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A FULLY DATA-DRIVEN METHOD FOR ESTIMATING THE SHAPE
OF A POINT CLOUD
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Abstract. Given a random sample of points from some unknown distribution, we propose a new data-
driven method for estimating its probability support S. Under the mild assumption that S is r-convex,
the smallest r-convex set which contains the sample points is the natural estimator. The main problem
for using this estimator in practice is that r is an unknown geometric characteristic of the set S. A
stochastic algorithm is proposed for selecting its optimal value from the data under the hypothesis
that the sample is uniformly generated. The new data-driven reconstruction of S is able to achieve the
same convergence rates as the convex hull for estimating convex sets, but under a much more flexible
smoothness shape condition.
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1. Introduction

Support estimation deals with the problem of reconstructing the compact and nonempty support S ⊂ Rd

of an absolutely continuous random vector X assuming that a random sample Xn = {X1, . . . , Xn} from X is
given. A closely related topic is perimeter estimation. Also, under uniform assumptions on the distribution of
the sample, Arias–Castro and Rodŕıguez–Casal [1] estimated the length of the boundary of the support.

The question of reconstructing the support has different but quite natural responses depending on the available
information on S. For example, if no assumptions are made a priori on the shape of the support S, Chevalier [7]
and Devroye and Wise [12] proposed a general purpose estimator which is just a sort of dilated version of Xn.
Specifically,

Sn =
n⋃

i=1

Bεn [Xi],

where Bεn [Xi] denotes the closed ball centered at Xi with radius εn, a sequence of smoothing parameters
which must tend to zero but not too quickly in order to achieve consistency. See also Grenander [16], Cuevas [9],
Korostelëv and Tsybakov [18], Cuevas and Rodŕıguez-Casal [11] or more recent references like Genovese et al. [15]
where the boundary of this estimator is converted into an estimator of one-dimensional curves and the rates
of convergence are determined. The main disadvantage of the Devroye–Wise estimator is its dependence on
the unknown and influential radius of the balls εn. Small values of εn provide split estimators whereas for large
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Figure 1. (a) X1500 on the Aral Sea. (b) Aral Sea’s image from the Moderate Resolution
Imaging Spectroradiometer on NASA’s Terra satellite in 2000. (c) Aral Sea’s boundary.

values of εn the estimator could considerably overestimate S. Báıllo et al. [5] and Báıllo and Cuevas [3] suggested
two general methods for selecting the parameter εn assuming that S is connected and star-shaped, respectively.

However, more sophisticated alternatives, that can achieve better error rates, could be used if some a priori
information about the shape of S is available. For instance, if the support is assumed to be convex then the
convex hull of the sample points, H(Xn), provides a natural support estimator. This is just the intersection
of all convex sets containing Xn. For analyzing in depth this estimator, see Schneider [25, 26], Dümbgen and
Walther [13] or Reitzner [22].

In practice, the convexity property may be too restrictive. In Figure 1, a uniform sample X1500 drawn inside
the Aral Sea is shown. It was generated digitizing an image of the NASA’s Terra satellite. Taking into account
the shape of the contour of the Aral Sea in Figure 1, reconstructing it from the previous sample of points under
convex shape assumptions does not seem convenient. So, it can be useful to introduce a more flexible shape
condition such as r-convexity. A closed set A ⊂ Rd is said to be r-convex, for some r > 0, if A = Cr(A), where

Cr(A) =
⋂

{Br(x):Br(x)∩A=∅}
(Br(x))c

denotes the r-convex hull of A and Br(x), the open ball with center x and radius r. The r-convex hull is closely
related to the closing of A by Br(0) from the mathematical morphology (see Serra [27]). It can be shown that

Cr(A) = (A ⊕ rB) � rB,

where B = B1(0), λC = {λc : c ∈ C}, C ⊕ D = {c + d : c ∈ C, d ∈ D} and C � D = {x ∈ Rd : {x} ⊕ D ⊂ C},
for λ ∈ R and sets C and D.

If it is assumed that S is r-convex, Cr(Xn) is the natural estimator for the unknown support. This estimator
is well known in the computational geometry literature for producing good global reconstructions if the sample
points are (approximately) uniformly distributed on the set S. See Edelsbrunner [14] for a survey on the subject.
In fact, although the r-convexity is a more general restriction than the convexity, Cr(Xn) can achieve the same
convergence rates than H(Xn) (see Rodŕıguez-Casal [24]). However, this estimator depends on the unknown
parameter r. Figure 2 shows its influence by using the random sample on the Aral Sea presented in Figure 1.
Small values of r provide estimators almost equal to Xn. However, if large values of r are considered then Cr(Xn)
practically coincides with H(Xn) (see Fig. 2d).

Most of the available results in literature about support estimation make special emphasis on asymptotic
properties, especially consistency and convergence rates but they do not give any criterion for selecting the
unknown parameters such as the parameter εn in Sn or r in Cr(Xn) from the sample. The aim of this paper is
to overcome this drawback and present a method for selecting the parameter r for the r-convex hull estimator
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Figure 2. The boundary of Cr(X1500) is shown in red for (a) r = 10, (b) r = 25, (c) r = 40
and (d) r = 90. The boundary of H(X1500) is shown in dotted line in (d). (Color online)

from the available data. It should be noted that this problem, for the bidimensional case, has already been
studied in literature by Mandal and Murthy [19]. They proposed a selector for r based on the concept of
minimum spanning tree but only consistency of the method was provided. The optimality issues were not
considered.

The automatic selection criterion which will be proposed in this work is based on a very intuitive idea. As it
can be seen in Figures 2c or 2d, land areas are contained in Cr(Xn) if the selected r is too large. So, the estimator
contains a big ball (or spacing) empty of sample points. Janson [17] calibrated the size of the maximal spacing
when the sample distribution is uniform on S. Recently, Berrendero et al. [6] used this result to test uniformity
when the support is unknown. Here, we will follow the somewhat opposite approach. We will assume that Xn

follows a uniform distribution on S and if a big enough spacing is found in Cr(Xn) then it is concluded that r
is too large. Here, it is proposed to select the largest value of r compatible with the uniformity assumption on
Cr(Xn).

