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LIMIT BEHAVIOUR OF BSDE WITH JUMPS AND WITH SINGULAR
TERMINAL CONDITION

A. Popier1

Abstract. We study the behaviour at the terminal time T of the minimal solution of a backward
stochastic differential equation when the terminal data can take the value +∞ with positive probability.
In a previous paper [T. Kruse and A. Popier, Stoch. Process. Appl. 126 (2016) 2554–2592], we have
proved existence of this minimal solution (in a weak sense) in a quite general setting. But two questions
arise in this context and were still open: is the solution right continuous with left limits on [0, T ]? In
other words does the solution have a left limit at time T ? The second question is: is this limit equal to
the terminal condition? In this paper, under additional conditions on the generator and the terminal
condition, we give a positive answer to these two questions.
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1. Introduction

Backward stochastic differential equations (BSDE) were introduced in [4] in the linear case and extended in
the non linear case in [18]. Since then a huge literature has been developed on this topic and on their applications
(see for example [6] or [19] and the references therein). In this paper we consider a filtered probability space
(Ω,F ,F,P) with a complete and right-continuous filtration F = {Ft, t ≥ 0}. We assume that this space supports
a Brownian motion W and a Poisson random measure μ with intensity with intensity λ(de)dt on a space E. μ̃
denotes the compensated related martingale. We consider the following BSDE:

Yt = ξ +
∫ T

t

f(s, Ys, Zs, Us)ds−
∫ T

t

ZsdWs −
∫ T

t

∫
E

Us(e)μ̃(ds, de) −
∫ T

t

dMs (1.1)

where f is the generator and ξ is the terminal condition. The solution is the quadruplet (Y, Z, U,M). Since no
particular assumption is made on the underlying filtration, there is the additional martingale part M , orthogonal
to W and μ. It is already established that such a BSDE has a unique solution when the terminal condition ξ
belongs to Lp(Ω,FT ,P), p > 1 (see among others [3], [6] or [14]).

When the terminal condition ξ satisfies
P(ξ = +∞) > 0 (1.2)
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we called the BSDE singular. This singular case has been studied in [20] when the filtration is generated
by the Brownian motion (no jump, no additional noise, i.e. U = M = 0) and for the particular generator
f(t, y, z, u) = f(y) = −y|y|q. Recently singular BSDE were used to solve a particular stochastic control problem
with application to portfolio management (see [2] or [8]). In this framework, the intensity λ is finite and the
generator does not depend on z and has the following form:

f(t, y, u) = −y|y|q
qαqt

− β̂(t, y, u) + γt. (1.3)

where the function β̂ is given by

β̂(t, y, u) =
∫
E

(y + u(e))

(
1 − βt(e)

((y + u(e))q + βt(e)q)
1/q

)
1y+u(e)≥0 λ(de) (1.4)

and where α, β and γ are positive processes. The minimal solution (Y, Z, U,M) (provided it exists) gives the
value function of the following control problem: minimize2

E

[∫ T

t

(
αs|ηs|p + γs|Xs|p +

∫
E

βs(e)|ζs(e)|pλ(de)
)

ds + ξ|XT |p
∣∣∣∣Ft

]
(1.5)

over all progressively measurable processes X that satisfy the dynamics

Xs = x +
∫ s

t

ηudu +
∫ s

t

∫
E

ζu(e)μ(de, du)

and the terminal state constraint
XT1ξ=∞ = 0.

p is the Hölder conjugate of 1 + q. For the financial point of view, the set {ξ = +∞} is a specification of a
set of market scenarios where liquidation is mandatory. The value function is equal to |x|pYt and the optimal
state process X∗ can be computed directly with Y and U . Note that the martingale part of the solution (Z,M)
is not employed in the computation of the optimal state process. Thus the control problem can be completely
solved provided the BSDE has a minimal solution (see Sect. 2 and Thm. 4 in [15] for more details on the control
problem).

In [15], under some technical sufficient assumptions on f (Conditions (A) below), it is proved that the
BSDE (1.1) with singular terminal condition (1.2) has a minimal super-solution (Y, Z, U,M) such that a.s.

lim inf
t→T

Yt ≥ ξ. (1.6)

The main requirement is that f decreases w.r.t. y at least as a polynomial function (almost like −y1+q, q > 0),
when y is large. The main difficulty is to obtain some a priori estimate, which states that Yt is bounded
from above for any t < T by a finite process (Inequality (2.1)). The construction of (Y, Z, U,M) without
Condition (1.6) can be made if the filtration F is only complete and right-continuous.

In the classical setting (ξ ∈ Lp(Ω)), Y has a limit as t increases to T since the process is solution of the
BSDE (1.1) and thus is càdlàg3. Moreover this limit is equal to ξ a.s. if the filtration F is left-continuous at
time T . Indeed we need to avoid a jump at time T of the orthogonal martingale M (see the later discussion in
Sect. 2). Hence in the singular case the behaviour (1.6) of the super-solution Y at time T is obtained under this
additional requirement on the filtration F. For the related control problem (1.5), this weak behaviour (1.6) at
time T of the minimal process Y is sufficient to obtain the optimal control and the value function. Nevertheless

2With the convention 0.∞ = 0.
3French acronym for right continuous with left limits.
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two natural questions arise here:

• Can we expect that the left limit at time T of the minimal solution Y exists? In other words is Y càdlàg on
[0, T ]?

• Can the inequality (1.6) be an equality if the filtration is left-continuous at time T ?

The aim of this paper is to give an (at least partial) answer to these two questions.

Related literature.

As far as we know, there are only two works on this topic: [20] in the Brownian setting and the third chapter
of the PhD thesis of Piozin in the Brownian−Poisson setting, both for the particular generator f(y) = −y|y|q.

The study of this question in the Brownian setting was firstly made in [20]. The proof was decomposed into
two parts: firstly the existence of the limit, secondly the equality

lim inf
t→T

Yt = ξ. (1.7)

For the existence of the limit no additional assumption was required. But the particular structure of f was
very important. For the second part to prove the equality (1.7), a localization procedure was used, working
only in the Markovian framework. To be more precised the terminal condition ξ is equal to h(XT ) where h is a
function from R

d to [0,+∞] with a closed non empty singular set S = {h = +∞} and X is a forward diffusion
given as the solution of a SDE. For q ≤ 2, Malliavin’s calculus and an integration by parts were used, in order
to transfert the control of Zt = DtYt to the control of Yt. Since the density of the process X appears in this
integration by parts, additional conditions were required on the diffusion X (especially uniform ellipticity). For
q > 2, no particular hypothesis was imposed on X since we had a suitable estimate on Z. In some sense if the
non linearity q is not large enough, it should be compensated by more regularity on X .

In the third chapter of the PhD thesis of Piozin, we have studied the Brownian−Poisson case, again with the
generator f(y) = −y|y|q. The existence of the limit is treated exactly as in [20]. For the proof of the equality (1.7)
we worked in the Markovian setting: ξ = h(XT ), and we assumed that q > 2 since we had an a priori estimate
on Z and U . Moreover the localization procedure involves the infinitesimal generator of X which contains a non
local part due to the jumps in the forward SDE. In order to have suitable estimates on this part, we needed
other technical assumptions on the jumps of the solution X and the singular set S = {ξ = +∞}.
Contributions and decomposition of the paper

In this paper we want to broaden these results in two directions: more general generator f and no restriction
on the filtration. We are not able to give a general result for any generator f and any final value ξ. We just
have sufficient conditions on the generator f and the terminal value ξ as in [20]. Unfortunately there is still a
gap between existence conditions of the minimal super-solution and “continuity at time T ” assumptions.

• We can prove the existence of this limit only if the generator f has some specific structure (Thm. 3.1).
Our main requirement is that the growth of f w.r.t. y could be “controlled” uniformly w.r.t. z and u. The
filtration F satisfies the usual assumptions: complete and right-continuous.

• The proof of the equality (1.7) is a different problem. First we will assume that the filtration F is such that
a martingale cannot have a jump at time T . This property holds if F is quasi left-continuous, which is a
common assumption (see the discussion in Sect. 2.2). The setting will be half Markovian: ξ = h(XT ). But
the generator is not supposed to depend only on the forward process X . Hence the setting is not completely
Markovian. As explained before we will assume that q is large enough (q > 2 if f(y) = −y|y|q). The complete
result is Theorem 4.5.

Our method here is very closed to [20]. Nevertheless some added difficulties appear here; let us briefly explain
them. For the existence of the left limit of Y , if the generator f does not depend on U , the proof is almost
the same as in [20]. In other words the presence of U in the generator is the main trouble and the reason why
additional hypotheses are made on f . To obtain the desired equality (1.7), as in [20], we will prove a stronger
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a priori estimate on Z and U (extension of a known result in the Brownian setting). This point is rather technical
but not surprising. Next we will restrict ourselves to the case where ξ depends only on the terminal value of
a forward diffusion X : ξ = Φ(XT ). The complexity does not come from the filtration or the martingale part.
Indeed with a left-continuity condition at time T on the filtration F, the martingale M will not have a jump at
time T and the martingale part of the BSDE will be killed by taking the expectation. But the novelty is the non
local part I of the infinitesimal generator of X (given by (4.7)). This term comes from the jumps of X generated
by the Poisson random measure. We will be able to have a suitable estimate on this term under a technical
condition (denoted by (E)). This assumption connects the jumps of X with the singularity set S = {Φ = +∞}
and is original and unusual.

The paper is organized as follows. In the first part we give the precise mathematical framework and we recall
the known result: existence of the minimal solution of the BSDE (1.1). We also discuss the required conditions
on the filtration F. Then in Section 3 we prove existence of a left limit, that is Y is càdlàg on [0, T ] (Thm. 3.1
and its proof) under condition (B). In the last section we want to prove equality (1.7). First we will show that
the generator cannot be singular. We complete the results of [15] with an a priori estimate of the coefficients Z
and U . And finally under other technical assumptions we prove equality (1.7) (Thm. 4.5). Since the conditions
in the second and third sections are not exactly the same, we gather all conditions in the short last section in
order to obtain the continuity of Y at time T

lim
t→T

Yt = ξ. (1.8)

Along the paper we will always consider Example 2.3 (generator f given by (1.3) and (1.4)), with the important
particular subcases:

• Example 2.4: f(y) = −y|y|q (toy example).

• Example 2.5: f(t, y) = −(T − t)ςy|y|q +
1

(T − t)�
, with real numbers ς and �.

The open questions (q small, more general generator f , non Markovian setting, etc.) are left for further devel-
opments.

2. Setting, known results, filtration

We consider a filtered probability space (Ω,F ,P,F = (Ft)t≥0). The filtration is assumed to be complete
and right continuous. Note that all martingales have right continuous modifications in this setting and we will
always assume that we are taking the right continuous version, without any special mention. We also suppose
sometimes that the filtration is quasi-left continuous (as in [14, 15]), which means that for every sequence (τn)
of F predictable stopping times such that τn ↗ τ̃ for some stopping time τ̃ we have

∨
n∈N

Fτn = Fτ̃ . This
condition is unimportant for the existence and/or uniqueness of the solution of the BSDE (see [5] for more
details on this technical point).

