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POISSON SPHERE COUNTING PROCESSES WITH RANDOM RADII

Nicolas Privault1

Abstract. We consider a random sphere covering model made of random balls with interacting random
radii of the product form R(r, ω) = rG(ω), based on a Poisson random measure ω(dy,dr) on R

d ×R+.
We provide sufficient conditions under which the corresponding random ball counting processes are
well-defined, and we study the fractional behavior of the associated random fields. The main results
rely on moment formulas for Poisson stochastic integrals with random integrands.
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1. Introduction

Sphere counting processes yield continuous-time processes with heavy tails, and have applications to the
modeling of telecommunication networks. Under a suitable renormalization procedure, the counting of Euclidean
balls in R

d whose centers and radii are distributed according to a Poisson point process on R
d × R+ is known

to define a fractional random field, cf. e.g. [2, 3] and references therein.
In [2,3] the fractional behavior of such processes has been studied for independent Poisson distributed radii,

see also [5, 8] for weighted random balls models.
In the modeling of communication networks, point processes can be used to represent the spatial locations

of wireless sensors, cf. e.g. [7, 9] and references therein. In this framework, the random ranges of sensors are
modelled using random spheres located according to a Poisson point process. Sphere counting processes then
help to estimate the coverage and connectivity of the network of sensors. In practice, the presence of a number of
sensors within a restricted area can create interferences under which all sensing ranges are potentially modified
via the mutual interaction of neighboring sensors. In this paper we address such a situation by extending the
results of [2, 3] to a framework permitting interactions between the random ball radii, which are allowed to
depend on a whole Poisson cloud instead of being given by a single Poisson mark.

Our main results are as follows.

(i) In Section 3 we obtain sufficient conditions for the existence of such generalized sphere counting processes,
by extending the arguments of [5] under suitable hypotheses.

(ii) We determine the fractional behaviour of those counting processes, cf. Corollary 5.1, based on Lp bounds
derived in Proposition 4.1. In order to deal with the new dependence induced in our model we use moment
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identities for Poisson stochastic integrals with random integrands, see (2.2) below, as the classical identities
of [1], used in [2, 3], do not apply in our interacting setting.

Given a sigma-compact metric space X with Borel sigma-algebra B(X), the Poisson random measure ω(dx)
with sigma-finite diffuse intensity measure σ(dx) on X and probability distribution πσ is built on the space of
Radon point measures

ΩX =

⎧⎨
⎩ω =

ω(X)∑
i =1

δxi , (xi)N
i =1 ⊂ X, xi �= xj ∀i �= j, N ∈ IN ∪ {∞}

⎫⎬
⎭

without multiple points, where δx denotes the Dirac measure at x ∈ X . Each element ω =
ω(X)∑
i =1

δxi of ΩX is

identified with the sequence (xi)
ω(X)
i =1 , and ω(X) ∈ IN ∪ {∞} represents the cardinality of ω.

Poisson-based random balls model

Taking X = R
d × R+ and given z ∈ R

d, consider the number

Nz(ω) :=
∫ ∞

0

∫
Rd

1{z ∈B(y,r)} ω(dy, dr) (1.1)

of closed balls B(y, r) containing z ∈ R
d, centered at y in R

d and with radius r > 0, where (y, r) ∈ ω. Clearly,
Nz(ω) may be infinite depending on the integrability properties of the intensity measure σ(dy, dr).

More generally, when μ(dy) is a signed measure on R
d, the stochastic integral

∫ ∞

0

∫
Rd

μ(B(y, r))ω(dy, dr), (1.2)

is proved to exist under certain conditions on μ(dx) and σ(dy, dr), cf. Lemmas 3.1 and 3.3 below, which cover
μ(dx) = δz(dx) in (1.1) above as a particular case.

When

σ(dy, dr) = r2H−d−1drdy and μz(dy) := δz(dy) − δ0(dy),

with 0 < H < 1/2 the integral (1.2) defines the normalized shot noise process

F (z) :=
∫ ∞

0

∫
Rd

μz(B(y, r))ω(dy, dr) (1.3)

=
∫ ∞

0

∫
Rd

(1B(y,r)(z) − 1B(y,r)(0))ω(dy, dr), z ∈ R
d,

whose fractional behavior has been studied in [2]. In particular it has been shown in [2], cf. also [3], that F (z)
in (1.3) is well-defined and satisfies the bound

Cq|t − s|2H ≤ E

[∫ 1

0

|F (z + tθ) − F (z + sθ)|qdt

]
≤ C′

q|t − s|2H , (1.4)

for all q ∈ [2,∞), 0 < H < 1/2, 0 ≤ |t−s| ≤ ηq, z ∈ R
d, and for all θ in the (d−1)-dimensional unit sphere Sd−1

in R
d, where Cq, C

′
q, ηq > 0 are constants.
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Random balls with interacting radii

In this paper we consider a model in which the radius of the sphere B(yi, ri) centered at yi is not only given by
the Poisson mark ri, but is possibly depending on the whole Poisson sample (yj , rj)

ω(X)
j=1 . Namely, we consider

shot noise processes (F (z))z∈Rd defined by stochastic integrals of the form

F (z) =
∫ ∞

0

∫
Rd

μz(B(y, R(r, ω)))ω(dy, dr), z ∈ R
d, (1.5)

where (μz)z∈Rd is a family of measures on R
d and

R : R+ × ΩX −→ R+

is a random radius chosen from a large family of probability distributions, in contrast with the deterministic
relation R(r, ω) = r treated in (1.2).