Once the parameter r is estimated, it is natural to go back to the support estimation problem. An automatic
estimator for S, based on the estimator of r, is proposed in this paper. Two metrics between sets are usually
considered in order to assess the performance of a support estimator. Let A and C be two closed, bounded,
nonempty subsets of Rd. The Hausdorff distance between A and C is defined by

dH(A, C) = max
{

sup
a∈A

d(a, C), sup
c∈C

d(c, A)
}

,

where d(a, C) = inf{‖a − c‖ : c ∈ C} and ‖ ‖ denotes the Euclidean norm. On the other hand, if A and C are
two bounded and Borel sets then the distance in measure between A and C is defined by dμ(A, C) = μ(A�C),
where μ denotes the Lebesgue measure and �, the symmetric difference, that is, A�C = (A \ C) ∪ (C \ A).
Hausdorff distance quantifies the physical proximity between two sets whereas the distance in measure is useful
to quantify their similarity in content. However, neither of these distances are completely useful for measuring the
similarity between the shape of two sets. The Hausdorff distance between boundaries, dH(∂A, ∂C), can be also
used to evaluate the performance of the estimators, see Báıllo and Cuevas [3], Cuevas and Rodŕıguez-Casal [11],
Rodŕıguez-Casal [24] or Genovese et al. [15].

This paper is organized as follows. In Section 2, the optimal smoothing parameter of Cr(Xn) to be estimated
is formally defined. The new data-driven algorithm for selecting it is presented in Section 3. Consistency of
this estimator is established in Section 4. In addition, a new estimator for the support S is proposed. It is
showed that it is able to achieve the same convergence rates as the convex hull for estimating convex sets.
The numerical questions involving the practical application of the algorithm are analyzed in Section 5. In
Section 6, the performances of the new selector and Mandal and Murthy [19]’s method will be analyzed through
a simulation study. Conclusions are exposed in Section 7. Finally, proofs are deferred to Section 8.
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Figure 3. A1 ∪A2 fulfills the r-rolling condition � A1 ∪ A2 is r-convex (left). (Rr
λ) is a more

general condition (right).

2. Optimal parameter and shape restrictions

The problem of reconstructing a r-convex support S using a data-driven procedure can be solved if the
parameter r is estimated from a random sample of points Xn taken in S. Next, it will be presented an algorithm
to do this. The first step is to determine precisely the optimal value of r to be estimated. It is established in
Definition 2.1. We propose to estimate the highest value of r which verifies that S is r-convex.

Definition 2.1. Let S ⊂ Rd a compact, nonconvex and r-convex set for some r > 0. It is defined

r0 = sup{γ > 0 : Cγ(S) = S}. (2.1)

For simplicity in the exposition, it is assumed that S is not convex. Of course, if S is convex r0 would
be infinity. In Proposition 2.4, it is proved that, under mild regularity conditions, the supreme established
in (2.1) is a maximum, that is, S is r0-convex too. Under this hypothesis, the optimality of the smoothing
parameter defined in (2.1) can be justified. It is clear that S is r-convex for r ≤ r0 but if r < r0, Cr(Xn) is
a non admisible estimator since it is always outperformed by Cr0(Xn). This is because, with probability one,
Cr(Xn) ⊂ Cr0(Xn) ⊂ S and hence, dμ(Cr0(Xn), S) ≤ dμ(Cr(Xn), S) (the same holds for the Hausdorff distance).
It should also noted that, for r > r0, Cr(Xn) would considerably overestimate S, specially if S has a big hole
inside, see Figure 5a below. The mild regularity condition we need to prove Proposition 2.4 is slightly stronger
than than r-convexity:

(Rr
λ) S fulfills the r-rolling property and Sc fulfills the λ-rolling condition.

Following Cuevas et al. [10], it is said A satisfies the (outside) r-rolling condition if each boundary point a ∈ ∂A
is contained in a closed ball with radius r whose interior does not meet A. There exist interesting relationships
between this property and r-convexity. In particular, Cuevas et al. [10] proved that if A is compact and r-
convex then A fulfills the r-rolling condition. According to Figure 3 (left), the reciprocal is not always true.
Proposition 2.2 shows that (Rr

λ) is a (mild) sufficient condition to ensure the r-rolling condition implies r-
convexity. However, we think that the equivalence between r-convexity and r-rolling is much more general and
it can be proved under even milder conditions. Condition (Rr

λ) was essentially analyzed in Walther [28,29] where
only the case r = λ is taken into account. In this work, the radius λ can be different from r, see Figure 3 (right).
Walther [28, 29] proved that, under (Rr

r), S is r-convex. Proposition 2.2 extends this property since, for λ < r,
Walther’s result would only imply λ-convexity but not r-convexity. So, for sets satisfying (Rr

λ), r-convexity is
ensured, even for very small values of λ.
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Proposition 2.2. Let S ⊂ Rd be a nonempty, compact support verifying (Rr
λ). Then, S is r-convex.

Proposition 2.2 is the key for proving that r0 is a maximum, see Proposition 2.4 below. To see this, let be
{rn} a sequence converging to r0 such that Crn(S) = S. This sequence always exists, see Definition 2.1. We
know, using the results in Cuevas et al. [10], that S satisfies the rn-rolling condition. But, by Proposition 2.3
this property is preserved in the limit, so S is r0-rolling. We do not know if r-convexity is also preserved by
taking the limit in the parameter r. Finally, under (Rr

λ), r0-rolling implies that S is r0-convex.

Proposition 2.3. Let A ⊂ Rd be a closed set. Let {rn} be a sequence of positive terms converging to r. If A
fulfills the rn-rolling condition, for all n, then A fulfills the r-rolling condition.

Proposition 2.4. Let S ⊂ Rd be a nonempty, compact and nonconvex set verifying (Rr
λ) and let r0 be the

parameter defined in (2.1). Then, Cr0(S) = S and, as consequence, S fulfills the r0-rolling condition.