We assume that (Ω,F ,P,F = (Ft)t≥0) supports a d-dimensional Brownian motion W and a Poisson random
measure μ with intensity λ(de)dt on the space E ⊂ R

d′ \ {0}. We will denote E the Borelian σ-field of E and μ̃
is the compensated measure: for any A ∈ E such that λ(A) < +∞, then μ̃([0, t] ×A) = μ([0, t] ×A) − tλ(A) is
a martingale. The measure λ is σ-finite on (E, E) satisfying∫

E

(1 ∧ |e|2)λ(de) < +∞.

In this paper for a given T ≥ 0, we denote:

• P : the predictable σ-field on Ω × [0, T ] and

P̃ = P ⊗ E .
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• On Ω̃ = Ω × [0, T ] × E, a function that is P̃-measurable, is called predictable. Gloc(μ) is the set of
P̃-measurable functions ψ on Ω̃ such that for any t ≥ 0 a.s.∫ t

0

∫
E

(|ψs(e)|2 ∧ |ψs(e)|)λ(de) < +∞.

• D (resp. D(0, T )): the set of all predictable processes on R+ (resp. on [0, T ]). L2
loc(W ) is the subspace of D

such that for any t ≥ 0 a.s. ∫ t

0

|Zs|2ds < +∞.

• Mloc: the set of càdlàg local martingales orthogonal to W and μ̃. If M ∈ Mloc then

[M,W i]t = 0, 1 ≤ i ≤ k [M, μ̃(A, .)]t = 0

for all A ∈ E . In other words, E(ΔM ∗μ|P̃) = 0, where the product ∗ denotes the integral process (see II.1.5
in [9]). Roughly speaking, the jumps of M and μ are independent.

• M is the subspace of Mloc of martingales.

We refer to [9] for details on random measures and stochastic integrals. On R
d, |.| denotes the Euclidean norm

and R
d×d′ is identified with the space of real matrices with d rows and d′ columns. If z ∈ R

d×d′, we have
|z|2 = trace(zz∗).

Now to define the solution of our BSDE, let us introduce the following spaces for p ≥ 1.

• D
p(0, T ) is the space of all adapted càdlàg processes X such that

E

(
sup
t∈[0,T ]

|Xt|p
)

< +∞.

For simplicity, X∗ = supt∈[0,T ] |Xt|.
• H

p(0, T ) is the subspace of all processes X ∈ D(0, T ) such that

E

⎡⎣(∫ T

0

|Xt|2dt
)p/2

⎤⎦ < +∞.

• M
p(0, T ) is the subspace of M of all martingales such that

E

[
([M ]T )p/2

]
< +∞.

• L
p
μ(0, T ) = L

p
μ(Ω × (0, T ) × E): the set of processes ψ ∈ Gloc(μ) such that

E

⎡⎣(∫ T

0

∫
E

|ψs(e)|2μ(ds, de)

)p/2
⎤⎦ < +∞.

• L
p
λ(E) = L

p(E, λ; Rm): the set of measurable functions ψ : E → R
m such that

‖ψ‖p
L

p
λ

=
∫
E

|ψ(e)|pλ(de) < +∞.

• S
p(0, T ) = D

p(0, T )× H
p(0, T )× L

p
μ(0, T ) × M

p(0, T ).
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If M is a R
d-valued martingale in M, the bracket process [M ]t is

[M ]t =
d∑
i=1

[M i]t,

where M i is the i-th component of the vector M .
We consider the BSDE (1.1)

Yt = ξ +
∫ T

t

f(s, Ys, Zs, Us)ds−
∫ T

t

ZsdWs −
∫ T

t

∫
E

Us(e)μ̃(de, ds) −
∫ T

t

dMs.

Here, the random variable ξ is FT -measurable with values in R and the generator f : Ω×[0, T ]×R×R
d×L

2
λ(E) →

R is a random function, measurable with respect to Prog ×B(R)×B(Rd)×B(L2
λ(E)) where Prog denotes the

sigma-field of progressive subsets of Ω × [0, T ]. The unknowns are (Y, Z, U,M) such that

• Y is progressively measurable and càdlàg with values in R;
• Z ∈ L2

loc(W ), with values in R
d;

• U ∈ Gloc(μ) with values in R;
• M ∈ Mloc with values in R.

For notational convenience we will denote f0
t = f(t, 0, 0, 0).

Assumptions

• ξ and f0
t are non negative and P(ξ = +∞) > 0. S is the set of singularity:

S = {ξ = +∞}.
• The function y 
→ f(t, y, z, u) is continuous and monotone: there exists χ ∈ R such that a.s. and for any

t ∈ [0, T ], z ∈ R
k and u ∈ L

2
λ(E)

(f(t, y, z, u)− f(t, y′, z, u))(y − y′) ≤ χ(y − y′)2. (A1)

• For every n > 0 the function

sup
|y|≤n

|f(t, y, 0, 0)− f0
t | ∈ L1((0, T ) ×Ω). (A2)

• f is Lispchitz in z, uniformly w.r.t. all parameters: there exists L > 0 such that for any (t, y, u), z and z′:
a.s.

|f(t, y, z, u)− f(t, y, z′, u)| ≤ L|z − z′|. (A3)

• There exists a progressively measurable process κ = κy,z,u,v : Ω × R+ × E → R such that

f(t, y, z, u)− f(t, y, z, v) ≤
∫
E

(u(e) − v(e))κy,z,u,vt (e)λ(de) (A4)

with P ⊗ Leb⊗ λ-a.e. for any (y, z, u, v), −1 ≤ κy,z,u,vt (e) and |κy,z,u,vt (e)| ≤ ϑ(e) where ϑ ∈ L
2
λ(E).

Note that no assumption on f0 (expect non negativity) is required. Conditions (A1)−(A4) will ensure existence
and uniqueness of the solution for a version of BSDE (1.1), where the terminal condition ξ is replaced by ξ ∧ n
and where the generator f is replaced by fn = f − f0 + (f0 ∧ n) for some n > 0 (see BSDE (2.2) below). We
obtain the minimal supersolution (see Thm. 2.6) with singular terminal condition ξ by letting the truncation n
tend to ∞. To ensure that in the limit (when n goes to ∞) the solution component Y attains the value ∞ on
S at time T but is finite before time T , we suppose that
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• There exists a constant q > 0 and a positive process a such that for any y ≥ 0

f(t, y, z, u) ≤ −(at)y|y|q + f(t, 0, z, u). (A5)

p = 1 + 1
q is the Hölder conjugate of 1 + q. Moreover, in order to derive the a priori estimate, the following

assumptions will hold.

• There exists some � > 1 such that

E

∫ T

0

[(
1

qas

)1/q

+ (T − s)pf0
s

]�
ds < +∞. (A6)

• There exists k > max(2, �/(�− 1)) such that∫
E

|ϑ(e)|kλ(de) < +∞. (A7)

Definition 2.1. The generator f satisfies conditions (A) if all assumptions (A1)–(A7) hold.

Remark 2.2 (On assumptions (A)).

(1) By very classical arguments we can suppose w.l.o.g. that χ = 0 in (A1). In the rest of the paper, we assume
that χ = 0.

(2) Assumptions (A2) and (A5) imply that the process a must be in L1((0, T ) × Ω). Indeed from (A5) with
z = u = 0 and y = 1, we obtain

f(t, 1, 0, 0)− f0
t ≤ −(at) ⇒ at ≤ |f(t, 1, 0, 0)− f0

t |.

Condition (A2) leads to the integrability of a.
(3) The fourth condition (A4) implies that f is Lipschitz continuous w.r.t. u uniformly in ω, t, y and z:

|f(t, y, z, u)− f(t, y, z, v)| ≤ ‖ϑ‖L2
λ
‖u− v‖L2

λ
= L‖u− v‖L2

λ
.

This assumption (A4) is used to compare two solutions of the BSDE (1.1) with different terminal conditions
(see Thm. 4.1 and Ass. 4.1 in [22] or Prop. 4 in [14]).

(4) The generator f can be also “singular” at time T provided assumption (A6) holds (see examples below).
Note that BSDEs with singular generator were already studied in [11, 12], but the setting is completely
different.

(5) Moreover if the condition (A6) holds for some � > 1, it remains true for any 1 ≤ �′ ≤ �. But with an
additional cost in condition (A7).

Example 2.3 (Main example).
The case given by equation (1.3) has been developed in [2, 8, 15]. The process at is 1/(qαqt ). All previous
assumptions are satisfied if βt(e) ≥ 0 for any t and e, 1/αq is in L1((0, T ) ×Ω), α ∈ L�((0, T ) × Ω) and if the
non negative process γ = f0 satisfies condition (A6). �

Example 2.4 (Toy example). The function f(y) = −y|y|q satisfies all previous conditions. It corresponds to
generator (1.3) with αt = (1/q)1/q, βt(e) = +∞ and γt = 0. �
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Example 2.5 (With power singularity). We will also discuss the case:

f(t, y) = −(T − t)ςy|y|q +
1

(T − t)�

where ς and � are two real numbers. Since at = (T −t)ς is in L1(0, T ), ς must be greater than −1. Note that this
lower bound is necessary to have an optimal control in (1.5) (see Example 1.1 in [2]). Condition (A6) imposes
that ∫ T

0

(T − t)−�ς/q + (T − t)�(p−�)dt < +∞.

This implies the following bounds:

−1 < ς < q, � < 1 + 1/q + 1/�.

with 1 ≤ � and � < q/ς if ς > 0. The singularity ot time T of the generator has to be not too important (upper
bound on �) and the coefficient a before y|y|q can degenerate at time T , but not too quickly (upper bound
on ς).

2.1. Known results

In [14], we proved that if ξ ∈ Lp(Ω), for some p ≥ 2, then under conditions (A) there exists a unique solution
(Y, Z, U,M) in S

p(0, T ) to the BSDE (1.1). In [15], the following result is proved.

Theorem 2.6 (Thm. 1 in [15]). Under conditions (A) there exists a process (Y, Z, U,M) such that

• (Y, Z, U,M) belongs to S
�(0, t) for any t < T .

• A.s. for any t ∈ [0, T ], Yt ≥ 0.
• For all 0 ≤ s ≤ t < T :

Ys = Yt +
∫ t

s

f(t, Yr, Zr, Ur)dr −
∫ t

s

ZrdWr −
∫ t

s

∫
E

Us(e)μ̃(ds, de) + MT −Mt.

• If the filtration F is quasi left continuous, (Y, Z, U,M) is a super-solution in the sense that a.s. (1.6) holds:

lim inf
t→T

Yt ≥ ξ.

