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SEEKING RELEVANT INFORMATION FROM A STATISTICAL MODEL
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Abstract. We herein introduce a general variable selection procedure, which can be applied to several
parametric multivariate problems, including principal components and regression, among others. The
aim is to allow the identification of a small subset of the original variables that can ‘better explain’
the model through nonparametric relationships. The method typically yields some noisy uninformative
variables and some variables that are strongly related because of their general dependence and our aim
is to help understand the underlying structures in a given data–set. The asymptotic behaviour of the
proposed method is considered and some real and simulated data–sets are analysed as examples.
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1. Introduction

The problem of variable selection in many statistical models has become an enormous challenge over the last
decade, and is now a main–stream research area in statistics. The large volume of data from internet traffic and
from computers in general, and the impressive ability to store these data, has led to the need to develop new
statistical procedures to handle these challenges. Retrieving information from these data–sets, which usually
have redundancies, ambiguities, and noise effects among their attributes, is a difficult problem. Several strategies
have been used to overcome these difficulties.

Probably the best known and most studied methods are the procedures for variable selection for the ordinary
linear model. All types of statistical software have built–in routines for selecting variables using classical variable
selection procedures such as Bayesian Information Criteria and Akaike criteria, among others. Nonetheless, the
study of this issue is not restricted to these models. In recent years, ad hoc criteria for feature extraction have
been introduced for use in many multivariate problems, such as principal components analysis, regression and
both supervised and unsupervised classification. The most widely used strategies are built either on Bayesian
model averaging (BMA) or on ‘least absolute shrinkage and selection operator’ (LASSO) type penalties. The
first approach was typified in the Bayesian proposals of Frayley and Raftery ([7, 8]), in which they analysed
the unsupervised classification problem. Hoeting et al. [14], among others, studied the problems involved in
simultaneously selecting variables and transformations for the linear model. An alternative perspective was
developed by Tibshirani [21], who introduced the LASSO: his proposal is to minimize the residual sum of squares
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rfraiman@cmat.edu.uy
2 Universidad de San Andrés and Conicet, Vito Dumas 284, Victoria 1644,Buenos Aires, Argentina.
yanugimenez@gmail.com; msvarc@udesa.edu.ar

Article published by EDP Sciences c© EDP Sciences, SMAI 2016

http://dx.doi.org/10.1051/ps/2016022
http://www.esaim-ps.org
http://www.edpsciences.org


464 R. FRAIMAN ET AL.

subject to the sum of the absolute values of the coefficients being less than a constant typically some coefficients
are shrunk and others set to zero. This procedure is especially suitable for large data–sets, specifically when there
are more variables than observations. Some important references for that direction were provided by Witten
and Tibshirani [23], who introduced a procedure for clustering the observations using an adaptive, chosen set of
features that they considered to be lasso–type penalty functions. The same authors (Witten and Tibshirani [22])
introduced the notion of using lassoed principal components to identify differentially–expressed genes, and they
considered the problem of testing the significance of features in high–dimensional data. A detailed description
of this method can be found in [12].

All these variable selection criteria jointly select the variables and adjust the statistical model. We tackle
the variable selection problem from a different perspective. In first place, we perform a statistical analysis of
the data (such as regression or principal components). Once this analysis has succeeded, we proceed to find
the subset of variables that better explain the output. We do not propose to perform the analysis with fewer
variables, in fact, it can even be applied after having performed a classical model selection procedure.

We extend some ideas introduced in Fraiman et al. [6] for classification methods to regression and principal
components analysis. Therein, two procedures for variable selection in cluster analysis and classification rules
have been introduced. Both of them are based on the idea of blinding unnecessary variables. To cancel the effect
of one variable, they substitute all their values by the marginal mean in the first proposal and by the conditional
mean in the second one. The marginal mean approach is mainly intended for identifying noisy uninformative
variables, whereas the conditional mean approach can also deal with dependence. In this article, we extend the
potential uses of the second of these procedures.

To illustrate our aims, consider the following simple linear model:

Y = β′X + ε = 3X1 − 3X2 + 4X3 + ε, (1.1)

where X3 = exp(X1X2) and X1 and X2 are normal independent random variables centred on the origin
with unit variance; the errors, ε, are independent, normally distributed random variables with zero mean and
variance 0.25. One hundred observations were generated using this model. It is clear that the regression function
is a function of a subset of {X1, X2, X3} with cardinality 2, but there is no linear model for two of the three
variables, X1, X2, and X3, that fits the data well. But if we estimate X3 by E(X3|X1, X2) then the model
Y = β′(X1, X2, E(X3|X1, X2)) + ε will fit properly.

Figure 1a shows the surface adjusted to match the complete model and the surface adjusted to match
Y = β1X1 + β2X2 + ε. It is clear that all three variables are needed to predict the underlying model correctly.
Figure 1b shows a scatter plot of β̂′X versus β̂′(X1, X2, Ê(X3|X1, X2)), where Ê(X3|X1, X2) is the k−nearest
neighbors estimate with k = 10 and β̂ represents the OLS β estimate for Equation (1.1). The linear relationship
that can be seen in this figure predicts X3 extremely well, highlighting that almost all the information contained
in this variable can be described by the other two variables when it is estimated (via conditional expectation)
using the data–set. This is the central idea expressed in this paper, and it can be applied to a great variety of
models.

The remainder of this paper is organized as follows. We introduce the main definitions and the population
version of our proposal in Section 2, and provide the empirical counterparts of the procedures and present our
main results in Section 3. We provide some practical advice for implementing our proposals in Section 4, and
apply our methods to simulated and real data–sets in Section 5. Some final comments are given in Section 6,
and all the proofs are given in the Appendix.

