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SPECTRAL ANALYSIS OF THE GRAM MATRIX
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Abstract. This text is devoted to the asymptotic study of some spectral properties of the Gram
matrix W TW built upon a collection w1, . . . , wn ∈ R

p of random vectors (the columns of W ), as both
the number n of observations and the dimension p of the observations tend to infinity and are of
similar order of magnitude. The random vectors w1, . . . , wn are independent observations, each of them
belonging to one of k classes C1, . . . , Ck. The observations of each class Ca (1 ≤ a ≤ k) are characterized
by their distribution N (0, p−1Ca), where C1, . . . , Ck are some non negative definite p×p matrices. The
cardinality na of class Ca and the dimension p of the observations are such that na/n (1 ≤ a ≤ k) and
p/n stay bounded away from 0 and +∞. We provide deterministic equivalents to the empirical spectral
distribution of W TW and to the matrix entries of its resolvent (as well as of the resolvent of WW T).
These deterministic equivalents are defined thanks to the solutions of a fixed-point system. Besides, we
prove that W TW has asymptotically no eigenvalues outside the bulk of its spectrum, defined thanks
to these deterministic equivalents. These results are directly used in our companion paper [R. Couillet
and F. Benaych-Georges, Electron. J. Stat. 10 (2016) 1393–1454.], which is devoted to the analysis of
the spectral clustering algorithm in large dimensions. They also find applications in various other fields
such as wireless communications where functionals of the aforementioned resolvents allow one to assess
the communication performance across multi-user multi-antenna channels.
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1. Introduction and main results

1.1. Introduction

In this article, we consider the Gram matrix WTW , where W = [w1, . . . , wn], wi ∈ Rp, is a collection of
independent random vectors. Each wi belongs to one of k classes C1, . . . , Ck, with Ca (1 ≤ a ≤ k) the class of
vectors distributed as N (0, p−1/2Ca), where C1, . . . , Ck are some non negative definite p× p matrices.

This k-fold class setting comes in naturally in the field of machine learning and in statistical problems such
as kernel spectral clustering (see the companion paper [10], where the present results find direct applications).
Clustering algorithms are methods used to discover unknown subgroups or clusters in data: they seek partitions
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of the data into distinct groups so that the observations within each group are the most similar to one another
and the observations belonging to different groups are the most dissimilar from each other. The most commonly
used such algorithms are k-means, the hierarchical clustering and EM [13,16]. Spectral clustering techniques (see
e.g. [19, 22]) make use of the spectrum of a similarity matrix of the data or of a more involved derived version
of it (such as the associated Laplacian matrix ) to perform dimensionality reduction before clustering in fewer
dimensions, usually thanks to one of the previously mentioned algorithms. More specifically, given n observations
x1, . . . , xn ∈ Rp one wants to cluster, one chooses a similarity measurement, such as κ(xi, xj) := f(‖xj−xi‖2

p ),
for a well chosen decreasing function f , and defines the similarity matrix A :=

[
κ(xi, xj)

]n
i,j=1

. Then, each
observation xi ∈ Rp is replaced by its projection yi onto the linear span of the k leading eigenvectors of the

similarity matrix A or of its “Laplacian” L :=
[

κ(xi,xj)√
didj

]n
i,j=1

, where, for each i, di :=
∑

j κ(xi, xj), and k-

means (or another aforementioned standard algorithms) is then performed on y1, . . . , yn. It appears in our
companion article [10] that, when the observations xi belong to classes, such that xi = μa + p1/2wi for some
wi ∼ N (0, p−1Ca) when falling in class, say, C′

a, the performance of the clustering algorithm relies on theoretical
results on the spectrum and the resolvent of the aforementioned matrix WTW , some of which are stated and
proved here.

Another class of applications is found in the field of wireless communications, where, letting Wa =
[w∑a−1

j=1 nj+1, . . . , w
∑

a
j=1 nj

] ∈ Rp×nj , wi ∼ N (0, p−1Ca) be the communication channel between a p-antenna

transmitter and an na-antenna receiver and σ2 some ambient noise variance, functionals of the type
log det(WWT + σ2Ip) or trWT

a Wa(WWT + σ2Ip)−1 are instrumental to evaluate the maximally achievable
communication rate across the channel, see e.g. [11, 18].

The purpose of the present paper is to prove several technical results concerning the resolvent matrices of
WTW and WWT, which are then used, along with other arguments, to obtain a deterministic equivalent for
the empirical spectral measure of WTW as n, p→ ∞ while n/p remains away from 0 and ∞, and to show that
no eigenvalue can be found at macroscopic distance from the support of this measure. Some of these results
and related questions (which we sometimes rederive for completion) can be found scattered in the literature:
as in [11], where the same model is considered but only linear functionals of the empirical spectral measure of
WTW are considered, or in [1,9,23,24] where the spectral analyses of different models are considered, leading in
particular to analogous equations to those introduced in Proposition 1.3 below (some of the results of [23,24] are
immediate corollaries of our present results), or else in [3–6,8,17,21], where the question of isolated eigenvalues
of related matrix models was also considered.

1.2. Model presentation

Let us start by introducing some notations. In what follows, everything, when not mentioned as constant or
fixed, depends implicitly on the parameters n, p, . . . introduced below.

Let k be fixed, n, p, n1, . . . , nk be some positive integers all tending to infinity such that n1 + · · · + nk = n
and such that the ratios

c0 =
p

n
, ca =

na

n
(a = 1, . . . , k)

all stay bounded away from 0 and +∞. We also introduce some positive semi-definite p× p matrices C1, . . . , Ck

which we suppose to be bounded, in operator norm, by a constant, and some standard real Gaussian matrices

Z1 ∈ R
p×n1 , . . . , Zk ∈ R

p×nk

and define the p× n random matrix W by

W := p−1/2[C1/2
1 Z1, . . . , C

1/2
k Zk].
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Figure 1. Eigenvalues of WTW (across 1 000 realizations) versus μ, n = 32, p = 256, k = 3,
c1 = 1/8, c2 = 5/8, c3 = 1/4, [Ca]ij = (8(a−1)+1)[(a−1)/5]|i−j|. The density of μ is computed
as detailed in Remark 1.4.

In what follows, we will be interested in the empirical spectral distribution μW TW of WTW (i.e. the uniform
probability measure on the spectrum of WTW ) and in the matrix entries of the resolvents

Qz := (WTW − z)−1 and Q̃z := (WWT − z)−1.

1.3. Main results

Recall that everything, when not mentioned as constant, depends implicitly on the parameters n, p, z, . . . On
the contrary, a constant element is non random and independent of all other parameters. Two elements are said
to be at a macroscopic distance from each other if there is a constant ε > 0 such that there distance is lower-

bounded by ε. We define the Stieltjes transform of a probability measure μ as the function mμ(z) :=
∫
μ(dt)
t− z

.

The set of signed measures on R is endowed with the weak topology, i.e. the topology defined by continuous
bounded functions.

Theorem 1.1. The measure μ defined by its Stieltjes transform

mμ(z) = c0

k∑
a=1

caga(z), (1.1)

where the vector (g1(z), . . . , gk(z)), z ∈ C\R, is defined by Proposition 1.3, is a deterministic probability measure
(depending on n, p, . . .) with compact support S such that we have the almost sure convergences

μW TW − μ −→ 0 (1.2)

dist
(
Spec(WTW ),S ∪ {0}) −→ 0. (1.3)

Besides, if the matrices C1, . . . , Ck, Ip are all positive definite and linearly independent, mμ(z) extends con-
tinuously from C+ := {z ∈ C,	(z) > 0} to C+ ∪R∗ and, except for a possible atom at zero , μ has a continuous
density given by 1

π	(mμ(x)) (x ∈ R
∗).