Any process (Ỹ , Z̃, Ũ , M̃) satisfying the previous four items is called super-solution of the BSDE (1.1) with
singular terminal condition ξ.

A key point in the construction made in [15] is the following a priori estimate:

Yt ≤ K�,L,ϑ

(T − t)1+1/q

⎧⎨⎩E

⎛⎝ ∫ T

t

[(
1

qas

)1/q

+ (T − s)1+1/qf0
s

]�
ds

∣∣∣∣Ft
⎞⎠⎫⎬⎭

1/�

(2.1)

where K�,L,ϑ is a non negative constant depending only on �, L and ϑ and this constant is a non decreasing
function of L and ϑ and a non increasing function of �. Condition (A6) implies that a.s. Yt < +∞ on [0, T ).

Remark 2.7.

• The constants K�,L,ϑ and � > 1 come from the growth condition on f w.r.t. z and u.
• If we assume that f(t, 0, z, u) is uniformly bounded from above by Kf , in (2.1) we can take � = 1 and

K�,L,ϑ = 1 and we add Kf

2+1/q (T − t).



488 A. POPIER

Back to the examples.

• Example 2.4. If f(y) = −y|y|q, at = 1, Kf = 0, and we obtain as in [20]:

Yt ≤
(

1
q(T − t)

)1/q

·

• Example 2.5. Recall that −1 < ς < q and � < 2 + 1/q. Here again one can take Kf = 0 and

Yt ≤
(

1
q

)1/q
q

q − ς

1
(T − t)(1+ς)/q

+
1

2 + 1/q −�

1
(T − t)�−1

·

�
Let us finish this section by the minimality of the solution.

Proposition 2.8 (Minimal solution). The solution (Y, Z, U,M) obtained by approximation is minimal. If
(Ỹ , Z̃, Ũ , M̃) is another non negative super-solution, then for all t ∈ [0, T ], P-a.s. Ỹt ≥ Yt.

Now we give the main ideas of the proof of the existence result (Thm. 2.6). It is important to study the
behaviour of Y in the next sections. The approach in [15] is to approximate our BSDE by considering a terminal
condition of the form ξn := ξ ∧ n and observe asymptotic behaviour.

In the rest of the paper, (Y n, Zn, Un,Mn) will be the solution of the truncated BSDE:

Y n
t = ξ ∧ n +

∫ T

t

fn(s, Y n
s , Zns , U

n
s )ds−

∫ T

t

Zns dWs

−
∫ T

t

∫
E

Un
s (e)μ̃(ds, de) − (Mn

T −Mn
t ). (2.2)

Here fn(t, y, z, u) is the generator obtained by the truncation on f0
t :

fn(t, y, z, u) = (f(t, y, z, u)− f0
t ) + (f0

t ∧ n). (2.3)

Existence and uniqueness of (Y n, Zn, Un,Mn) comes from Theorem 2 in [14]. Moreover using comparison
argument (see [14] or [22]) we can obtain for m ≤ n: 0 ≤ Y m

t ≤ Y n
t . And for any n, Y n satisfies estimate (2.1)

(Prop. 2 in [15]). This allows us to define Y as the increasing limit of the sequence (Y n
t )n≥1:

∀ t ∈ [0, T ], Yt := lim
n→∞Y n

t .

Proposition 3 in [15] shows that there exists a constant C such that for any 0 < t < T

E

[
sup

0≤s≤t
|Y n
s − Y m

s |� +
(∫ t

0

|Zns − Zms |2ds
)�/2]

+E

[(∫ t

0

∫
E

|Un
s (e) − Um

s (e)|2μ(ds, de)
)�/2

+ [Mn
t −Mm

t ]�/2
]

≤ CE
[|Y n

t − Y m
t |�] + CE

∫ t

0

|f0
s ∧ n− f0

s ∧m|�ds. (2.4)

Since Y n
t converges to Yt almost surely, with the a priori estimate (2.1), condition (A6) and inequality (2.4),

thanks to the dominated convergence theorem, we can deduce:

(1) For every ε > 0, (Y n)n≥1 converges to Y in D
�(0, T − ε).
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(2) (Zn)n≥1 is a Cauchy sequence in H
�(0, T − ε), and converges to Z ∈ H

�(0, T − ε).
(3) (Un)n≥1 is a Cauchy sequence in L

�
μ(0, T − ε), and converges to U ∈ L

�
μ(0, T − ε).

(4) (Mn)n≥1 is a Cauchy sequence in M
�(0, T − ε), and converges to M ∈ M

�
μ(0, T − ε).

The limit (Y, Z, U,M) satisfies for every 0 ≤ t < T , for all 0 ≤ s ≤ t

Ys = Yt +
∫ t

s

f(r, Yr, Zr, Ur)dr −
∫ t

s

ZrdBr −
∫ t

s

∫
E

Ur(e)μ̃(dr, de) −Mt + Ms. (2.5)

and Y satisfies inequality (2.1). Note that all these results are obtained without the quasi left-continuity as-
sumption on the filtration F. But since the solution (Y, Z, U,M) satisfies the dynamic (2.5) only on [0, T − ε]
for any ε > 0, we cannot derive directly the existence of a left limit at time T for Y .

2.2. Condition on the filtration F

In the Lp-theory, we assume that the terminal condition ξ belongs to Lp(Ω) and that the generator f satisfies
f0 ∈ Lp((0, T )×Ω) for some p > 1 (see [5] or [14]). Then if (Y, Z, U,M) is the solution of the BSDE (1.1) in S

p

(called Lp-solution), we have

YT− = lim
t→T, t<T

Yt = ξ − (MT −MT−) = ξ −ΔMT = YT −ΔMT .

In other words the orthogonal martingale M could have a jump at time T and thus (1.7) may not hold. For
example, consider the filtration F defined by

Ft = {∅, Ω}, t < 1, Ft = σ(X), t ≥ 1, with P(X = 1) = P(X = −1) = 1/2.

T is called a thin time4 (see [1] for the definition). Then for T = 1, f = 0 and ξ = 1X=1, Yt = 1/2 for any t < T .
To ensure that (1.7) will be true, we need to impose an extra condition on the filtration F to ensure that

a martingale cannot have a jump at time T . A usual and enough condition is: the filtration F is quasi left-
continuous. For example if F is generated by the Brownian motion and the Poisson random measure, this
hypothesis is true. A sufficient and less strong condition is: the filtration F is left-continuous at time T (see
the proof of Prop. 25.19 in [13]). The reader could find examples on non quasi left-continuous filtrations in
Remark 1.9 from [1] (see also the references therein, in particular [10]).

If we assume that such kind of assumption holds for F and thus if a martingale cannot have a jump at time T ,
then we have a.s.

ξ ∧ n = lim inf
t→T

Y n
t ≤ lim inf

t→T
Yt,

and thus immediately the singular minimal solution satisfies (1.6): a.s.

lim inf
t→T

Yt ≥ ξ.

To summarize, we add a condition on F to be sure that the previous inequality holds. This inequality will be
used in Section 4 to prove continuity of Y .

3. Existence of a left-limit

In this section, conditions (A) hold and we will prove that the left limit of Y at time T exists provided we
know the precise behaviour of the generator w.r.t. y. In other words we show that Y is càdlàg on [0, T ]. In some
sense our generator has to be more specific to control the behaviour of the supersolution at time T .

Assumption (B). The generator satisfies

btg(y) ≤ f(t, y, z, u)− f(t, 0, z, u), ∀y ≥ 0, ∀(t, z, u), (B)

4The author thanks Monique Jeanblanc for her precious information on this topic.
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where

• b is positive and b ∈ L1((0, T ) ×Ω);
• g is a negative, decreasing and of class C1 function and concave on R+ with g(0) < 0 and g′(0) < 0.

Since conditions (A) should hold, in particular (A5), from (B) we deduce that btg(y) ≤ −aty|y|q for any
t ∈ [0, T ] and y. Thus w.l.o.g. g(y) ≤ −y|y|q and bt ≥ (−1/g(1))at = Cat for some positive constant C. We can
always add to g a linear function like −y − 1 such that g(0) < 0 and g′(0) < 0.

In the sequel of this section, we decompose f as follows:

f(t, y, z, u) = φ(t, y, z, u) + π(t, z, u) + f0
t

where f0
t = f(t, 0, 0, 0) and

φ(t, y, z, u) = f(t, y, z, u)− f(t, 0, z, u)
π(t, z, u) = f(t, 0, z, u)− f(t, 0, 0, 0).

Theorem 3.1. Assumptions (A) and (B) hold. Moreover one of the next three cases holds:

• Case 1. f does not depend on u or π(t, 0, u) ≥ 0;
• Case 2. ϑ ∈ L

1
λ(E) and there exists a constant κ∗ > −1 such that κ0,0,u,0

s (e) ≥ κ∗ a.e. for any (s, u, e);
• Case 3. λ is a finite measure on E.

Then the minimal supersolution Y has a left limit at time T .

Remark 3.2.

(1) Again this result shows that the process Y is càdlàg on [0, T ] when the filtration F is complete and right-
continuous. No additional assumption (left-continuity) on the filtration is needed here.

(2) If inequality (1.6) holds, then a.s. lim
t→T

Yt ≥ ξ.

(3) The second condition on κ in Case 2 is quite classical. Indeed a stronger version is used to prove the
comparison principle for BSDE with jumps in [3] or in [23].

Back to the examples. Clearly conditions of Theorem 3.1 hold for the three Examples 2.3−2.5.
Indeed for Example 2.3, λ is supposed to be finite. Moreover since ψ defined by (1.4) is Lipschitz w.r.t. y we

obtain for y ≥ 0:

f(t, y, z, u)− f(t, 0, z, u) = −y|y|q
qαqt

− ψ(t, y, u) + ψ(t, 0, u) ≥ −y|y|q
qαqt

− L|y|

≥ −
(

1
qαqt

∨ L

)(
y1+q + y

) ≥ btg(y).

if
bt =

1
qαqt

∨ L, g(y) = −y1+q − y − 1.

For the Examples 2.4 and 2.5, g(y) = −y|y|q − y − 1 also works. Since f does not depend on u, there is no
restriction on λ or on κ. �

Let us just give the trick of the proof of the previous theorem. If bt is deterministic, consider the ordinary
differential equation y′ = −f(t, y) = −btg(y). To solve it, we can separate the variables and with Θ′ = 1/g, we
write formally:

Θ(y(T )) −Θ(y(t)) = −
∫ T

t

y′(s)
g(y(s))

ds = −
∫ T

t

bsds
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which gives:

y(t) = Θ−1

(
Θ(y(T )) +

∫ T

t

bsds

)
.

We will follow the same idea: we apply the Itô formula with the function Θ to the process Yt. Then we cancel
the martingale part with the conditional expectation and we have to control the terms of finite variations. The
positive parts will give a non negative supermartingale, which has always a limit at time T . The negative parts
have to be more carefully studied to prove that they have a limit at time T . This is the reason why we impose
these extra conditions on f , κ or λ.