2. Our setup: Main definitions and notation

We begin by defining some notation used throughout the paper. Then we state the problem in terms of the
underlying data distribution. We then express the population statements in terms of the sample data using the
empirical distribution in a plug–in fashion.
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Figure 1. (a) The darker surface was adjusted using a linear model involving the three vari-
ables while the ligther surface was adjusted using a linear model involving only X1 and X2.
(b) Scatter plot with the regression function for the complete data–set on the horizontal axis
and, on the vertical axis, the regression function with X3 predicted by X1, X2.

Even though we are presenting a variable selection procedure that can be applied to many parametric statis-
tical problems, we are going to focus on regression models and principal components analysis. We first set the
theoretical framework for the regression models, and then extend the ideas to principal components.

Let us consider the regression models,
Y = g(X, β) + ε, (2.1)

where, Y, ε ∈ R are random variables, X ∈ R
p is a random vector, and β ∈ R

p is the vector of parameters to be
estimated. The regressor variables, X, have distribution P , the errors, ε, have zero mean and are independent
of X. If g(X, β) = X′β this is the classical linear model, otherwise it is a non-linear regression model.

The population target is given by β0, fulfilling

β0 = argminβE(ρ (Y − g(X, β))). (2.2)

If ρ(·) = ‖ · ‖2 we have the ordinary least squares estimates.
Suppose that we are satisfied with model (2.1). Our aim is to find a subset of variables from X that retains

almost all the relevant information for the model, without redundancies or noise.
The coordinates of the vector X are denoted X [i], i = 1, . . . , p. It is important to note that throughout this

paper, p remains fixed.
Given a subset of indices I ⊂ {1, . . . , p} with cardinality d ≤ p, we call X(I) the subset of random variables

{X [i], i ∈ I}. With a slight abuse of notation, if I = {i1 < . . . < id}, we also denote the vector (X [i1], . . . , X [id])
as X(I), and define the blinded vector Z(I) := Z = (Z[1], . . . , Z[p]), where

Z(I)[i] =
{

X [i] if i ∈ I
E(X [i]|X(I)) if i /∈ I.

(2.3)

Z(I) ∈ R
p, but it depends only on {X [i], i ∈ I} variables. The distribution of Z(I) is denoted Q(I). Lastly,

ηi(z) = E(X [i]|X(I) = z) for i /∈ I, represents the regression function.
Typically we are interested in the case where d � p. Given a fixed integer d, 1 ≤ d � p, we let Id be the

family of all subsets of {1, . . . , p} with cardinality d. We seek a small subset, I, such that g(X, β0) is as close as
possible to g(Z(I), β0).
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More precisely, I0 ⊂ Id is defined as the family of subsets in which the minimum h(I) is attained for
I ∈ Id, i.e.,

I0 = argminI ∈Id
h(I), (2.4)

where
h(I) = E

(
(g(X, β0) − g(Z(I), β0))2

)
. (2.5)

The objective function (2.5) measures the mean square distance between the regression function with the
original variables and the regression function with the blinded variables.

We apply our procedure to the classical dimension reduction technique, principal components analysis (PCA).
We seek a linear function of the components of X that accounts for most of the information contained in X.
More precisely, we seek the linear combination that has the largest variance among the values of X. Our goal
is to maximize the variance of the projection α′X, i.e., to choose α ∈ R

p according to,

α1 = argmax
{α:‖α‖=1}

V ar(α′X) = argmax
{α:‖α‖=1}

α′Σα,

where Σ is X’s covariance matrix. In this way, we obtain the first principal component, which is the direction
of the eigenvector corresponding to the largest eigenvalue. We assume that Σ is positive definite and that all
the eigenvalues, λ1, . . . , λp are different. The next principal component directions are defined by

αk = argmax
{‖α‖=1, α⊥[α1,...,αk−1]}

V ar (α′X) = argmax
{‖α‖=1, α⊥[α1,...,αk−1]}

α′Σα for k = 2, . . . , p, (2.6)

where [α1, . . . , αk−1] is the subspace spanned by the vectors {α1, . . . , αk−1}.
From the spectral theorem, it follows that if λ1 > λ2 > . . . > λp are the eigenvalues of Σ, then the solutions

to the principal components analysis are the corresponding eigenvectors αk, k = 1, . . . , p. Therefore, Uk = α′
kX

is the kth principal component. We assume that having performed PCA, the first l � p, principal components
successfully represent the original data–set. Next, we define I ∈ Id (typically d � p)

Uk(I) = α′
kZ(I), for k = 1, . . . , l.

Lastly, we look for the subset I ∈ Id that minimizes the objective function,

h(I) =
l∑

k =1

E
(|Uk − Uk(I)|2) . (2.7)

This function measures the sum of the mean square distances between the projections in the direction of
the l first principal components considering the original variables and the blinded ones.

Remark 2.1. The proposal can be extended to the case of eigenvalues with multiplicity greater than one. Let
λj be an eigenvalue with multiplicity greater than one, denote by Ej the eigenmanifold of Σ corresponding
to λj and Pj the orthogonal projection operator from R

p to Ej . Then write Uj = PjX and Uj(I) = PjZ(I),
hence equation (2.7) remains well defined.

Remark 2.2. Extensions of these procedures to generalized linear models and canonical correlation analysis
can be found in [9].

3. Empirical versions

In this section, we will define the empirical versions of the models described above and present the consistency
results for each of the models studied. We require consistent estimates of the set I0, I0 ⊆ Id based on a sample
X1, . . . ,Xn of iid random p dimensional vectors, with a distribution P .
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Given a subset I ∈ Id, the first step is to obtain the blinded version of the sample of random vectors in R
p,

X̂1(I), . . . , X̂n(I), that only depend on X(I), and estimate the conditional expectation (the regression function)
non–parametrically. The following assumption is needed for all the models considered here.

