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Abstract. Small subgraph counts can be used as summary statistics for large random graphs. We
use the Stein–Chen method to derive Poisson approximations for the distribution of the number of
subgraphs in the stochastic block model which are isomorphic to some fixed graph. We also obtain
Poisson approximations for subgraph counts in a graphon-type generalisation of the model in which
the edge probabilities are (possibly dependent) random variables supported on a subset of [0, 1]. Our
results apply when the fixed graph is a member of the class of strictly balanced graphs.
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1. Introduction

Small subgraph counts can be used as summary statistics for large random graphs; indeed in some graph
models they appear as sufficient statistics, see [12]. Moreover, many networks are conjectured to have over- or
under-represented motifs (small subgraphs), see for example [19]. Statistics based on small subgraph counts
can be used to compare networks, as in [3, 24]. To determine which small subgraphs are unusual, assessing the
distribution of such motifs is key. While [22] gives the mean and variance for some common random graph
models, [22] does not derive a distributional approximation.

In this paper, we address the issue of such a distributional approximation for a large class of models which
include stochastic block models and a graphon model but also models with random edge probabilities, provided
that the edge probabilities display some local dependence, which will be made clearer in Section 3.

The stochastic block model (SBM) was introduced originally for directed graphs by [13] and generalised to
other graphs by [20]; it is also called Erdős–Rényi Mixture Model in [10], and in theoretical computer science
it is called the Planted Partition Model [9]. It has a wide range of applications, see for example [1,6,10,14,21],
and [17] for a recent survey. The model is defined as follows. Consider an undirected random graph on n vertices,
with no self-loops or multiple edges, in which the vertices are spread among Q hidden classes with respective
proportion vector f = (f1, . . . , fQ). The class label of a vertex is drawn from a multinomial distribution M(1, f),
and class assignments are independent of each other. Edges Yi,j are independent conditionally on the class of
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the vertices, and the edge probability depends only on the classes of the vertices:

P(Yi,j = 1 | i ∈ a, j ∈ b) = πa,b.

We shall denote this model by SBM(n, π, f). If πa,b = p for all a and b, the SBM reduces to the classical
Erdős–Rényi random graph model, which we denote by G (n, p). In this paper, it is assumed that π and f are
known, and that f1, . . . , fQ > 0; for estimating these quantities see, for example, [1, 15, 21].

For a fixed graph G, it is known (see, for example, [5], Thm. 5.B) that the distribution of the number copies
of G in the G (n, p) model is well approximated by an appropriate Poisson distribution if G is a member of the
class of strictly balanced graphs (defined below) as long as p is not too large. In fact, [5] give explicit bounds
on the rate of convergence in the Poisson approximation.

In this paper, we consider a generalisation of the Poisson approximation to the stochastic block model. We
obtain explicit bounds for the rate of convergence, and consider both the cases that the edge probabilities πa,b

are constant and that they are themselves random variables supported on a subset of [0, 1]. This paper therefore
contains the following two features that have not appeared together before: the random graphs may have local
dependence or inhomogeneity, or both, and the approximation is quantitative (as opposed to only asymptotic).
The second feature has appeared without the first (for example in [5]) and the first feature has appeared without
the second (for example in [7]), at least for the case of cycles in the case of constant average degree stochastic
block models. It is the combination of both features that is novel.

When the edge probabilities are themselves random variables then we assume that they are only locally
dependent, in the sense that each edge has a relatively small number of other edges so that their random edge
probabilities are not independent. As an example the vertices may have some exogeneous characteristics such
as geographical location which influence the probability of an edge to exist, but only locally.

The latter case is related to a graphon model, where edge probabilities only depend on those edge probabilities
where the edges share a vertex. A graphon is represented by a measureable function h : [0, 1]2 → [0, 1]. A
graphon model constructs a random graph on n vertices by assigning independent U [0, 1] variables to each
vertex. Conditional on these uniform random variables, all edges are independent, and the probability of an
edge between vertices u and v is given by h(Uu, Uv). These graphs appear as limits of exchangeable graphs; see,
for example, [2, 11, 16]. They are a special case of inhomogeneous random graph models as considered in [7].

Setting the scene for counting copies of graphs G, let Kn be the complete graph with n edges and
(
n
2

)
edges.

