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EMPIRICAL LIKELIHOOD CONFIDENCE BANDS FOR MEAN FUNCTIONS
OF RECURRENT EVENTS WITH COMPETING RISKS AND A TERMINAL
EVENT

JEAN-YVES DAUxo1s!, ALEXIS FLESCH? AND DAVIT VARRON?

Abstract. In this paper, we consider recurrent events with competing risks in the presence of a ter-
minal event and a censorship. We focus our attention on the mean functions which give the expected
number of events of a specific type that have occurred up to a time ¢. Using heuristics from empirical
likelihood theory, we propose a method to build simultaneous (in ¢) confidence regions for these func-
tions. To establish the consistency of this estimation method (as well as its bootstrap calibration), we
prove a weak convergence (as stochastic processes) of the associated empirical likelihood ratio processes.
Our approach almost entirely relies on empirical process methods. In the proofs, we also establish some
results in empirical processes theory that may present some independent interest. Then we carry out
a simulation study of our confidence bands, we compare those obtained by empirical likelihood to the
ones obtained by bootstrap. Finally, our procedure is applied on a real data set of nosocomial infections
in an intensive care unit of a French hospital.
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1. INTRODUCTION

In this paper we consider a data set of nosocomial infections contracted by 7867 patients in an intensive care
unit of a French hospital over a period of a decade. This data set has already been introduced and studied by
Dauxois and Sencey [15]. For each patient, one knows if and when he contracted a nosocomial infection and
what type of infection it was: pneumonia, septicemia, urinary tract infection and several other types of diseases.
Each type of infection can affect the same patient several times. We also know if and when he died, and if
not, when he left the hospital. This leads us to work on recurrent events with competing risks under random
censorship and with a terminal event. The main aim of this paper is to build confidence bands over time for the
mean number of infections of one or more types. This will be achieved using empirical likelihood and empirical
process methods.The next sections are devoted to place our works in the frame of the existing literature, with
an informal introduction of the contributions of our article.
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1.1. Recurrent events and competing risks

The models of recurrent events are useful in many fields, like in social science for recurrent periods of
unemployment, in reliability for recurrent occurrences of failures on the same device or also in biostatistics as
in our case study of nosocomial infections.

Many statistical methods have been used over the last decades to study recurrent events based on Markov
models, Martingale theory or Poisson processes. Andersen et al. [2] and recently Cook and Lawless [12] give a
review of these methods. Some authors have considered the case with no assumption on the dependence structure
between events. Among them, Wang and Wells [47], Lin et al. [31], Lin and Ying [29], Cai and Schaubel [5] and
more recently Du [17] have studied the distribution of the gap time between events. On the other hand, Lawless
and Nadeau [27] and Lawless [26] considered the mean function, which gives the mean number of events that
have occurred up to a time ¢. Then Cook et al. [13] introduced robust tests of comparison between treatments. It
has to be noted that semi-parametric inference in this models has been drawn by Lin et al. [30] and Ghosh [18]
for accelerated failure time models, and by Lin et al. [32] for multiplicative rate or mean models.

In some situations, a terminal event may stop the recurrent event process, this terminal event being dependent
from the recurrent event process. In the data set under consideration, the death of the patient stops the
observation of nosocomial infections and is clearly dependent on the previous infections he suffered from. The
end of the observation can also be due to an independent right censoring mechanism, specifically, as in our case,
when the study comes to an end. Note that in other contexts, other causes of independent censoring can be
observed like “lost to follow up”.

This kind of situation has been first studied by Cook and Lawless [11]. Ghosh and Lin [19] demonstrate
the weak convergence of their estimators and propose two sample tests of equality of two mean functions. In a
semi-parametric setting, Ghosh and Lin [20] propose inferential procedures in the presence of a terminal event.
The case of dependent censoring has also been considered in the references [21,33].

Finally, there are some situations where the observed events are of multiple types. This is the case in our
data set since several types of nosocomial infections can affect a patient: pneumonia, septicemia, urinary tract
infection. .. In the same manner, the failure of a device can be caused by multiple mechanical parts. As an
example, the engine, the gearbox or the tires can be a cause of failure for cars. This is also true for recurrent
unemployment: one can loose his job for numerous different reasons. Thus, Chen and Cook [6] extend the set-up
of recurrent events in presence of a terminal event to the multivariate case, taking into account different possible
types of events. They consider two samples comparison tests and focus on the marginal effect of each type of
event, using estimators of the specific mean functions associated to each type of event. Chen et al. [7] propose
semi-parametric inference in an interval-censored setting. Finally, Dauxois and Sencey [15] introduce a model
of competing risks for recurrent events in presence of a terminal event and have derived non-parametric tests
in this setup. The consistency of their testing procedure (as well as its ability to detect adjacent alternatives)
relies on an extension of convergence results (as bivariate stochastic processes) formerly established by Cook
and Lawless [11]. The first contribution of the present paper is to extend the aforementioned convergence results
to the bootstrap versions of those estimators (see Sect. 2.2 below).