Remark 1.2. We believe that the technical assumption that C1, . . . , Ck, Ip are all positive definite and linearly
independent to obtain a continuous limiting density can be relaxed. As it stands though, since an ε perturbation
of C1, . . . , Ck can always ensure these conditions while modifying Spec(WTW ) in a controlled manner, we have
that for all large n, p, Spec(WTW ) is close to a spectrum having continuous deterministic equivalent and still
defined by the equations of Proposition 1.3 below, with some slightly perturbed versions of the matrices Ca.



220 F. BENAYCH-GEORGES AND R. COUILLET

The vector (g1(z), . . . , gk(z)) mentioned in Theorem 1.1 is defined explicitly in the following proposition.

Proposition 1.3 (Definition of g1(z), . . . , gk(z)). For any z ∈ C\R, there is a unique vector (g1(z), . . . , gk(z)) ∈
Ck (depending on n, p, . . .) such that for each a,

	z	ga(z) ≥ 0, 	z	(zga(z)) ≥ 0, c0|ga(z)| ≤ (	z)−1 (1.4)

and

c0ga(z) = −1
z

1
1 + g̃a(z)

, g̃a(z) = −1
z

1
p

trCa

(
Ip +

k∑
b=1

cbgb(z)Cb

)−1

. (1.5)

Besides, the first two inequalities in (1.4) are in fact strict and the functions c0ga(z) (a = 1, . . . , k) are the
Stieltjes transforms of some R+-compactly supported probability measures ν1, . . . , νk.

Remark 1.4. It appears in the Proof of Proposition 1.3 that the functions ga (hence the function mμ, by (1.1))
can be computed numerically in a very efficient way thanks to a fixed point convergence. Then, choosing z = x+iη
close to the real line, we get a good approximation of the measure μ of Theorem 1.1 as μ ≈ 1

π	(mμ(x+ iη))dx.

At the core of the proof of Theorem 1.1 is the following result. For A = A(n), B = B(n) some random square
matrices with size n tending to infinity, the notation A↔ B stands for the fact that we have the convergences
in probability 1

n trD(A − B) −→ 0 and dT
1 (A − B)d2 −→ 0 for all sequence D = D(n) of deterministic n × n

matrices of bounded norms and all deterministic sequnces vectors di = di(n) of bounded norms.

Proposition 1.5 (Deterministic equivalents). Let S := ∪k
a=1 supp(νa). For any z ∈ C at macroscopic distance

from S ∪ {0}, we have

Qz ↔ Q̄z := c0 diag {ga(z)1na}k
a=1 (1.6)

Q̃z ↔ ¯̃Qz := −1
z

(
Ip +

k∑
a=1

caga(z)Ca

)−1

. (1.7)

Proposition 1.5 by itself finds immediate applications in the aforementioned area of wireless communications,
where functionals of the type − 1

p logQx or w∗
iQxwi are fundamental quantities to evaluate achievable com-

munication rates [11], or in machine learning where some more involved linear statistics of the Gram matrix
XXT, with X = p−

1
2 [μ11T

n1
, . . . , μk1T

nk
] +W a Gaussian mixture sample, carries relevant information for data

classification and clustering [10]. For these applications, further results such as central limit theorems [18] or
higher order statistics are required. For completion, we provide below some additional results that come in
handy into this scope.

Proposition 1.6 (Further deterministic equivalents). For any z1, z2 ∈ C at macroscopic distance from S∪{0},

Qz1DaQz2 ↔ Q̄z1DaQ̄z2 +
k∑

b=1

Rab(z1, z2)Q̄z1DbQ̄z2

Q̃z1CaQ̃z2 ↔ ¯̃Qz1Ca
¯̃Qz2 +

k∑
b=1

Rba(z1, z2)
¯̃Qz1Cb

¯̃Qz2

1
p
Q̃z1WDaW

TQ̃z2 ↔ z1z2c0caga(z1)ga(z2)
¯̃Qz1Ca

¯̃Qz2

where R(z1, z2)ab = ca

cb
[(Ik −Ω(z1, z2))−1Ω(z1, z2)]ab with, for 1 ≤ a, b ≤ k,

Ω(z1, z2)ab = c0cbz1ga(z1)z2ga(z2)
1
p

trCa
¯̃Qz1Cb

¯̃Qz2 .
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Although it appears only at this point, the matrix Ω(z1, z2) is a cornerstone of the proof of Theorem 1.1. It
is in particular related to the derivative of the ga(z)’s introduced in Proposition 1.3 as follows

{g′a(z)}k
a=1 = c0 (Ik −Ω(z, z))−1 {g2

a(z)
}k

a=1
.

2. Proofs: Preliminary approximation lemma

Here, we denote the Hadamard product (i.e. entry-wise product) of matrices or vectors by 
. We shall also use
both superscript notations (·)T and (·)∗ to denote transpose and Hermitian transpose of matrices and vectors.

Lemma 2.1. Let z, z ∈ C\R and (ga)k
a=1, (ga

)k
a=1 ∈ Ck such that for each a,

	(z)	(ga) ≥ 0, 	(z)	(zga) ≥ 0, c0|ga| ≤ |	z|−1 (2.1)

(and the same for g
a
, z) and (εa)k

a=1, (εa)k
a=1, (ηa)k

a=1, (η
a
)k
a=1 ∈ Ck such that for each a = 1, . . . , k, we have

c0ga =
1

−z(1 + 1
p trCa

¯̃Q+ ηa)
+ c0εa; c0ga

=
1

−z(1 + 1
p trCa

¯̃Q+ η
a
)

+ c0εa,

with

¯̃Q := −z−1

(
Ip +

k∑
a=1

cagaCa

)−1

; ¯̃Q := −z−1

(
Ip +

k∑
a=1

caga
Ca

)−1

.

Then:

(i) We have
(I −Ω)(g − g) = c0(z − z + zη − zη) 
 (g − ε) 
 (g − ε) + ε− ε

for

Ω = Ω(z, z, g, g, ε, ε, η, η) := [c0zz(ga
− εa)(ga − εa)cb

1
p

trCa
¯̃QCb

¯̃Q]ka,b=1.

(ii) For C := maxa ‖Ca‖, we have

ρ(Ω) ≤ 1 − min
{

(	z)2
|z|(|	z|+ C)

,
(	z)2

|z|(|	z| + C)

}2

+ ‖ε‖∞ + ‖ε‖∞ + c0(|z|‖η‖∞ + |z|‖η‖∞).

(iii) There are P,Q some polynomials with non negative coefficients and c1 > 0 such that for α :=
max{‖ε‖∞, ‖ε‖∞, ‖η‖∞, ‖η‖∞}, we have

α ≤ c1 min{|	z|4, |	z|4, |z|−3, |z|−3} =⇒ ‖g − g‖ ≤ (|z − z| + α)P (|z| + |z|)Q(|	z|−1 + |	z|−1).