Let G ⊂ Kn be a fixed graph with v(G) vertices and e(G) edges; let V (G) denote the vertex set and E(G)
its edge set. To avoid trivialities, we assume that e(G) > 1 and that G has no isolated vertices. We shall be
particularly interested in the case that G is a member of the class of strictly balanced graphs, which we now
define according to [5]. Let

d(G) =
e(G)
v(G)

·

Then the graph G is said to be strictly balanced if d(H) < d(G) for all subgraphs H � G.
Let Γ denote the set of v(G)-tuples of elements from {1, . . . , n}. Then, α ∈ Γ is a possible position for the

subgraph G, and there are
(

n
v(G)

)
such positions. To account for re-labelling of vertices, let Rα(G) denote the

set of all subgraphs of the complete graph on the v(G)-tuple α which are isomorphic to G (a similar notation
was introduced in Picard et al. [22]). For any α ∈ Γ , the number of elements in the set Rα(G) is given by

ρ(G) =
(v(G))!
a(G)

, (1.1)

where a(G) is the number of elements in the automorphism group of G.
Now, let G = (V , E) be a random graph on n edges. For α ∈ Γ and G′ ∈ Rα(G), let Xα(G′) be the indicator

random variable for the occurrence, at the v(G)-tuple α, of a subgraph G′ which is isomorphic to G. We shall
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let W denote the total number of copies of G in the random graph G ,

W =
∑
α∈Γ

∑
G′∈Rα(G)

Xα(G′). (1.2)

Here, copies are counted as opposed to induced copies where not only all edges of the graph have to appear,
but also no edge which is not in the graph is allowed to appear in the copy. For example, the complete graphKn,
n ≥ 3, contains (n− 1)!/2 copies, but no induced copy, of an n-cycle.

To illustrate our notation, consider counting the number of isomorphic copies of the path on three vertices,
denoted by G, in a graph G with vertex set {1, 2, 3, 4}. We first construct the vertex set Γ of all 3-tuples from
the set {1, 2, 3, 4}. For the set {1, 2, 3} ∈ Γ , we consider the indicators X{1,2,3}(G′), where G′ ∈ R{1,2,3}(G).
The set R{1,2,3}(G) contains three non-redundant ways G′

1, G
′
2, G

′
3 that a copy of G can occur on {1, 2, 3}, these

being if edges {1, 2} and {1, 3} are present; edges {2, 1} and {2, 3} are present; or edges {3, 1} and {3, 2} are
present. We count the number of occurrences of G in {1, 2, 3} using the indicators X{1,2,3}(G′

i), i = 1, 2, 3, and
we then repeat this procedure for all α ∈ Γ . Since |R{1,2,3}(G)| = 3 and |Γ | =

(
4
3

)
= 6, there can be at most

18 copies of G in the graph G . For example, if G is the circle graph with edge set {{1, 2}, {2, 3}, {3, 4}, {4, 1}},
then X{1,2,3}({1, 2}, {1, 3}) = 0, X{1,2,3}({2, 1}, {2, 3}) = 1 and X{1,2,3}({3, 1}, {3, 2}) = 0.

In the stochastic block model SBM(n, π, f), the conditional occurrence probability of an isomorphic copy G′

of the subgraph G on α = (i1, . . . , iv(G)) given the class of each vertex is

P(Xα(G′) = 1 | i1 ∈ c1, . . . , iv(G) ∈ cv(G)) =
∏

1≤u<v≤v(G):(u,v)∈E(G)

πcu,cv .

The occurrence probability of an isomorphic copy G′ of G is then

μ(G) = EXα(G′) =
Q∑

c1,c2,...,cv(G)=1

fc1fc2 · · · fcv(G)

∏
1≤u<v≤v(G):(u,v)∈E(G)

πcu,cv . (1.3)

Note that for any α, β ∈ Γ and G′ ∈ Rα(G), G′′ ∈ Rβ(G) we do indeed have EXα(G′) = EXβ(G′′). We therefore
have that

λ := EW =
(

n

v(G)

)
ρ(G)μ(G). (1.4)

In this paper, we use the Stein–Chen method for Poisson approximation, introduced by [8], to assess the
distributional distance between L(W ) and the Po(λ) distribution when the fixed graph G is is a member of
the class of strictly balanced graphs. This discrepancy is measured using the total variation distance, which for
non-negative, integer-valued random variables U and V is given by

dTV (L(U),L(V )) = sup
A⊆Z+

|P(U ∈ A) − P(V ∈ A)|.