Existence results for random sums of the form (1.5) are presented in Lemmas 3.1 and 3.3 below when σ(dy, dr)
takes the form σ(dy, dr) = ρ(dr)ν(dy) and ν(dy) is dominated by the Lebesgue measure dy on R

d.
On the other hand, in Proposition 4.1 and Corollary 5.1 below we show that when σ(dy, dr) =

r2H−d−1drν(dy) with 0 < H < 1/2 and ν(dy) the Lebesgue measure, a fractional behavior similar to (1.4)
occurs for the normalized random field

F (z) :=
∫ ∞

0

∫
Rd

μz(B(y, R(r, ω)))ω(dy, dr), z ∈ R
d,

obtained as in (1.3) by taking μ = μz := δz − δ0, when the random radius R(r, ω) is possibly depending on the
marks (ri) of the Poisson sample (yi, ri). Precisely, R(r, ω) has the form

R : R+ × ΩX −→ R+

(r, ω) 
−→ R(r, ω) = rG((ri)i),

under condition (4.3) below, where G(ω) depends on the component (ri)
ω(X)
i = 1 ∈ ΩR+ of

ω =
ω(X)∑
i =1

δ(yi,ri) ∈ ΩR
d×R+ .

Our results rely on moment formulas for Poisson stochastic integrals with random integrands, cf. [11,12], which
are recalled in Section 2. Random integrals with interacting sphere radii are constructed in Section 3, and the
main bounds are presented in Section 4. The results on the fractional behavior of (F (z))z∈Rd are presented in
Section 5.

2. Nonlinear Mecke identity

The results of this paper rely on the moment formula (2.2) below for Poisson stochastic integrals with random
integrands. Recall that the expectation of the Poisson stochastic integral

∫
X

u(x, ω)ω(dx) of a measurable process
(ω, x) 
−→ u(x, ω) can be expressed via the Mecke [10] identity, i.e.

E

[∫
X

u(x, ω)ω(dx)
]

= E

[∫
X

ε+
x u(x, ω)σ(dx)

]
, (2.1)

where ε+
x is the addition operator that acts on any random variable F : ΩX −→ R by addition of a point at

x ∈ X to the point measure ω, i.e.

ε+
x F (ω) = F (ω + δx), ω ∈ ΩX , x ∈ X,



420 N. PRIVAULT

provided that
(ω, x) 
−→ ε+

x u(x, ω) ∈ L1(ΩX × X).

We will use the nonlinear extension

E

[(∫
X

u(x, ω)ω(dx)
)n]

=
n∑

k=0

∑
P1∪...∪Pk={1,...,n}

E

[∫
Xk

ε+
sk

(u|P1|(s1, ω) . . . u|Pk|(sk, ω))σ(ds1) . . . σ(dsk)
]

(2.2)
of (2.1) for the powers of Poisson stochastic integrals of random integrands

u : ΩX × X −→ R,

where
sk := (s1, . . . , sk) ∈ Xk, k ≥ 1,

and the iterated addition operator
ε+

sk
= ε+

s1,...,sk
:= ε+

s1
. . . ε+

sk

is defined on F : ΩX −→ R by

ε+
sk

F (ω) = F (ω + δs1 + . . . + δsk
) , ω ∈ ΩX ,

cf. Proposition 3.1 of [11] or Theorem 1 of [12]. The above sum runs over all (disjoint) partitions P1 ∪ . . . ∪ Pk

of {1, . . . , n}, k = 1, . . . , n, and |P | denotes the cardinality of the subset P ⊂ {1, . . . , n}.
For example when n = 2, Relation (2.2) yields

E

[(∫
X

u(x, ω)ω(dx)
)2
]

= E

[∫
X

ε+
x |u(x, ω)|2σ(dx)

]

+E

[∫
X2

ε+
x2

ε+
x1

(u(x1, ω)u(x2, ω))σ(dx1)σ(dx2)
]

= E

[∫
X

|u(x, ω + δx)|2σ(dx)
]

+E

[∫
X2

u(x1, ω + δx1 + δx2)u(x2, ω + δx1 + δx2)σ(dx1)σ(dx2)
]

.

Note that when h is a deterministic function we have ε+
sk

h(x) = h(x) and (2.2) recovers the classical moment
formula

E

[(∫
X

h(x)ω(dx)
)n]

=
n∑

k=0

∑
P1∪...∪Pk={1,...,n}

∫
X|P1|

h|P1|(x1)σ(dx1) . . .

∫
X|Pk|

h|Pk|(xk)σ(dxk), (2.3)

obtained in [1] using the Lévy−Khintchine representation of the Laplace transform of
∫

X h(x)ω(dx). This
relation rewrites as

E

[(∫
X

h(x)ω(dx)
)n]

= An

(∫
X

h(x)σ(dx),
∫

X

h2(x)σ(dx), . . . ,
∫

X

hn(x)σ(dx)
)

,

where

An(y1, . . . , yn) = n!
∑

r1+2r2+...+nrn=n
r1,...,rn≥0

n∏
l=1

(
1
rl!