Proof. Note first that by the hypotheses zga, zga
∈ C

+, we have that ‖ ¯̃Q‖ ≤ |	z|−1. It follows that

|c0ga| ≥ |z|−1 1
1 + C|	z|−1 + |ηa| , (2.2)

for C = maxa ‖Ca‖∞. The same kind of inequalities hold for ¯̃Q and g
a
.
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We have

c0(ga
− ga) = c0(εa − εa) + c0(ga

− εa) − c0(ga − εa)

= c0(εa − εa) +
1

z(1 + 1
p trCa

¯̃Q+ ηa)
− 1

z(1 + 1
p trCa

¯̃Q+ η
a
)

= c0(εa − εa) +
z − z + zη

a
− zηa + 1

p tr(Ca(z ¯̃Q− z ¯̃Q))

zz(1 + 1
p trCa

¯̃Q+ ηa)(1 + 1
p trCa

¯̃Q+ η
a
)
·

Now, one has to notice that as ¯̃Q
−1

+ zIp = −z∑k
b=1 cbgb

Cb, we have

z trCa
¯̃Q+ zz trCa

¯̃Q ¯̃Q = z trCa
¯̃Q( ¯̃Q

−1
+ z) ¯̃Q

= −zz
k∑

b=1

cbgb
trCa

¯̃QCb
¯̃Q.

In the same way, as ¯̃Q−1 + zIp = −z∑k
b=1 cbgbCb, we have

z trCa
¯̃Q+ zz trCa

¯̃Q ¯̃Q = z trCa
¯̃Q( ¯̃Q−1 + z) ¯̃Q

= −zz
k∑

b=1

cbgb trCa
¯̃QCb

¯̃Q.

It follows that

tr(Ca(z ¯̃Q− z ¯̃Q)) = z trCa
¯̃Q+ zz trCa

¯̃Q ¯̃Q− (z trCa
¯̃Q+ zz trCa

¯̃Q ¯̃Q)

= zz

k∑
b=1

cbgb
trCa

¯̃QCb
¯̃Q− zz

k∑
b=1

cbgb trCa
¯̃QCb

¯̃Q

= zz

k∑
b=1

cb(gb
− gb) trCa

¯̃QCb
¯̃Q

and that

c0(ga
− ga) = c0(εa − εa) +

z − z + zη
a
− zηa + 1

p tr(Ca(z ¯̃Q− z ¯̃Q))

zz(1 + 1
p trCa

¯̃Q+ ηa)(1 + 1
p trCa

¯̃Q+ η
a
)

= c0(εa − εa) + c20(ga
− εa)(ga − εa)

×
(
zη

a
− zηa + (z − z) + zz

k∑
b=1

cb(gb
− gb)

1
p

trCa
¯̃QCb

¯̃Q

)
.

We directly deduce (i).
To prove (ii), let us first treat the case where z = z∗ and εa = ε∗a, g

a
= g∗a for each a. If 	(z) > 0 (the

other case can be treated in the same way), it is easy to see that Ω has positive entries (as trCa
¯̃QCb

¯̃Q =

trC1/2
a

¯̃QC1/2
b (C1/2

a
¯̃QC1/2

b )∗) and that we have, by (i),

(I −Ω)	(g) = c0	(z)|g − ε|2 +
c0
2

(ηz − ηz) +
1
2
(ε− ε)︸ ︷︷ ︸

:= κ

.
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Thus κ ∈ Rk and if u = (u1, . . . , uk) is a left eigenvector of Ω associated with ρ(Ω) such that for all a, ua ≥ 0
and

∑k
a=1 ua = 1 (as per Lemma C.1 in the appendix), then we have

(1 − ρ(Ω))
k∑

a=1

ua	(ga) = c0	(z)
k∑

a=1

ua|ga − εa|2 + uTκ,

which implies, using successively (2.1) and (2.2),

1 − ρ(Ω) = c0

∑k
a=1 ua|ga|2∑k

a=1 ua	(c0ga)(	(z))−1
+ uTκ

≥ c20

∑k
a=1 ua|ga|2∑k

a=1 ua(	(z))−2
+ uTκ

= (c0	(z))2
k∑

a=1

ua|ga|2 + uTκ

≥
(

(	z)2
|z|(|	z| + C)

)2

+ uTκ,

so that the spectrum of Ω is contained in the ball with center 0 and radius

1 −
(

(	z)2
|z|(|	z|+ C)

)2

+ ‖ε‖∞ + c0|z|‖η‖∞.

To treat the general case, just use Lemmas C.2 and C.3 from the appendix and notice that

| trCa
¯̃QCb

¯̃Q| = | trC1/2
a

¯̃QC1/2
b C

1/2
b

¯̃QC1/2
a | ≤

√
trCa

¯̃QCb
¯̃Q trCa

¯̃QCb
¯̃Q

from which it follows that ρ(Ω(z, z, . . .)) ≤ √
ρ(Ω(z, z∗, . . .))ρ(Ω(z, z∗, . . .)) and then use

√
AB ≤ max(A,B)

for A,B > 0.
At last, (iii) follows from the formula of the inverse of a matrix in terms of the determinant and of the

minors. �

3. Proof of Proposition 1.3

3.1. Uniqueness

Note that for each fixed z ∈ C\R, if there exist two vectors

(g1(z), . . . , gk(z)) and (g
1
(z), . . . , g

k
(z))

satisfying (1.4) and the equations (1.5), then one can apply Lemma 2.1 with ε = η = 0: by (i), we get that
(I −Ω)(g − g) = 0, whereas by (ii) we know that ρ(Ω) < 1, which implies that g = g.

3.2. Existence

Note first that one can focus on C+ and then extend to C\R by the formula ga(z∗) = ga(z)∗. We shall first
prove that there is a unique collection of functions of z satisfying the weakened version of conditions (1.4) given
by (3.1) and the equations (1.5).

Let L be the set of analytic functions g : C+ → C such that for all z ∈ C+,

	g(z) ≥ 0, 	(zg(z)) ≥ 0, c0|g(z)| ≤ |	z|−1 (3.1)
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For η > 0, we define, for g, g ∈ L,
dL,η(g, g) := sup

�z≥η
|g(z) − g(z)|.

By the analytic continuation principle, this is obviously a distance.

Lemma 3.1. dL,η is a complete distance on L.

Proof. Note first that by Montel theorem L is a compact subset of the set of analytic functions on C+ endowed
with the topology of uniform convergence on compact sets. Let (gn) be a Cauchy sequence in (L, dL,η). Then
there is an analytic function g defined on {z ; 	z > η} such that on {z ; 	z > η}, (gn) converges uniformly to
g. Besides, any accumulation point of (gn) in the set of analytic functions on C+ endowed with the topology of
uniform convergence on compact sets coincides with g on {z ; 	z > η}, hence g is the restriction to {z ; 	z > η}
of an element of L, and (gn) converges to g in (L, dL,η). �

We denote Lk = L × · · · × L.

Lemma 3.2. Let Ψ : Lk → Lk be defined by Ψ(g1, . . . , gk) = (f1, . . . , fk), where

c0fa(z) = − 1

z − 1
p trCa(Ip +

∑k
b=1 cbgb(z)Cb)−1

, (a = 1, . . . , k). (3.2)

Then Ψ is well defined and admits a unique fixed point in Lk.