In deriving bounds on the total variation distance, we exploit the local dependence structure of the indicators
Xα(G′). To this end, for each α ∈ Γ , we introduce a set Aα which can be viewed as a dependency neighbourhood
of α. In the SBM, as class assignments are independent and the edge probabilities are given, we can take

Aα = {β ∈ Γ : |α ∩ β| ≥ 1}.
Here, Aα is a dependency neighbourhood of α in the sense that if |α ∩ β| = 0, then Xα(G′) and Xβ(G′′) are
independent for any G′ ∈ Rα(G), G′′ ∈ Rβ(G). In Section 3, the edge probabilities are random variables, in
which case finding a suitable dependency neighbourhood Aα is more involved. With

ηα(G′) =
∑

β∈Aα

∑
G′′∈Rα(G)

Xβ(G′′)
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and

θα(G′) = Xα(G′)(ηα(G′) −Xα(G′)), (1.5)

a simple corollary of Theorem 1 in [4], or of Theorem 1.A in [5] is that

dTV (L(W ), Po(λ)) ≤ λ−1(1 − e−λ)
∑
α∈Γ

∑
G′∈Rα(G)

{
EXα(G′)Eηα(G′) + Eθα(G′)

}
. (1.6)

Thus bounding the total variation distance between the distribution of the subgraph counts in the SBM and
the Po(λ) distribution reduces to bounding the expectations on the right-hand side of (1.6). We shall prove
our Poisson approximations for subgraph counts (Thms. 2.1 and 3.1 and Cor. 4.1) using this approach. The
Poisson approximation results of these theorems are valid when the fixed graph G is strictly balanced and the
edge probabilities πa,b are not too large. These theorems generalise Theorem 5.B of [5], which asserts that a
Poisson approximation is valid in the G (n, p) model under the same conditions.

The Poisson approximation is valid under these conditions in the SBM for exactly the same reason as it
is in the G (n, p) model: if G is strictly balanced and the πa,b are not too large, with high probability the
copies of G are vertex disjoint and the Xα(G) are close to being independent. Thus, W is the sum of a large
number of almost independent indicators with small means, and a Poisson approximation is valid. In the G (n, p)
model, the Poisson approximation breaks down if G is not strictly balanced [23], although Compound Poisson
approximations may still be valid for certain classes of subgraphs; see [25]. For this reason, we restrict our
attention to strictly balanced graphs.

The rest of the paper is organised as follows. In Section 2, we use the Stein–Chen method to derive a Poisson
approximation for the number of subgraphs in the SBM which are isomorphic to some fixed graph from the
class of strictly balanced graphs. In Section 3, we consider a generalisation of this problem in which the edge
probabilities are now (possibly locally dependent) random variables supported on a subset of [0, 1]. Again, we
derive a Poisson approximation for the number of copies of a fixed subgraph in this model. Section 4 gives a
Poisson approximation of small graph counts in the graphon model.

2. Poisson approximation of subgraph counts in the stochastic block model

In this section, we obtain a Poisson approximation for the number of subgraphs in the SBM which are
isomorphic to a fixed graph from the class of strictly balanced graphs. Before stating this result, we introduce
some notation. Let

α(G) = min
H

e(G) − e(H)
v(G) − v(H)

(2.1)

and

γ(G) = min
H

(d(G)v(H) − e(H)) = min
H

v(H) · (d(G) − d(H)), (2.2)

where the minima are taken over all H � G without isolated vertices. It is worth noting that the graph G is
strictly balanced if γ(G) > 0 or α(G) > d(G); see [5]. Also, let

π∗ = max
1≤a<b≤Q

πa,b (2.3)

denote the maximum edge probability.
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Theorem 2.1. Suppose that G is a strictly balanced graph. Then, with the notation (1.3), (1.1), (2.1), (2.2)
and (2.3),

dTV (L(W ), Po(λ)) ≤ (1 − e−λ)ρ(G)

⎧⎨
⎩2

v(G)2

v(G)!
nv(G)−1(π∗)e(G) + π∗

+
v(G)−1∑

s=2

(
v(G)
s

)
nv(G)−s(π∗)κ(G,s)

(v(G) − s)!