H1. For all i /∈ I, η̂i(z) is a strongly consistent estimator of ηi(z) = E(X [i]|X(I) = z) for almost all z (P)
uniformly. Conditions under which H1 holds can be found in [10].

First, we define the empirical version of the blinded observations. As an example, we consider the r nearest
neighbour (r-NN) estimates. We fix an integer r (the number of nearest neighbours used) and calculate the
Euclidean distance restricted to the coordinates I among the observations X1(I), . . . ,Xn(I). For each j ∈
{1, . . . , n}, we find the set of indices Cj of the r nearest neighbours of Xj(I) among {X1(I), . . . ,Xn(I)}, where
Xj(I) = {Xj [i], i ∈ I}.

Next we define the random vectors X̂j(I), 1 ≤ j ≤ n satisfying

X̂j(I)[i] =
{

Xj [i] if i ∈ I
1
r

∑
m∈Cj

Xm[i] otherwise, (3.1)

where Xj[i] stands for the ith coordinate of the vector Xj .
Qn(I) stands for the empirical distribution of {X̂j(I), 1 ≤ j ≤ n}.
Given a subset of indices I ∈ Id, we define the empirical version of the objective function hn(I), and we

seek the optimal subsets of variables I0 ⊂ Id, which are the family of subsets in which the minimum of hn(I) is
reached, i.e.

Î0 = argminI∈Id
hn(I). (3.2)

Thus, hn(I) and h(I) must be explicitly determined for each statistical procedure.
For instance, in regression models, the empirical counterpart of the objective function (2.5) is given by

hn(I) =
1
n

n∑
j =1

(
g (Xj , βn) − g

(
X̂j(I), βn

))2

, (3.3)

where βn is an almost surely consistent estimator of β0. To obtain our main results, some additional assumptions
may be needed for each model. For instance in a regression problem, we will require the following assumptions.

HR1. The estimate βn converges a.s. to the true value β0, and the regression function g is uniformly continuous.

Remark 3.1. In order to include the linear regression case, we can replace the uniform continuity of the
regression function g by the following conditions:

|g2(x, a) − g2(x, b)| ≤ C‖a − b‖2‖x‖2 and, |g2(x, a) − g2(y, a)| ≤ C‖x − y‖2‖a‖2.

HR2. E
(
g2 (X, β0)

)
< ∞.

Theorem 3.2. Let {(Xj , Yj), j ≥ 1} be iid p+1 dimensional random vectors satisfying (2.1). Given d, 1 ≤ d ≤ p,
let Id be the family of all subsets of {1, . . . , p} with cardinality d and let Id,0 ⊂ Id be the family of subsets in
which the minimum of the right–hand side of equation (2.5) is reached. Then, under H1,HR1 and HR2, we
have that În ∈ I0 eventually almost surely, i.e., În = I0 with I0 ∈ I0 ∀n > n0(ω), with probability one.

The proof can be found in the Appendix.
For the PCA, the empirical counterpart of equation (2.7) is given by

hn(I) =
l∑

k =1

1
n

n∑
j =1

∣∣∣α′n
k Xj − α′n

k X̂j(I)
∣∣∣2 . (3.4)

where α′n
k denotes an almost surely consistent estimator of α′

k, for k = 1, . . . , l and we require the following
additional assumptions.



468 R. FRAIMAN ET AL.

HP1. The covariance matrix Σ is positive definite and all of the eigenvalues are different.
HP2. E

(
(Z(I)[j] − X(I)[j])2

)
< ∞.

Theorem 3.3. Let {Xj , j ≥ 1} be iid p dimensional random vectors. Given d, 1 ≤ d ≤ p, let Id be the family of
all the subsets of {1, . . . , p} with cardinality d and let Id,0 ⊂ Id be the family of subsets in which the minimum
of the right–hand side of equation (2.7) is reached. Then, under H1,HP1 and HP2 we have that În ∈ I0

eventually almost surely, i.e. În = I0 with I0 ∈ I0 ∀n > n0(ω), with probability one.

The proof can be found in the Appendix.

Remark 3.4. This result can be extended to the case where there are eigenvalues with multiplicity greater
than one. Let λj,n be a consistent estimator of λj an eigenvalue with multiplicity greater than one, and Pn,j be
the corresponding empirical orthogonal projection operator from R

p to En followed by estimating via plugging
in Uj and Uj(I). The proof of the consistency is similar to the proof of Theorem 3.3, the strong consistency
of Pn,j to Pj is stated in [2] Proposition 3.

Remark 3.5. If d is not sufficiently small the algorithm may become greedy. In that case, it may be convenient
to use semiparametric models on the conditional mean or to use robust alternatives as more practical methods.
The consistency results given in the previous theorem will be valid as long as the semiparametric estimates
verify the consistency assumptions required for the purely nonparametric estimates. For instance, we can use
the results presented by He and Shi (1996) to validate our consistency results.

4. Practical considerations

In this section, we present some practical considerations that will be useful for implementing the method, and
will be helpful in the analysis of real data examples. The first point explains how the nonparametric regression
estimation should be implemented, and the last point provides two heuristic rules for choosing the number of
variables that should be retained.

Let I ⊆ {1, . . . , p}, our aim is to perform a regression estimate of X [i] based on X(I) for i ∈ Ic,

X̂[i] = EPn (X [i]|X(I)) .