1.2. Empirical likelihood

In another respect, empirical likelihood was first introduced by Thomas and Grunkemeier [43] in a setup of
survival analysis. Owen [34-36] generalizes their concept to obtain e.g. confidence intervals or regions around
a point estimator 6,, of a finite dimensional parameter 6. Owen [37] provides a comprehensive overview of
this methodology up to that time. One of the main underlying ideas of the empirical likelihood is that one
can capture some geometric aspects of the data set (the simplest one being the asymmetry of a univariate
sample), by proceeding as follows: slightly (and continuously) unbalance the empirical weights 1/n that are the
leading weights in the definition of 6,,, and consider the set of all values of 6,, under those unbalanced weights.
We informally call leading weights the ones that play the main role for proving the asymptotic normality of

vn (én - 9). One of the advantages of this empirical likelihood method is that one does not need to estimate
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the variance in order to build the confidence region. Moreover, the shape of those regions strongly depends on
the geometry of the data whereas classical central limit theorem gives ellipse-shaped confidence regions. Finally,
the confidence band always lies inside of the convex hull defined by the data. Since that time, many papers have
considered the advantage of empirical likelihood in almost all the areas of statistic. The case of the regression
models has been extensively considered. One can find in Chen and Van Keilegom [9] an extensive review of
empirical likelihood method for regression-type inference problems, including parametric, semiparametric, and
nonparametric models. The large list of references cited in this paper shows the growing interest of these
techniques in the literature. And this has increased more rapidly again these last years. One can cite, among
others, the following recent papers: [8,10,24,25,41]. In survival analysis, one can cite Li et al. 28] which gives an
other overview with focus on two important regression models for survival data: the Cox proportional hazards
model and the Accelerated Failure Time model. Other authors have considered nonparametric models like,
among others, Adimari [1] and Ren [40] who use empirical likelihood ratio techniques to study the mean under
random censorship or Wang and Jing [46] who use empirical likelihood for a class of functionals of survival
distribution. Finally, let us mention the important paper from Hjort et al. [23] where a generalization of Owen’s
result is given and allows to consider the case where the traditional assumptions in this area are violated.

The second contribution of the present article is that we take advantage of the empirical likelihood method-
ology in order to build confidence bands for the mean functions of a multiple-type recurrent events process
with terminal event and under right censoring. This approach is fully non-parametric and uses Hjort et al.’s
results [23], as well as empirical processes theory. For a self-contained presentation of that theory, we refer to
van der Vaart and Wellner [44], and we will often make a free use of its notations.

It has to be noted that, as far as we know, there doesn’t exist any work which introduces such confidence
bands in the literature. The only paper with some work in this direction is the paper from Ghosh and Lin [21].
But it considers the case with an unique cause of death (and not multiple causes of death as in our case)
and derives only pointwise confidence intervals (see Sect. 2 of their paper). From Theorem 2 of Dauxois and
Sencey [15], obtained in the case of multiple causes of death, one could exploit the idea of Ghosh and Lin [21]
to obtain confidence bands for the mean functions. But some mathematical developments are still needed to get
confidence bands rather than pointwise confidence intervals.

However, it is of interest to compare our empirical likelihood confidence bands with other. From the result
of Dauxois and Sencey [15], there is at least two ways which could lead to the construction of an alternative
confidence band for the mean function. One can follow the idea of Ghosh and Lin [21] or one can use a bootstrap
method justified by our Theorem 2.2, where we prove the weak convergence of the bootstrapped mean function
estimators. We have thought more natural and coherent, with what contains this paper, to consider the second
way. The comparison by simulation is carried out in Section 4 after some explanations on how one can use this
theorem to build confidence bands.

1.3. Organization of the article

The overall organization of the paper is as follows. We state all our main results in Section 2. Then, in
Section 3, we apply our results to the data set of nosocomial infections and we obtain confidence bands for the
specific mean functions. Next, in Section 4, we conduct a simulation study to check the accuracy of our method
on finite samples.The remaining sections are then dedicated to proofs.