Proof. Let us first make two remarks. First, for C,D some non negative definite Hermitian matrices, trCD =
trC1/2D1/2(C1/2D1/2)∗ ≥ 0. By linear combination, if C,D are only Hermitian matrices, trCD ∈ R. Secondly,
let A be an invertible matrix such that A = X + iY , with X,Y Hermitian matrices such that Y non negative
definite. Then

A−1 = A−1A∗(A−1)∗ = A−1X(A−1)∗ − iA−1Y (A−1)∗

has a skew-Hermitian part which has the form i times a non positive definite matrix.
From both of these remarks, we deduce that for g1, . . . , gk ∈ C, we have

	g1 ≥ 0, . . . ,	gk ≥ 0 =⇒ 	 trCa(Ip +
k∑

b=1

cbgbCb)−1 ≤ 0

and

	(zg1) ≥ 0, . . . ,	(zgk) ≥ 0 =⇒ 	 trCa(zIp +
k∑

b=1

cbzgbCb)−1 ≤ 0,

so that Ψ : Lk → Lk is well defined.
Let now ε > 0 such that for any p× p matrices X,Y ,

‖Y − Ip‖, ‖X − Ip‖ ≤ ε =⇒ ‖Y −1 −X−1‖ ≤ 2‖Y −X‖.
Let η0 > 0 be such that

k∑
b=1

cbη
−1
0 ‖Cb‖ ≤ ε.

Now, fix g, g ∈ Lk and set f, f := Ψ(g), Ψ(g). For any z ∈ C+ such that 	z ≥ η0, and any a = 1, . . . , k, we
have, for G :=

∑k
b=1 cbgb(z)Cb and G :=

∑k
b=1 cbgb(z)Cb,

|f
a
(z) − fa(z)| =

c−1
0

|(z − 1
p tr Ca

Ip+G)(z − 1
p tr Ca

Ip+G)|

∣∣∣∣1p tr
(
Ca((Ip +G)−1 − (Ip +G)−1)

)∣∣∣∣
≤ 2c−1

0 k(	z)−2 max
a

‖Ca‖2 max
a

|g
a
(z) − ga(z)|
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We deduce that for η0 large enough, if one endows Lk with the product distance defined by dL,η, then Ψ is a
contraction. By the previous lemma, it allows one to conclude. �

3.3. Conclusion of the proof

The functions g1, . . . gk are analytic on C+ and satisfy (3.1) and equations (1.5). Using 	(zg(z)) ≥ 0 in (1.5),
one easily gets that for each a,

lim
�z→+∞

c0zga(z) = −1.

This proves that the c0ga’s are the Stieltjes transforms of some probability measures νa, hence that for each a,

	ga(z) > 0, c0|ga(z)| ≤ |	z|−1

Besides, as
	(zga(z)) ≥ 0,

the ga’s are supported on R+, hence 	(zga(z)) > 0.
Now, it remains to prove that the νa’s have compact supports. For any d, ε > 0, let Fd,ε denote the set of

continuous functions g : {z ; �z ≥ d,	z ≥ 0} → C such that for all z ∈ R, g(z) ∈ R and for all z /∈ R,

	g(z) ≥ 0, 	(zg(z)) ≥ 0, |g(z)| ≤ ε.

Clearly, when endowed with the distance

dFd,ε
(g, g) := sup

	z≥d,�z≥0
|g(z) − g(z)|,

Fd,ε is a complete metric space. Let Φ : Fk
d,ε → Fk

d,ε be defined by Φ(f1, . . . , fk) = (h1, . . . , hk), where

c0ha(z) = − 1
z − 1

p tr Ca

Ip+
∑

k
b=1 cbfb(z)Cb

, (a = 1, . . . , k). (3.3)

Then by the same kind of computations as in the proof of Lemma 3.2, one proves that for a large enough and ε
small enough, Φ is well defined and admits a unique fixed point in Fk

d,ε. By the pointwise uniqueness we already
proved, this fixed point must coincide with the vector (g1, . . . , gk) on {z ; �z ≥ d,	z > 0}. We deduce that the
functions g1, . . . , gk can be extended as continuous functions on C+ ∪ [d,+∞) taking real values on [d,+∞). By
([2], Thm. 2.4.3), we conclude that the measures ν1, . . . , νk have supports contained in [0, d].

4. Proof of Proposition 1.5

In this section we shall use the notation up = O(vp) for a sequence up possibly depending on other parameters
(i, i′, z, . . .) such that there are some polynomials P,Q with non negative coefficients such that uniformly in all
parameters,

up ≤ vpP (|z|)Q(|	z|−1).

For M = Mp a matrix, Mp = O‖ · ‖(vp) means that the operator norm ‖M‖ of M satisfies

‖M‖ = O(vp).

Also, for X a (possibly multidimensional) random variable, we set

◦
X := X − EX.

At last, for each a = 1, . . . , k, we define ja ∈ R
n×1 as the column vector with ith entry equal to 1 if n1 + · · · +

na−1 < i ≤ n1 + · · · + na and to 0 otherwise and set Da, the diagonal n× n matrix with diagonal ja.



226 F. BENAYCH-GEORGES AND R. COUILLET

4.1. Boundedness of WW T

We shall use the following lemma, following from the fact that

WWT = p−1
k∑

a=1

C1/2
a ZaZ

T
aC

1/2
a

and that as is well known (e.g. by [12], Lem. 7.3), there are t0, c0 > 0 constant such that for all t > 0,

P( max
a=1,...,k

p−1‖ZaZ
T
a ‖ > t0 + t) ≤ ec0n(t−t0). (4.1)

Lemma 4.1. There are t0, c0 > 0 constant such that for all t > 0,

P( max
a=1,...,k

‖WWT‖ > t0 + t) ≤ ec0n(t−t0). (4.2)

4.2. Loop equations

We shall prove the following lemma in the next sections. For short, we shall denote Qz by Q.

Lemma 4.2. The matrix EQ is a diagonal matrix with diagonal entries that are constant along the classes, i.e.
of the form

∑k
a=1 αaDa, with αa ∈ C+. Besides, for z ∈ C\R,

EQ = −z−1(In + ED)−1 +O‖ · ‖(p−1) (4.3)

EQ̃ = −z−1

(
Ip +

k∑
a=1

E
1
p

tr(D(ja)Q)Ca

)−1

+O‖ · ‖(p−1) (4.4)

where

D :=
k∑

a=1

1
p

tr(Q̃Ca)Da. (4.5)

The fact that the matrix EQ is diagonal follows from the Neumann expansion for |z| large enough (and
from analytic continuation for small z) and from the fact that the Za’s are independent and with symmetric
distribution. The fact that it is of the form given here follows from the invariance of the law of WTW under
conjugation by the appropriate permutation matrices (those with all cycles contained in a class).

For each i = 1, . . . , n, we denote by C(i) the covariance matrix of the ith column of p1/2W , so that C(i) = Ca

if n1 + · · · + na−1 < i ≤ n1 + · · · + na−1 + na.

4.2.1. Computations on Q

By the resolvent identity,
Q = z−1WTWQ− z−1In

so that, using Stein Lemma (see in appendix),

EQii′ = z−1(WTWQ)ii′ − δii′z
−1

= −δii′z−1 + z−1
E

∑
j,l

wjiwjlQli′

= −δii′z−1 + z−1
∑
j,l,m

EwjiwmiE∂wmiwjlQli′

= −δii′z−1 + (pz)−1
∑
j,l,m

C(i)jm{�(m,i)=(j,l)EQli′ − Ewjl(Q([δriwms + δsiwmr]nr,s=1)Q)li′}
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where we used the fact that Ewjiwmi = p−1C(i)jm. With Eij the matrix with unique non-zero entry [Eij ]ij = 1,

∂wmiQ = −Q(∂wmiW
TW )Q = −Q(EimW +WTEmi)Q = −Q([δriwms + δsiwmr]nr,s=1)Q

from which, after replacement, we get

EQii′ = −δii′z−1 + (pz)−1
∑
j,l,m

C(i)jm{�(m,i)=(j,l)EQli′ − Ewjl(Q([δriwms + δsiwmr]nr,s=1)Q)li′}

= −δii′z−1 + (pz)−1
EQii′ trC(i) − (pz)−1

∑
j,l,m,s

C(i)jmEwjlQliwmsQsi′

−(pz)−1
∑

j,l,m,r

C(i)jmEwjlQlrwmrQii′

= −δii′z−1 + (pz)−1
EQii′ trC(i) − (pz)−1

∑
j,m

C(i)jmE(WQ)ji(WQ)mi′

−(pz)−1
∑
j,m

C(i)jmE(WQWT)jmQii′

= −δii′z−1 + (pz)−1
EQii′ trC(i) − (pz)−1

E(QWTC(i)WQ)ii′

−(pz)−1
E tr(WQWTC(i))Qii′ .