For the sake of simplicity, as mentioned in Section 3, we choose an r-NN estimate. We suggest that the
generalized cross validation procedure should be used, so that the optimal number of neighbours is estimated
consistently, as described by Li (1987),

X̂k[i] =
1
r

n∑
j =1

Xj [i]I{‖Xj(I)−Xk(I)‖≤Rk(I)},

where Rk(I) is the distance from Xk(I) to its r nearest neighbour.
The number of nearest neighbours r = r(i, I) must be chosen for each subset I and coordinate i ∈ Ic. The

optimal r will be chosen by generalized cross–validation:

r̂opt(i, I) = argmin
r

1
n

∑n
j =1

(
Xj [i] − X̂j [i]

)2

(
1 − 1

r

)2 ·

Another important issue is how to select the number of variables that should be kept. In the procedures
introduced in this paper the objective function is scale dependent, and so it is not straightforward to fix a
threshold exogenously. We propose two heuristic procedures for choosing the number of variables that should
be retained. In a scree plot approach, for each d = 
I, the subset I0(d) with the best predictive ability relative



GENERAL VARIABLE SELECTION 469

to the statistical procedure under consideration (i.e., that minimizes the objective function) is kept, as well as
the value that the objective function reaches, hn(I0(d)). It is clear that hn(I0(d)) decreases when the number of
variables increases. Our proposal is to inspect the graph (d, hn(I0(d))) and decide at which value of d the slope
of the lines through the points are very steep to the left of d but not to the right. One can visualize an elbow at
this value. We suggest that this number, d of variables should be used. Of course this procedure is greedy and
computationally expensive if the number of variables in the original data–set and/or the number of retained
variables is large. There are criteria that share the spirit of our proposal in problems concerning cluster and
principal components analysis.

In a penalized minimization criterion, we propose to minimize hn introducing a penalty for the cardinality
of I, 
I = d. Specifically, our aim is to find a subset I0 such that

I0 = argmin
I ∈I

hn(I) + d2
√

hn,0, (4.1)

where I is the family of all the nonempty subsets of {1, . . . , p} and hn,0 = 1
n

∑n
j = 1 g(Xj , βn) (respectively,

hn,0 =
∑l

k =1
1
n

∑n
j =1(α

′n
k Xj)) for the regression models (respectively, for PCA). The main advantage of this

criterion is that it may be combined with a genetic algorithm to find a set of initial solutions, and then one
may carry out an exhaustive search among the subsets of those variables. Another alternative is to implement
a stepwise algorithm to find a solution. In either cases, there is no guarantee that an optimal solution will be
attained, but these strategies allow avoiding the examination of all 2p − 1 possible subsets.

5. Some simulated and real data examples

In this section we conduct some simulation experiments to analyse the behaviour of our procedure and
compare it with several well known variable selection procedures. We also challenge our proposal with a well
known data–set.

5.1. Synthetic data–sets

5.1.1. Regression: The classical linear model

The data are generated fulfilling the following linear model:

Yj = 2 + 3X1j − 4X2j + 2X3j − 3
2
X4j − X5j +

1
50

X6j + 3X7j + 4X8j − X9j + ej,

for j = 1, . . . , n where X1j , X2j ∼ N(0, 4) are independent random variables, X3j = (X1jX2j)2, X4j =
(X1jX2j)3Z1j , X5j = X4

1jZ2j , X6j = (X1jX2j)5Z3j , X7j = exp (X1jX2j), X8j =
√|X1jX2j| and X9j =

exp(X2j)Z4j , Zij for i = 1, . . . , 4 are independent random variables normally distributed centred at the ori-
gin with variance 0.25, and the errors ej are iid random variables with distribution N(0, 1). The model basically
depends on two variables X1j and X2j , while variables X3j , . . . , X8j are nonlinear transformations of X1j and
X2j or of the interaction between them.

Samples of size n = 200 and 300 were drawn repeatedly to attain 1000 replicates. For the sake of simplicity
we did not find the optimal number of nearest neighbours for each variable and established 10 or 20 nearest
neighbours for the nonparametric estimations. As suggested in Section 4, d, the number of variables retained,
was selected by inspecting the graph (d, hn(I0(d))) until the slope of the lines through the points is steepest
at the left of d, blinded procedure scree plot (BPSP). We also implemented the blinded procedure penalized
minimization criterion (BPPM) introduced in Section 4.

We challenged our method with several variable selection procedures. Four of them are classical variable
selection criteria, namely: Akaike (AIC), Bayesian Information Criteria (BIC), Adjust R2 (ADJR2) and the
p-value for an F -test of the change in the sum of squared errors by adding or removing the term (SSE). A
detailed reference for these criteria can be found in Seber and Lee [19] and almost every statistical software
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Table 1. Summary statistics. First line: Mean number of variables selected. Second line:
Median number of variables selected. Third line: % of hits = % of times that two variables have
been chosen. Fourth line: NOV S ≤ 5 = % of times that up to 5 variables have been chosen.

Variable Selection Criteria
Number of BPSP BPPM AIC BIC ADJR2 SSE LARS SCAD MCP

Observations r = 10 r = 20 r = 10 r = 20
n = 200 Mean 2.05 2.05 2.22 2.22 8.39 8.28 8.19 8.24 4.64 3.42 4.31

Median 2 2 2 2 9 9 9 9 4 3 4
% of hits 94.50 94.70 79.40 79.40 0.40 1.00 2.10 1.90 14.2 19.7 13.5

NOV S ≤ 5 100 100 100 100 5.30 7.80 10.60 10.30 58.4 75.9 52.6
n = 300 Mean 2.04 2.04 2.10 2.10 8.25 8.12 7.87 7.92 4.03 3.58 4.36

Median 2 2 2 2 9 9 9 9 4 3 4
% of hits 96.30 96.30 89.80 89.80 0.20 0.40 1.40 1.50 14 19 13

NOV S ≤ 5 100 100 100 100 5.10 8.60 14.10 13.70 68.5 70.5 49.8

package has built-in routines for them. We also ran several newer proposals, Least Angle Regression LARS (the
regularization parameter was estimated by 10-fold cross–validation) [4], Smoothly Clipped Absolute deviation
(SCAD) [5], and minimax concave penalty (MCP) [25]. The results are presented in Table 1.