Note that we have developed a Python library to build confidence bands like those introduced in this article.
The library is distributed under the Creative Commons CC BY-NC-SA licence and can be downloaded at
http://alexisfles.ch/en/research/rec.html. One has only to download the file “elrec.tar.gz” (forget the
library “emplik” which is already included in this compressed file) and follow the instruction given on the
above web-page. Python is an open-source programming language, which can be downloaded from http://
www.python.org.
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2. MAIN RESULT

2.1. The statistical framework

For the sake of simplicity, we shall suppose that only two types of events are observed, since the generalization
is straightforward. For j € {1,2}, let N*(t) denote the total number of events of type j that have occurred
up to time ¢. We make the assumption that the counting processes N7 (1) are almost surely bounded by a
constant A. We also suppose the presence of a terminal event D, a priori dependent on the N7 (+)’s, after
which the counting processes cannot jump. Finally, we assume that the observation of the processes suffers
from random right-censoring by a random variable C' assumed to be independent of the N 7 (-)’s and D. Write
X := D AC for the time after which the process doesn’t jump anymore and § := I(D < C), where I(-) denotes
the (logical) indicator function. This last random variable informs us on whether it was the terminating event
that stopped the process or the censorship. Writing N;(t) := N (t A C) for t > 0 and j € {1,2}, we assume
that the observed data are i.i.d. replicates of (N; 1(-), Ni2(+), X;, d;) of (N1(-), N2(+), X, d), where the considered
processes are indexed by ¢ € [0, 7] with 7 fulfilling P(C' > 7)P(X > 7) > 0. The statistical framework is that of
estimating the mean functions

B P(D > u) <
_/(Ot] B BN W), (2.1)

where (2.1) is a consequence of the independence between C' and (D, N7, NJ). Using this latter representation,
Cook and Lawless [11] proposed the following estimator

OE _Z/o Y Y dN”( ), where (2.2)

Y (u) : —ZI (Xi>wu), u>0,

i=1

and where S -) is the Kaplan—Meier estimator of S(-), the survival function of D (see, for example, [2] for a

(
definition of S(-)). Note that, in the preceding expression, we used the conventional notation

f ()= lim f(t —¢), fort >0, and f~(0) := f(0). (2.3)

e>0, e—0

We shall also use the notation f(¢7) for f~(¢), when it comes to unburden notations. Let D(]0, 7]) be the space
of functions on [0, 7] that are right continuous on [0, 7] and which admit a limit from the left at every ¢ € (0, 7]
(in which case the limit superior in (2.3) is a true limit for any f(-) € D([0,7])). Throughout this article, the
space D([0,7]) will be implicitly endowed with the supremum norm:

1 f o= sup | f(t) |

tel0,7]
Dauxois and Sencey [15] proved the following result.

Theorem 2.1 ([15]). We have, as n — oo,
() =mC)y o (GG 2o,
(0 m0) = (60) m e,

where G(-) = (G1(-), G2(+)) is a mean zero bivariate Gaussian process on [0, T].
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To prove that result, the authors used arguments from empirical processes theory (see, e.g., van der Vaart and
Wellner [44]) with convergence of martingales. An interesting aspect of their proof (which will be crucial for our
work) is that they make use of martingales at only one single step (in the middle of page 666, when they invoke
results of Ghosh and Lin [19]). A byproduct of the present work is an alternative proof of Theorem 2.1 without
using any martingale argument (see Sect. 5).

2.2. A bootstrap limit theorem for (f1(+), f12(+))

Our first main result is a generalization of Theorem 2.1 to bootstrap versions of the [i;(-). Due to some
measurability concerns, we have to completely formalize the bootstrap sample as follows:

(1) Consider a probability space (f), ,/Z, ]IND) and a triangular array (v; »)n>1, i<n of mutually independent random

variables on (f), /~l, ]I~"> for which each t; ,, has the uniform distribution on {1,...,n}.

(2) Define the observation space Z := D?([0,7]) x RT x {0,1} endowed with the product Borel o-algebra, and
write Py for the law of Z := (N7, N2, X,0) on Z.

(3) Now consider the product space 2 := ZN x 2 endowed with P := PEN ® P (on the product o algebra).
Given w = ((2;)i>1,w) € £2 define

Zi(w) = (Ni,1(w), Ni2(w), Xi(w), 0i(w)) = 2,
and
Zzl,an(w) = (Nil,al,n(w)’ Nz%,n(w)’an(w)vdfn(w)) = Zti,n(‘:')'

In other words, the Z; are represented in a canonical way (being coordinate projections), and each an is

constructed by randomly picking (through v; ,,) a coordinate of (Z1, ..., Z,). Then let us denote by (ﬁf())je{l 2)

the estimators (ﬂj('))j€{1,2} built from the sample an, 1 =1,...,n. Note that the letter B stands for bootstrap.
From now on, all the presented results shall be stated in this probabilistic framework.