(yl

l!

)rl
)

is the Bell polynomial of degree n, based on the relation between moments and cumulants by the Faà di Bruno
formula, cf. [12] and references therein for details.
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3. Sphere counting with random radii

From now on we let X := R
d × R+, d ≥ 1, and we consider a Poisson random measure

ω(dy, dr) =
ω(X)∑
k =1

δ(yk,rk)(dy, dr),

with intensity of the form

σ(dy, dr) = ν(dy)ρ(dr), (y, r) ∈ X = R
d × R+,

where ρ(dr) is a measure on R+. In addition, in this section we assume that ν(dy) is dominated by the Lebesgue
measure, i.e.

ν(dy) ≤ dy, y ∈ R
d. (3.1)

Lemmas 3.1 and 3.3 below, which provide sufficient conditions for the existence of the random sum (1.5).

Lemma 3.1. Let μ be a signed measure on R
d. Assume that the random radius

R : R+ × ΩX −→ R+

satisfies
ε+
(y,r)R(r, ω) ≤ U(r, ω), (y, r) ∈ R

d × R+, ω ∈ ΩX , (3.2)

where
U : R+ × ΩX −→ R+

is a (non-negative) random process. Under condition (3.1) we have the bound

E

[∫ ∞

0

∫
Rd

|μ(B(y, R(r, ω)))|ω(dy, dr)
]
≤ vd|μ|(Rd)E

[∫ ∞

0

(U(r, ω))dρ(dr)
]

,

where vd denotes the volume of the unit ball B(0, 1) in R
d and |μ| is the total variation of μ.

Proof. For all r > 0 and ω ∈ ΩX we have∫
Rd

ε+
(y,r)|μ(B(y, R(r, ω)))|ν(dy) =

∫
Rd

∣∣∣∣
∫

Rd

1B(y,ε+
(y,r)R(r,ω))(z)μ(dz)

∣∣∣∣ ν(dy)

≤
∫

Rd

∫
Rd

1B(y,ε+
(y,r)R(r,ω))(z)|μ|(dz)dy

≤
∫

Rd

∫
Rd

1B(z,U(r,ω))(y)dy|μ|(dz)

= vd(U(r, ω))d

∫
Rd

|μ|(dz)

= vd|μ|(Rd)(U(r, ω))d,

hence

E

[∫ ∞

0

∫
Rd

|μ(B(y, R(r, ω)))|ω(dy, dr)
]

= E

[∫ ∞

0

∫
Rd

ε+
(y,r)|μ(B(y, R(r, ω)))|ν(dy)ρ(dr)

]
≤ vd|μ|(Rd)E

[∫ ∞

0

(U(r, ω))dρ(dr)
]

. �
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In order to find a sufficient existence condition more practicable than that of Lemma 3.1 we consider the
next definition, which is inspired by Definition 2.1 of [5].

Definition 3.2. Given p, q ∈ R, let Mp,q denote the set of signed measures μ(dy) with finite total variation
on R

d, and such that ∫
Rd

|μ(B(z, r))|dz ≤ Cμ(rp ∧ rq), r ∈ R+, (3.3)

for some constant Cμ > 0.

For example, the measure
μz(dy) := δz(dy) − δ0(dy)

belongs to Md−1,d, cf. relation (3) in [2]. We note that Proposition 2.2 (v) of [5], originally stated for α ∈ (1, 2],
can be extended to α = 1 by the same arguments, under the condition p < d. As a consequence, every measure
μ ∈ Mp,q is centered, i.e. it satisfies μ(Rd) = 0, provided that p < d.

Similarly, by restating the proof of Proposition 2.3 (ii) of [5] for α = 1, we find that any centered measure
μ(dy) of the form μ(dy) = φ(y)dy belongs to Mp,q for some p, q ∈ R provided that it has bounded support and∫

Rd

|φ(y)|dy < ∞ and
∫

Rd

‖y‖Rd|φ(y)|dy < ∞,

where ‖y‖ denotes the Euclidean norm in R
d.

Assuming that μ ∈ Mp,q, the next Lemma 3.3 gives a more precise bound for the expectation of (1.5)
compared to that of Lemma 3.1.

In the sequel we fix A ∈ B(Rd) such that ν(A) < ∞, and we will use the canonical projection πA : ΩX −→ ΩR+

defined by
ω = ((yi, ri))i∈IN 
−→ πA(ω) := (ri){i∈IN yi∈A} (3.4)

whose image measure defines the Poisson random measure with intensity ν(A)ρ(dr) on R+.

