∥∥∥√s(x, ·) −√f(x, ·)

∥∥∥2 for all x ∈ A′
1.

As ‖√s(x, ·)‖ ≤ 1,
√
π(s)(x, ·) =

√
s(x, ·) and hence

∥∥∥√s(x, ·) −√π(f)(x, ·)
∥∥∥2 ≤

∥∥∥√s(x, ·) −√f(x, ·)
∥∥∥2 for all x ∈ A′

1.

By integrating both inequalities with respect to x,∫
A′

1

∫
A2

(√
s(x, ·) −

√
π(f)(x, y)

)2

dν(x) dμ(y) ≤
∫

A′
1

∫
A2

(√
s(x, ·) −

√
f(x, y)

)2

dν(x) dμ(y)

≤ 2h2(s, f).

Since ν(A1 \ A′
1) = 0, the left-hand side of the above inequality is merely 2h2(s, π(f)), which proves the

proposition.

4.3. Proof of Proposition 2.5

Let for each K ∈ m, IK ⊂ A1 and JK ⊂ A2 be such that K = IK × JK . Let I = {IK , K ∈ m}, and for each
I ∈ I, let JI = {J, I × J ∈ m}. The partition m can be rewritten as

m =
⋃
I∈I

{I × J, J ∈ JI} .
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Remark that
|m| =

∑
I∈I

|JI |.

We now introduce for all I ∈ I and J ∈ JI ,

N(I × J) =
n∑

i=1

�I(Xi)�J (Yi) and M(I) =
n∑

i=1

�I(Xi).

With these notations, the estimator ŝm becomes

ŝm =
∑
I∈I

J∈JI

N(I × J)
M(I)μ(J)

�I×J .

We define

s̄m =
∑
I∈I

J∈JI

E[N(I × J)]
E[M(I)]μ(J)

�I×J ,

s�
m =

∑
I∈I

J∈JI

N(I × J)
E[M(I)]μ(J)

�I×J .

We use the triangular inequality to get

E
[
h2(s, ŝm)

] ≤ 2h2(s, s̄m) + 4E
[
h2(s̄m, s

�
m)
]
+ 4E

[
h2(s�

m, ŝm)
]
. (4.7)

It remains to control both of the three terms appearing in the right-hand side of the above inequality. The first
term can be upper bounded thanks to Lemma 2 of [6]:

h2(s, s̄m) ≤ 2h2(s, Vm). (4.8)

Now,

h2(s̄m, s
�
m) =

1
2n

∑
I∈I

J∈JI

(√
E[N(I × J)]
E[M(I)]μ(J)

−
√

N(I × J)
E[M(I)]μ(J)

)2

E[M(I)]μ(J)

=
1
2n

∑
I∈I

J∈JI

(√
E[N(I × J)] −

√
N(I × J)

)2

≤ 1
2n

∑
I∈I

J∈JI

(E[N(I × J)] −N(I × J))2

E[N(I × J)]
·

By taking the expectation of both sides,

E
[
h2(s̄m, s

�
m)
] ≤ 1

2n

∑
I∈I

J∈JI

var [N(I × J)]
E[N(I × J)]

≤ 1
2n

∑
I∈I

J∈JI

1 ≤ |m|
2n

· (4.9)
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As to the third term,

h2(ŝm, s
�
m) =

1
2n

∑
I∈I

J∈JI

(√
N(I × J)
M(I)μ(J)

−
√

N(I × J)
E[M(I)]μ(J)

)2

E[M(I)]μ(J)

=
1
2n

∑
I∈I

J∈JI

(√
E[M(I)] −

√
M(I)

)2 N(I × J)
M(I)

=
1
2n

∑
I∈I

(√
E[M(I)] −

√
M(I)

)2 ∑
J∈JI

N(I × J)
M(I)

≤ 1
2n

∑
I∈I

|JI |
(√

E[M(I)] −
√
M(I)

)2

.

Therefore,

E
[
h2(ŝm, s

�
m)
] ≤ 1

2n

∑
I∈I

|JI |E
[

(M(I) − E[M(I)])2

E[M(I)]

]

≤ 1
2n

∑
I∈I

|JI | var[M(I)]
E[M(I)]

≤ 1
2n

∑
I∈I

|JI |

≤ |m|
2n

· (4.10)

Gathering (4.7)−(4.9) and (4.10) leads to the result.