It is well-known that a very large panel of techniques from empirical processes theory are very well adapted
to bootstrap statistics. However, to the best of our knowledge, such an interplay between the bootstrap and
martingale methods has not yet been made clear. To bypass that obstacle we will avoid any martingale argument
in our generalization. The mathematical rigor (due to a well-known lack of measurability of empirical processes-
see [44], pp. 3-4) imposes us to write our result as an outer almost sure convergence in law. For more details on
this notion we refer to ([44], Thm. 3.6.2, p. 347). These technical details can be ignored from readers that are
more interested in the applied part of the our work. In this case, the heuristic of our next theorem is that “for
almost all observed sample sequence (Z;(w));>1 = (#i)i>1, we have a convergence in distribution under the sole
randomness of the boostrap scheme, namely, that of the random indices @ — t; ,,(©)”.

Theorem 2.2. As n — oo, we have outer almost surely:
/\B o~
N (’il ) ‘ﬁl“) 2. G0,
AE ()~ ol v
where G(+) is the limiting bivairate gaussian process of Theorem 2.1.

The proof of Theorem 2.2 is provided in Section 5.

2.3. Asymptotic simultaneous confidence regions by empirical likelihood

Our proposed method to build confidence intervals (or regions) clearly takes advantage of the heuristic
exposed in Section 1.2 and can be formalized as follows. Let us write for all ¢ in [0, 7], all § € R and j € {1, 2}:

n n
ELglj)(H,t) = maX{ania ﬂj7p(t) = 9, Di >0 and sz = 1} )

i=1 i=1
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where

_ " S~ (u)
1ip(t) = pi/ ———=dN, ;(u), for p= (p1,...,0n)-
JP() ; ©0,4] Y(u) J( ) ( 1 )

For fixed ¢ € (0,1] and t € [0, 7], the region R (c,t) := {0 eR, ELY(0,t) > c} is an interval containing the
point estimator fi;(t), but non necessarily symmetric around fi;(t).

The preceding method can be extended to build bivariate confidence regions: for fixed ¢ € [0,7] and
0 := (61,02) € R? define

EL,(0,t) := max{ani, Vi e {1,2} [ijp(t) =65, p; >0 and Zpi = 1} )

i=1 i=1

In that case, for fixed ¢ € (0,1] and ¢ € [0, 7], the region R(c,t) := {6 € R?, EL,(0,t) > c} is a bounded region
contained in R (c,t) x R®)(c,t) which is not necessarily an ellipsoid.

Our second result shows that, given 0 < 71 < 7, it is possible, for fixed o € (0,1), to calibrate ¢, so that all
the R(cq,t), for t € [11, 7], define simultaneous confidence regions. Our only assumption is a moment condition
upon the following centered random variables

mz(t) = (mi,1(t),mi’2(t))t, with mi,j(t) = / S(U7) dNZ’j(’LL) — /Jj(lf).

0,4 E (Y (u))

Theorem 2.3. Let V(t) be the covariance matriz of my(t) and © the unit sphere in R?. Suppose that there
exists 1 > 0 such that

0< inf inf E(0'mi(t)) and sup sup 'V ()0 < . 2.4
te[r,7] 0€O ( 1( )) te[-rf-r]eeg ( ) ( )

Then, as n — oo:

~2log EL, (p(-),-) -2 G()'V()G(), in D(my, 7)),

where p(t) := (pa(t), p2(t)) -
Now make the weaker assumption that, for fized j € {1,2}, the functions V;(-) = Var(mi;(-)) and
E (|m1,;(-)|) are bounded away from zero and infinity on |11, 7], for some 71 > 0. Then, as n — oo:

~2log BLY (1;(-),-) -2 G2()WV; L), in D([r1, 7).
Remark 2.4. The asymptotic validity of empirical likelihood methods relies on a convex hull condition as well
as an internal studentization phenomenon. Condition (2.4) is essential for the latter to happen. The lower bound

can be roughly interpreted as “all the m;(t), for ¢ € [r1, 7] are far enough from degeneracy”.

2.4. Bootstrapping the empirical likelihood

The main statistical impact of Theorem 2.3 is that

inf EL, (u(t),t) L2,0= exp
te[r1,7]

(_ 16OV 060 nn,ﬂ) |

Hence, if we explicitly knew the law of C' (through that of the underlying Gaussian process) then, with a choice
of ¢, such that P (C < ¢,) = a, all the R(cq,t), for t € [11, 7], would give us a simultaneous confidence regions
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with asymptotic uniform level less than «. To estimate the limiting distribution of

U:= sup —2logEL, (u(t),1),

telr1,7]

we propose the following bootstrap procedure.