Lemma 3.3. Let μ ∈ Mp,q for some p, q ∈ R, and assume that R : R+ × ΩX −→ R+ depends only on the
marks (ri)i of points in A via the relation

R(r, ω) = G(r, πA(ω)), ω ∈ ΩX ,

where G : R+ ×ΩR+ −→ R+ is a non-negative random process. Then, under condition (3.1) we have the bound

E

[∫ ∞

0

∫
Rd

|μ(B(y, R(r, ω)))|ω(dy, dr)
]
≤ 2CμE

[∫ ∞

0

(U q(r, ω) ∧ Up(r, ω))ρ(dr)
]

,

where Cμ > 0 is given in (3.3) and

U(r, ω) := max(ε+
r G(r, πA(ω)), G(r, πA(ω))), r ∈ R+, ω ∈ ΩR+ . (3.5)

Proof. We note that
ε+
(y,r)R(r, ω) = 1A(y)ε+

r G(r, πA(ω)) + 1Ac(y)G(r, πA(ω)),

(y, r) ∈ R
d × R+. Hence, since μ ∈ Mp,q, by (3.2) and (3.3), for all r > 0 we have∫

A

|μ(B(y, ε+
(y,r)R(r, ω)))|ν(dy) =

∫
A

ε+
(y,r)|μ(B(y, R(r, ω)))|ν(dy)

≤
∫

A

|μ(B(y, ε+
r G(r, πA(ω))))|dy

≤
∫

Rd

|μ(B(y, ε+
r G(r, πA(ω))))|dy

≤ Cμ(ε+
r Gq(r, πA(ω)) ∧ ε+

r Gp(r, πA(ω)))
≤ Cμ(U q(r, ω) ∧ Up(r, ω)), (3.6)
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and ∫
Ac

ε+
(y,r)|μ(B(y, R(r, ω)))|ν(dy) ≤

∫
Rd

|μ(B(y, G(r, πA(ω))))|dy

≤ Cμ(Gq(r, πA(ω)) ∧ Gp(r, πA(ω)))
≤ Cμ(U q(r, ω) ∧ Up(r, ω)), (3.7)

which yields, by (2.1),

E

[∫ ∞

0

∫
Rd

|μ(B(y, R(r, ω)))|ω(dy, dr)
]

= E

[∫ ∞

0

∫
Rd

ε+
(y,r)|μ(B(y, R(r, ω)))|ν(dy)ρ(dr)

]

≤ 2CμE

[∫ ∞

0

U q(r, ω) ∧ Up(r, ω)ρ(dr)
]

. �

In the case where ρ(dr) has the density

ρ(r) = r2H−d−1, r > 0, (3.8)

for some H ∈ R, Lemma 3.3 yields the following result.

Proposition 3.4. Let p < q ∈ R and μ ∈ Mp,q. Assume that ρ(r) takes the form (3.8) and that U in (3.5)
satisfies

U(r, ω) ≤ rU(ω), ω ∈ ΩR+ , r ∈ R+, (3.9)

for U : ΩX −→ R+ a non-negative random variable. Then under condition (3.1), for some constant Cp,q > 0
we have the bound

E

[∫ ∞

0

∫
Rd

|μ(B(y, R(r, ω)))|ω(dy, dr)
]
≤ Cp,qE

[
Ud−2H

] ∫ ∞

0

(rq ∧ rp)r2H−d−1dr, (3.10)

which is finite provided that
d − q

2
< H <

d − p

2
(3.11)

and E
[
Ud−2H

]
< ∞, with ρ(r) given by (3.8).

Proof. By Lemma 3.3 and the inequality (3.9) we have

E

[∫ ∞

0

∫
Rd

|μ(B(y, R(r, ω)))|ω(dy, dr)
]
≤ 2CμE

[∫ ∞

0

(U q(r, ω) ∧ Up(r, ω))ρ(r)dr

]

≤ 2CμE

[∫ ∞

0

((rU)q ∧ (rU)p)r2H−d−1dr

]

= 2CμE
[
Ud−2H

] ∫ ∞

0

(rq ∧ rp)r2H−d−1dr,

and to conclude the proof we check that∫ ∞

0

(
rq−p ∧ 1

)
r2H−d−1+pdr =

∫ 1

0

r2H−d−1+qdr +
∫ +∞

1

r2H−d−1+pdr

=
q − p

(2H + q − d)(d − 2H − p)
< +∞,

provided that (3.11) holds. �
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Proposition 3.4 also covers the deterministic case where R(r) = r and U = 1, cf. e.g. Section 1.2 of [4], in
particular with

μz(dy) := δz(dy) − δ0(dy),

which belongs to Md−1,d, cf. [2].
We close this section with some product extensions of Lemma 3.3 and Proposition 3.4, which will be needed

in the proof of Proposition 4.1 below.
In the sequel we will use the notation

ya := (y1, . . . , ya) ∈ R
d, ra := (r1, . . . , ra) ∈ R

a
+.

1. Let μ ∈ Mp,q and assume that

max(ε+
ra

G(r, πA(ω)), G(r, πA(ω))) ≤ Ua(r, ω) := rUa(ω), ra ∈ R
a
+, ω ∈ ΩX , (3.12)

where Ua : ΩX −→ R+ is a non-negative random variable for all a ≥ 1 and

ε+
ya,ra

R(r, ω) = R
(
r, ω + δ(y1,r1) + . . . + δ(ya,ra)

)
,

dyadra-a.e., with
ν⊗a(dya) := ν(dy1) . . . ν(dya).