⎫⎬
⎭ , (2.4)

where
κ(G, s) = max(e(G) − sd(G) + γ(G), (v(G) − s)α(G)). (2.5)

Proof. We establish our bound by bounding the right-hand side of inequality (1.6), starting with∑
α∈Γ

∑
G′∈Rα(G) EXα(G′)Eηα(G′). For the dependence set Aα = {β ∈ Γ : |α ∩ β| ≥ 1},

|Aα| ≤ v(G)
(

n

v(G) − 1

)
≤ v(G)2

v(G)!
nv(G)−1. (2.6)

It is now clear from (1.3) and (2.6) that

Eηα(G′) =
∑

β∈Aα

∑
G′∈Rα(G)

EXβ(G′) = |Aα|ρ(G)μ(G)

≤ ρ(G)v(G)2

v(G)!
nv(G)−1μ(G). (2.7)

The more involved part of the proof, where the assumption of strictly balancedness comes into play, is to
bound the expectation Eθα(G′) from (1.5). When α and β have considerable overlap, then EXα(G′)Xβ(G′′)
may be large compared to EXα(G′) – but there are not many β’s which have considerable overlap with α. To
take account of the overlap, we partition Aα into sets {Γ s

α}1≤s≤v(G), where Γ s
α = {β ∈ Γ : |α ∩ β| = s}. These

sets can be bounded above by

|Γ s
α| ≤

(
v(G)
s

)(
n

v(G) − s

)
≤
(
v(G)
s

)
nv(G)−s

(v(G) − s)!
·

Now, recalling (1.5),

Eθα(G′) =
v(G)−1∑

s=1

∑
β∈Γ s

α

∑
G′′∈Rβ(G)

EXα(G′)Xβ(G′′) +
∑

G′′∈Rβ(G)

G′ �=G′′

EXα(G′)Xα(G′′).

To bound the expectations in the above expression, we consider the cases of different overlap s separately.
Firstly, for G′ �= G′′, and for s = v(G), so that α = β, there must be at least 1 edge present in G′′ which is

not in G′. Due to the conditional independence of the edges, for any edge indicator Yi,j which is not included
in Xα(G′),

P(Yi,j = 1|Xα(G′) = 1) =
Q∑

a,b=1

πa,bP(i ∈ a, j ∈ b|Xα(G′) = 1) ≤ π∗. (2.8)

Hence
EXα(G′)Xβ(G′′) ≤ μ(G)π∗ for β ∈ Γ v(G)

α .



136 M. COULSON ET AL.

Next, we consider the case s = 1, in which α and β only intersect at a single vertex. As a result, G′ and G′′

cannot share an edge. Using the generalisation of (2.8) that for any set of edges A which does not overlap with
the edges in Xα(G′),

P(Yi,j = 1, (i, j) ∈ A|Xα(G′) = 1) ≤ (π∗)|A|, (2.9)

it follows that
EXα(G′)Xβ(G′′) ≤ μ(G)(π∗)e(G) for β ∈ Γ 1

α.

Finally, we consider the case 2 ≤ s ≤ v(m) − 1. We shall derive two bounds for the expectation
EXα(G′)Xβ(G′′).

There are e(G) edges from the subgraph G′ given on α and we now consider the number of additional edges
resulting from the subgraph G′′ given on β. Here the underlying graph is Kn, the complete graph. Consider the
subgraph H of the intersection graph of G′ and G′′ induced on the intersection of α and β, which has vertex set
V (H) = α ∩ β and edge set E(H), for which e ∈ E(H) if and only if e ∈ E(G′) ∩ E(G′′). Due to the fact that
|α∩β| = s, we have v(H) = s, and, becauseG′ is strictly balanced, it must be the case that d(H) < d(G) (we have
d(G′) = d(G), as G and G′ are isomorphic), and so e(H) < sd(G). Recalling (2.2), we have e(H)+γ(G) ≤ sd(G),
that is e(H) ≤ sd(G)−γ(G). Thus, there are at least e(G)−(sd(G)−γ(G)) = e(G)−sd(G)+γ(G) edges from G′′

which are not in the subgraph G′, and so the union graph of G′ and G′′ on α∪β has at least 2e(G)−sd(G)+γ(G)
edges.