Now let us go into details and define the function Θ on (0,+∞) by

Θ(x) =
∫ +∞

x

−1
g(y)

dy· (3.1)

Recall that g is continuous and negative on R+. Thus from the condition g(y) ≤ −y|y|q, the function Θ :
[0,+∞) → (0, Θ(0)] is well defined, non increasing, of class C1, and bijective. Let Ξ : (0, Θ(0)] → [0,+∞) be
the inverse of Θ. Let us give some explicit examples.

• If g(y) = −y2 − 2y − 1, Θ(x) = (x + 1)−1 and Ξ(x) = (1/x) − 1.
• If g(y) = − exp(y), for y ≥ 0, Θ(x) = exp(−x) and Ξ(x) = − ln(x).

We proceed as in [20] (see here for more details) and we apply the function Θ to the process Y n, where
(Y n, Zn, Un,Mn) is the solution of the truncated BSDE (2.2).

Lemma 3.3. Assume that the conditions of Theorem 3.1 are satisfied. Then the process Y can be written as
follows:

Yt = Θ−1
(
E
Ft [Θ(ξ)] + ψ−

t − ψ+
t

)
where ψ+ and ψ− are two non negative càdlàg supermartingales with a.s. lim

t→T
ψ−
t = 0.

Proof. Since Y n
t is bounded from below by zero, we can apply Itô’s formula:

Θ(Y n
t ) =Θ(ξ ∧ n) +

∫ T

t

Θ′(Y n
s−)fn(s, Y n

s , Zns , U
n
s )ds

−
∫ T

t

Θ′(Y n
s−)Zns dWs −

∫ T

t

Θ′(Y n
s−)

∫
E

Un
s (e)μ̃(de, ds) −

∫ T

t

Θ′(Y n
s−)dMn

s

− 1
2

∫ T

t

Θ′′(Y n
s−)|Zns |2ds−

1
2

∫ T

t

Θ′′(Y n
s−)d[Mn]cs

−
∫ T

t

∫
E

[
Θ(Y n

s− + Un
s (e)) −Θ(Y n

s−) −Θ′(Y n
s−)Un

s (e)
]
μ(ds, de)

−
∑

t<s≤T

[
Θ(Y n

s− + ΔMn
s ) −Θ(Y n

s− ) −Θ′(Y n
s−)ΔMn

s

]
= E

FtΘ(ξ ∧ n) − ψnt (3.2)

where

ψnt = −E
Ft

∫ T

t

Θ′(Y n
s )fn(s, Y n

s , Zns , U
n
s )ds +

1
2

E
Ft

∫ T

t

Θ′′(Y n
s )|Zns |2ds

+
1
2

E
Ft

∫ T

t

Θ′′(Y n
s )d[Mn]cs + E

Ft

∑
t<s≤T

[
Θ(Y n

s− + ΔMn
s ) −Θ(Y n

s−) −Θ′(Y n
s−)ΔMn

s

]
+E

Ft

∫ T

t

∫
E

[
Θ(Y n

s− + Un
s (e)) −Θ(Y n

s− ) −Θ′(Y n
s−)Un

s (e)
]
μ(ds, de).
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Since Θ is non increasing, we estimate now the following difference for m ≥ n:

0 ≤ Θ(Y n
t ) −Θ(Y m

t ) = E
Ft [Θ(ξ ∧ n) −Θ(ξ ∧m)] − (ψnt − ψmt ).

And so we obtain:
|ψnt − ψmt | ≤ E

Ft [Θ(ξ ∧ n) −Θ(ξ ∧m)] ∨ [Θ(Y n
t ) −Θ(Y m

t )] .

Since the sequences (EFt [Θ(ξ ∧ n)])n≥1 and (Θ(Y n
t ))n≥1 converge a.s. and in L

1 (by monotone convergence
theorem), we deduce that (ψnt )n≥1 converge a.s. and in L

1 to some ψt. So by passing to the limit, one can write:

Θ(Yt) = E
Ft [Θ(ξ)] − ψt. (3.3)

Our aim now is to prove that the negative part of ψnt is bounded with an upper bound independent of n.
Let us recall the decomposition of the generator fn:

fn(s, y, z, u) = [f(s, y, z, u)− f(s, 0, z, u)] + [f(s, 0, z, u)− f(s, 0, 0, 0)] + (f0
s ∧ n)

= φ(s, y, z, u) + π(s, z, u) + (f0
s ∧ n).

Recall that

ψnt = −E
Ft

∫ T

t

Θ′(Y n
s )φ(s, Y n

s , Zns , U
n
s )ds

+ E
Ft

∫ T

t

∫
E

[
Θ(Y n

s− + Un
s (e)) −Θ(Y n

s−) −Θ′(Y n
s−)Un

s (e)
]
μ(ds, de)

−E
Ft

∫ T

t

Θ′(Y n
s−)π(s, Zns , U

n
s )ds +

1
2

E
Ft

∫ T

t

Θ′′(Y n
s )|Zns |2ds

−E
Ft

∫ T

t

Θ′(Y n
s )(f0

s ∧ n)ds +
1
2

E
Ft

∫ T

t

Θ′′(Y n
s )d[Mn]cs

+ E
Ft

∑
t<s≤T

[
Θ(Y n

s− + ΔMn
s ) −Θ(Y n

s− ) −Θ′(Y n
s−)ΔMn

s

]
. (3.4)

Recall that Θ′ = 1/g < 0 and Θ′′ = −g′/g2 ≥ 0. Hence Θ is non decreasing and convex and

1
2

E
Ft

∫ T

t

Θ′′(Y n
s )d[Mn]cs + E

Ft

∑
t<s≤T

[
Θ(Y n

s− + ΔMn
s ) −Θ(Y n

s− ) −Θ′(Y n
s−)ΔMn

s

]
≥ 0

and

−E
Ft

∫ T

t

Θ′(Y n
s )(f0

s ∧ n)ds ≥ 0.

The last three terms in (3.4) are non negative.
Then we control the first term using condition (B):

−Θ′(Y n
s )φ(s, Y n

s , Zns , U
n
s ) ≥ −Θ′(Y n

s )bsg(Y n
s ) = −bs. (3.5)

For the remaining terms in (3.4) we have

Θ′(y)π(t, z, u) = Θ′(y)(π(t, z, u) − π(t, 0, u)) + Θ′(y)π(t, 0, u).
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Hence the terms containing Zn are:

−Θ′(Y n
s−)(π(s, Zns , U

n
s ) − π(s, 0, Un

s )) +
1
2
Θ′′(Y n

s )|Zns |2

≥ −L(−Θ′(Y n
s ))|Zns | +

1
2
Θ′′(Y n

s )|Zns |2 =
−g′(Y n

s )
2

|Zns |2
|g(Y n

s )|2 + L
|Zns |
g(Y n

s )

=
−g′(Y n

s )
2

( |Zns |
g(Y n

s )
− L

g′(Y n
s )

)2

+
L2

2g′(Y n
s )

≥ L2

2g′(Y n
s )

·

We have used condition (A3) such that:

π(s, Zns , U
n
s ) − π(s, 0, Un

s ) ≥ −L|Zns |.

Since g is concave, g′ is non increasing. Thus we have g′(Y n
s ) ≤ g′(0) and

−Θ′(Y n
s−)(π(s, Zns , U

n
s ) − π(s, 0, Un

s )) +
1
2
Θ′′(Y n

s )|Zns |2 ≥ L2

2g′(0)
· (3.6)

Thereby in (3.4) the last term to control is:

E
Ft

∫ T

t

∫
E

[
Θ(Y n

s− + Un
s (e)) −Θ(Y n

s− ) −Θ′(Y n
s−)Un

s (e)
]
μ(ds, de) − E

Ft

∫ T

t

Θ′(Y n
s−)π(s, 0, Un

s )ds.

• Case 1. Assume that f does not depend on u or π(s, 0, u) ≥ 0 for any s and u. From the convexity of Θ,
the integral w.r.t. μ is non negative. Hence using (3.5) and (3.6), the negative part of ψn is controlled for
any n by:

(ψnt )− ≤ − L2

2g′(0)
(T − t) + E

Ft

∫ T

t

bsds. (3.7)

Let us deal now with the Cases 2 and 3. Up to some localization procedure we have

E
Ft

∫ T

t

∫
E

[
Θ(Y n

s− + Un
s (e)) −Θ(Y n

s− ) −Θ′(Y n
s−)Un

s (e)
]
μ(ds, de)

= E
Ft

∫ T

t

∫
E

[
Θ(Y n

s− + Un
s (e)) −Θ(Y n

s− ) −Θ′(Y n
s−)Un

s (e)
]
λ(de)ds.

With assumption (A4) we obtain:

−Θ′(Y n
s−)π(s, 0, Un

s ) ≥ −Θ′(Y n
s− )

∫
E

κ0,0,Un,0
s Un

s (e)λ(de).

For simplicity, κ0,0,Un,0
s (e) will be denoted by κns (e). The jump part is bounded from below by the following

process

E
Ft

∫ T

t

∫
E

[
Θ(Y n

s− + Un
s (e)) −Θ(Y n

s− ) −Θ′(Y n
s− )(1 + κns (e))U

n
s (e)

]
λ(de)ds.

From condition (A4), 1 + κns (e) ≥ 0. Thus for a fixed y > 0, if κns (e) > −1, the function

u 
→ Θ(y + u) −Θ(y) −Θ′(y)(1 + κns (e))u



494 A. POPIER

has a minimum m on (−y,+∞) at the point u∗ satisfying

Θ′(y + u∗) = Θ′(y)(1 + κns (e)) ⇐⇒ g(y + u∗) =
g(y)

1 + κns (e)
·

In other words:

u∗ = −y + g−1

(
g(y)

1 + κns (e)

)
= g−1

(
g(y)

1 + κns (e)

)
− y·

This minimum is equal to

m = −(u∗)2
∫ 1

0

ρΘ′′(y + ρu∗)dρ ≤ 0.

If κns (e) = −1, then u∗ = +∞ and m = −Θ(y). In any case κns (e)u∗ ≤ 0.

• Case 2. ϑ ∈ L
1
λ(E) and κy,z,u,vt (e) is bounded from below by some constant κ∗ > −1 uniformly w.r.t. all

parameters.
By convexity of Θ, we obtain

Θ(y + u∗) −Θ(y) −Θ′(y)(1 + κns (e))u
∗ ≥ −Θ′(y)κns (e)u∗.