We see from Table 1 that the number of variables selected by our criterion is on average very close to
the number of variables that generated the model. It chooses two variables in more than 94% (respectively,
79%) of the replicates for the BPSP (respectively, BPPM), detecting the true underlying dependence structure.
Moreover, whenever it does not choose two variables, it chooses at most 4. In contrast, the classical variable
selection algorithms tend to keep almost all the variables, and if not, they rarely discard more than one variable.
LARS, SCAD and MCP perform better: these methods keep fewer variables. LARS kept two variables in 14%
of the replicates and the median number of variables is 4, however in 4.9% (respectively, 6.6%) of the replicates,
only one variable has been selected for n = 200 (respectively, n = 300). MCP presents similar results: it kept
two variables in 13% of the replicates, the median number of variables is again 4, and it chose one variable in
8.8% (respectively, 8.5%) of the replicates for n = 200 (respectively, n = 300). SCAD is the procedure that has
the best performance among our competitors, achieving the correct number of variables in more than 19% of
the replicates, however: it did not converge 10.4% (respectively, 16.5%) of the time, and in 30.7% (respectively,
28.7%) of the cases, it chose one or no variables (except for the intercept) for n = 200 (respectively, n = 300).
In Figure 2, we exhibit the histograms for the different variable selection procedures for n = 300. It is clear that
the blinding procedure is the most accurate one and that it is not sensitive to the number of neighbours chosen.
SCAD, MCP and LARS keep a number of variables close to the optimal, while the classical procedures are not
able to detect nonlinear dependence.

Finally, we measure the mean relative square error (MRSE)

MRSE =
1
n

n∑
i=1

(Ŷi − Ŷ∗
i )

2

Ŷi

2 =
1
n

n∑
i=1

(X′
iβ̂ − X̂i

′
β̂)2

(X′
iβ̂)2

,

for PBSP, where Ŷ∗
i = X̂i

′
β̂. Our aim is to measure the mean relative distance of the predicted observation

considering the original and the blinded variables for the subset of variables selected. This quantity is between
0 and 1, and small values of it represents a good fit of the blinded process. The results are exhibit in Table 2.
In every case the MRSE is of order less than or equal to 10−5, showing a good fit of the variables selected.

5.1.2. Principal components

In this section we analyze the performance of the proposals for three different models.
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Table 2. MRSE for the optimal subset of variables for BPSP, for n = 200 and 300 with r = 10
and 20.

Number of k
observations 10 20

200 4.71 × 10−5 4.90 × 10−5

300 7.54 × 10−6 7.52 × 10−6

Model 1. This example was first analysed by Zou et al. [26]. The model has 10 variables, that depend either
on two random variables with an additive noise or a linear combination of them with an additive noise. The
variables Y1j are independent normally distributed with zero mean and variance 290, Y2j are also iid normally
distributed random variables with zero mean and variance 300 and Y3j = −0.3Y1j + 0.925Y2j + ej, where ej

are iid errors with normal distribution with zero mean and unit variance. The observations (X1j , . . . , X10j) for
j = 1, . . . , 100 are defined as follows,

Xij =

⎧⎨⎩
Y1j + eij for i = 1, . . . , 4,
Y2j + eij for i = 5, . . . , 8,
Y3j + eij for i = 9, 10,

while the errors eij have been generated as N(0, σ2) random variables, with σ2 = 1 or 100. The first two
principal components account for more than 99% (respectively, more than 75%) of the total variance for σ2 = 1
(respectively, σ2 = 100).

Model 2. We consider Y1,j , Y2,j and Y3,j for j = 1, . . . , 100 as in Model 1, and also generate variables that either
depend on Y1,j or on Y2,j or on the interaction between them, Y1,jY2,j , defined as follows:

Xij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

Y1j + eij for i = 1, 2,
Y2j + eij for i = 3, 4,
Y3j + eij for i = 5,√|Y1jY2j | + eij for i = 6,

log Y 2
1j + eij for i = 7,

12 logY 2
2j + eij for i = 8,

(5.1)

where the errors eij follow the same distribution as in Model 1. The proportion of the total variance explained
for σ2 = 1 (respectively, σ2 = 100) is almost always between 70% and 80% (respectively, 60% and 70%).

Model 3. We consider variables X1,j , . . . , X8,j as in Model 2 and add 60 independent noise variables normally
distributed with zero mean and variance σ2 = 1 or 100.

We perform 1000 replications generating data from Models 1 and Models 2 and 200 replicates for Model 3.
The nonparametric estimation of the conditional expectation is calculated with 5, 10 and 20 neighbours.

In every case, the data has been analysed by the blinded procedure scree plot scheme (BPSP) and also by
the blinded procedure penalized minimization criterion (BPPM).

The output must be analysed in two stages. First, it is important to report the number of variables selected,
and in the second stage, whenever two variables are selected, it is informative to determine whether those two
variables are informative for retrieving almost all the information of the model.

We now analyse the results for Model 1. When the data is analysed by BPSP, two variables are always chosen.
Almost always one variable has information only about Y1j and the other one about Y2j . In very few cases, it
keeps one of them and selects a linear combination of them for the other variable. If the data is analysed by
means of BPPM for σ2 = 1, the results are the same as in the previous analysis, but for σ2 = 100 it chooses
two variables between 93.70% and 97.20% of the replicates, and if not three variables are chosen. Whenever
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Figure 2. Number of times that each procedure selects d variables for Experiment 2 n = 200.
(a) BPSP r = 10, (b) BPSP r = 20, (c) BPPM r = 10, (d) BPPM r = 20 (e) AIC, (f) BIC,
(g) ADJR2, (h) SSE (i) LARS (j) SCAD (k) MCP.

two variables are chosen, the first has information about Y1 and the second has information about Y2 in almost
every case, and if not, one of them is a linear combinations of Y1 and Y2.