Remark 2.5. Under certain conditions of S (for instance, Int(H(S)) 
= ∅), it is verified that C∞(S) = H(S)
where C∞(S) = limrn→∞ Crn(S). Therefore, if S is assumed to be convex, Proposition 2.4 remains true. For
more details, see Walther [29].

3. Selection of the optimal smoothing parameter

The uniformity test proposed in Berrendero et al. [6] has been considered in order to estimate r0 from Xn.
This test is based on the multivariate spacings, see Janson [17]. In the univariate case, spacings are defined as
the length of gaps between sample points. For general dimension d, the maximal spacing of S is defined as

Δn(S) = sup{γ : ∃x with Bγ [x] ⊂ S \ Xn}.

The value of the maximal spacing depends only on S and on the sample points Xn. The Lebesgue measure
(volume) of the balls with radius Δn(S) is denoted by Vn(S). Berrendero et al. [6] used the Janson [17] (1987)’s
Theorem to introduce a uniformity test on the distribution of Xn. They consider the problem of testing

H0 : X is uniform with support S.

With significance level α, H0 will be rejected if

Vn(S) >
a(uα + log n + (d − 1) log log n + log β)

n
, (3.1)

where a = μ(S), uα denotes the 1 − α quantile of a random variable U with distribution

P(U ≤ u) = exp(− exp(−u)) for u ∈ R (3.2)

and the value of the constant β that does not depend on S is explicitly given in Janson [17]. Concretely,

β =
1
d!

(√
πΓ
(

d
2 + 1

)
Γ
(

d+1
2

) )d−1

·

In particular, for the bidimensional case, β = 1. If S is unknown this test can not be directly applicable. Under
the (Rr

λ) condition with λ = r, Berrendero et al. [6] considered Sn = Cr(Xn) as the estimator of S, but no
data-driven method was provided for selecting r. The maximal spacing of S is estimated by

Δ̂n = sup{γ : ∃x with Bγ [x] ⊂ Sn \ Xn}, (3.3)
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Figure 4. Maximal spacing of Cr(X1500) is shown in dashed lines for (a) r = 10, (b) r = 25,
(c) r = 40 and (d) r = 90. The boundary of H(X1500) is shown in dotted line in (d).

and the critical region (3.1) can be replaced by

V̂n,r > ĉn,α,r =
an(uα + log n + (d − 1) log log n + log β)

n
,

where an = μ(Cr(Xn)) and V̂n,r denotes the volume of the ball of radius Δ̂n, see (3.3).
Figure 4 shows the maximal spacings for the estimators of the Aral Sea considered in Figure 2. A bad

choice (a big value) of the smoothing parameter allows to detect a large gap, clearly incompatible with the
uniformity hypothesis, see Figure 4d for r = 90. This means that the estimator contains a large spacing which
is not contained in the Aral Sea. Since the sample is uniform on the original support, we can conclude that the
smoothing parameter is too large. It must be selected smaller. The estimator of r0 is based on this idea. If we
assume that the distribution is uniform on S, and according to Definition 2.1, r0 will be estimated by

r̂0 = sup{γ > 0 : H0 is accepted on Cγ(Xn)}. (3.4)

The technical aspects for the estimator defined in (3.4) are considered in Sections 4 and 5.

4. Main results

The existence of the supreme defined in (3.4) must be guaranteed. Theorem 4.1 will show that this is the
case and r̂0 consistently estimates r0

Theorem 4.1. Let S ⊂ Rd be a compact, nonconvex and nonempty set verifying (Rr
λ) and Xn a uniform and

i.i.d sample on S. Let r0 be the parameter defined in (2.1) and r̂0 defined in (3.4). Let {αn} ⊂ (0, 1) be a
sequence converging to zero verifying limn→∞ log(αn)/n = 0. Then, r̂0 converges to r0 in probability.

Remark 4.2. We assume that S is not convex only for simplicity in the exposition. If S is convex it can be
shown that r̂0 goes to infinity (which is the value of r0 in this case) because, with high probability, the test is
not rejected for all values of r.

Once the consistency of the estimator defined in (3.4) has been proved, it would be natural to study the
behavior of the random set Cr̂0(Xn) as an estimator for the support S. In particular, if limr→r+

0
dH(S, Cr(S)) = 0

then consistency of Cr̂0(Xn) can be proved easily from Theorem 4.1. However, the consistency can not be
guaranteed if dH(S, Cr(S)) does not go to zero as r goes to r0 from above (as r̂0 does, see Proposition 8.2
below). This problem can be solved by considering the estimator Crn(Xn) where rn = νr̂0 with ν ∈ (0, 1) fixed.
This ensures that, for n large enough, with high probability Crn(Xn) ⊂ S. From the practical point of view the
selection of ν is not a major issue because r̂0 is numerically approximated and the computed estimator always
satisfies this property without multiplying by ν. In some sense, Theorem 4.3 gives the convergence rate of the
numerical approximation of r̂0, see Section 5 for the details on the computation of the estimator.
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Theorem 4.3. Let S ⊂ Rd be a compact, nonconvex and nonempty set verifying (Rr
λ) and Xn a uniform and

i.i.d sample on S. Let r0 be the parameter defined in the (2.1) and r̂0 defined in (3.4). Let {αn} ⊂ (0, 1) be a
sequence converging to zero under the conditions of Theorem 4.1. Let be ν ∈ (0, 1) and rn = νr̂0. Then,

dH(S, Crn(Xn)) = OP

(
log n

n

) 2
d+1

·

The same convergence order holds for dH(∂S, ∂Crn(Xn)) and dμ(S�Crn(Xn)).

Remark 4.4. Theorem 4.3 shows that Crn(Xn) achieves the same convergence rates as the convex hull of the
sample for reconstructing convex sets.