If κns (e) ≥ 0,
−Θ′(y)κns (e)u∗ ≥ yΘ′(y)κns (e) ≥ yΘ′(y)ϑ(e)

and if κ∗ ≤ κns (e) ≤ 0

−Θ′(y)κns (e)u
∗ ≥ −Θ′(y)κns (e)g

−1

(
g(y)

1 + κns (e)

)
= Θ′(y)|κns (e)|g−1

(
g(y)

1 + κns (e)

)
≥ Θ′(y)|κns (e)|g−1

(
g(y)

1 + κ∗

)
≥ 1

g(y)
g−1

(
g(y)

1 + κ∗

)
ϑ(e)·

From our assumption on g, the functions yΘ′(y) = y/g(y) and 1
g(y)g

−1( g(y)1+κ∗ ) are non positive and bounded
from above respectively by a constant −Kg < 0 depending on g and by −Kg,κ∗ < 0 depending only on g
and κ∗. This last estimate and the inequalities (3.5) and (3.6) imply that

(ψnt )− ≤
[
− L2

2g′(0)
+ ‖ϑ‖L1

λ
(Kg ∨Kg,κ∗)

]
(T − t) + E

Ft

∫ T

t

bsds. (3.8)

• Case 3. λ is a finite measure.
Since u∗ ≥ −y, then

Θ(y + u∗) −Θ(y) −Θ′(y)(1 + κns (e))u
∗ ≥ −Θ(y) + Θ′(y)(1 + κns (e))y

≥ −Θ(y) +
y

g(y)
(1 + ϑ(e)).

Since −Θ is non decreasing and since Y n is bounded from below by 0, the inequalities (3.5), (3.6) and the
assumption (A7) imply that

(ψnt )− ≤ E
Ft

∫ T

t

bsds + (T − t)
[ −L2

2g′(0)
+ λ(E)(Θ(0) + Kg) + ‖ϑ‖L1

λ
Kg

]
. (3.9)
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In the three cases (3.7), (3.8) or (3.9), the negative part of ψn is bounded uniformly w.r.t. n and since b ∈
L1((0, T ) ×Ω) the right-hand side of the three estimates goes to zero as t tends to T .

Let us now conclude. Recall that ψn converges to ψ and (3.3) holds. The estimates (3.7), (3.8) or (3.9) show
that the negative part of ψn converges a.s. and in L1 to the non negative càdlàg bounded supermartingale ψ−.
Moreover the limit of ψ−

t at time T is equal to zero. The equation (3.3) shows that the positive part of ψ is
càdlàg and a supermartingale by convergence of (ψn)+. This achieves the proof of the proposition. �

Theorem 3.1 can be now proved immediately. ψ+ being a non negative càdlàg supermartingale, we can deduce
the existence of the following limit:

ψ+
T− := lim

t↗T
ψ+
t

And so YT− exists and is equal to:

YT− := lim
t↗T

Yt = Θ−1
(
Θ(ξ) − ψ+

T−

)
.

Let us remark that in the extreme case where κs(e) = −1, then m = −Θ(y) for u = +∞ and thus the condition
λ(E) < +∞ is an almost necessary condition to ensure that the negative part of ψn is finite.

4. Continuity at time T

The second important result is the proof of Equality (1.7). Here we deal with a general filtration F and two
singularities: one due to ξ, another due to the generator f . As mentioned in Section 2.2, the filtration satisfies
a condition to ensure that (1.6) holds a.s.

lim inf
t→T

Yt ≥ ξ.

4.1. Singularity of the generator

Recall that the generator f of the BSDE (1.1) can be singular in the sense that Condition (A6) implies

E

∫ T

0

(T − s)�p(f0
s )�ds < +∞.

Thus f0 ∈ L1((0, T − ε) × Ω) for any ε > 0, but we could have f0
T = +∞ and/or f0 �∈ L1((0, T ) × Ω). In

Example 2.5 f0
t = (T − t)−� with 1 ≤ � and � < 1 + 1/q + 1/�. Hence for � ≥ 1, then f0 �∈ L1((0, T ) × Ω).

The next result shows that equality (1.7)
lim inf
t→T

Yt = ξ

may be false.

Lemma 4.1. Assume that the generator is given by: f(t, y, z, u) = f(t, y) = −y|y|q + f0
t with f0 deterministic

and not in L1(0, 1). Then a.s. lim
t→T

Yt = +∞.

Proof. Recall that (Y n, Zn, Un,Mn) is solution of BSDE (2.2)

Y n
t = ξ ∧ n−

∫ T

t

Y n
s |Y n

s |qds +
∫ T

t

(
f0
s ∧ n

)
ds

−
∫ T

t

Zns dWs −
∫ T

t

∫
E

Un
s (e)μ̃(ds, de) − (Mn

T −Mn
t ).
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We define Rnt = exp
(
− ∫ t

0
|Y n
r |qdr

)
and by Itô formula:

Rnt Y
n
t = E

[
RnT (ξ ∧ n) +

∫ T

t

Rns
(
f0
s ∧ n

)
ds

∣∣∣∣Ft
]
.

Hence we obtain

Y n
t ≥ E

[∫ T

t

exp
(
−

∫ s

t

|Y n
r |qdr

) (
f0
s ∧ n

)
ds

∣∣∣∣Ft
]
.

Since Y n ≤ Y for any n,

Yt ≥ Y n
t ≥ E

[∫ T

t

exp
(
−

∫ s

t

|Yr|qdr
) (

f0
s ∧ n

)
ds

∣∣∣∣Ft
]
.

Finally using Fatou lemma and since f0 is deterministic, we have

Yt ≥
∫ T

t

E

[
exp

(
−

∫ s

t

|Yr|qdr
) ∣∣∣∣Ft] f0

s ds ≥ E

[
exp

(
−

∫ T

t

|Yr|qdr
) ∣∣∣∣Ft

]∫ T

t

f0
s ds.

From Theorem 3.1, Y is càdlàg on [0, T ]. Hence Yt is finite a.s. if and only if limt→T Yt = +∞ a.s. �

Again for Example 2.5 with ς = 0 and � ≥ 1, equality (1.7) can not be true whatever the terminal condition ξ
is. Hence in the rest of this section, we will assume that

f0 ∈ L1((0, T ) ×Ω). (A8)

4.2. Behaviour of Y

Again we now assume that under suitable assumptions on the filtration F, (1.6) holds a.s. and we want to
prove that the inequality is an equality. As explained in the introduction, in [20] we were able to prove this in
the Brownian setting:

• When q > 2 without additional conditions since we have a suitable control of Z.
• When q ≤ 2 but with Malliavin calculus: roughly speaking Z is the Malliavin derivative of Y and we use

the integration by parts to remove Z (Lem. 1.2.2 in [16]).

In our general setting, we deal here only with the first case. Hence we need some estimate on Z and U , which
will be obtained if we strengthen assumption (A6): for some η < 1

E

∫ T

0

(T − s)−1+η

[(
1

qas

)1/q

+ (T − s)1+1/qf0
s

]�
ds < +∞. (A6*)

If f satisfies all conditions (A1) to (A7), with (A6*) instead of (A6), we say that f satisfies conditions (A*).

Remark 4.2 (On assumption (A6*)).

• Since a ∈ L1((0, T ) ×Ω), (A6*) implies that η + �/q > 0.
• If f0 and (1/a)1/q are in L�((0, T ) × Ω), then (A6*) holds for any 0 < η < 1. The case a bounded from

below by a positive constant and f0 bounded from above is a particular case (see Example 2.4).
• For Example 2.5, at = (T − t)ς and f0

t = (T − t)−� with −1 < ς < q, 1 < � < q/ς and � < 1 + 1/q + 1/�.
Condition (A6*) holds if we take η such that

�max
(
ς

q
,−(1 + 1/q −�)

)
< η < 1.
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The stronger condition (A6*) implies the next result.

Proposition 4.3. Under conditions (A*), there exists a constant C independent of n such that the process
(Zn, Un) satisfies:

E

[∫ T

0

(T − s)ρ
(
|Zns |2 + ‖Un

s ‖2
L2

λ

)
ds

]�/2
≤ C.

The constant ρ is given by:

ρ =
2
q

+ 2
(

1 − 1
�

)
+

2η
�
· (4.1)

The proof of this proposition is postponed to the next section. In the sequel we will need this sharper estimate
on Z and U but with the technical condition

ρ =
2
q

+ 2
(

1 − 1
�

)
+

2η
�

< 1 (A9)

This condition ρ < 1 is a balance between the non linearity q and the singularity of the generator f .

Remark 4.4 (On condition (A9)).

(1) If f0 and (1/a)1/q are in L�((0, T ) × Ω), then (A6*) holds for any 0 < η < 1. Then ρ < 1 for � < 2 and
q > 2�

2−� .
(2) In particular if the generator is f(y) = −y|y|q (Example 2.4), then ρ < 1 if q > 2, which was supposed

in [20].
(3) In Example 2.5, the constant ρ satisfies:

2 max
(

(1 + ς)
q

,−(1 −�)
)

+ 2
(

1 − 1
�

)
< ρ.

The constant � > 1 can be chosen close to 1. Thus ρ < 1 if

2 max
(

(1 + ς)
q

,−(1 −�)
)

< 1.

Hence � < 3/2 and q > 2(1 + ς). In other words f0 cannot be too singular at time T . Moreover the less
degenerate is the process at, in other words the smaller is ς, the smaller can be the non linearity coefficient q.

Now we work in the half-Markovian setting and we define the function Φ on R
d with values in R+ ∪ {+∞} and

with
S = {x ∈ R

d s.t. Φ(x) = ∞}
the set of singularity points for the terminal condition induced by Φ. This set S is supposed to be closed. We
also denoted by ∂S the boundary of S.

Our terminal condition ξ satisfies conditions (C) if

ξ = Φ(XT ). (C1)

and if for all closed set K ⊂ R
d \ S

Φ(XT )1K(XT ) ∈ L1 (Ω,FT ,P) . (C2)
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The process X is the solution of a SDE with jumps:

Xt = X0 +
∫ t

0

b(s,Xs)ds +
∫ t

0

σ(s,Xs)dWs +
∫ t

0

∫
E

h(s,Xs− , e)μ̃(de, ds). (4.2)

The coefficients b : Ω × [0, T ] × R
d → R

d, σ : Ω × [0, T ] × R
d → R

d×d and h : Ω × [0, T ] × R
d × E → R

d

satisfy assumptions (D):

(1) b, σ and h are jointly continuous w.r.t. (t, x) and Lipschitz continuous w.r.t. x uniformly in t, e or ω, i.e.
there exists a constant Kb,σ or Kh such that for any (ω, t, e) ∈ Ω × [0, T ]× E, for any x and y in R

d: a.s.

|b(t, x) − b(t, y)| + |σ(t, x) − σ(t, y)| ≤ Kb,σ|x− y| (D1)

and

|h(t, x, e) − h(t, y, e)| ≤ Kh|x− y|(1 ∧ |e|). (D2)

(2) b and σ growth at most linearly:

|b(t, x)| + |σ(t, x)| ≤ Cb,σ(1 + |x|). (D3)

(3) h is bounded w.r.t. t and x and there exists a constant Ch such that a.s.

|h(t, x, e)| ≤ Ch(1 ∧ |e|). (D4)

Under assumptions (D), the forward SDE (4.2) has a unique strong solution X (see [17] or [21]). To lighten the
notation, the dimensions of X and of the Brownian motion are the same. But this condition does not matter
and we can also work with different dimensions.