Besides, it is easy to see that WQWT = WWTQ̃ = zQ̃+ Ip which entails

EQii′ = −δii′z−1 + (pz)−1
EQii′ trC(i) − (pz)−1

E(QWTC(i)WQ)ii′

−(pz)−1
E tr((zQ̃+ 1)C(i))Qii′

= −δii′z−1 + (pz)−1
EQii′ trC(i) − (pz)−1

E(QWTC(i)WQ)ii′ − p−1
E tr(Q̃C(i))Qii′

−(pz)−1 tr(C(i))EQii′

= −δii′z−1 − (pz)−1
E(QWTC(i)WQ)ii′ − Ep−1 tr(Q̃C(i))Qii′ .

In other words, if one defines

M1 :=
1
z

k∑
a=1

EDaQW
TCaWQ =

1
z

k∑
a=1

EDaW
TQ̃CaQ̃W, (4.6)

then we have, for D as in (4.5) and
◦
D := D − ED,

− zEQ = In + zEDQ+ zp−1M1 (4.7)

= In + zEDEQ+ zp−1(M1 + pE
◦
DQ). (4.8)

Now, as clearly ‖M1‖ = O(1) and, by Lemma B.1,

‖E
◦
DQ‖ ≤ E‖

◦
D‖‖Q‖ ≤ 1

|	z|E‖
◦
D‖ ≤ 1

|	z|
k∑

a=1

√
Var(p−1 tr(Q̃Ca)) = O(p−1)

it follows that
−zEQ = In + zEDEQ+O‖ · ‖(p−1),

and
−zEQ(In + ED) = In +O‖ · ‖(p−1),

which implies
EQ = −z−1(In + ED)−1 +O‖ · ‖(p−1).

This proves (4.3).
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4.2.2. Computations on Q̃

By the resolvent identity, we have here Q̃ = z−1WWTQ̃− z−1Ip so that, by Stein Lemma again,

EQ̃ii′ = z−1(WWTQ̃)ii′ − δii′z
−1

= −δii′z−1 + z−1
E

∑
j,l

wijwljQ̃li′

= −δii′z−1 + z−1
∑
j,l,m

EwijwmjE∂wmjwljQ̃li′

= −δii′z−1 + (pz)−1
∑
j,l,m

C(j)im{�(m,j)=(l,j)EQ̃li′ − Ewlj(Q̃([δrmwsj + δsmwrj ]
p
r,s=1)Q̃)li′}

where we used the fact that Ewijwmj = p−1C(j)im and that

∂wmj Q̃ = −Q̃(∂wmjWWT)Q̃ = −Q̃(EmjW
T +WEjm)Q̃ = −Q̃([δrmwsj + δsmwrj ]

p
r,s=1)Q̃.

We get, somewhat similarly as previously

EQ̃ii′ = −δii′z−1 + (pz)−1
∑

j

E(C(j)Q̃)ii′ − (pz)−1
∑

j,l,m,s

C(j)imEwljQ̃lmwsjQ̃si′

−(pz)−1
∑

j,l,m,r

C(j)imEwljQ̃lrwrjQ̃mi′

= −δii′z−1 + (pz)−1
∑

j

E(C(j)Q̃)ii′ − (pz)−1
k∑

a=1

E(CaQ̃WD(ja)WTQ̃)ii′

−(pz)−1
k∑

a=1

E(CaQ̃)ii′ tr(WD(ja)WTQ̃)

= −δii′z−1 + z−1
k∑

a=1

ca
c0

E(CaQ̃)ii′ − (pz)−1
k∑

a=1

E(CaQ̃WD(ja)WTQ̃)ii′

−(pz)−1
k∑

a=1

E(CaQ̃)ii′ tr(D(ja)WTQ̃W )

Using WTQ̃W = WTWQ = zQ+ In, we then obtain

EQ̃ii′ = −δii′z−1 + z−1
k∑

a=1

ca
c0

E(CaQ̃)ii′ − (pz)−1
k∑

a=1

E(CaQ̃WD(ja)WTQ̃)ii′

−
k∑

a=1

E(CaQ̃)ii′
1
p

tr(D(ja)Q) − z−1
k∑

a=1

ca
c0

E(CaQ̃)ii′

= −δii′z−1 − (pz)−1
k∑

a=1

E(CaQ̃WD(ja)WTQ̃)ii′ −
k∑

a=1

E(CaQ̃)ii′
1
p

tr(D(ja)Q).

Thus for

M2 :=
1
z

k∑
a=1

E(CaQ̃WD(ja)WTQ̃), (4.9)



SPECTRAL ANALYSIS OF THE GRAM MATRIX OF MIXTURE MODELS 229

we have

−zEQ̃ = I + z

k∑
a=1

E
1
p

tr(DaQ)CaQ̃+ zp−1M2,

i.e.

E(Ip +
p∑

a=1

1
p

tr(QDa)Ca)Q̃ = −z−1(Ip − p−1M2),

so that, for

K := E
1
p

tr(DaQ)Q̃− E
1
p

tr(DaQ)EQ̃,

we have

EQ̃ = (E(Ip +
p∑

a=1

1
p

tr(QDa)Ca))−1
E(Ip +

p∑
a=1

1
p

tr(QDa)Ca)EQ̃

= (E(Ip +
p∑

a=1

1
p

tr(QDa)Ca))−1

(
E(Ip +

p∑
a=1

1
p

tr(QDa)Ca)Q̃−K

)

= −(E(zIp +
p∑

a=1

z

p
tr(QDa)Ca))−1 + p−1(E(zIp +

p∑
a=1

z

p
tr(QDa)Ca))−1M2

−(E(zIp +
p∑

a=1

z

p
tr(QDa)Ca))−1K. (4.10)

Note that for any a ∈ {1, . . . , k}, by Lemma B.1,

‖K‖ =
∥∥∥∥E
[(

1
p

tr(DaQ) − E
1
p

tr(DaQ)
)
Q̃

]∥∥∥∥ ≤ 1
|	z|

√
Var

1
p

tr(DaQ) = O(p−1).

Besides, we also have ‖M2‖ = O(1) and∥∥∥∥∥∥
(

E

(
zIp +

p∑
a=1

zp−1 tr(QDa)Ca

))−1
∥∥∥∥∥∥ ≤ |	z|−1,

hence

EQ̃ = −z−1

(
Ip +

k∑
a=1

E
1
p

tr(D(ja)Q)Ca

)−1

+O‖ · ‖(p−1).

This proves (4.4).