Remark 4.5. The selector proposed by Mandal and Murthy [19], rMM
n , goes to zero in probability. In Pateiro-

López and Rodŕıguez-Casal [21] it is proved that, for a deterministic sequence of parameters dn (dn ≤ r0 and
d2

nn/ log(n) → ∞), the convergence rate (in probability) for the distance in measure is, for the bidimensional
case, d

−1/3
n n−2/3. This is the convergence rate of the new proposal plus a penalizing term d

−1/3
n which goes to

infinity if dn → 0. It is expected that this penalizing factor, (rMM
n )−1/3 also appears for the the Mandal and

Murthy’s proposal.

5. Numerical aspects of the algorithm

Although a fully data-driven method for estimating the optimal parameter established in (2.1) has been
proposed from a theoretical point of view, its practical implementation depends on the specification of two
parameters that must be selected by the practitioner.

Next, the main numerical aspects are considered in order to detail the algorithm completely. With probability
one, for n large enough, the existence of the estimator defined in (3.4) is guaranteed under the hypotheses of
Theorem 4.1. However, in practice, this estimator might not exist for a specific sample Xn and a given value of
the significance level α. Therefore, the influence of α must be taken into account. The null hypothesis will be
(incorrectly) rejected on Cr(Xn) for 0 < r ≤ r0 with probability α approximately. This is not important from
the theoretical point of view, since we are assuming that α = αn goes to zero as the sample size increases. But,
what should be done, for a given sample, if H0 is rejected for all r (or at least all reasonable values of r)? In
order to fix a minimum acceptable value of r, it is assumed that S (and, hence, the estimator) will have no more
than C connected components. Too split estimators will not be considered even in the case that we reject H0

for all r. The minimum value that ensures a number of connected components not greater than C will be taken
in this latter case, see below. Therefore, this parameter C can be interpreted as a geometric stopping criteria
that does not appear in theoretical results because the sequence αn tends to zero.

Dichotomy algorithms can be used to compute r̂0. The practitioner must select a maximum number of
iterations I and two initial points rm and rM with rm < rM such that the null hypothesis of uniformity
is rejected and accepted on CrM (Xn) and Crm(Xn), respectively. According to the previous comments, it is
assumed that the number of connected components of Crm(Xn) must not be greater than C. Choosing a value
close enough to zero is usually sufficient to select rm. However, if selecting this rm is not possible because, for
very low and positive values of r, the hypothesis of uniformity is still rejected on Cr(Xn) then r0 is estimated
as the positive closest value to zero r such that the number of connected components of Cr(Xn) is smaller than
or equal to C. On the other hand, if the hypothesis of uniformity is accepted even on H(Xn) then we propose
H(Xn) as the estimator for the support.

To sum up, the following inputs should be given: the significance level α ∈ (0, 1), a maximum number of
iterations I, a maximum number of connected components C and two initial values rm and rM . Given these
parameters r̂0 will be computed as follows:

(1) In each iteration and while the number of them is smaller than I:
(a) r = (rm + rM )/2.
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(b) If the null hypothesis is not rejected on Cr(Xn) then rm = r.
(c) Otherwise, rM = r.

(2) Then, r̂0 = rm.

According to the correction of the bias proposed by Ripley and Rasson [23] for the convex hull estimator,
Berrendero et al. [6] suggested rejecting the null hypothesis of uniformity when

V̂n,r >
μ(Sn)(uα + log n + (d − 1) log log n + log β)

n − vn
,

where vn denotes the number of vertices of Sn = Cr(Xn) (points of Xn that belong to ∂Sn). In this work, it is
proposed to redefine the critical region as

V̂n,r > ĉ∗n,α,r,

where ĉ∗n,α,r is equal to

μ(Sn)(uα + log (n − vn) + (d − 1) log log (n − vn) + log β)
n − vn

,

that is, we suggest to replace n by n − vn in the definition of ĉn,α,r elsewhere not only in the denominator.
Although the main theoretical results in Section 4 are established in terms of ĉn,α,r instead of ĉ∗n,α,r, the proofs
are completely analogous in both cases since vn is negligible with respect to n. See, for instance, the upper
bound for the expected number of vertices in Theorem 3 by Pateiro–López and Rodŕıguez–Casal [21].

Some technical aspects related to the computation of the maximal spacings must be also considered. Testing
the null hypothesis of uniformity is a procedure repeated I times in this algorithm. This may seem to be very
computing intensive since the test involves calculating the maximal spacing. However, we do not need to know
the exact value of the maximal spacing since we are not interested in computing the test statistic. In fact, it is
only necessary to check if, for a fixed r, Cr(Xn) contains an open ball, that does not intersect the sample points
with volume greater than the test’s critical value ĉ∗n,α,r. In other words, we will simply check if an open ball of
radius equal to ĉ∗n,α,r and center x is contained in Cr(Xn) \ Xn. If this disc exists then x /∈ Bĉ∗n,α,r

(Xn) where

Bĉ∗n,α,r
(Xn) =

⋃
Xi∈Xn

Bĉ∗n,α,r
(Xi)

is the dilation of radius ĉ∗n,α,r of the sample. Therefore, the centers of the possible maximal balls necessarily lie
outside Bĉ∗n,α,r

(Xn). Following Berrendero et al. [6], to check if the null hypothesis of uniformity is rejected on
Cr(Xn), we will follow the next steps:

(1) Determine the set D(r) = Cr(Xn) ∩ ∂Bĉ∗n,α,r
(Xn). Notice that, if x ∈ D(r) then Bĉ∗n,α,r

(x) ∩ Xn = ∅.
(2) Calculate M(r) = max{d(x, ∂Cr(Xn) : x ∈ D(r)}.
(3) If M(r) ≤ ĉ∗n,α,r then the null hypothesis of uniformity is not rejected.

It should be noted that ∂Cr(Xn) and ∂Bĉ∗n,α,r
(Xn) can be easily computed (at least for the bidimensional

case), see Pateiro-López and Rodŕıguez-Casal [20].