4.4. Proof of Proposition 2.6

We use in this proof the notations introduced in the proof of Proposition 2.5. We derive from the triangular
inequality and (4.8),

h2(s, ŝm) ≤ 4h2(s, Vm) + 4h2(s̄m, s
�
m) + 4h2(s�

m, ŝm), (4.11)

and it remains to bound the two last terms from above. Yet,

h2(s̄m, s
�
m) =

1
2n

∑
I∈I

J∈JI

(√
E[N(I × J)] −

√
N(I × J)

)2

.

Theorem 8 of [6] (applied with A = 1 and κ = 1) shows that, for all x > 0, with probability larger than 1− e−x,

∑
I∈I

J∈JI

(√
E[N(I × J)] −

√
N(I × J)

)2

≤ 8|m| + 202x.
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Now,

h2(ŝm, s
�
m) =

1
2n

∑
I∈I

J∈JI

(√
N(I × J)
M(I)μ(J)

−
√

N(I × J)
E[M(I)μ(J)]

)2

E[M(I)]μ(J)

=
1
2n

∑
I∈I

J∈JI

(√
E[M(I)] −

√
M(I)

)2 N(I × J)
M(I)

=
1
2n

∑
I∈I

(√
E[M(I)] −

√
M(I)

)2 ∑
J∈JI

N(I × J)
M(I)

≤ 1
2n

∑
I∈I

(√
E[M(I)] −

√
M(I)

)2

.

A new application of Theorem 8 of [6] shows that for all x > 0, with probability larger than 1 − e−x,

∑
I∈I

(√
E[M(I)] −

√
M(I)

)2

≤ 8|I| + 202x.

We then deduce from (4.11) that for all x > 0, with probability larger than 1 − 2e−x,

h2(s, ŝm) ≤ 4h2(s, Vm) + 16
|m| + |I|

n
+ 808

x

n

The result follows with x = nξ + log 2.

4.5. Proof of Theorem 3.2

Let, for each model V ∈ V, TV be a subset of V satisfying the two following conditions:

– for all g ∈ V , there exists f ∈ TV such that d2(f, g) ≤ 1/n
– |{f ∈ TV , d2(f, 0) ≤ 2}| ≤ (4n+ 1)dim V

.

For instance, we can define TV as a maximal 1/n-separated subset of V in the metric space (L2(A, ν ⊗ μ), d2)
in the sense of Definition 5 of [9]. The bound on the cardinality is then given by Lemma 4 of [9]. Let

SV =
{
f2
+, f ∈ TV , d2(f, 0) ≤ 2

} ∪ {0} and S =
⋃

V ∈V

SV .

We now define the map Δ̄ on S by

Δ̄(f) = inf
V ∈V

SV �f

{Δ(V ) + log |SV |} .

Without loss of generality, we can assume that S ⊂ L(A, μ) (thanks to Prop. 2.3). Theorem 2.2 shows that
there exists an estimator ŝ satisfying for all ξ > 0 and probability larger than 1 − e−nξ,

h2(s, ŝ) ≤ c1 inf
f∈S

{
h2(s, f) + L

Δ̄(f)
n

}
+ c2ξ.
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Hence,

h2(s, ŝ) ≤ c1 inf
V ∈V

{
h2(s, SV ) + L

Δ(V ) + log |SV |
n

}
+ c2ξ

≤ c1 inf
V ∈V

⎧⎨
⎩κ inf

f∈TV

d2(f,0)≤2

d2
2(
√
s, f) + L

Δ(V ) + log |SV |
n

⎫⎬
⎭+ c2ξ.

As d2(
√
s, 0) ≤ 1 and 0 ∈ SV ,

inf
f∈TV

d2(f,0)≤2

d2(
√
s, f) = inf

f∈TV

d2(
√
s, f)

≤ inf
f∈V

d2(
√
s, f) + 1/n.

Therefore,

h2(s, ŝ) ≤ c1 inf
V ∈V

{
2κd2

2(
√
s, V ) + 2

κ

n2
+ L

Δ(V ) + log
(
1 + (4n+ 1)dim V

)
n

}
+ c2ξ

≤ C

(
inf

V ∈V

{
κd2

2(
√
s, V ) +

Δ(V ) + (dimV ) logn
n

}
+

κ

n2
+ ξ

)

for C large enough.

4.6. Structural assumptions

Theorem 2 and Corollary 1 of [5] are useful tools to deal with structural assumptions. They show how to build
collections V of linear spaces V with good approximation properties with respect to composite functions f of
the form f = g◦u. Using these results is the strategy of [29] to get bounds on εF (f) for classes F corresponding
to structural assumptions on s. Nevertheless, this direct application of the results of [5] (with τ = logn/n) leads
to an unnecessary additional logarithmic term in the risk bounds. A careful look at the proof of Theorem 2
of [5] shows that the following result holds.