4.2.3. Consequences of the loop equations: Proof of Lemma 4.2

We have proved

EQ = −z−1(In + ED)−1 +O‖ · ‖(p−1)

EQ̃ = −z−1

(
Ip +

k∑
a=1

E
1
p

tr(D(ja)Q)Ca

)−1

+O‖ · ‖(p−1)
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for D =
∑k

a=1
1
p tr(Q̃Ca)Da. This is precisely the content of Lemma 4.2. It also implies that, for the key complex

quantities

Ga = Ga(z) := E
1

c0na
tr(D(ja)Q) = E

1
pca

tr(D(ja)Q), G̃a(z) := E
1
p

tr(Q̃Ca), (4.11)

we have

c0Ga = −z−1(1 + G̃a)−1 +O(p−1)

G̃a = −z−1 1
p

trCa(I +
k∑

b=1

cbGbCb)−1 +O(p−1), (4.12)

which implies that

c0Ga =
1

−z + 1
p trCa(I +

∑k
b=1 cbGbCb)−1 + O(p−1)

· (4.13)

4.3. Proof of Proposition 1.5

It follows from Lemma 2.1 and from (4.13) that, for Ga as defined in (4.11) and for z ∈ C\R,

|ga(z) −Ga(z)| = O(p−1). (4.14)

From Lemma 4.2, we deduce that, with the notations of Proposition 1.5,

EQz − Q̄z = O‖ · ‖(p−1), EQ̃z − ¯̃Qz = O‖ · ‖(p−1). (4.15)

By the concentration Lemma B.1, we immediately deduce Proposition 1.5 as long as z stays at a macroscopic
distance from R.

To extend the result to all z’s taken at a macroscopic distance from S ∪ {0}, we shall prove next that the
spectrum of WTW remains almost surely away from S ∪ {0} (thus proving in passing (1.3) of Thm. 1.1). Let I
be a closed interval of R at a macroscopic distance from S ∪ {0}. There is ε > 0 such that the distance from I
to S ∪ {0} is at least 2ε. Let η > 0 such that (2ε2 + η2)1/2 − η = ε. We have

sup
x∈I

‖Q̄x+iη‖ ≤ (4ε2 + η2)−1/2.

We deduce that for p large enough,

sup
x∈I

‖EQx+iη‖ ≤ (3ε2 + η2)−1/2.

Hence by measure concentration (using the arguments of the proof of [20], Cor. 6), with probability tending to
one,

sup
x∈I

sup
λ∈Spec(W TW )

|λ− (x+ iη)|−1 = sup
x∈I

‖Qx+iη‖ ≤ (2ε2 + η2)−1/2,

i.e. that
inf
x∈I

inf
λ∈Spec(W TW )

|λ− (x+ iη)| ≥ (2ε2 + η2)1/2,

which implies finally that
inf
x∈I

inf
λ∈Spec(W TW )

|λ− x| ≥ (2ε2 + η2)1/2 − η = ε.

This being true for any such interval I, by the union bound and Lemma 4.1, we have the sought for result.
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4.4. Proof of Proposition 1.6

Our first interest is on Qz1DaQz2 . By the resolvent identity WTWQz − zQz = Ip applied to either of the
two matrices Qz1 or Qz2 , along with Stein’s lemma and the results from Proposition 1.5, we then get (technical
details, similar to previous derivations, are omitted)

E[Qz1DaQz2 ]ij = − 1
z1

[DaQ̄z2

]
ij
−

k∑
b=1

g̃b(z1)
[DbQ̄z1DaQ̄z2

]
ij

− 1
z1

k∑
b=1

rab(z1, z2)E
[DbQ̄z2

]
ij

+O(p−1),

where we defined

rab(z1, z2) := E

[
p−1 tr

(
DaW

TQ̃z1CbQ̃z2W
)]
.

Similarly, we find

E[Q̃z1WDaW
TQ̃z2 ]ij = z1z2ga(z1)ga(z2)cac0E[Q̃z1CaQ̃z2 ]ij +O(p−1) (4.16)

which introduces the term E[Q̃z1CaQ̃z2 ]ij . This term is also similarly treated and gives

E

[
[Q̃z1CaQ̃z2 ]ij

]
=
[

¯̃Qz1Ca
¯̃Qz2

]
ij

+
k∑

b=1

rba(z1, z2)
[

¯̃Qz1Cb
¯̃Qz2

]
ij

+O(p−1).

To wrap up the various results, we need to identify precisely rab(z1, z2). To this end, from (4.16), we find

rab(z1, z2) = z1z2ga(z1)ga(z2)cac0E

[
1
p

tr
(
CaQ̃z1CbQ̃z2

)]
+O(p−1)

= z1z2ga(z1)ga(z2)cac0
1
p

tr
(
Ca

¯̃Qz1Cb
¯̃Qz2

)

+ z1z2ga(z1)ga(z2)cac0
k∑

d=1

rda(z2, z1)
1
p

tr
(
Cd

¯̃Qz1Cb
¯̃Qz2

)
+O(p−1).

From the definition of rab(z1z2), it is clear that rda(z2, z1)caga(z1)ga(z2) = rad(z1, z2)cdgd(z1)gd(z2). Thus, the
above formula can be rewritten

rab(z1, z2) − z1z2c0

k∑
d=1

rad(z1, z2)cdgd(z1)gd(z2)
1
p

tr
(
Cd

¯̃Qz1Cb
¯̃Qz2

)
= z1z2c0caga(z1)ga(z2)

×1
p

tr
(
Ca

¯̃Qz1Cb
¯̃Qz2

)
+O(p−1).

This can be further rewritten under a matrix form which, after basic manipulations, leads finally to

rab(z1, z2) = [R(z1, z2)]ab +O(p−1)

with R(z1, z2) defined in the statement of the lemma. The fact that (Ik − Ω(z1, z2))−1 in the expression of
R(z1, z2) is well-defined as an inverse matrix is a consequence of ρ(Ω(z1, z2)) < 1 by Lemma 2.1 (ii) with
ε = η = 0, for every z1, z2 ∈ C\R. The proof of the proposition is then completed by applying the concentration
result from Lemma B.1.
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5. Proof of Theorem 1.1

The proof of (1.2) follows directly from Proposition 1.5. As for the proof of (1.3), it was already obtained in
the proof of Proposition 1.5. Let us then prove the remaining second part of Theorem 1.1.

For z ∈ C+, denote g(z) = (g1(z), . . . , gk(z))T with g1(z), . . . , gk(z) defined by Proposition 1.3. By
Lemma 2.1 (i) with ε = 0, η = 0, we have, for any z1, z2 ∈ C\R,

(Ik −Ω(z1, z2)) (g(z1) − g(z2)) = (z1 − z2)c0g(z1) 
 g(z2) (5.1)

where

Ω(z1, z2) := c0z1z2

{
cbga(z1)ga(z2)

1
p

trCa
¯̃Qz1Cb

¯̃Qz2

}k

a,b=1

.

However, it is not convenient for our present investigation to work with Ω(z1, z2) which does not exhibit
enough symmetry. We shall then proceed next by left-multiplying both sides of (5.1) by diag(c)

1
2 diag(g(z1) 


g(z2))−
1
2 , where the complex square root is defined thanks to the natural definition of the argument on C\R+

(resp. C\R−) if 	z1	z2 > 0 (resp. if 	z1	z2 < 0). This entails

(Ik − Υ (z1, z2))

{
√
ca
ga(z1) − ga(z2)√
ga(z1)ga(z2)

}k

a=1

= (z1 − z2)c0
{√

caga(z1)ga(z2)
}k

a=1

where we defined

Υ (z1, z2)ab := c0z1z2
√
cacb

√
ga(z1)gb(z1)ga(z2)gb(z2)

1
p

trCa
¯̃Qz1Cb

¯̃Qz2 .