It is important to note that Model 1, with σ = 1, has been previously analysed by Zou et al. [26]. They select
the first 4 variables for the first principal component and X5j , . . . , X8j for the second principal component. Is
is clear that there is redundancy within each of those two groups.

For Model 2, BPSC keeps two variables in more than 90% of the replicates and if not, three variables are
selected. The BPPM retains two variables in more than 80% (respectively, 73%) of the replicates for σ = 1
(respectively, σ2 = 100.), and if not, it chooses either one or three variables. In Figure 3 we exhibit the optimal
value for the objective function, for 1, 2, . . . , 5 variables for each replication number of nearest neighbours, also
the mean curve is plotted. It is clear that in almost every case the optimal number of variables is two. However
it is important to retain the information provided by Y1 and Y2, hence keeping a set of variables that depends
only either on Y1 or on Y2 it is not desirable. This happens, for the BPSP, only less than 6% (respectively, 31%)
of the times for σ2 = 1 (respectively, σ2 = 100,) and for BPPM, only less than 9% (respectively, 34%) of the
time for σ2 = 1 (respectively, σ2 = 100).

In addition, we compare our proposals with other variable selection procedures. There are methods where
the number of variables must be given beforehand, while in other cases the number of variables is determined
automatically. In the first category, we find several methods introduced by Jolliffe [15] such as B2 (to retain q
variables, one associates one of the original variables to each of the p − q last PCA vectors and deletes those
variables) or B4 (which associates one of the original variables to each of the first q PCA vectors and retains
those variables). There is also an algorithm introduced by McCabe [18]. From the second category, we consider
the sparse PCA procedures, for instance BPSPA via penalized matrix decomposition (PMD) [24]. It is fairer
to compare our results with those obtained applying BPSPA via PMD, because those methods do not need as
an input the number of variables that should be retained. Hence we perform the same simulation (Model (5.1))
and find that even though they always keep all the variables, in more than 80% of the replicates, only 4 of them
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Figure 3. In each graph the optimal value for the objective function for each replicate is
exhibited. The dark line is the mean curve. (a) 5-Nearest neighbours. (b) 10-Nearest neighbours.
(c) 20-Nearest neighbours.

have a high loading on the first two PCAs, keeping redundant information. If we perform the same simulation
study for B2, B4 and McCabe, always keeping two variables, the results of the different procedures are very
similar, retaining a set of variables without information either about Y1 or about Y2 between 40% and 63%
(respectively, 43% and 47%) of the time for σ2 = 1 (respectively, σ2 = 100). In every case our method clearly
outperforms the results for the considered competitors.

Lastly, we analyse the results for Model 3. The BPSP chooses two variables and neither of them are noise, and
only for 10% (respectively, 30%) of the replicates for σ2 = 1 (respectively, σ2 = 100) are the selected variables
inadequate. For the BPPM, two variables are chosen in more than 77% of the replicates and in those cases
neither of them were noise.

5.2. A real data example

5.2.1. Regression application: The diabetes data–set

Efron et al. [4] introduced the diabetes data–set for analysing least–angle regression (LARS) performance.
LARS is a model selection technique for linear models that is less greedy than forward stepwise regression,
and simple modifications of this method lead to considering all possible LASSO estimates or considering the
“forward stagewise linear regression”. The diabetes data–set consists of 442 observations of 10 predictors (age,
gender, body mass, average blood pressure, and six blood serum measurements) and a response variable, gly-
caemia. Efron et al. [4] applied LARS to this data–set and identified only 4 important variables in the diabetes
study: body mass, average blood pressure, and two blood serum measurements (variables 7 and 9). The authors
suggested that the ordinary least squares model should be used rather than considering LARS, once the model
has been chosen, both for the model selection procedure and for the parameter estimation, to make the output
more familiar. Following their advice, our goal is to determine if the 4 variables are necessary for the complete
interpretation of the model or if there is redundant information present. We conducted an exhaustive search
among all the possible subsets of variables (by means of both criteria namely, scree plot and penalized mini-
mization), because the number of variables is small. In Figure 4(a) we show the optimal value for the objective
function, for different numbers of variables. It is clear that the biggest gain is obtained using two variables,
where the graph exhibits an elbow. The optimal subset according to equation (3.3) is body mass and one of the
blood serum measurements (variable 9). The number of nearest neighbours was cross–validated and found to be
86 for blood pressure and 107 for the other blood serum measurement (variable 7). In Figure 4(b), we present
the values for the regression function with the original variables and with the blinded variables. The points
should lie on the identity line if the estimation is errorless, and in our case it appears that the approximation
is good because the points are in general not that far from the line.
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Figure 4. (a) Optimal values for the objective function for different numbers of variables.
(b) Scatter plot with, on one axis the regression function for the complete data–set and on the
other one the regression function when blood pressure and one of the blood serum measurements
(variable 7) are predicted using body mass and the other blood serum measurement (variable 9).

6. Concluding remarks

We have provided a general procedure for finding the relevant variables for a family of different statistical
multivariate models, including regression and principal components analysis. The same idea can be extended
to other multivariate models, like GLIM, canonical correlation among others (see [9] for details).

The same idea can be extended to other multivariate models. The main idea is to blind some of the variables,
replacing them by their predictions based on a small subset of the original variables.