6. Simulation study

The performances of the algorithm proposed in this paper and Mandal and Murthy’s method [19] will be
analyzed in this section. They will be denoted by RS and MM, respectively. A total of 1000 uniform samples of
four different sizes n have been generated on three support models in the Euclidean space R2, see Figure 5.

The first set, S = B0.35[(0.5, 0.5)] \B0.15((0.5, 0.5)), is a circular ring with r0 = 0.15. The other two ones are
two interesting sets, S = C and S = S with r0 = 0.2 and r0 = 0.0353, respectively. The values of n considered
are n = 100, n = 500, n = 1000 and n = 1500. In addition, four values for α have been taken into account,
αi = 10−i, i = 1, . . . , 4. The maximum number of connected components C was fixed equal to 4.
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Figure 5. (a) S = B0.35[(0.5, 0.5)] \ B0.15((0.5, 0.5)) with r0 = 0.15. (b) S = C with r0 = 0.2.
(c) S = S with r0 = 0.0353. Circles in gray have radius equal to r0.

Table 1. Empirical means of 1000 RS and MM estimations for the smoothing parameter of
the r-convex hull with S = B0.35[(0.5, 0.5)] \ B0.15((0.5, 0.5)). In this case, r0 = 0.15.

n 100 500 1000 1500

RS

α1 = 10−1 0.1592 0.1456 0.1438 0.1410
α2 = 10−2 0.1592 0.1509 0.1499 0.1495
α3 = 10−3 0.1592 0.1516 0.1507 0.1503
α4 = 10−4 0.1592 0.1517 0.1507 0.1504

MM 0.1969 0.1295 0.1084 0.0977

Table 2. Empirical means of 1000 RS and MM estimations for the smoothing parameter of
the r-convex hull with S = C. In this case, r0 = 0.2.

n 100 500 1000 1500

RS

α1 = 10−1 0.2724 0.2007 0.1903 0.1888
α2 = 10−2 0.2929 0.2150 0.2056 0.2032
α3 = 10−3 0.2982 0.2188 0.2089 0.2055
α4 = 10−4 0.2988 0.2226 0.2105 0.2068

MM 0.1636 0.1072 0.0897 0.0809

Table 3. Empirical means of 1000 RS and MM estimations for the smoothing parameter of
the r-convex hull with S = S. In this case, r0 = 0.0353.

n 100 500 1000 1500

RS

α1 = 10−1 0.0954 0.0833 0.0637 0.0548
α2 = 10−2 0.0954 0.0878 0.0695 0.0602
α3 = 10−3 0.0958 0.0886 0.0736 0.0631
α4 = 10−4 0.1077 0.0887 0.0778 0.0659

MM 0.1644 0.1055 0.088 0.0792

For each fixed random sample, both estimators of the smoothing parameter of the r-convex hull have been
calculated. So, one thousand estimations have been obtained for each algorithm, fixed a model and the values
of n and α. The empirical means of these one thousand estimations are showed in Tables 1–3 for the RS and
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Table 4. Empirical means of 1000 estimations (multiplied by 10) obtained for the distance in
measure between S = B0.35[(0.5, 0.5)] \ B0.15((0.5, 0.5)) and the resulting support estimators
for RS and MM methods. The last row contains the benchmarks (multiplied by 10) for each
sample size.

n 100 500 1000 1500

RS

α1 = 10−1 0.9288 0.3293 0.2085 0.1623
α2 = 10−2 0.9288 0.3143 0.1970 0.1492
α3 = 10−3 0.9294 0.3123 0.1957 0.1484
α4 = 10−4 0.9288 0.3122 0.1957 0.1483

MM 1.4165 0.3378 0.2316 0.1837
0.9337 0.2956 0.1819 0.1364

Table 5. Empirical means of 1000 estimations (multiplied by 10) obtained for the distance in
measure between S = C and the resulting support estimators for RS and MM methods. The
last row contains the benchmarks (multiplied by 10) for each sample size.

n 100 500 1000 1500

RS

α1 = 10−1 0.6041 0.1472 0.0920 0.0712
α2 = 10−2 0.6677 0.1589 0.0833 0.0640
α3 = 10−3 0.6820 0.1953 0.0832 0.0631
α4 = 10−4 0.6837 0.2440 0.0865 0.0626

MM 0.4145 0.1681 0.1125 0.0885
0.3727 0.1277 0.0800 0.0606

Table 6. Empirical means of 1000 estimations (multiplied by 10) obtained for the distance in
measure between S = S and the resulting support estimators for RS and MM methods. The
last row contains the benchmarks (multiplied by 10) for each sample size.

n 100 500 1000 1500

RS

α1 = 10−1 0.6389 0.2591 0.1842 0.1485
α2 = 10−2 0.6389 0.2537 0.1821 0.1455
α3 = 10−3 0.6411 0.2530 0.1821 0.1464
α4 = 10−4 0.6797 0.2529 0.1816 0.1476

MM 1.2319 0.4851 0.2445 0.1514
1.0794 0.3320 0.2038 0.1541

MM methods. We should mention that MM method is included in these table only for illustrative purposes.
The results of these two algorithms are not directly comparable since the goal of MM is not to estimate the
parameter r0 defined in (2.1). However, comparing the behavior of the two resulting support estimators can
be really interesting. Tables 4–6 contain the empirical means (multiplied by 10) of one thousand Monte Carlo
estimations for the distance in measure between the RS and MM support estimators and the corresponding
theoretical models, respectively. In addition, we have estimated the distance in measure between the r0-convex
hull of each sample and its corresponding support model for the different sample sizes. The means of these
estimations can be considered as a benchmark. They are showed (multiplied by 10) in the last row of Tables 4–6.
A grid of 3342 points was considered in the unit square for estimating the distance in measure. The parameter ν
was fixed equal to 0.95 for calculating the RS support estimator.

Figure 6 contains the boxplots for the estimations of the distance in measure between the resulting support
estimators for the RS and MM methods when n = 1500.
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Figure 6. Boxplots of the estimations for the distance in measure for RS and MM methods
when n = 1500 for (a) S = B0.35[(0.5, 0.5)] \ B0.15((0.5, 0.5)), (b) S = C and (c) S = S. From
left to right, RS considering α1, α2, α3 and α4 and MM.