The matrix Υ (z1, z2) is “more” symmetrical than Ω(z1, z2) but satisfies only Υ (z1, z2)ab = Υ (z2, z1)ba, which
shall not be good enough in what follows. To symmetrize this expression further, observe that, exchanging z1
and z2, we also get

(Ik − Υ (z2, z1))

{
√
ca
ga(z1) − ga(z2)√
ga(z1)ga(z2)

}k

a=1

= (z1 − z2)c0
{√

caga(z1)ga(z2)
}k

a=1

so that, summing up the two equations leads to

(Ik −Ξ(z1, z2))

{
√
ca
ga(z1) − ga(z2)√
ga(z1)ga(z2)

}k

a=1

= (z1 − z2)c0
{√

caga(z1)ga(z2)
}k

a=1

where

Ξ(z1, z2) :=
1
2

(Υ (z1, z2) + Υ (z2, z1)) .

In particular,

(Ik −Ξ(z, z∗))
{√

ca
	(ga(z))
|ga(z)|

}k

a=1

= 	(z)c0 {√ca|ga(z)|}k
a=1

where Ξ(z, z∗) is real positive and symmetric. Hence, by Lemma C.1, we may take x with positive entries a left
eigenvector of Ξ(z, z∗) with eigenvalue ρ(Ξ(z, z∗)). Multiplying by x on the left, we get ρ(Ξ(z, z∗)) < 1. Thus,
Ξ(z, z∗) is invertible for every z ∈ C+ and we thus have{√

ca
	(ga(z))
|ga(z)|

}k

a=1

= 	(z)c0 (Ik −Ξ(z, z∗))−1 {√ca|ga(z)|}k
a=1 . (5.2)
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Using now the fact that

|tr(AB + CD)|2 =
∣∣∣∣tr
([
A C

] [B
D

])∣∣∣∣2
≤ tr

([
A C

] [A∗
C∗

])
tr
([
B∗ D∗] [B

D

])
= tr(AA∗ + CC∗) tr(BB∗ +DD∗)

applied to A = C
1
2
a

¯̃Qz1C
1
2
b , B = C

1
2
b

¯̃Qz2C
1
2
a , C = C

1
2
b

¯̃Qz1C
1
2
a , and D = C

1
2
a

¯̃Qz2C
1
2
b , we find that

|Ξ(z1, z2)ab|2 ≤ Ξ(z1, z∗1)abΞ(z2, z∗2)ab

and thus, from Lemma C.3, we get that ρ(Ξ(z1, z2)) < 1 for each z1, z2 ∈ C+. But since Ξ(z, z∗)ab ≤
‖Ξ(z, z∗)‖ = ρ(Ξ(z, z∗)) < 1 for symmetric matrices, we have in addition |Ξ(z1, z2)ab|2 ≤ 1 for each a, b

so that, by e.g., A−1 = adj(A)
det A , we finally get

‖(Ik −Ξ(z1, z2))−1‖ ≤ K

|1 − ρ(Ξ(z1, z2))|k (5.3)

for some constant K > 0, and in particular{
√
ca
ga(z1) − ga(z2)√
ga(z1)ga(z2)

}k

a=1

= (z1 − z2)c0(Ik −Ξ(z1, z2))−1
{√

caga(z1)ga(z2)
}k

a=1
. (5.4)

With this identity at hand, we shall show that g(z) admits a limit as z ∈ C+ → x ∈ R∗. This will be sufficient
by ([24], Thms. 2.1–2.2) to ensure that μ admits a continuous density on R∗.

Recall first the notation

g̃a(z) :=
1
p

trCa
¯̃Qz,

¯̃Qz = −z−1

(
Ip +

k∑
b=1

cbgb(z)Cb

)−1

(so that c0ga(z) = −z−1(1 + g̃a(z))−1). Then we have the following first result.

Lemma 5.1. For any ε > 0, g(z) is bounded on {z ∈ C+ ; |z| > ε}.
Proof. Note first that, by the inequality | trAB∗|2 ≤ trAA∗ trBB∗ with B = I,

|g̃a(z)|2 =
∣∣∣∣1p trC

1
2
a

¯̃QzC
1
2
a

∣∣∣∣2 ≤ 1
p

trCa
¯̃QzCa

¯̃Qz∗

so that

c0ca |zga(z)g̃a(z)|2 ≤ c0ca|zga(z)|2 1
p

trCa
¯̃QzCa

¯̃Qz∗ = Ξ(z, z∗)aa.

Since Ξ(z, z∗)aa ≤ ρ(Ξ(z, z∗)) < 1, we thus get that for each z ∈ C+, c0ca|zga(z)g̃a(z)|2 < 1. Hence, if
|ga(zn)| → ∞ on some sequence with |zn| > ε, this implies that |g̃a(zn)| → 0. But by definition, |ga(zn)| =
|znc0(1+ g̃a(zn))|−1, which is thus bounded, contradicting the assumption. We conclude that ga(z) must remain
bounded on {z ∈ C+ ; |z| > ε}. �

Lemma 5.2. Under the additional assumptions of Theorem 1.1, for any x0 ∈ R∗, g(z) admits a finite limit as
z ∈ C+ tends to x0.
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Proof. If not, by the previous lemma, one can find two sequences z1
n, z

2
n ∈ C+ tending to x0 ∈ R∗ such that

g(z1
n) → g1 and g(zn

2 ) → g2, g1 �= g2. From (5.4),{
√
ca
ga(z1

n) − g(z2
n)√

ga(zn
1 )ga(z2

n)

}k

a=1

= (z1
n − z2

n)c0
(
Ik −Ξ(z1

n, z
2
n)
)−1

{√
caga(z1

n)ga(z2
n)
}k

a=1
. (5.5)

Since z1
n, z

2
n → x0, z1

n − z2
n → 0. Also, since g(z1

n), g(z2
n) are bounded by the previous lemma, we get that

(z1
n − z2

n)c0
√
caga(z1

n)ga(z2
n) → 0. It thus remains to show that

(
Ik −Ξ(z1

n, z
2
n)
)−1 has uniformly bounded

spectral norm, which, by (5.3), is equivalent to showing that

lim sup
n

ρ(Ξ(z1
n, z

2
n)) < 1.

Recall first that we obtained, from Lemma C.3 and

|Ξ(z1
n, z

2
n)ab|2 ≤ Ξ(z1

n, (z
1
n)∗)abΞ(z2

n, (z
2
n)∗)ab,

that ρ(Ξ(z1
n, z

2
n)) ≤ √

ρ(Ξ(z1
n, (z1

n)∗))ρ(Ξ(z2
n, (z2

n)∗)). Since ρ(Ξ(z, z∗)) < 1 for each z ∈ C+, in the limit,
this only ensures that lim supn ρ(Ξ(z1

n, z
2
n)) ≤ 1. We may thus show that the inequality |Ξ(z1

n, z
2
n)aa|2 ≤

Ξ(z1
n, (z1

n)∗)aaΞ(z2
n, (z2

n)∗)aa is strict, uniformly in n, for each a. To this end, we shall use the second part
of Lemma C.3.

Letting U1
n := C

1
2
a

¯̃Qz1
n
C

1
2
a and U2

n := C
1
2
a

¯̃Q(z2
n)∗C

1
2
a , we wish to show that, uniformly on λ ∈ C,

lim inf
n

tr(U1
n − λU2

n)(U1
n − λU2

n)∗ > 0.