Alternatively, with α(G) as in (2.1),

e(G) − e(H) = (v(G) − v(H))
e(G) − e(H)
v(G) − v(H)

≥ (v(G) − v(H))α(G)
= (v(G) − s)α(G),

and therefore there are at least e(G) + (v(G) − s)α(G) edges in the union graph of G′ and G′′ on α ∪ β. This
bound in connection with (2.9) leads to the bound

EXα(G′)Xβ(G′′) ≤ μ(G)(π∗)κ(G,s) for β ∈ Γ s
α,

where κ(G, s) = max(e(G) − sd(G) + γ(G), (v(G) − s)α(G)). Collecting the bounds gives

Eθα(G′) ≤ μ(G)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
G′′∈Rβ(G)

G′ �=G′′

π∗ +
∑

β∈Γ 1
α

G′′∈Rβ(G)

(π∗)e(G) +
v(G)−1∑

s=2

∑
β∈Γ s

α

G′′∈Rβ(G)

(π∗)κ(G,s)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

≤ ρ(G)μ(G)

⎧⎨
⎩π∗ +

v(G)2

v(G)!
nv(G)−1(π∗)e(G)

+
v(G)−1∑

s=2

(
v(G)
s

)
nv(G)−s(π∗)κ(G,s)

(v(G) − s)!

⎫⎬
⎭ · (2.10)

Finally, substituting (2.7) and (2.10) into (1.6) and recalling (1.4) yields (2.4). �

Remark 2.2.

1. The stochastic block model structure enters the proof only through the expression for μ(G) as well as the
bound (2.9).
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2. Theorem 2.1 generalises Theorem 5.B of [5] for the Erdős-Rényi random graph model to the Stochastic
block model. When we take πa,b = p for all a, b we recover the same rate of convergence as that given by
Theorem 5.B of [5]. Indeed the graph combinatorics arguments in our proof are strongly related to those in
the proof of Theorem 5.B of [5]. It should, however, be noted that our proof uses a local coupling approach
whereas the proof in [5] uses size bias couplings.

3. To assess the behaviour of the bound it may be advantageous to use the bound 1 − e−λ ≤ min(1, λ).
Heuristically, a Poisson approximation should hold when μ(G) is small. When μ is so small that λ < 1 then
the factor 1 − e−λ is beneficial.

4. For a strictly balanced graph,

κ(G, s) ≥ (v(G) − s)α(G) > (v(G) − s)d(G) (2.11)

for all s = 0, . . . , v(G) − 1. Let Δκ = κ(G, s) − (v(G) − s)d(G). Then Δκ > 0. Using (2.9) we can bound
μ(G) ≤ (π∗)e(G). If n(π∗)d(G) is bounded by c as n → ∞ then λ ≤ ρ(G)

v(G)!c
v(G) and nv(G)−s(π∗)κ(G,s) ≤

cv(G)−s(π∗)Δκ. Moreover the bound in Theorem 2.1 is then of order O(min(n−1, n− Δκ
d(G) )) as n → ∞, with

proportion vector f and graph G fixed.
5. Theorem 2.1 is not an asymptotic result but an explicit bound, which may or may not be small.
6. The result of Theorem 2.1 is perhaps most interesting when the limiting Po(λ) distribution is non-degenerate

in the limit n → ∞. Suppose that there exist universal constants c and C such that cn−1/d(G) ≤ πa,b ≤
Cn−1/d(G) for all a, b. Then using the inequality mk

kk ≤ (
m
k

) ≤ mk

k! , 1 ≤ k ≤ m and (1.4) we obtain

ρ(G)
v(G)v(G)

ce(G) ≤ λ ≤ ρ(G)
v(G)!

Ce(G).

Moreover,

dTV (L(W ), Po(λ)) ≤ min
(

1,
ρ(G)
v(G)!

Ce(G)

)
ρ(G)

{
2v(G)2

v(G)!
Ce(G)n−1

+ Cn−1/d(G) + min(A,B)

}
, (2.12)

where

A = (1 + Cα(G))v(G)−1n1−α(G)/d(G);
B = Ce(G)+γ(G)(1 + C−d(G))v(G)−1n−γ(G)/d(G).

Example 2.3. We now use (2.12) to obtain Poisson approximations for the number of copies of the following
fixed graphs with v ≥ 3 vertices in the SBM(n, π, f) model. We consider the following strictly balanced graphs
on v vertices each:

G1,v a tree on the v vertices, with v − 1 edges;
G2,v the cycle graph on the v vertices (with v edges);
G3,v the complete graph on v vertices with one edge removed;
G4,v Kv, the complete graph on v vertices.

In order to apply (2.12), we must compute the quantities d(G), α(G) and γ(G) for each graph G. These
quantities are easy to compute, and the values are given in Table 1. If for a given graph G there exist universal
constants c and C such that cn−1/d(G) ≤ πa,b ≤ Cn−1/d(G) for all a, b, then a bound for the total variation
distance between the distribution of W and the Po(λ) distribution now follows directly from (2.12). In Table 2,
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Table 1. Values of d(G), α(G) and γ(G).