From the computational point of view, it is well known that the variable selection problem is intrinsically NP–
complete [3], since, as in every subset selection problem there is no way, without making further assumptions, of
avoiding an exhaustive search: visiting all 2p−1 possible subsets. The procedure is not therefore feasible if there
is a large number of variables. This problem was previously described by Fraiman et al. [6], who proposed two
ways of tackling it. One way is to use a fast optimization algorithm, genetic algorithm, for instance, retaining
a small subset of variables, s, and search exhaustively among them. They also describe another method, a
consistent forward-backward. It can be easily proved that the algorithm is consistent for all the cases that we
studied. Another alternative for avoiding an exhaustive search is to implement a simulated annealing algorithm
(Snell, 1995), but that approach goes beyond the scope of this paper.

Also, our proposal can be applied after having performed some classical selection of variables method, such
as a LASSO based procedures. Hence our search begins on a lower dimensional space.

Appendix A.

Proof of Theorem 3.2. In order to prove our result it suffices to show that for each fixed subset I the empirical
objective function (3.3) converges almost surely to the theoretical objective function (2.5), which will hold if we
show that,

1
n

n∑
j =1

g2 (Xj , βn) → E
(
g2 (X, β0)

)
a.s., (A.1)

1
n

n∑
j = 1

g2
(
X̂j(I), βn

)
→ E

(
g2 (Z(I), β0)

)
a.s. (A.2)

and

1
n

n∑
j =1

g (Xj , βn) g
(
X̂j(I), βn

)
→ E (g (X, β0) g (Z(I), β0)) a.s. (A.3)
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In first place to prove (A.1). We observe that,

1
n

n∑
j = 1

g2 (Xj , βn) =
1
n

n∑
j = 1

(
g2 (Xj , βn) − g2 (Xj , β0)

)
(A.4)

+
1
n

n∑
j =1

g2 (Xj , β0) (A.5)

From assumption HR1 it follows that the right–hand side of (A.4) converges a.s. to 0. On the other hand,
assumption HR2, E

(
g2 (X, β0)

)
< ∞, implies that the almost surely convergence to E

(
g2 (X, β0)

)
of (A.5)

follows from the Strong Law of Large Number (SLLN).
On a second stage, and in order to prove (A.2) we define the unobservable variables Z1(I), . . . ,Zn(I), where

Zj(I)[i] =

{
Xj[i] if i ∈ I

E(Xj [i]|Xj(I)) otherwise,
(A.6)

and denote by Q∗
n(I) it’s empirical distribution.

Hence, we have

1
n

n∑
j =1

g2
(
X̂j(I), βn

)
=

1
n

n∑
j =1

(
g2

(
X̂j(I), βn

)
− g2

(
X̂j(I), β0

))
(A.7)

+
1
n

n∑
j =1

(
g2

(
X̂j(I), β0

)
− g2 (Zj(I), β0)

)
(A.8)

+
1
n

n∑
j =1

g2 (Zj(I), β0) . (A.9)

The right–hand side of equation (A.7) converges a.s. to 0 since assumption HR1 holds. The a.s. convergence
to 0 of the term (A.8) follows from the uniform continuity of g stated in HR1 and assumption H1. Moreover
assumption HR2, E

(
g2 (Z(I), β0)

)
< ∞, implies that the almost sure convergence to E

(
g2 (Z(I), β0)

)
of (A.9)

follows from the SLLN.
On a third stage we are going to prove (A.3). We observe that,

1
n

n∑
j =1

g (Xj , βn) g
(
X̂j(I), βn

)
=

1
n

n∑
j =1

(
g (Xj , βn) g

(
X̂j(I), βn

)
− g (Xj , β0) g

(
X̂j(I), β0

))
+

1
n

n∑
j = 1

(
g (Xj , β0) g

(
X̂j(I), β0

)
− g (Xj , β0) g (Zj(I), β0)

)
(A.10)

+
1
n

n∑
j = 1

g (Xj , β0) g (Zj(I), β0) . (A.11)

From assumption HR1 it follows that (A.10) converges a.s. to 0. The a.s. convergence to 0 of the
term (A.10) follows from the uniform continuity of g stated in HR1 and assumption H1. Moreover
HR2 implies that E (|g (X, β0) g (Z(I), β0)|) < ∞, then from the SLLN we have that (A.11) converges to
E (|g (X, β0) g (Z(I), β0)|) . �
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Proof of Theorem 3.3. In order to prove our statement it is enough to show that (3.4) converges to (2.7) a.s.
To simplify notation, without loss of generality, we consider only one principal component (i.e., l = 1), which
will be denoted α = α1. Then we have,

hn(I) =
1
n

n∑
j =1

(
α′nXj − α′nX̂j(I)

)2

=
1
n

n∑
j =1

⎛⎝∑
i�∈I

αn[i](Xj [i] − X̂j(I)[i])

⎞⎠2

=
∑
i�∈I

(αn[i])2
1
n

n∑
j = 1

(
Xj [i] − X̂j(I)[i]

)2

+2
∑

i,k �∈I,i<k

αn[i]αn[k]
1
n

n∑
j =1

(
Xj [i] − X̂j(I)[i]

) (
Xj [k] − X̂j(I)[k]

)

and

h(I) = E
(
(α′X − α′Z(I))2

)
= E

⎛⎜⎝
⎛⎝∑

i�∈I

α[i] (X [i]− Z(I)[i])

⎞⎠2
⎞⎟⎠

=
∑
i�∈I

(α[i])2 E
(
(X [i] − Z(I)[i])2

)
+2

∑
i,k �∈I,i<k

α[i]α[k]E ((X [i]− Z(I)[i]) (X [k]− Z(I)[k])) .