For this, note that, for each λ ∈ C,

tr(U1
n − λU2

n)(U1
n − λU2

n)∗ = trC
1
2
a

¯̃Qz1
n
ΔQ

n
¯̃Q∗

z2
n
Ca

¯̃Qz2
n
(ΔQ

n )∗ ¯̃Q∗
z1

n
C

1
2
a

with

ΔQ
n :=

(
λz1

n − (z2
n)∗
)
Ip +

k∑
i=1

ci
(
λz1

ngi(z1
n) − (z2

n)∗gi((z2
n)∗)

)
Ci.

From the fact that trABA∗ ≥ λmin(B) trAA∗ when B is nonnegative definite, we then get

tr(U1
n − λU2

n)(U1
n − λU2

n)∗ ≥ λmin

(
¯̃Q∗

z2
n
Ca

¯̃Qz2
n

)
λmin

(
¯̃Q∗

z1
n
Ca

¯̃Qz1
n

)
trΔQ

n (ΔQ
n )∗.

Exploiting the invertibility of Ca along with the fact that ‖ ¯̃Q−1
z ‖ is bounded uniformly on z ∈ C+ away from

zero (by the previous lemma), we then get that

lim inf
n

λmin

(
¯̃Q∗

z2
n
Ca

¯̃Qz2
n

)
λmin

(
¯̃Q∗

z1
n
Ca

¯̃Qz1
n

)
> 0.

By the boundedness of g away from zero, we also have

lim
n

trΔQ
n (ΔQ

n )∗ = trΔQ(ΔQ)∗

with

ΔQ = x0

[
(λ− 1) Ip +

k∑
i=1

ci
(
λg1

i − (g2
i )∗
)
Ci

]
.
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By linear independence of the matrices C1, . . . , Ck, Ip, the quantity above cannot be zero unless λ = 1 and
g1

i = (g2
i )∗ for each i. But 	(g1

i ),	(g2
i ) ≥ 0 so that this implies g1

i = g2
i ∈ R for each i. But this is forbidden by

assumption, and thus

inf
λ∈C

lim inf
n

tr(U1
n − λU2

n)(U1
n − λU2

n)∗ > 0. (5.6)

This ensures (possibly over a converging subsequence, which exists for all quantities here are bounded) that

lim
n

trU1
n(U1

n)∗ trU2
n(U2

n)∗ > lim
n

∣∣trU1
nU

2
n

∣∣2 .
Indeed, uniformly over x ∈ R, (5.6) (applied to λ = x/

√
2 and ix/

√
2) ensures that

lim
n

trU1
n(U1

n)∗ +
1
2
x2 lim

n
trU2

n(U2
n)∗ >

√
2x lim

n
� (trU1

n(U2
n)∗
)

lim
n

trU1
n(U1

n)∗ +
1
2
x2 lim

n
trU2

n(U2
n)∗ >

√
2x lim

n
	 (trU1

n(U2
n)∗
)
.

Taking squares left and right on both equations, summing, and taking square-roots left and right on the result,
this gives, uniformly on x,

lim
n

trU1
n(U1

n)∗ +
1
2
x2 lim

n
trU2

n(U2
n)∗ −

√
2x lim

n

∣∣trU1
n(U2

n)∗
∣∣ > 0,

the left-hand side of which is a polynomial in x with discriminant 2 limn

∣∣trU1
n(U2

n)∗
∣∣2 −

2 limn trU1
n(U1

n)∗ limn trU2
n(U2

n)∗ which is positive.
All this finally proves, by Lemma C.3, that lim supn ρ(Ξ(z1

n, z
2
n)) < 1 and therefore, recalling (5.3), the left-

hand side of (5.5) converges to zero as n→ ∞, and so must the left-hand side. But since g(z) is bounded away
from zero, this implies that g1 = g2, which goes against the assumption. �

By ([24], Thms. 2.1 and 2.2), we then get that 	(ga(z)) is continuous on R∗ and νa has continuous derivative
fa(x) = 1

π	(ga(x)). As μ =
∑k

a=1 caνa, the result follows.

Appendix A. Multidimensional Stein formula

Lemma A.1. Let X = (X1, . . . , Xd) be a centered Gaussian vector and f : Rd → R be a C1 function with
derivatives having at most polynomial growth. Then for all i0 = 1, . . . , d,

E[Xi0f(X1, . . . , Xd)] =
d∑

k=1

E[Xi0Xk]E[(∂kf)(X1, . . . , Xd)].

Proof. If the covariance matrix C of the Xi’s is I, then the result follows from a one-dimensional integration by
parts. For a more general covariance matrix C, introduce a standard Gaussian vector Y , so that as X law= AY
for A := C1/2 and the function

g(y1, . . . , yd) := f ◦A(y1, . . . , yd).
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Then by the C = I case, we have

E[Xi0f(X1, . . . , Xd)] =
∑

j

Ai0jE[Yjg(Y1, . . . , Yd)]

=
∑

j

Ai0jE[(∂jg)(Y1, . . . , Yd)]

=
∑

j

Ai0j

∑
k

AkjE[(∂kf)(X1, . . . , Xd)]

=
∑

k

Ci0kE[(∂kf)(X1, . . . , Xd)]. �

Appendix B. Concentration

The following lemma can be found for example in ([2], Sect. 4.4.1).

Lemma B.1. Let X = (X1, . . . , Xd) be a standard real Gaussian vector and f : R
d → R be a C1 function with

gradient ∇f . Then we have
Var(f(X)) ≤ E‖∇f(X)‖2, (B.1)

where ‖ · ‖ denotes the standard Euclidian norm.
Besides, if f is k-Lispchitz, then for any t > 0, we have

P(|f(X) − Ef(X)| ≥ t) ≤ 2e−
t2

2k2 . (B.2)

To apply this lemma, we shall use the following lemma. All matrix spaces, here, are endowed with the norm√
TrMM∗.

Lemma B.2. Let f be a real (resp. complex) function on R+ such that x �→ f(x2) is c-Lipschitz. Then the
functions ϕ, ψ, defined on the set of p × n complex matrices by ϕ(X) = f(XX∗) and ψ(X) = f(X∗X) are
c-Lipschitz (resp. 2c-Lipschitz).

Proof. The complex case is directly deduced from the real one by writing f = �(f) + 	(f). So let us suppose
that f is real-valued. Let g : x �→ f(x2) and N := p + n. We know, by ([7], Lemma A.2), that the extension
of g to the set of N ×N Hermitian matrices is c-Lipschitz. Then, the conclusion follows from the fact that for
any p× n complex matrix X , ϕ(X) and ψ(X) are the respective p× p upper-left corner and n× n lower-right
corner of the N ×N matrix g(M), with

M :=
(

0 X
X∗ 0

)
. �

Appendix C. Nonnegative matrices

The results stated here can be found in [14, 15].

Lemma C.1 (Nonnegative matrices and dominant eigenvectors). If A ∈ R
n×n
+ is nonnegative (resp., positive),

then ρ(A) is an eigenvalue of A having an eigenvector with nonnegative (resp., positive) entries.

Lemma C.2 (Spectral radii). Let A,B ∈ Rn×n be such that |Aij | ≤ Bij for all 1 ≤ i, j ≤ n. Then, with ρ the
spectral radius,

ρ(A) ≤ ρ(B).
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Lemma C.3 (Cauchy–Schwarz for spectral radii (adapted from [15], Lem. 5.7.9)). Let A,B ∈ R
n×n
+ be non

negative matrices and C ∈ Rn×n be such that Cij ≤√AijBij . Then,

ρ(C) ≤
√
ρ(A)ρ(B).

Besides, if, for each i, either both the ith row and the ith column of C are null or there exists j such that
Cij <

√
AijBij, then the inequality is strict.
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