Graph G d(G) α(G) γ(G)

G1,v
v−1

v
(v−1)−1

v−2
= 1 (v−1)2

v
− (v − 2) = 1

v

G2,v 1 v−1
v−2

1

G3,v
(v+1)(v−2)

2v

(v
2)−1−1

v−2
= v2−v−4

2(v−2)
1/3 if v = 3 and

(v+1)(v−2)
2

− ((
v
2

)− 2
)

= 1
if v ≥ 4

G4,v
v−1
2

(v
2)−1

v−2
= v+1

2
(v−1)v

2
− ((

v
2

)− 1
)

= 1

Table 2. Scaling and bounds on the rate of convergence.

Graph Scaling dTV (L(W ), P o(λ))

G1,v π∗ = Cn−v/(v−1) O(n−1/(v−1)) = O((π∗)1/v)

G2,v π∗ = Cn−1 O(n−1) = O(π∗)

G3,v π∗ = Cn−2v/(v+1)(v−2) O(n−1/2) = O((π∗)1/3) if v = 3
and

O(n−2/(v−1)) = O((π∗)(v+1)(v−2)/v(v−1))
if v ≥ 4

G4,v π∗ = Cn−2/(v−1) O(n−2/(v−1)) = O(π∗)

for each graph G, we give the resulting bounds on the rate of convergence in terms of n. For this rate of
convergence it is assumed that the proportion vector f = f(n) remains constant as n → ∞, and that G does
not change with n. We also give a scaling of the edge probabilities that is required to given a non-degenerate
λ in the limit. This scaling is given in terms of π∗ = max1≤a<b≤Q πa,b (note that all the πa,b are of the same
order). Table 2 shows that the bound on the rate of convergence for the tree graph may be considerably larger
than the bound on the rate of convergence in the cycle graph.

3. Subgraph counts in graph models with random edge probabilities

In this section, we consider a model in which the edge probabilities are themselves random variables. Let
I = {u, v : 1 ≤ u < v ≤ n} be the index set of potential edges and for (u, v) ∈ I let Θu,v = Θv,u ∈ [0, 1]
be random variables; given Θu,v = θu,v the edge indicator Yu,v is Bernoulli distributed with parameter θu,v.
Conditional on the edge probabilities {Θu,v : (u, v) ∈ I} the edge indicator variables {Yu,v : (u, v) ∈ I} are
assumed to be independent.

We shall assume a local dependence structure for the edge probabilities: for any (u, v) ∈ I there is a set
Bu,v such that for any edge set E , the collection of random variables {Θu,v : (u, v) ∈ E} is independent of the
collection of random variables {Θx,y : (x, y) ∈ (∪(u,v)∈EBu,v

)c}. Moreover, we assume that Bu,v is of the form

Bu,v = {(x,w) ∈ I : x ∈M(u, v), w ∈ N(u, v)}.
We shall often think of N(u, v) as being a small set compared to {1, . . . , n}, whereas M(u, v) could be a large
set. We denote the least upper bound on {|N(u, v)|, (u, v) ∈ I} by g so that

|N(u, v)| ≤ g

for all (u, v). For independent edges, if u < v we take M(u, v) = {u} and N(u, v) = {v} so that Bu,v = {(u, v)}
and g = 1; for graphon models, we can take M(u, v) = {1, . . . , n} and N(u, v) = {u, v} so that Bu,v = {(x,w) ∈
I : w ∈ {u, v}}, and g = 2. Other examples could include exogenous covariates such as geographic location;
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edge random variables could be independent if they are further than a certain geographic distance away from
each other.

The dependency structure is now more involved. For α = (α1, . . . , αv(G)) let E(α) = {(i, j) : i �= j, i, j ∈
{α1, . . . , αv(G)}} denote the set of edges of the complete graph on α. Then the set

Aα = {β ∈ Γ : |E(β) ∩ (∪(u,v)∈E(α)Bu,v

)| ≥ 1} (3.1)

is a dependency neighbourhood of α. In particular, if β �∈ Aα then {Θx,y : (x, y) ∈ E(β)} is independent of
{Θu,v : (u, v) ∈ E(α)}. We can bound the size of this dependency neighbourhood as follows. For β ∈ Aα at
least one of the vertices of β is in a set N(u, v) for some u, v ∈ E(α). Each of these sets N(u, v) has at most g
elements. Hence

|Aα| ≤ gv(G)
(

n

v(G) − 1

)
. (3.2)