Reasoning as in (3.6) and (3.7), for all z ∈ R
d we obtain the product estimate

E

[∫
(Rd×R+)a

a∏
k = 1

|μ(B(yk, ε+
‖z‖ya,‖z‖ra

R(rk, ω)))|ρ(rk)ν⊗a(dya)dra

]

=
a∑

b=0

(
a

b

)
E

[∫
(A×R+)b×(Ac×R+)a−b

a∏
k = 1

|μ(B(yk, ε+
‖z‖ya,‖z‖ra

R(rk, ω)))|ρ(rk)ν⊗a(dya)dra

]

≤ (2Cμ)aE

[∫
R

a
+

a∏
k = 1

((rkUa)p ∧ (rkUa)q)ρ(rk)dra

]
, (3.13)

where
‖z‖ya = (‖z‖y1, . . . , ‖z‖ya), and ‖z‖ra = (‖z‖r1, . . . , ‖z‖ra).

2. Assuming in addition to (3.12) that ρ(r) takes the form (3.8), from (3.13) and under condition (3.12) as in
the proof of Proposition 3.4 we get the product estimate

E

[∫
(Rd×R+)a

a∏
k =1

|μ(B(yk, ε+
‖z‖ya,‖z‖ra

R(rk, ω)))|r2H−d−1
k ν⊗a(dya)dra

]

≤ (2Cμ)aE

[∫
R

a
+

a∏
k =1

((rkUa)p ∧ (rkUa)q)r2H−d−1
k dra

]

= (2Cμ)aE[Ua(d−2H)
a ]

(∫ ∞

0

(rp ∧ rq)r2H−d−1dr

)a

, (3.14)

which is finite provided that
d − q

2
< H <

d − p

2

and E
[
U

a(d−2H)
a

]
< ∞. This recovers the bound (3.10) by taking a = 1.
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4. Lq bounds on the shot noise process

In this section we consider the random field F : R
d −→ R defined by

F (z) :=
∫ ∞

0

∫
Rd

μz(B(y, R(r, ω)))ω(dy, dr), z ∈ R
d, (4.1)

where μz(dy) := δz(dy) − δ0(dy), i.e.

μz(B(y, R(r, ω))) = 1B(y,R(r,ω))(z) − 1B(y,R(r,ω))(0),

counts the number of balls containing z, minus the number of balls containing 0 for normalization purposes,
cf. Section 1.1 of [6] for an interpretation in terms of piling of elementary slices.

In the next proposition we take σ(dy, dr) = ρ(r)drν(dy) with ρ(r) = r2H−d−1, r > 0, as in Proposition 3.4,
ν(dy) = dy is the Lebesgue measure, and πA is defined in (3.4).

Proposition 4.1. Let σ(dy, dr) = r2H−d−1drdy with 0 < H < 1/2, and let A ∈ B(Rd) be such that ν(A) < ∞.
Assume that R(r, ω) has the form

R(r, ω) = G(r, πA(ω)) = rG(πA(ω)), (4.2)

r ∈ R+, ω ∈ ΩX , as in (3.5), where G : ΩR+ −→ (0,∞) is a positive random variable with

0 < c ≤ ε+
ra

G(ω) ≤ Ua(ω), ra = (r1, . . . , ra) ∈ R
a
+, ω ∈ ΩR+ , (4.3)

and E[Ua(d−2H)
a ] < ∞, a = 1, . . . , �q�, for some q ∈ [2,∞). Then the random field (4.1) is well-defined in Lq(Ω)

and it satisfies the bound

cH‖z‖2H ≤ E

[∣∣∣∣
∫ ∞

0

∫
Rd

μz(B(y, rG(πA(ω))))ω(dy, dr)
∣∣∣∣
q]

≤ ‖z‖2Hu(z), z ∈ R
d,

where cH > 0 and z 
→ u(z) is a continuous, non-vanishing function on R
d.

Proof. First, we observe that for every integer p ≥ 1 we have

|μz(B(y, r))|2p = |μz(B(y, r))| = 1B(z,r)ΔB(0,r)(y),

y, z ∈ R
d, r ∈ R+, and

(μz(B(y, r)))2p+1 = μz(B(y, r)), y, z ∈ R
d, r ∈ R+,

hence for all sequences of even integers l1, . . . , la we find

E

[∫
(Rd×R+)a

a∏
k =1

∣∣μz(B(yk, rkε+
ra

G(ω)))
∣∣lk σ⊗a(dya, dra)

]

= E

[∫
(Rd×R+)a

∣∣∣∣∣
a∏

k =1

μz(B(yk, rkε+
ra

G(ω)))

∣∣∣∣∣ σ⊗a(dya, dra)

]
.
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On the other hand if a sequence l1, . . . , la contains at least one odd integer (say la is odd for example), we find

E

[∫
(Rd×R+)a

ε+
ya,ra

a∏
k =1

(μz(B(yk, R(rk, ω))))lkσ⊗a(dya, dra)

]

= E

[∫
(Rd×R+)a

μz(B(ya, raε+
ra

G(ω)))
a−1∏
k =1

(μz(B(yk, rkε+
ra

G(ω))))lk dya

a∏
k = 1

r2H−d−1
k dra

]

= E

[∫
(Rd×R+)a

∫
Rd

1B(ya,raε+
ra G(ω))(x)μz(dx)

a−1∏
k =1

(μz(B(yk, rkε+
ra

G(ω))))lk dya

a∏
k =1

r2H−d−1
k dra

]

= E

[∫
(R+)a

∫
(Rd)2

1B(x,raε+
ra G(ω))(ya)dyaμz(dx)