In order to prove that lim inf
t→T

Yt = ξ, we proceed as in [20]. But there is an extra term due to the covariance

between the jumps of the SDE (4.2) and the jumps of the BSDE (1.1). To control this additional part, we make
a link between the singularity set S and the jumps of the forward process X .

More precisely we assume conditions (E).

(E1). The boundary ∂S is compact and of class C2.
(E2). For any x ∈ S, any s ∈ [0, T ] and λ-a.s.

x + β(s, x, e) ∈ S.

Furthermore there exists a constant ν > 0 such that if x ∈ ∂S, then for any s ∈ [0, T ], d(x +
β(s, x, e), ∂S) ≥ ν, λ-a.s.

These assumptions mean in particular that if Xs− ∈ S, then Xs ∈ S a.s. Moreover if Xs− belongs to the
boundary of S, and if there is a jump at time s, then Xs is in the interior of S. Let us now state our first main
result.

Theorem 4.5. Under conditions (A*)-(C)-(D)-(E), with (A8) and (A9), the minimal supersolution Y sat-
isfies a.s.

lim inf
t→T

Yt = ξ.



LIMIT BEHAVIOUR OF BSDE WITH JUMPS AND WITH SINGULAR TERMINAL CONDITION 499

4.3. An estimate on Z and U : Proof of Proposition 4.3

We have shown that the sequences Zn and Un converge in a suitable integrability space on [0, T − ε] for
any ε > 0. Here we want to obtain an estimate on the limits Z and U on the whole time interval [0, T ].

In the sequel let us denote by Γ the process

Γt =
K�
�,L,ϑ

T − t
E

⎛⎝ ∫ T

t

[(
1

qas

)1/q

+ (T − s)1+1/qf0
s

]�
ds

∣∣∣∣Ft
⎞⎠

thus estimate (2.1) becomes:

0 ≤ Yt ≤ 1
(T − t)1+1/q−1/�

Γ
1/�
t · (4.3)

Lemma 4.6. Under (A6*), E

∫ T

0

(T − s)−1+ηΓsds < +∞.

Proof. Note that

(T − s)−1+η
E(Γs) = K�

�,L,ϑ(T − s)−2+η

∫ T

s

E

[(
1

qau

)1/q

+ (T − u)1+1/qf0
u

]�
du

= K�
�,L,ϑ(T − s)−2+η

∫ T

0

θu1u≥sdu

with

θu = E

[(
1

qau

)1/q

+ (T − u)1+1/qf0
u

]�
·

Hence by Fubini’s theorem

E

∫ T

0

(T − s)−1+ηΓsds = K�
�,L,ϑ

∫ T

0

(T − s)−2+η

(∫ T

0

θu1u≥sdu

)
ds

= K�
�,L,ϑ

∫ T

0

θu

(∫ u

0

(T − s)−2+ηds
)

du

=
K�
�,L,ϑ

1 − η

∫ T

0

(T − u)−1+ηθu
(
1 − (1 − u/T )1−η

)
du

≤ K�
�,L,ϑ

1 − η

∫ T

0

(T − u)−1+ηθudu < +∞.

This achieves the proof of the lemma. �

Now let us prove the sharper estimates on Z and U given by Proposition 4.3: there exists a constant C
independent of n such that the process (Zn, Un) satisfies:

E

[∫ T

0

(T − s)ρ
(
|Zns |2 + ‖Un

s ‖2
L2

λ

)
ds

]�/2
≤ C.

where the constant ρ is given by (4.1).
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Proof. For the constant η > 0 of (A6*), let us define

δ = �− 1 +
�

q
+ η =

�

2
ρ > 0.

We define c(�) = �((�−1)∧1)
2 , x̌ = |x|−1x1x �=0 and we want to apply Itô’s formula to (T − t)δ|Y n

t |� (see [14], Cor. 1
and Rem. 1). We fix ε > 0 and τ = T − ε in the sequel. Hence we have for 0 ≤ t ≤ τ :

(T − t)δ|Y n
t |� ≤ εδ|Y n

T−ε|� +
∫ τ

t

δ(T − s)δ−1|Y n
s |�ds

+ �

∫ τ

t

(T − s)δ|Y n
s |�−1Y̌ n

s f(s, Y n
s , Zns , U

n
s )ds

− �

∫ τ

t

(T − s)δ|Y n
s |�−1Y̌ n

s Zns dWs − �

∫ τ

t

(T − s)δ|Y n
s− |�−1Y̌ n

s−dMn
s

− �

∫ τ

t

(T − s)δ|Y n
s− |�−1Y̌ n

s−

∫
E

Un
s (e)μ̃(de, ds)

−
∫ τ

t

(T − s)δ
∫
E

[|Y n
s− + Un

s (e)|� − |Y n
s− |� − �|Y n

s− |�−1Y̌ n
s−Un

s (e)
]
μ(de, ds)

−
∑
t<s≤τ

(T − s)δ
[|Y n

s− + ΔMn
s |� − |Y n

s− |� − �|Y n
s− |�−1Y̌ n

s−ΔMn
s

]
− c(�)

∫ τ

t

(T − s)δ|Y n
s |�−2|Zns |21Y n

s �=0ds− c(�)
∫ τ

t

(T − s)δ|Y n
s |�−21Y n

s �=0d[Mn]cs. (4.4)

The monotonicity condition (A1) implies that∫ τ

t

(T − s)δ|Y n
s |�−1Y̌ n

s f(s, Y n
s , Zns , U

n
s )ds ≤

∫ τ

t

(T − s)δ|Y n
s |�−1Y̌ n

s f(s, 0, Zns , U
n
s )ds

and we use the regularity conditions (A3) and (A4) to obtain:∫ τ

t

(T − s)δ|Y n
s |�−1Y̌ n

s f(s, 0, Zns , U
n
s )ds ≤L

∫ τ

t

(T − s)δ|Y n
s |�−1|Zns |ds

+ L

∫ τ

t

(T − s)δ|Y n
s |�−1‖Un

s ‖L2
λ
ds +

∫ τ

t

(T − s)δ|Y n
s |�−1f0

s ds.

Young’s inequality leads to:

L

∫ τ

t

(T − s)δ|Y n
s |�−1|Zns |ds ≤ L2�2

2c(�)

∫ τ

t

(T − s)δ|Y n
s |�ds

+
c(�)
2

∫ τ

t

(T − s)δ|Y n
s |�−2|Zns |21Y n

s �=0ds,

L

∫ τ

t

(T − s)δ|Y n
s |�−1‖Un

s ‖L2
λ
ds ≤ L2�2

2c(�)

∫ τ

t

(T − s)δ|Y n
s |�ds

+
c(�)
2

∫ τ

t

(T − s)δ|Y n
s |�−2‖Un

s ‖2
L2

λ
1Y n

s �=0ds

and ∫ τ

t

(T − s)δ|Y n
s |�−1f0

s ds ≤ (�− 1)
∫ τ

t

(T − s)δ|Y n
s |�ds +

∫ τ

t

(T − s)�(1+1/q)|f0
s |�ds.
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Finally all local martingales involved above in (4.4) are true martingales. Hence taking the expectation and
using the convexity of x 
→ |x|� we have:

sup
t∈[0,τ ]

E
[
(T − t)δ|Y n

t |�] +
c(�)
2

E

∫ τ

t

(T − s)δ|Y n
s |�−2|Zns |21Y n

s �=0ds

≤ εδ|Y n
T−ε|� + E

∫ τ

t

δ(T − s)δ−1|Y n
s |�ds

+ �

(
2
L2�2

2c(�)
+ (�− 1)

)
E

∫ τ

t

(T − s)δ|Y n
s |�ds

+ �E

∫ τ

t

(T − s)�(1+1/q)|f0
s |�ds

−E

∫ τ

t

(T − s)δ
∫
E

[|Y n
s− + Un

s (e)|� − |Y n
s− |� − �|Y n

s− |�−1Y̌ n
s−Un

s (e)
]
μ(de, ds)

+
c(�)
2

E

∫ τ

t

(T − s)δ|Y n
s |�−2‖Un

s ‖2
L2

λ
1Y n

s �=0ds. (4.5)

From Lemma 9 in [14],∫ τ

t

(T − s)δ
∫
E

[|Y n
s− + Un

s (e)|� − |Y n
s− |� − �|Y n

s− |�−1Y̌ n
s−Un

s (e)
]
μ(de, ds)

≥ c(�)
∫ τ

t

(T − s)δ
∫
E

|Un
s (e)|2 (|Y n

s− |2 ∨ |Y n
s− + Un

s (e)|2)�/2−1
1|Y n

s− |∨|Y n
s−+Un

s (e)|�=0μ(de, ds).

By a localization argument the two following exceptations are the same (see proof of Prop. 3 in [14]):

E

∫ τ

t

(T − s)δ
∫
E

|Un
s (e)|2 (|Y n

s− |2 ∨ |Y n
s− + Un

s (e)|2)�/2−1
1|Y n

s− |∨|Y n
s−+Un

s (e)|�=0μ(de, ds)

E

∫ τ

t

(T − s)δ|Y n
s |�−2‖Un

s ‖2
L2

λ
1Y n

s �=0ds.

Finally we have:

sup
t∈[0,τ ]

E
[
(T − t)δ|Y n

t |�] +
c(�)
2

E

∫ τ

0

(T − s)δ|Y n
s |�−2|Zns |21Y n

s �=0ds

+
c(�)
2

E

∫ τ

0

(T − s)δ|Y n
s |�−2‖Un

s ‖2
L2

λ
1Y n

s �=0ds

≤ εδ|Y n
T−ε|� + E

∫ τ

0

δ(T − s)δ−1|Y n
s |�ds

+ �

(
2
L2�2

2c(�)
+ (�− 1)

)
E

∫ τ

0

(T − s)δ|Y n
s |�ds + �E

∫ τ

0

(T − s)�(1+1/q)|f0
s |�ds. (4.6)

Using (4.3), the first term on the right-hand side can be controlled as follows:

E

∫ τ

0

(T − s)δ−1|Y n
s |�ds ≤ E

∫ T

0

(T − s)δ−1 1
(T − s)�+�/q−1

Γsds

= E

∫ T

0

(T − s)−1+ηΓsds < +∞.
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The second one satisfies the same estimate:

E

∫ τ

0

(T − s)δ|Y n
s |�ds ≤ E

∫ T

0

(T − s)ηΓsds < +∞.