For a set of edges γ = {γ1, γ2, . . . , γk} we introduce the notation V (γ) for the set of vertices which are
endpoints in γ, so that |V (γ)| ≤ 2|γ|. We let

νk,v,s = max
γ={γ1,γ2,...,γk};δ={δ1,β2,...,δv}:

γ∩δ=∅;|V (γ)∩V (δ)|=s

P

⎛
⎝ k∏

i=1

Yγi = 1
∣∣∣ v∏

j=1

Yδv = 1

⎞
⎠ . (3.3)

With μ(G) = EXα(G′) and

λ := EW =
(

n

v(G)

)
ρ(G)μ(G)

we obtain the following variant of Theorem 2.1.

Theorem 3.1. Assume that the πa,b are arbitrary random variables supported on a subset of [0, 1]. Let νk,v,s

be as in (3.3). Suppose that G is a strictly balanced graph. Then

dTV (L(W ), Po(λ)) ≤ (1 − e−λ)ρ(G)g

⎧⎨
⎩2

v(G)2

v(G)!
nv(G)−1νe(G),e(G),1 + ν1,e(G),1

+
v(G)−1∑

s=2

(
v(G)
s

)
nv(G)−sνκ(G,s),e(G),s

(v(G) − s)!

⎫⎬
⎭ , (3.4)

where κ(G, s) is as in Theorem 2.1.

Proof. The proof proceeds almost exactly as that of Theorem 2.1. The combinatorial arguments are exactly as
before, although note the additional factor of g in (3.2). We also deal with the expectations in the formulas
for Eηα(G′) similarly. A complication arises from bounding the expressions EXα(G′)Xβ(G′′) which occur in
Eθα(G′); the analog of (2.9) is that for any set of edges A such that |v(A) ∩ v(G′)| = s,

P(Yi,j = 1, (i, j) ∈ A|Xα(G′) = 1) ≤ ν|A|,e(G),s. �
Remark 3.2. In the case that the edges are independent and ν = maxα E(Yα), we find that νk,v,s = νk does
not depend on v or s. It is now an immediate consequence of Theorem 3.1 that

dTV (L(W ), Po(λ)) ≤ (1 − e−λ)ρ(G)

⎧⎨
⎩2

v(G)2

v(G)!
nv(G)−1νe(G) + ν

+
v(G)−1∑

s=2

(
v(G)
s

)
nv(G)−sνκ(G,s)

(v(G) − s)!

⎫⎬
⎭ . (3.5)

Taking the πa,b to be constants in (3.5) yields π∗ = ν and recovers the bound (2.4).



140 M. COULSON ET AL.

4. Subgraph counts in a graphon model

The h-graphon model uses
πu,v = h(Uu, Uv)

where h : [0, 1]2 → [0, 1] is a symmetric, measureable function and Ua, a = 1, . . . , n, are independent U [0, 1]
variables which index the graphon; see for example [1, 6, 15, 21], and [15, 26] for graphon estimation. In this
case edges are not independent, but edges which do not share a vertex are independent, and we can choose
M(u, v) = {1, . . . , n} and N(u, v) = {u, v} so that g = 2. Hence

μ(G) =
∫

[0,1]v(G)
du1 . . . duv(G)

∏
1≤i<j≤v(G):(i,j)∈E(G)

h(ui, uj). (4.1)

With

λ := EW =
(

n

v(G)

)
ρ(G)μ(G)

the weak dependence structure yields the following corollary of Theorem 3.1.

Corollary 4.1. Let πu,v = h(Uu, Uv) where h : [0, 1]2 → [0, 1] is a symmetric, measurable function and Ua,
a = 1, . . . , n, are independent U [0, 1] variables and let

h∗ = max
u,v

h(u, v).

Suppose that G is a strictly balanced graph. Then

dTV (L(W ), Po(λ)) ≤ 2(1 − e−λ)ρ(G)

⎧⎨
⎩2

v(G)2

v(G)!
nv(G)−1(h∗)e(G) + h∗

+
v(G)−1∑

s=2

(
v(G)
s

)
nv(G)−s(h∗)κ(G,s)

(v(G) − s)!

⎫⎬
⎭ , (4.2)

where κ(G, s) is given in (2.5).