Dauxois et al. [2] show strong consistency of the eigenvalues and their associated eigenvectors, under mild
regular conditions (see Prop. 2 and 4 therein). They establish that it is enough to show the convergence of the
covariance matrix in the operator space norm. More specifically, they prove that if

sup‖u‖=1

∥∥∥(
Σ̂n − Σ

)
(u)

∥∥∥ → 0 a.s.,

then

αn
k → αk a.s., for all 1 ≤ k ≤ p,

where αn
k (respectively, αk) are the eigenvectors of Σ̂n (respectively, Σ), which is the empirical covariance matrix

associated with Pn (respectively, P).
The proof will be complete if we show that,

1
n

n∑
j =1

(
Xj[i] − X̂j(I)[i]

)2

→ E
(
(X [i]− Z(I)[i])2

)
a.s., (A.12)

and

1
n

n∑
j =1

(
Xj [i] − X̂j(I)[i]

) (
Xj [k] − X̂j(I)[k]

)
→ E ((X [i] − Z(I)[i]) (X [k] − Z(I)[k])) a.s. (A.13)
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First, we prove (A.12). Recalling the definition given in (A.6) we have

1
n

n∑
j = 1

(
Xj [i] − X̂j(I)[i]

)2

=
1
n

n∑
j =1

(
Xj [i] − Zj(I)[i] + Zj(I)[i] − X̂j(I)[i]

)2

=
1
n

n∑
j =1

(Xj[i] − Zj(I)[i])2︸ ︷︷ ︸
(a)

+
1
n

n∑
j =1

(
Zj(I)[i] − X̂j(I)[i]

)2

︸ ︷︷ ︸
(b)

+
2
n

n∑
j =1

(Xj [i] − Zj(I)[i])
(
Zj(I)[i] − X̂j(I)[i]

)
︸ ︷︷ ︸

(c)

.

By the SLLN, since {Xj [i] − Zj(I)[i], for j = 1, . . . , n} are iid random variables with finite second moment
(assumption HP2), we have that,

1
n

n∑
j =1

(Xj [i] − Zj(I)[i])2 → E
(
(X [i]− Z(I)[i])2

)
a.s.

The a.s. convergence to 0 of (b) follows from assumption H1. Finally from Cauchy−Schwarz inequality, we have
that,∣∣∣∣∣∣ 2n

n∑
j = 1

(Xj [i] − Zj(I)[i])
(
Zj(I)[i]−X̂j(I)[i]

)∣∣∣∣∣∣≤2

⎛⎝ 1
n

n∑
j =1

(Xj[i]−Zj(I)[i])2
⎞⎠1/2⎛⎝ 1

n

n∑
j =1

(
Zj(I)[i]−X̂j(I)[i]

)2

⎞⎠1/2

.

(A.14)
The first term on the right–hand side of (A.18) converges a.s. to E((X [i] − Z[i])2) by the SLLN, while the

second one converges a.s. to 0 by assumption H1.
In second place, we are going to proof (A.13) following the same idea.

1
n

n∑
j = 1

(
Xj [i] − X̂j(I)[i]

) (
Xj [k] − X̂j(I)[k]

)
=

1
n

n∑
j = 1

(
Xj [i] − Zj(I)[i] + Zj(I)[i] − X̂j(I)[i]

) (
Xj [k] − Zj(I)[k] + Zj(I)[k] − X̂j(I)[k]

)
=

1
n

n∑
j = 1

(Xj [i] − Zj(I)[i]) (Xj [k] − Zj(I)[k])

+
1
n

n∑
j =1

(Xj [i] − Zj(I)[i])
(
Zj(I)[k] − X̂j(I)[k]

)
(A.15)

+
1
n

n∑
j =1

(
Zj(I)[i] − X̂j(I)[i]

)
(Xj [k] − Zj(I)[k]) (A.16)

+
1
n

n∑
j =1

(
Zj(I)[i] − X̂j(I)[i]

) (
Zj(I)[k] − X̂j(I)[k]

)
. (A.17)

For i ∈ Ic, since {Xj [i] − Zj(I)[i], for j = 1, . . . , n} are iid random variables with finite second moment
(assumption HP2), we have that, {(Xj [i]−Zj(I)[i])(Xj [k]−Zj(I)[k]), for j = 1, . . . , n} are iid random variables
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with finite first moment, and using the SLLN we have that

1
n

n∑
j = 1

(Xj[i] − Zj(I)[i]) (Xj [k] − Zj(I)[k]) → E ((X [i] − Z(I)[i]) (X [k] − Z(I)[k])) a.s.

From Cauchy−Schwarz inequality, we have that,∣∣∣∣∣∣ 1
n

n∑
j = 1

(Xj [i] − Zj(I)[i])
(
Zj(I)[k] − X̂j(I)[k]

)∣∣∣∣∣∣ ≤⎛⎝ 1
n

n∑
j =1

(Xj [i] − Zj(I)[i])2
⎞⎠1/2 ⎛⎝ 1

n

n∑
j =1

(
Zj(I)[k] − X̂j(I)[k]

)2

⎞⎠1/2

.

The first term on the right–hand side converges a.s. to E((X [i] − Z[i])2) by the SLLN, while the second one
converges a.s. to 0 by assumption H1.

Following the same idea we have that (A.16) converges to 0 a.s.
Finally, to prove that (A.17) vanishes, we apply the Cauchy−Schwarz inequality again,∣∣∣∣∣∣ 1

n

n∑
j = 1

(
Zj(I)[i] − X̂j(I)[i]

) (
Zj(I)[k] − X̂j(I)[k]

)∣∣∣∣∣∣ ≤⎛⎝ 1
n

n∑
j =1

(
Zj(I)[i] − X̂j(I)[i]

)2

⎞⎠1/2 ⎛⎝ 1
n

n∑
j =1

(
Zj(I)[k] − X̂j(I)[k]

)2

⎞⎠1/2

.

Both terms converge a.s. to 0 by assumption H1. �
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