Conclusions of the simulation study. According to the results showed in Tables 1–3, RS presents a good global
behavior for estimating the smoothing parameter r0. Only when S = C and n = 100, MM provides better
results, see Table 2. In this particular case, the estimations of RS are specially greater than 0.2, the real value
of parameter r0. In general, MM provides too small estimations, mainly for high values of the sample size, see
Tables 1 and 2.

The influence of the level of significance α must be also discussed. Taking low values of α reduces the number
of outliers considerably for the three support models presented. In addition, if the model considered is not too
complex then small values of α provide better results for n large enough reducing the risk of rejecting the null
hypothesis of uniformity when it is satisfied, see for instance S = B0.35[(0.5, 0.5)] \B0.15((0.5, 0.5)) or S = C in
Tables 1 and 2. Therefore, excessively low values of r will not be selected. However, if the support model is not
so simple then choosing large values of α provides better estimations for the smoothing parameter, see Table 3
for S = S. Anyway, for moderate and large values of the sample size the dependence on α of RS method is
small.

Although the results are not shown, the role of the parameter C has been studied too. Concretely, simulations
for C equal to 2, 4, 6 and 8 were analyzed. The influence of C is not relevant since the consideration of different
values practically provides the same results.

Finally and according to Tables 4–6, RS always provides the smallest estimation errors for the criteria
considered except when S = C with n = 100 or even n = 500 if the value of α is too large (see Tab. 5). Therefore,
RS support estimator is more competitive than MM algorithm. According to the previous comments, it can be
seen that the number of outliers for RS increases if large values of α are considered for the three support models
(see Fig. 6).

7. Conclusions and discussion

A theoretical automatic estimator for the optimal parameter defined in (2.1) has been proposed under (Rr
λ).

But, its practical implementation depends on the specification of the significance level α for the uniformity
test and the maximum number of connected components C for the resulting support estimator. According
to Section 6, their influence on estimations is not so important. However, both of them must be selected for
avoiding too small values of the smoothing parameter or, equivalently, split estimators for the support. As
practical recommendation, small values of α and large values of C are preferred. Choosing a small α reduces
the number of too low estimations and provides, in general, the best results. As for the parameter C, a larger
value than the real number of connected components of the support should be selected. Due to this number is
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rarely known and the value of C has not a strong influence on estimations, selecting a large value for it will be
enough.

Finally, natural extensions of this work will be discussed. Although the geometric property (Rr
λ) is very

flexible, it would be very interesting to consider different families of sets. For instance, the parameter ρ for
the family of ρ cone-sets could be estimated using similar ideas, see Cholaquidis et al. [8]. Of course, under
this new shape condition, consistency results for the new procedure should be investigated. Another important
achievement would be to generalize this work for non-uniform distributions. Janson [17] derived the asymptotic
distribution of the maximal spacing under uniform assumptions. Aaron et al. [1] obtained the asymptotic distri-
bution of the maximal spacing when data are generated from a positive, bounded support Lipchitz continuous
density function. However, the definition of a spacing in Aaron et al. [1] depends on the density function that,
in practice, is unknown. A plug-in estimator of the maximal spacing could be proposed using a kernel density
estimator.

8. Proofs

In this section the proofs of the stated theorems are presented.

Proof of Proposition 2.2. An auxiliary result is necessary. For a ∈ ∂A, Lemma 8.1 relates the uniqueness of a
unit vector η(a) and the existence of some x ∈ A such that a coincides metric projection of x onto A.

Lemma 8.1. Let A ⊂ Rd be a nonempty and closed set and a ∈ ∂A. Let us assume that there exists x /∈ A
such that ρ = ‖x − a‖ = d(x, A), that is, the point a is a metric projection of x onto A. If exists λ > 0 and a
unit vector η(a) such that Bλ[a − λη(a)] ⊂ A, then x = a + ρη(a).

Proof. To see this suppose the contrary, that is, let us suppose that exists x verifying the required conditions
with x 
= a + ρη(a).

Then, x, a and a − λη(a) can not lie on the same line and hence,

‖a − λη(a) − x‖ < ‖a− λη(a) − a‖ + ‖a − x‖ = λ + ρ. (8.1)

Let z ∈ ∂Bλ[a − λη(a)] ∩ [x, a − λη(a)], where [x, a − λη(a)] denotes the line segment with endpoints x and
a − λη(a) (see Fig. 7, left). Then,

‖a − λη(a) − x‖ = ‖a − λη(a) − z‖ + ‖z − x‖ = λ + ‖z − x‖.

x

a
a λη a

z

A

Ac

r x1

c

s

S

Sc

x2

r

Figure 7. Elements of Lemma 8.1 (left). Elements of Proposition 2.2 with d(x1, S) < r and
d(x2, S) > r (right).
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According to (8.1), ‖z − x‖ = ‖a − λη(a) − x‖ − λ < λ + ρ − λ = ρ, which is a contradiction since z ∈ A and
ρ = d(x, A). �

Now, we are in position to conclude the proof of Proposition 2.2. Let us prove that S = Cr(S). Since S ⊂
Cr(S), it is enough to check if Cr(S) ⊂ S. Equivalently, it will be checked that for all x ∈ Sc there exists
an open ball of radius r containing x. This ball will not intersect S. Let us fix x /∈ S. If d(x, S) ≥ r then
x ∈ Br(x) and Br(x) ∩ S = ∅.

Otherwise, if d(x, S) < r, let s be a projection of x on S and let us define ρ = d(x, S) = ‖x−s‖. The λ-rolling
property allow to prove easily that, Bλ[s − λη(s)] ⊂ S where η(s) = (s − x)/ρ. According to Lemma 8.1,
x = s+ρη(s). In addition, s ∈ ∂S and, according to the imposed conditions, S fulfills the r-rolling property. So,

∃c ∈ Rd such that s ∈ Br[c] and Br(c) ∩ S = ∅.