Proof. Due to the conditional independence of the edges, for any edge indicator Yi,j which is not included in
Xα(G′),

P(Yi,j = 1|Xα(G′) = 1) =
∫

[0,1]v(G)
du1 . . .duv(G)P(Yi,j = 1|Uv = uv, v ∈ V (G′))

=
∫

[0,1]v(G)
du1 . . .duv(G)h(ui, uj)

≤ h∗. (4.3)

Hence
P(Yi,j = 1, (i, j) ∈ A|Xα(G′) = 1) ≤ (h∗)|A|, (4.4)

and so νk,v,s ≤ (h∗)k for all v and s. Also, g = 2 for graphon models. The bound (4.2) now follows from applying
bound (3.4) of Theorem 3.1. �
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Remark 4.2. In the proof of Corollary 4.1 we could have replaced (4.3) by

P(Yi,j = 1|Xα(G′) = 1) =
∫

[0,1]v(G)
du1 · · · duv(G)h(ui, uj)

≤ E
[

max
Ui,Uj :i�=j∈v(G)

h(Ui, Uj)
]
. (4.5)

For example, if h(x, y) = 1
2 (x+ y) then h∗ = 1 whereas, using the order statistic notation,

E
[

max
Ui,Uj :i�=j∈v(G)

h(Ui, Uj)
]

=
1
2

E(U(n) + U(n−1)) =
2v(G) − 1

2(v(G) + 1)
< 1.

Similarly, (4.4) could be replaced by

P(Yi,j = 1, (i, j) ∈ A|Xα(G′) = 1) ≤ E

⎡
⎣ max

Ui,i∈v(G)

∏
(i,j)∈A

h(Ui, Uj)

⎤
⎦ . (4.6)

While (4.5) and (4.6) would yield numerically smaller bounds, h∗ is easier to calculate in applications.

Example 4.3. In analogy to copulas, where Archimedean copulas have proved a useful concept, consider what
can be coined an Archimedean graphon: Let h : [0, 1]2 → [0, 1] be given by h(x, y) = ψ(ψ[−1](x) + ψ[−1](y))
where ψ : [0,∞) → [0, 1] is a continuous, strictly decreasing function which is convex on the open interval (0,∞)
and ψ[−1](x) = inf{u : ψ(u) ≤ x} is its generalised inverse. Using the Williamson transform we can write

ψ(x) =
∫

(x,∞)

(
1 − x

t

)
dFR(t) = E

(
1 − x

R

)
+
,

where FR is the c.d.f. of a non-negative random variable R which has no atom at zero, see for example [18]. If
inf{x : dFR(x) > 0} = aR with aR > 0 then

h∗ ≤ sup
x≥0

ψ(x) =
∫ ∞

aR

(
1 − aR

t

)
dFR(t) = 1 − aRE(R−1).

In contrast, E
[
minUi,i∈v(G)

∏
(i,j)∈A ψ(ψ[−1](Ui) + ψ[−1](Uj))

]
as used in (4.6) would be more difficult to

calculate.

The next example illustrates how scaling considerations enter in the distributional bound.

Example 4.4. Let h : [0, 1]2 → [0, 1] be given by h(x, y) = xy. In this case, (4.1) gives that

μ(G) =
∫

[0,1]v(G)
du1 . . . duv(G)

∏
i∈V (G)

u
degG(i)
i =

∏
i∈V (G)

1
degG(i) + 1

,

where degG(i) is the degree of i in G, that is, the number of edges in E(G) which have i as an end point;
1 ≤ degG(i) ≤ v(G)−1. Thus in order to obtain a moderate value of λ, the graph G has to have a large number
of vertices with degrees which typically grow like n; such graphs are also called dense graphs. In this example,
h∗ = 1 and the bound in Corollary 4.1 will be of the order nv(G) if the graph G is fixed.

If instead we consider the function fn : [0, 1]2 → [0, 1]; hn(x, y) = n− 1
d(G) xy then the limiting Poisson

distribution is not-degenerate and as in (2.12) the bound in Corollary 4.1 tends to 0 with n tending to ∞.
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Finally, we note that the h-graphon model can be viewed as a stochastic block model if h is piecewise constant.
If 0 = s1 < s2 < · · · < sQ−1 = 1, where si =

∑i
k=1 fk, is a partition of [0, 1] so that h is constant on each

rectangle [si, si+1) × [sj , sj+1), then we could assign type i to vertex v if Uv ∈ [si, si+1). The randomness now
lies only in the class assignments. In this case we recover Theorem 2.1.
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