×
∫

(Rd)a−1

a−1∏
k =1

(μz(B(yk, rkε+
ra

G(ω))))lk dya−1

a∏
k = 1

r2H−d−1
k dra

]

= E

[∫
(R+)a

vd(rkε+
ra

G(ω))d

×
∫

Rd

μz(dx)
∫

(Rd)a−1

a−1∏
k =1

(μz(B(yk, rkε+
ra

G(ω))))lk dya−1

a∏
k = 1

r2H−d−1
k dra

]

= vdμz(Rd)E

[∫
(R+)a

(raε+
ra

G(ω))d

∫
(Rd)a−1

a−1∏
k = 1

(μz(B(yk, rkε+
ra

G(ω))))lk dya−1

a∏
k =1

r2H−d−1
k dra

]

= 0,

since μz(Rd) = 0.

Consequently, the moment formula (2.2) for Poisson random integrals shows that for any integer p ≥ 1 we
have

E[|F (z)|2p] =
n∑

a=0

∑
P1∪...∪Pa={1,...,2p}

E

[∫
(Rd×R+)a

a∏
k =1

(μz(B(yk, ε+
ya,ra

R(rk, ω))))#Pkσ⊗a(dya, dra)

]

=
p∑

a=0

∑
l1+...+la=2p

l1,...,la≥1

NLaE

[∫
(Rd×R+)a

a∏
k =1

(μz(B(yk, rkε+
ra

G(ω))))lkσ⊗a(dya, dra)

]

=
p∑

a=0

∑
l1+...+la=2p

l1,...,la≥2 even

NLaE

[∫
(Rd×R+)a

a∏
k =1

|μz(B(yk, rkε+
ra

G(ω)))|σ⊗a(dya, dra)

]
, (4.4)

with the notation of Section 2, where in the above summation, NLa is the number of partitions of a set of
l1 + . . . + la = 2p elements into a subsets of even cardinalities l1, . . . , la ≥ 2. By the rotational invariance of the
Lebesgue measure ν, using the notation

(ya, ra) = ((y1, r1), . . . , (ya, ra)) ∈ (Rd × R+)a,
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for all z ∈ R
d, letting e denote the unit vector e := z/‖z‖ in R

d, we have

E

[∫
(Rd×R+)a

∣∣∣∣∣ε+
ya,ra

a∏
k =1

μz(B(yk, R(rk, ω)))r2H−d−1
k

∣∣∣∣∣ ν⊗a(dya)dra

]

= E

[∫
(Rd×R+)a

∣∣∣∣∣ε+
ra

a∏
k = 1

μz(B(yk, rkG(πA(ω))))r2H−d−1
k

∣∣∣∣∣ dyadra

]

= ‖z‖adE

[∫
(Rd×R+)a

∣∣∣∣∣ε+
ra

a∏
k = 1

μz(B(‖z‖yk, rkG(πA(ω))))r2H−d−1
k

∣∣∣∣∣dyadra

]

= ‖z‖adE

[∫
(Rd×R+)a

∣∣∣∣∣ε+
ra

a∏
k = 1

μe(B(yk, ‖z‖−1rkG(πA(ω))))r2H−d−1
k

∣∣∣∣∣ dyadra

]

= ‖z‖ad+aE

[∫
(Rd×R+)a

∣∣∣∣∣ε+
‖z‖ra

a∏
k =1

μe(B(yk, rkG(πA(ω))))(‖z‖rk)2H−d−1

∣∣∣∣∣ dyadra

]

= ‖z‖2aHE

[∫
(Rd×R+)a

∣∣∣∣∣ε+
‖z‖ra

a∏
k =1

μe(B(yk, rkG(πA(ω))))r2H−d−1
k

∣∣∣∣∣ dyadra

]

= ‖z‖2aHE

[∫
(Rd×R+)a

∣∣∣∣∣
a∏

k =1

μe(B(yk, rkε+
‖z‖ra

G(πA(ω))))r2H−d−1
k

∣∣∣∣∣ dyadra

]
, (4.5)

and
ε+

yn,rn
F (ω) = F

(
ω + δ(y1,r1) + . . . + δ(yn,rn)

)
ω ∈ ΩX .

Next, by (3.14) applied to μe ∈ Md−1,d, we get

E

[∫
(Rd×R+)a

∣∣∣∣∣
a∏

k =1

μe

(
B
(
yk, rkε+

‖z‖ra
G(ω)

))
r2H−d−1
k

∣∣∣∣∣ dyadra

]

≤ Ca
μe

(∫ ∞

0

(r ∧ 1)r2H−2dr

)a

E
[
Ua(d−2H)

a

]
=: (c′H)a

< ∞.