According to Lemma 8.1, c = s + rη(s) since s is a projection of c on S. We are supposing that ρ < r. So,
‖x − c‖ = ‖(ρ − r)η(s)‖ = r − ρ < r. Then, x /∈ Cr(S) since that x ∈ Br(c) and Br(c) ∩ S = ∅.

Figure 7 (right) shows the elements used in the proof of Proposition 2.2. �

Proof of Proposition 2.3. It is verified that

∀a ∈ ∂A and ∀n ∈ N ∃xn such that a ∈ Brn [xn] and Brn(xn) ∩ A = ∅.

For each a ∈ ∂A, let us consider the sequence of closed balls {Brn [xn]}. It is clear that it can be assumed
with no loss of generality {xn} converges to some point xa since {xn} is a bounded sequence and it contains a
convergent subsequence which we will denoted by {xn} again.

Since a ∈ ∂A ⊂ A, a ∈ Brn [xn] and Brn(xn)∩A = ∅, it follows that d(xn, A) = rn and ‖xn −a‖ = rn. Hence,

rn = d(xn, A) ≤ ‖xn − xa‖ + d(xa, A).

Therefore, d(xa, A) ≥ r. In particular, this implies Br(xa) ∩ A = ∅ and ‖xa − a‖ ≥ r. On the other hand,

‖xa − a‖ ≤ ‖xa − xn‖ + ‖xn − a‖ = ‖xa − xn‖ + rn.

So ‖xa − a‖ ≤ r, that is, a ∈ Br[xa]. This implies that A fulfills the r-rolling condition. �

Proof of Proposition 2.4. It will be proved that r0 ∈ {γ > 0 : Cγ(S) = S}. According to the properties of the
supreme,

∃{rn} ⊂ {γ > 0 : Cγ(S) = S} such that lim
n→∞ rn = r0.

Then, Crn(S) = S, for all n ∈ N. Proposition 2 in Cuevas et al. [10] ensures that S fulfills the rn-rolling
property for all n. Then, S fulfills the r0-rolling property, see Proposition 2.3. Taking into account the imposed
restrictions, it is verified that Sc satisfies the λ-rolling condition. So, it is possible to guarantee that S is under
(Rr0

λ ). According to Proposition 2.2, S is r0-convex. Using again Proposition 2 in Cuevas et al. [10], it is possible
to guarantee that S fulfills the r0-rolling property. �

Proof of Theorem 4.1. Some auxiliary results are necessary. First we will prove that, with probability tending
to one, r̂0 is at least as big as r0.

Proposition 8.2. Let S ⊂ Rd be a compact, nonconvex and nonempty set verifying (Rr
λ) and Xn a uniform

and i.i.d sample on S. Let r0 be the parameter defined in (2.1) and {αn} ⊂ (0, 1) a sequence converging to zero.
Then,

lim
n→∞P(r̂0 ≥ r0) = 1.
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Proof. From the definition of r̂0, see (3.4), it is clear that

P(r̂0 ≥ r0) ≥ P(V̂n,r0 ≤ ĉn,αn,r0),

where, remember, V̂n,r0 denotes the volume of the maximal spacing in Cr0(Xn), ĉn,αn,r0 = μ(Cr0(Xn))(uαn +
log n+(d−1) log log n+log β) ·n−1 and uαn satisfies P(U ≤ uαn) = 1−αn and U is the random variable defined
in (3.2). Since, with probability one, Cr0(Xn) ⊂ S, we have V̂n,r0 ≤ Vn(S) where Vn(S) denotes de volume of a
ball with radius the maximal spacing of S. Hence,

P(r̂0 ≥ r0) ≥ P(Vn(S) ≤ ĉn,αn,r0) = P

(
uαn

An
Un ≤ uαn

)
,

where

Un =
nVn(S)
μ(S)

− log n − (d − 1) log log n − log β

and
An =

nĉn,αn,r0

μ(S)
− log n − (d − 1) log log n − log β.

According to the Janson’s Theorem [17], Un
d→ U . In addition, it can be easily proved that uαn/An

P→ 1. This
can be done by taking into account that

μ(Cr0(Xn))/μ(S) = 1 + OP ((log(n)/n)2/(d+1)),

see Theorem 3 in Rodŕıguez-Casal [24]. Now, according to the Slutsky’s Lemma, (uαn/An)Un
d→ U . Notice that

U has a continuous distribution, so convergence in distribution implies that

sup
u

|P ((uαn/An)Un ≤ u) − P(U ≤ u)| → 0.

Since P(U ≤ uαn) = 1 − αn and αn → 0, this ensures that

P ((uαn/An)Un ≤ uαn) → 1.

Therefore, P(r̂0 ≥ r0) → 1. �

It remains to prove that r̂0 cannot be arbitrarily larger that r0. The following lemma ensures that, for a given
γ > r0, there exists an open ball contained in Cγ(S) which does not meet S.

Lemma 8.3. Let S ⊂ Rd be a compact, nonconvex and nonempty set verifying (Rr
λ) and let be γ > 0 such that

S � Cγ(S). Then, there exists ε > 0 and x ∈ Cγ(S) such that Bε(x) ⊂ Cγ(S) and Bε(x) ∩ S = ∅.
Proof. Let us assume, for a moment, that we can find s ∈ ∂S such that s ∈ Int(Cγ(S)). In this case, there
exists ρ > 0 satisfying that Bρ(s) ⊂ Cγ(S). On the other hand, by assumption, S is r0-convex which implies,
by Proposition 2 in Cuevas et al. [10], that S fulfills the r0-rolling condition. This ensures that there exists a
ball Br0(y) such that s ∈ Br0 [y] and Br0(y) ∩ S = ∅. It is clear that we can find an open ball Bε(x) such that
Bε(x) ⊂ Br0(y) ∩ Bρ(s). By construction Bε(x) ⊂ Br0(y) and, hence, Bε(x) ∩ S = ∅. Finally, Bε(x) ⊂ Bρ(s)
and, therefore, Bε(x) ⊂ Cγ(S). This would finished the proof in this case.