Theorem 4.5. Suppose that Assumption 3.1 holds and that ν⊗μ(A) = 1. Let l ∈ N
� and L∞([0, 1]l) be the set

of bounded functions on [0, 1]l endowed with the supremum distance

d∞(g1, g2) = sup
x∈[0,1]l

|g2(x) − g1(x)| for g1, g2 ∈ L∞([0, 1]l).

Let U be the set of functions u = (u1, . . . , ul) going from A to [0, 1]l and

F =

⎧⎨
⎩g ◦ u, g ∈

⋃
α∈(0,1]l

Hα([0, 1]l), u ∈ U
⎫⎬
⎭ .

Let F be an at most countable collection of finite dimensional linear subspaces F of L∞([0, 1]l) endowed with a
map ΔF ≥ 1 satisfying ∑

F∈F

e−ΔF(F ) ≤ 1.

Let, for all j ∈ {1, . . . , l}, Tj be an at most countable collection of subsets T of L
2(A, ν ⊗ μ). We assume

that each T is either a unit set, or a finite dimensional linear space. If T is a singleton, we set dimT = 0.



54 M. SART

If T is a non trivial linear space, dimT stands for its usual linear dimension. We endow Tj with a non-negative
map ΔTj satisfying ∑

T∈Tj

e−ΔTj
(T ) ≤ 1.

Then, there exist a collection V and a map Δ such that for all function f ∈ F of the form f = g ◦ u, with
g ∈ Hα([0, 1]l) for some α = (α1, . . . , αl) ∈ (0, 1]l, and u = (u1, . . . , ul) ∈ U ,

CεF (f) ≤
l∑

j=1

inf
T∈Tj

{
l|gj|2αj

d
2αj

2 (uj , T ) +
ΔTj (T ) + (dimT )Lj,T

n

}

+ inf
F∈F

{
d2
∞(g, F ) +

ΔF(F ) + (dimF ) logn
n

}
·

In the above inequality, C is a positive universal constant, gj, |gj|αj are defined as explained in Section 2.5.1,
and Lj,T is defined when dimT > 0 by

Lj,T =
[
α−1

j log
(
nl|gj|2αj

/ dimT
)]

∨ 1

≤ C′
[
logn ∨ log

(
|gj |2αj

/ dimT
)
∨ 1
]

for C′ depending only on l and αj. When dimT = 0, Lj,T = 1.

The proof of (3.3) is almost the same as the one of Corollary 4 of [29]. The only difference is that we apply the
above theorem in place of Theorem 2 of [5] with τ = logn/n.

We now turn to the proof of (3.4). Note that a function f of the form f(x, y) = g(< θ, x >, y) can be
rewritten as f(x, y) = g(u1(x, y), u2(x, y), . . . , u1+d2(x, y)) where u1(x, y) =< θ, x > and uj(x, y) = y for
j ∈ {2, . . . , 1 + d2}. There exists a pair (F, ΔF) such that for all α ∈ (0,+∞)1+d2 , g ∈ Hα([0, 1]1+d2),

inf
F∈F

{
d2
∞(g, F ) +

ΔF(F ) + (dimF ) logn
n

}
≤ C1

[
|g|

2(1+d2)
1+d2+2ᾱ
α,∞

(
log n
n

) 2ᾱ
2ᾱ+1+d2

+
logn
n

]

for a constant C1 depending only on d2, α (see, for instance, [5]). Let for θ ∈ R
d1 , uθ be the function defined by

uθ(x, y) =< θ, x > and T1 be the linear space defined by T1 = {uθ, θ ∈ R
d1}. We use the above theorem with

l = 1 + d2, T1 = {T }, ΔT1(T ) = 1, Tj = {{uj}}, ΔTj ({uj}) = 0 for j ∈ {2, . . . , 1 + d2} to derive that for all
α ∈ (0,+∞)1+d2 , g ∈ Hα([0, 1]1+d2), θ ∈ B1(0, 1), and all function f ∈ F of the form f(x, y) = g(< θ, x >, y),

εF (f) ≤ C1

[
|g|

2(1+d2)
1+d2+2ᾱ
α

(
log n
n

) 2ᾱ
2ᾱ+1+d2

+
logn
n

]
+ C2d1

logn ∨ log
(|g|2α1∧1/d1

)
n

where C1 depends only on d2, α and C2 depends only on α1 ∧ 1, d2.
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(2014) 285–314.
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