And the last term is bounded by condition (A6). Therefore we can let ε go to zero in (4.6) and we can replace
every τ by T . To finish the proof, we use the same tricks as in the proof of Proposition 3 in [14]. First we can
control the quantity

E

[
sup
t∈[0,T ]

(T − t)δ|Y n
t |�

]

by the same right-hand side (up to some multiplicative constant). Then if � ≥ 2, we use (4.4) with � = 2 and
the result follows immediately. If 1 < � < 2, the conclusion is more tricky. Let us define ζ = sup

t∈[0,T ]

(T − t)δ/�Y n
t

and:

E

(∫ T

0

(T − s)2δ/�|Zns |2ds
)�/2

= E

(∫ T

0

(T − s)2δ/�1Y n
s �=0|Zns |2ds

)�/2

= E

(∫ T

0

(T − s)2δ/� (Y n
s )2−� (Y n

s )�−2 1Y n
s �=0|Zns |2ds

)�/2

≤ E

⎡⎣ζ(2−�)�/2
(∫ T

0

(T − s)δ (Y n
s )�−2 1Y n

s �=0|Zns |2ds
)�/2

⎤⎦
≤ {

E
[
ζ�

]}(2−�)/2
{

E

∫ T

0

(T − s)δ (Y n
s )�−2 1Y n

s �=0|Zns |2ds
}�/2

≤ 2 − �

2
E

[
ζ�

]
+

�

2
E

∫ T

0

(T − s)δ (Y n
s )�−2 1Y n

s �=0|Zns |2ds < +∞.

where we have used Hölder’s and Young’s inequality with 2−�
2 + �

2 = 1. The same holds for Un. Therefore since

2δ/� = 2(1 − 1
�
) +

2
q

+
2η
�
,

we obtain the same desired result. �

Note that from the proof we also could derive an estimate on M . But we will not need it in the rest of the
paper.

Remark 4.7. If f(y) = −y|y|q, we can take � = 1 and η = 0, in other words α = 2/q. The constant C is
explicitely given by: C = 16(1

q )
2/q. The proof is a direct modification of the proof of Proposition 10 in [20].

4.4. Proof of Theorem 4.5

In order to prove this theorem we follow the same procedure as in [20]. We consider (Y n, Zn, Un,Mn) the
solution of the BSDE (2.2) with terminal condition ξ ∧ n and generator fn. Let φ be a non negative function in
C2
b (R), the set of bounded smooth functions of class C2, with bounded derivatives. We compute Itô’s formula
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to the process Y nφ(X) between 0 and t.

Y n
t φ(Xt) = Y n

0 φ(X0) +
∫ t

0

Y n
s−dφ(Xs) +

∫ t

0

φ(Xs−)dY n
s + 〈Y n, φ(X)〉t

= Y n
0 φ(X0) −

∫ t

0

φ(Xs−)fn(s, Y n
s , Zns , U

n
s )ds +

∫ t

0

Y n
s−Lφ(s,Xs)ds

+
∫ t

0

∫
E

Y n
s−

(
φ(Xs) − φ(Xs−) −∇φ(Xs−)β(s,Xs− , e)

)
μ(ds, de)

+
∫ t

0

Y n
s−∇φ(Xs)σ(s,Xs)dWs +

∫ t

0

φ(Xs−)Zns dWs +
∫ t

0

φ(Xs−)dMn
s

+
∫ t

0

∫
E

φ(Xs−)Un
s (e)μ̃(de, ds) +

∫ t

0

∫
E

Y n
s−∇φ(Xs)β(s,Xs− , e)μ̃(de, ds)

+
∫ t

0

∇φ(Xs)σ(s,Xs)Zns ds +
∫ t

0

∫
E

(φ(Xs) − φ(Xs−))Un
s (e)μ(ds, de).

The operators L and I are defined on C2(R) by:

Lφ(t, x) = ∇φ(x)b(t, x) +
1
2
Trace(D2φ(x)(σσ∗)(t, x))

and

I(t, x, φ) =
∫
E

[φ(x + β(t, x, e)) − φ(x) − (∇φ)(x)β(t, x, e)]λ(de). (4.7)

Since (Y n, Zn, Un,Mn) belongs to S
2(0, T ), since X is in H

2(0, T ), and since φ and the derivatives of φ are
supposed to be bounded, we can take the expectation of these terms:

E[Y n
t φ(Xt)] = E[Y n

0 φ(X0)] − E

[∫ t

0

φ(Xs−)fn(s, Y n
s , Zns , U

n
s )ds

]
(4.8)

+ E

[∫ t

0

Y n
s−Lφ(s,Xs)ds

]
+ E

[∫ t

0

Y n
s−I(s,Xs− , φ)ds

]
+ E

[∫ t

0

∇φ(Xs)σ(s,Xs)Zns ds
]

+ E

[∫ t

0

∫
E

(φ(Xs) − φ(Xs−))Un
s (e)λ(de)ds

]
.

Recall the main idea of [20]. First we prove that we can pass to the limit on n in (4.8) and that the limits have
suitable integrability conditions on [0, T ]×Ω. Secondly we write (4.8) between t and T and we pass to the limit
when t goes to T .

Now we choose φ such that the support of φ is included in R = Sc. From the assumptions (C1) and (C2) on
ξ = Φ(XT ), we have for any n:

E(Y n
T φ(XT )) ≤ E(Φ(XT )φ(XT )) < +∞.

Moreover from the a priori estimate (4.3), assumption (A6) and from the boundedness of φ, for any t < T

E(Y n
t φ(Xt)) ≤ 1

(T − t)1/q+1−1�
E(Γ �t φ(Xt)) < +∞.
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Now we decompose the quantity with the generator fn as follows:

E

[∫ t

0

φ(Xs− )fn(s, Y n
s , Zns , U

n
s )ds

]
= E

[∫ t

0

φ(Xs−)(f(s, Y n
s , 0, 0) − f0

s )ds
]

+ E

[∫ t

0

φ(Xs− )(f0
s ∧ n)ds

]
+ E

[∫ t

0

φ(Xs−) (f(s, Y n
s , Zns , 0) − f(s, Y n

s , 0, 0)) ds
]

+ E

[∫ t

0

φ(Xs−) (f(s, Y n
s , Zns , U

n
s ) − f(s, Y n

s , Zns , 0)) ds
]

= E

[∫ t

0

φ(Xs−)(f(s, Y n
s , 0, 0) − f0

s )ds
]

+ E

[∫ t

0

φ(Xs− )(f0
s ∧ n)ds

]
+ E

[∫ t

0

φ(Xs−)ζns Z
n
s ds

]
+ E

[∫ t

0

φ(Xs−)Uns ds
]

(4.9)

where ζns is a k-dimensional random vector defined by:

ζi,ns =
(f(s, Y n

s , Zns , 0) − f(s, Y n
s , 0, 0))

Zi,ns
1Zi,n

s �=0

and
Uns = f(s, Y n

s , Zns , U
n
s ) − f(s, Y n

s , Zns , 0).

From condition (A3), |ζns | ≤ K. Now we can write (4.8) as follows:

E[Y n
t φ(Xt)] = E[Y n

0 φ(X0)] + E

[∫ t

0

φ(Xs−)(f0
s ∧ n)ds

]
−E

[∫ t

0

φ(Xs−)(f(s, Y n
s , 0, 0) − f0

s )ds
]

+ E

[∫ t

0

Y n
s−Lφ(s,Xs)ds

]
+ E

[∫ t

0

Y n
s−I(s,Xs− , φ)ds

]
+ E

[∫ t

0

(∇φ(Xs)σ(s,Xs) − φ(Xs)ζns )Zns ds
]

+ E

[∫ t

0

[∫
E

[
(φ(Xs) − φ(Xs−))

]
Un
s (e)λ(de) − φ(Xs−)Uns

]
ds

]
. (4.10)

Since φ is bounded and f0 ∈ L1((0, T ) ×Ω) (condition (A8)):

E

∫ T

0

|φ(Xs−)|(f0
s ∧ n)ds ≤ C. (4.11)

We use Hölder’s and Young’s inequalities to obtain:∫ T

0

| (∇φ(Xs)σ(s,Xs) + φ(Xs)ζns )Zns |ds

≤
[∫ T

0

(T − s)ρ|Zns |2ds
]1/2 [∫ T

0

|∇φ(Xs)σ(s,Xs) + φ(Xs)ζns |2
(T − s)ρ

ds

]1/2

≤ 1
�

[∫ T

0

(T − s)ρ|Zns |2ds
] �

2

+
�− 1
�

[∫ T

0

|∇φ(Xs)σ(s,Xs) + φ(Xs)ζns |2
(T − s)ρ

ds

] �−1
2�

·
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Taking the expectation and thanks to Proposition 4.3, the first term on the right-hand side is bounded. For the
second term, by assumption, φ and ∇φ are supposed to be bounded, ζns is also bounded, σ grows linearly and
X ∈ H

2(0, T ). Hence if ρ < 1 (condition (A9)), there exists a constant C such that for any n

E

∫ T

0

| (∇φ(Xs)σ(s,Xs) + φ(Xs)ζns )Zns |ds ≤ C. (4.12)

The same estimate holds for Un. Indeed from (A4):

−
∫
E

ϑ(e)|Un
s (e)|λ(de) ≤

∫
E

κ̂ns (e)U
n
s (e)λ(de) ≤ Uns ≤

∫
E

κns (e)U
n
s (e)λ(de) ≤

∫
E

ϑ(e)|Un
s (e)|λ(de)

if κns (e) = κY
n,Zn,Un,0

s (e) and κ̂ns (e) = κY
n,Zn,0,Un

s (e). Hence

E

∫ t

0

[∫
E

∣∣[(φ(Xs) − φ(Xs− ))
]
Un
s (e)

∣∣λ(de)
]

+ |φ(Xs− )Uns |ds

≤ E

∫ T

0

∫
E

[|φ(Xs) − φ(Xs− )| + ϑ(e)|φ(Xs− )|] |Un
s (e)|λ(de)ds

≤ 1
�
E

[∫ T

0

(T − s)ρ‖Un
s ‖2

L2
λ
ds

] �
2

+
l− 1
l

E

[∫ T

0

∫
E

(|φ(Xs− + β(s,Xs− , e)) − φ(Xs−)| + ϑ(e)|φ(Xs− )|)2
(T − s)ρ

λ(de)ds

] �−1
2�

,

≤ C.

thus

E

∫ T

0

(∫
E

|φ(Xs) − φ(Xs−)||Un
s (e)|λ(de) + |φ(Xs−)||Uns |

)
ds ≤ C. (4.13)

Now we treat the three terms in (4.10) containing Y n and X :

−E

[∫ t

0

φ(Xs−)f(s, Y n
s , 0, 0)ds

]
+ E

[∫ t

0

Y n
s−Lφ(s,Xs)ds

]
+ E

[∫ t

0

Y n
s−I(s,Xs− , φ)ds

]
.