It only remains to show that ∂S ⊂ ∂Cγ(S) leads to a contradiction. First, the hypothesis ∂S ⊂ ∂Cγ(S) imply
that S satisfy the γ-rolling condition. This is a straightforward consequence of Proposition 2 in Cuevas et al. [10]
since Cγ(S) is γ-convex. But the γ-rolling condition imply, under the (Rr

λ) shape restriction, γ-convexity, see
Proposition 2.2. This is a contradiction since we are assuming that S � Cγ(S). �
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Figure 8. Elements of proof in Lemma 8.3. ∂S in black, ∂Cγ(S) in gray, Bρ(s), Br0 [y] and
Bε(x) in gray.

Lemma 8.4. Let S ⊂ Rd be a compact, nonconvex and nonempty set verifying (Rr
λ) and Xn a uniform and

i.i.d sample on S. Let r0 be the parameter defined in (2.1). Then, for all r > r0, there exists an open ball Bρ(x)
such that Bρ(x) ∩ S = ∅ and

P (Bρ(x) ⊂ Cr(Xn), eventually) = 1.

Proof. Let be r∗ such that r > r∗ > r0. Since Cr0(S) = S � Cr∗(S), according to Lemma 8.3,

∃Bε(x) such that Bε(x) ⊂ Cr∗(S) and Bε(x) ∩ S = ∅.
It can be assumed, without loss of generality, that r ≤ ε

2 + r∗. If this is not the case then it would be possible
to replace r∗ by r∗∗ > r∗ satisfying r∗∗ < r ≤ ε

2 + r∗∗. For this r∗∗,

Bε(x) ⊂ Cr∗(S) ⊂ Cr∗∗(S) and Bε(x) ∩ S = ∅.
Now, we can apply Lemma 3 in Walther [28] in order to ensure that

P (S ⊕ r∗B ⊂ Xn ⊕ rB, eventually) = 1.

If S ⊕ r∗B ⊂ Xn ⊕ rB then (S ⊕ r∗B) � r∗B ⊂ (Xn ⊕ rB) � r∗B, that is, Cr∗(S) ⊂ (Xn ⊕ rB) � r∗B. This
imply that

Cr∗(S) � (r − r∗)B ⊂ ((Xn ⊕ rB) � r∗B) � (r − r∗)B.

In addition,
((Xn ⊕ rB) � r∗B) � (r − r∗)B = (Xn ⊕ rB) � rB = Cr(Xn),

where we have used that, for sets A, C and D, (A � C)� D = A� (C ⊕ D). Finally, since Bε(x) ⊂ Cr∗(S) and
ε/2 ≥ (r − r∗), we have Bε/2(x) ⊂ Cr∗(S) � (ε/2)B ⊂ Cr∗(S) � (r − r∗)B ⊂ Cr(Xn). This concludes the proof
of the lemma by taking ρ = ε/2. �

Proposition 8.5. Let S ⊂ Rd be a compact, nonconvex and nonempty set verifying (Rr
λ) and Xn a uniform

and i.i.d sample on S. Let r0 be the parameter defined in (2.1) and {αn} ⊂ (0, 1) a sequence converging to zero
such that log(αn)/n → 0. Then, for any ε > 0,

P (r̂0 ≤ r0 + ε, eventually) = 1.
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Proof. Given ε > 0 let be r = r0 + ε. According to Lemma 8.4, there exists x ∈ Rd and ρ > 0 such that
Bρ(x) ∩ S = ∅ and

P (Bρ(x) ⊂ Cr(Xn), eventually) = 1.

Since, with probability one, Xn ⊂ S we have Bρ(x) ∩ Xn = ∅. Hence, if Bρ(x) ⊂ Cr(Xn), we have V̂n,r ≥
μ(Bρ(x)) = cρ > 0. Similarly, V̂n,r′ ≥ V̂n,r ≥ cρ for all r′ ≥ r. On the other hand, since −uαn/ log(αn) =
log(− log(1 − αn))/ log(αn) → 1, we have, with probability one,

sup
r′

ĉn,αn,r′ ≤ μ(H(S))(uαn + log n + (d − 1) log log n + log β) · n−1

and
μ(H(S))(uαn + log n + (d − 1) log log n + log β) · n−1 → 0

where H(S) denotes the convex hull of S. This means that, with probability one, there is n0 such that if n ≥ n0

we have supr′ ĉn,αn,r′ < cρ. Therefore, if Bρ(x) ⊂ Cr(Xn), we get r̂0 ≤ r. This last statement follows from
V̂n,r′ > ĉn,αn,r′ for all r′ ≥ r and the definition of r̂0, see (3.4). �

Theorem 4.1 is, then, a straightforward consequence of Propositions 8.2 and 8.5. �

Proof of Theorem 4.3. For the uniform distribution on S, Theorem 3 of Rodŕıguez-Casal [24] ensures that, under
(Rr̃

r̃), then P(En) → 1, where

En =

{
dH(S, Cr̃(Xn)) ≤ A

(
log n

n

)2/(d+1)
}

,

and A is some constant. Under the hypothesis of Theorem 4.3 this holds for any r̃ ≤ min{r, λ}. Fix one
r̃ ≤ min{r, λ} such that r̃ < νr0 and define Rn = {r̃ ≤ rn ≤ r0}. Since, by Theorem 4.1, rn = νr̂0 converges
in probability to νr0 and r̃ < νr0 < r0, we have that P(Rn) → 1. If the events En and Rn hold (notice that
P(En ∩Rn) → 1) we have Cr̃(Xn) ⊂ Crn(Xn) ⊂ S and, therefore,

dH(S, Crn(Xn)) ≤ dH(S, Cr̃(Xn)) ≤ A

(
log n

n

)2/(d+1)

.

This completes the proof of the first statement of Theorem 4.3. Similarly, it is possible to prove the result for
the other error criteria considered in Theorem 4.3. �
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