On the other hand, since

|μz(B(y, r))| = 1B(z,r)ΔB(0,r)(y), y, z ∈ R
d, r ∈ R+,

where AΔB stands for the symmetric difference between A, B ⊂ R
d, we have

E

[∫
(Rd×R+)a

∣∣∣∣∣
a∏

k =1

μe

(
B
(
yk, rkε+

‖z‖ra
G(ω)

))
r2H−d−1
k

∣∣∣∣∣dyadra

]

= E

[∫
([0,∞))a

(∫
Rd

1B(e,rkε+
‖z‖ra

G(ω))ΔB(0,rkε+
‖z‖ra

G(ω))(y)dy

)a a∏
k =1

r2H−d−1
k dra

]

≥ E

[∫
([1/c,∞))a

(∫
Rd

1B(e,rkε+
‖z‖ra

G(ω))ΔB(0,rkε+
‖z‖ra

G(ω))(y)dy

)a a∏
k = 1

r2H−d−1
k dra

]

≥ ca
H ,
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for some constant ca
H > 0, since∫

Rd

1
B
(

e,rkε+
‖z‖ra

G(ω)
)

ΔB
(
0,rkε+

‖z‖ra
G(ω)

)(y)dy ≥
∫

Rd

1B(e,1)ΔB(0,1)(y)dy,

because rkε+
‖z‖ra

G(ω) ≥ 1 for rk ≥ 1/c, by (4.3), and the volume of the symmetric difference is increasing with
the radius.

Therefore there exists cH , c′H ∈ (0, +∞) such that

ca
H ≤ E

[∫
(Rd×R+)a

∣∣∣∣∣
a∏

k =1

μe(B(yk, rkε+
‖z‖ra

G(ω)))r2H−d−1
k

∣∣∣∣∣ dyadra

]
≤ (c′H)a

and (4.5) yields

ca
H‖z‖2aH ≤ E

[∫
(Rd×R+)a

∣∣∣∣∣
a∏

k =1

μz(B(yk, rkε+
ra

G(ω)))r2H−d−1
k

∣∣∣∣∣dyadra

]
≤ (c′H)a‖z‖2aH . (4.6)

By (4.4) and (4.6) we find
p∑

a=1

(cH)a‖z‖2aH
∑

l1+...+la=2p
l1,...,la≥1 even

NLa ≤ E[|F (z)|2p] ≤
p∑

b=1

(c′H)b‖z‖2bH
∑

l1+...+lb=2p

l1,...,lb≥1 even

NLb
, (4.7)

p ≥ 1. Next, we extend (4.7) to all q ∈ [2,∞) as in [2], using Hölder interpolation. Given q ∈ [2,∞), choose p ≥ 1
integer such that 2p ≤ q < 2p+2. By the Lyapunov–Hölder inequality applied with α := p(2p+2− q)/q ∈ (0, 1]
we have

E[|F (z)|q] ≤ (E[|F (z)|2p])αq/(2p)(E[|F (z)|2p+2])(1−α)q/(2p+2)

≤ u(z)‖z‖H(αq/p+(1−α)q/(p+1))

= u(z)‖z‖2H,

where the function

u(z) :=

⎛
⎜⎝ p∑

a=1

(c′H)a‖z‖2(a−1)H
∑

l1+...+la=2p
l1,...,la≥1 even

NLa

⎞
⎟⎠
αq/(2p)⎛

⎜⎝p+1∑
b=1

(c′H)b‖z‖2(b−1)H
∑

l1+...+lb=2p+2
l1,...,lb≥1 even

NLb

⎞
⎟⎠
(1−α)q/(p+1)

is continuous, non-negative, and non-vanishing on R
d. Similarly, for the lower bound, given q ∈ [2,∞), choose

p ≥ 2 integer such that q < 2p. By the Lyapunov–Hölder inequality applied with α := q/(p(2p + 2− q)) ∈ (0, 1)
we have

(E[|F (z)|q])2αp/q ≥ E[|F (z)|2p](E[|F (z)|2p+2])−(1−α)p/(p+1)

≥ v(z)(‖z‖2H)1−(1−α)p/(p+1)

= v(z)(‖z‖2H)2αp/q , z ∈ R
d,

where

v(z) :=

p∑
a=1

(cH)a‖z‖2(a−1)H
∑

l1+...+la=2p
l1,...,la≥1 even

NLa

⎛
⎜⎝p+1∑

b=1

(c′H)b‖z‖2(b−1)H
∑

l1+...+lb=2p+2
l1,...,lb≥1 even

NLb

⎞
⎟⎠
(1−α)p/(p+1)

, z ∈ R
d.
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The function z 
→ v(z) is continuous, non-negative, non-vanishing in z ∈ R
d, and its leading term as ‖z‖ tends

to infinity has a power of order

2
(

p − 1 − (1 − α)
p2

p + 1

)
H = 2

(
p − 1 − p

(
1 − 2αp

q

))
H =

2(q − 2)H
2p + 2 − q

≥ 0.

Consequently, there exists a constant Cq > 0 such that

E[|F (z)|q] ≥ Cq‖z‖2H , z ∈ R
d.

We conclude that for all q ∈ [2,∞) there exists cH > 0 such that

cH‖z‖2H ≤ E [|F (z)|q] ≤ u(z)‖z‖2H, z ∈ R
d. �

Defining the finite difference operator Dra = Dr1,...,ra as

Dr1,...,raG(ω) := ε+
r1,...,ra

G(ω) − G(ω), r1, . . . , ra ∈ R
a
+,

for any random variable G : ΩR+ −→ R, we note that condition (4.3) is satisfied with Ua = G + aK under the
uniform bound

DrG(ω) ≤ K, r ∈ R+, ω ∈ ΩR+ ,

since by induction on a ≥ 1 we have

Dr1,...,raG(ω) = ε+
r1,...,ra

G(ω) − G(ω)

= ε+
ra

ε+
r1,...,ra−1

G(ω) − G(ω)

= ε+
ra

ε+
r1,...,ra−1

G(ω) − ε+
r1,...,ra−1

G(ω) + ε+
r1,...,ra−1

G(ω) − G(ω)

= Draε+
r1,...,ra−1

G(ω) + Dr1,...,ra−1G(ω)

≤ K + (a − 1)K = aK,

which implies
ε+

r1,...,ra
G(ω) ≤ G(ω) + aK,

for all ra = (r1, . . . , ra) ∈ R
a
+ and ω ∈ ΩR+ .