By condition (A5), the first integral is bounded from below by:

−E

[∫ t

0

φ(Xs−)f(s, Y n
s , 0, 0)ds

]
≥ E

[∫ t

0

φ(Xs−)(as)|Y n
s |1+qds

]
. (4.14)

Now we deal with the terms containing the operators L and I. With Hölder’s inequality we obtain:

E

[∫ T

0

|Y n
s−L(φ)(s,Xs)|ds

]
≤

[
E

∫ T

0

asφ(Xs)(Y n
s )q+1ds

]1/(q+1)

×
[
E

∫ T

0

a−1/q
s φ−1/q(Xs)|L(φ)(s,Xs)|(q+1)/qds

]q/(q+1)

.

To control the second quantity, we will be more specific about the test-function φ. We will assume that φ = ψγ

where ψ belongs to C∞
b (Rd) with support in R and γ > 2(q + 1)/q. Under this setting, there exists a constant

C depending only on ψ, γ, σ and b such that

|L(φ)| = |L(ψγ)| ≤ Cψγ−2.
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Thus for γ > 2(q + 1)/q

φ−1/q(Xs)|L(φ)(s,Xs)|(q+1)/q ≤ Cψ−γ/q+(γ−2)(q+1)/q(Xs) = Cψγ−2(q+1)/q(Xs)

which is bounded. By condition (A6), a−1/q is in L�(Ω). Therefore

E

∫ T

0

a−1/q
s φ−1/q(Xs)|L(φ)(s,Xs)|(q+1)/qds ≤ C

for some constant C. Then

E

[∫ T

0

|Y n
s−L(φ)(s,Xs)|ds

]
≤ C

[
E

∫ T

0

asφ(Xs)(Y n
s )q+1ds

]1/(q+1)

. (4.15)

The previous steps were very similar to [20]. Therefore the main difference comes from the term

E

[∫ t

0

∫
E

Y n
s−

(
φ(Xs) − φ(Xs−) −∇φ(Xs− )β(s,Xs− , e)

)
λ(de)ds

]
. (4.16)

In order to control this term, assumptions (D) on the jumps of X and S will be used. Remember that R = Sc
is open and for any ε > 0 we define

Γ (ε) := {x ∈ R : d(x, ∂S) ≥ ε}.

Γ (ε/2)c and Γ (ε) are two disjoint closed sets of R
d. By the C∞ Urysohn lemma, there exists a C∞ function ψ

such that ψ ∈ [0, 1], ψ ≡ 1 on Γ (ε) and ψ ≡ 0 on Γ (ε/2)c. In particular the support of ψ is included in R and
since ∂S is compact, ψ belongs to C∞

b (Rd). We take γ > 2(q + 1)/q and we define

φ = ψγ . (4.17)

Note that φ also takes its values in [0, 1], φ ≡ 1 on Γ (ε) and φ ≡ 0 on Γ (ε/2)c.
Since ∂S is compact and of class C1, then there exists a constant ε0 > 0 such that for every y ∈ R∩ Γ (ε0)c,

there exists a unique z ∈ ∂S such that d(y, ∂S) = ‖y − z‖ (see [7], Sect. 14.6).

Lemma 4.8. Under the above assumptions, let us choose ε1 < ε0 such that (1+Kβ)ε1 < ν (Kβ is the Lipschitz
constant of β w.r.t. x, condition (D2)). We have for any 0 < ε < ε1:

ψ(Xs−) = 0 ⇒ ψ(Xs) = 0.

Moreover
ψ(Xs)
ψ(Xs−)

= ψ(Xs)1Γ (ε)(Xs−).

Proof. We consider the case where Xs− /∈ supp(ψ), that is ψ(Xs−) = 0. Thus Xs− is in S or Xs− is in R but
d(Xs− , ∂S) < ε.

(1) If Xs− ∈ S, then Xs ∈ S, hence ψ(Xs) = 0.
(2) Let z ∈ R with d(z, ∂S) < ε and x ∈ ∂S such that d(z,S) = ‖z − x‖. Let us prove that z + β(s, z, e) ∈ S

by contradiction. Assume that z + β(s, z, e) /∈ S and consider the following convex combination:

zt := (1 − t)(z + β(s, z, e)) + t(x + β(s, x, e)).
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Now since β is Lipschitz continuous w.r.t. x:

‖zt − (x + β(s, x, e))‖ = (1 − t)‖z + β(s, z, e) − x− β(s, x, e)‖
≤ (1 − t)(1 + Kβ)‖z − x‖ ≤ (1 − t)(1 + Kβ)ε

≤ (1 + Kβ)ε < ν.

Since x ∈ ∂S, x+ β(s, x, e) ∈ S. But z + β(s, z, e) /∈ S. Thus by continuity there exists t0 ∈ (0, 1) such that

zt0 := (1 − t0)(z + β(s, z, e)) + t0(x + β(s, x, e)) ∈ ∂S.
Thus we have obtained x ∈ ∂S and zt0 ∈ ∂S such that

‖zt0 − (x + β(s, x, e))‖ < ν ⇒ d(x + β(x, s, e), ∂S) < ν.

This leads to a contradiction. So we deduce z + β(s, z, e) ∈ S.
Hence if Xs− ∈ R with d(Xs− , ∂S) < ε, Xs ∈ S and ψ(Xs) = 0.

Now consider the quotient
ψ(Xs)
ψ(Xs−)

=
ψ(Xs)
ψ(Xs−)

1supp(ψ)(Xs−).

The first part of the proof shows that for any ε < ε1, we have:

ψ(Xs)
ψ(Xs−)

= ψ(Xs)1Γ (ε)(Xs−).

Indeed if Xs− is in supp(ψ) ∩ Γ (ε)c, then Xs ∈ S, and thus the quotient is null. �

Now we can deal with the term given by (4.16). By Hölder’s inequality we obtain:

E

[∫ t

0

Y n
s− |I(s,Xs− , φ)|ds

]
≤

[
E

∫ t

0

asφ(Xs− )(Y n
s )q+1ds

] 1
q+1

×
⎡⎣E

∫ t

0

a−1/q
s

∫
E

∣∣φ(Xs) − φ(Xs−) −∇φ(Xs−)β(s,Xs− , e)
∣∣ q+1

q

φ(Xs−)1/q
λ(de)ds.

⎤⎦
q

q+1

Since φ = ψγ , the last integral is controlled by:

ψ(Xs−)−γ/q
∣∣ψγ(Xs) − ψγ(Xs−) −∇(ψγ)(Xs−)β(s,Xs− , e)

∣∣ q+1
q

≤ Cqφ(Xs)
(

ψ(Xs)
ψ(Xs−)

)γ/q
+ Cqφ(Xs−)

+Cqψ
γ−(q+1)/q(Xs−)|∇ψ(Xs−)β(s,Xs− , e)|.

But with Lemma 4.8 we obtain:

ψ(Xs−)−γ/q
∣∣ψγ(Xs) − ψγ(Xs−) −∇(ψγ)(Xs−)β(s,Xs− , e)

∣∣ q+1
q

≤ Cq

[
ψ

γ(q+1)
q (Xs)1Γ (δ)(Xs−) + ψγ(Xs−) + ψγ−

q+1
q (Xs−)|∇ψ(Xs−)β(s,Xs− , e)|

]
.

From the assumption on ψ and since γ > 2(q+1)/q, with condition (A6) there exists a constant C independent
on n such that:

E

[∫ T

0

Y n
s− |I(s,Xs− , φ)|ds

]
≤ C

[
E

∫ T

0

asφ(Xs−)(Y n
s )q+1ds

] 1
q+1

. (4.18)
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Let us summarize what we obtained. For any ε small enough, any function φ = ψγ with γ > 2(q + 1)/q,
from (4.10) and using (4.11)−(4.13), (4.15), (4.18) we deduce that there exists a constant C independent of n
such that

0 ≤ E

∫ T

0

asφ(Xs−)|Y n
s |1+qds ≤ −E

∫ T

0

φ(Xs− )f(s, Y n
s , 0, 0)ds ≤ C < +∞. (4.19)

Moreover all these estimates show that we can pass to the limit in (4.10) (see details in [20]) and we have:

E[YTφ(XT )] = E[Ytφ(Xt)] + E

[∫ T

t

φ(Xs−)f0
s ds

]

−E

[∫ T

t

φ(Xs−)f(s, Ys, 0, 0)ds

]

+ E

[∫ T

t

Ys−Lφ(s,Xs)ds

]
+ E

[∫ T

t

Ys−I(s,Xs− , φ)ds

]

+ E

[∫ T

t

(∇φ(Xs)σ(s,Xs) + φ(Xs)δs)Zsds

]

+ E

[∫ T

t

[∫
E

(φ(Xs) − φ(Xs−))Us(e)λ(de) + Usφ(Xs−)
]

ds

]
. (4.20)

Estimate (4.19) also holds with Y , and once again from (4.11)−(4.13), (4.15) and (4.18), we can let t go to T
in (4.20) in order to have:

E

[(
lim inf
t→T

Yt

)
φ(XT )

]
≤ lim

t→T
E[Ytφ(Xt)] = E[ξφ(XT )].

Recall that the function φ is equal to one on Γ (ε), and ε can be as small as we want, and we already know that
lim inft→T Yt ≥ ξ a.s. This last inequality shows that in fact a.s.

lim inf
t→T

Yt = ξ.

This achieves the Proof of Theorem 4.5.
The Proof of Theorem 4.5 shows that the limit of Yt exists in mean in the following sense: for smooth

function φ

lim
t→T

E(Ytφ(Xt)) =

{
E(ξφ(XT )) if supp(φ) ∩ S = ∅,
+∞ if E(φ(XT )1S) > 0.

5. Conclusion

To finish this paper, we gather together the Theorems 3.1 and 4.5: under the conditions (A*)-(B)-(C)-(D)-
(E), with the assumptions (A8), (A9), if the filtration F is left-continuous at time T and if one of the next
three cases holds:

• f does not depend on u or π(t, 0, u) = f(t, 0, 0, u)− f(t, 0, 0, 0) ≥ 0 a.s. for any t and u;
• ϑ ∈ L

1
λ(E) and there exists a constant κ∗ > −1 such that κ0,0,u,0

s (e) ≥ κ∗ a.e. for any (s, u, e);
• λ is a finite measure on E;

then a.s.
lim
t→T

Yt = ξ.
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Note that (C), (D), (E) depend only on the terminal condition ξ and the forward process X . The assump-
tions (A*), (B), (A8) and (A9) are conditions on the generator f . They are satisfied in

• Example 2.3 with λ finite, α ∈ L�((0, T ) ×Ω) for � < 2, q > 2�/(2 − �) and γ belongs to L1((0, T ) ×Ω);
• Example 2.4 with q > 2;
• Example 2.5 with −1 < ς < q, 2(1 + ς) < q and � < 1.
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