5. Fractional behavior of the shot noise process

In this section, as a consequence of Proposition 4.1, in Corollary 5.1 below we investigate the fractional
behavior in terms of the index H ∈ (0, 1/2) of the random field F : R

d −→ R+ defined in (4.1).
By (4.1) and the translation invariance of the Lebesgue measure ν we have the equality in distribution

F (y + z) − F (y) =
∫ ∞

0

∫
Rd

(1B(x,rG(πA(ω)))(y + z) − 1B(x,rG(πA(ω)))(y))ω(dx, dr)

=
∫ ∞

0

∫
Rd

(1B(x−y−z,rG(πA(ω)))(0) − 1B(x−y,rG(πA(ω)))(0))ω(dx, dr)

d�
∫ ∞

0

∫
Rd

(1B(x−z,rG(πA(ω)))(0) − 1B(x,rG(πA(ω)))(0))ω(dx, dr)

=
∫ ∞

0

∫
Rd

μz(B(x, rG(πA(ω))))ω(dx, dr)

= F (z), (5.1)
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y, z ∈ R
d, which shows that the random field (F (z))z∈Rd has stationary increments by the translation invariance

of the Lebesgue measure.
Here, F (y + z) − F (y) counts the difference between the number of balls containing y + z and the number

of balls containing y. This random variable is a.s. finite under the conditions of the previous sections. The next
result is a consequence of Proposition 4.1 with ρ(r) = r2H−d−1r, r > 0, and ν(dy) = dy is the Lebesgue measure.

Corollary 5.1. Let σ(dy, dr) = r2H−d−1drdy with 0 < H < 1/2, and let A ∈ B(Rd) be such that ν(A) < ∞.
Assume that (4.2) holds with G(r, ω) of the form

G(r, ω) = rG(ω), r ∈ R+, ω ∈ ΩR+ ,

where
c ≤ ε+

ra
G(ω) ≤ Ua(ω), ω ∈ ΩR+ , ra = (r1, . . . , ra) ∈ R

a
+, (5.2)

and E[Ua(d−2H)
a ] < ∞, for all a = 1, . . . , �q�, for some q ∈ [2,∞). Then there exists Cq, C

′
q, ηq > 0 such that

the random field

F (z) =
∫ ∞

0

∫
Rd

μz(B(y, R(r, ω)))ω(dy, dr), z ∈ R
d,

defined by (4.1) satisfies

Cq|t − s|2H ≤ E

[∫ 1

0

|F (z + tθ) − F (z + sθ)|qdt

]
≤ C′

q|t − s|2H ,

z ∈ R
d, θ ∈ Sd−1, 0 ≤ |t − s| ≤ ηq, where Sd−1 is the unit sphere in R

d.

Proof. By Proposition 4.1, for some ηq > 0 and all η ∈ [0, ηq] we have

Cqη
2H ≤ E[|F (ηθ)|q ] ≤ C′

qη
2H ,

hence, using the equality in distribution (5.1) we get

Cq(t − s)2H ≤ E[|F (z + tθ) − F (z + sθ)|q] ≤ C′
q(t − s)2H , (5.3)

by the identity in distribution

F (z + tθ) − F (z + sθ)
d� F ((t − s)θ) =

∫ ∞

0

∫
Rd

μ(t−s)θ(B(y, r))ω(dy, dr),

as in (5.1), z ∈ R
d, θ ∈ Sd−1, 0 ≤ t− s ≤ ηq. The conclusion is obtained by integration with respect to t ∈ [0, 1]

in (5.3). �

Finally we consider an example of a random radius G satisfying condition (5.2).

Example 5.2. Let c, K > 0, consider f : R+ −→ [0, K] a bounded non-negative function such that∫ ∞

0

fa(d−2H)(r)r2H−d−1dr < ∞, (5.4)

a = 1, . . . , �q�, and assume that

G(ω) = c +
∫ ∞

0

f(r)ω(dr) = c +
∑
r∈ω

f(r), ω ∈ ΩR+ ,
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provided that ν(Rd) < ∞.
Then we have

0 < c ≤ ε+
ra

G(ω)
= G(ω) + f(r1) + . . . + f(ra)
≤ G(ω) + aK, ω ∈ ΩX , ra = (r1, . . . , ra) ∈ R

a
+,

which shows that (5.2) holds with Ua = G + aK.

The conditions E[Gq(d−2H)] < ∞ and E[U q(d−2H)
a ] < ∞ in Corollary 5.1 are satisfied from (2.3) and (5.4),

under the bounds ∫ ∞

0

|f(r)|a(d−2H)ρ(r)dr < ∞, a = 1, . . . , �q�.
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