Recalling the notations of Subsection 2.2, from an observed sample (21, . .., 2,) let us define SB(.) and 73(~)
as the analogues of S(-) and Y (-) with the formal replacement of Z; by Z,. Then define the following random

variables on (f?, A, INP’) (the dependency upon (z1, ..., z,) being sometimes omitted to unburden the notations):

0 :=Z /Ot] AN ()

Up L) i= sup —QIOgELf (@(t),t) , where

(z1,...,2
te[r,7]

EL(0,t) := max {anz-, Vi e{1,2}, ify(t) =05, pi>0and > p; = 1} ,0 R, t€[0,7],

i=1 1=1
and where p(-) := (f1(-), g2(-)) is considered as non random (i.e. built from (z1,...,2,)). Also define, for
Jje{1,2}:
U(Iij o) i< SUp —21log ELE7 (fi;(t),t) , where
e te[r1,7]

n n
ELJY(0,t) :== max{anz', fifp(t) =0, p; > 0and Y p; = 1} OER, t€[0,7].

i=1 i=1
Our next result shows the bootstrap consistency of UPZ.

Theorem 2.5. Under the assumptions of Theorem 2.3, for almost any sequence z; := Z;(w), i > 1, we have,
as n — oo:

UB LN GOVTOCE [l

(21,50-2n)

and
. D B .
U(Ij;j,m,zn) - H Vj 1()G32() H[ﬁ,‘rg]a for j € {132}7

where the aforementioned random variables have baseline probability space ((NZ,/I, I@’)

Note that we do not state here a convergence of stochastic processes, but the simpler convergence of their
suprema. This is again due to technical measurability conditions: denoting by BL;(R) the set of 1-Lipschitz
functions on R that are bounded by 1, the maps

,n>1

(resz) = s [E(n(UE,.))) —E (I GOVTOGE) llinm))

heBL;(R)

are respectively measurable from Z" to RT (the latter endowed with their Borel o-algebras). Hence, almost
sure convergence is here equivalent to (and not just weaker than) “outer almost sure convergence”. This is of
particular importance, since our proof of Theorem 2.5 will rely on arguments that are almost sure properties.
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FIGURE 1. Nosocomial infections dataset. Estimated mean number of pneumonias and 95%
confidence band (based on empirical likelihood ratio) plotted against time.

3. APPLICATION TO NOSOCOMIAL INFECTIONS

3.1. Algorithm in dimension 1

In this section, we will apply our results to the data set of nosocomial infections introduced in Section 1.
We will restrict our attention to pneumonias, septicemias and urinary tract infections, as those are the most
frequent infections in the data set: for example, 373 patients experienced a total amount of 463 pneumonias
during their stay. Using Theorems 2.3 and 2.5, one can build simultaneous confidence intervals for the mean
function of each type of infection, using the bootstrap to determine the limiting law. For sake of completeness,
let us precisely describe the algorithm used to obtain a 95% confidence band for the mean function of one type
of infection. Using the same notations as before, we have n = 7867 and max;<;<, X; = 380. First of all, we
approximate the 95%-quantile of the limiting law by the bootstrap approximation that was proved consistent
in Theorem 2.5. To this effect, we draw (ZF,,..., ZF,) uniformly in {Z1,...,Z,}. Then, given j € {1,2}, we
compute —2log ELZ7 (ji(k), k) for each day k € [0,380], and we store the supremum (over k) of those values.
Finally, we repeat this 1000 times (performing a Monte Carlo simulation), sort the values and take the 950th as
our 95%-estimated quantile Gg5. Then, given j € {1,2}, for each day k in [0, 380], we determine by dichotomy
the interval C} defined by:

0 € Cr = —21log ELY) (0, k) < digs. (3.1)

Notice that the confidence band stays the same after the last jump: for example, no patient contracted a
pneumonia after the 125th day as can be seen on Figure 1. Notice also that the confidence band is not centered
around fi: unlike central limit theorem, empirical likelihood builds confidence regions whose shape strongly
depends on the geometry of the data.

3.2. Algorithm in dimension 2

In this section, we show an application of our bidimensional results of Theorems 2.3 and 2.5 to our data set,
by building a confidence tube for (1, us2). For illustration purpose, we have arbitrarily considered p; as the
mean number of pneumonias and ps the mean number of septicemias. In this context, the number of patients
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FIGURE 2. Nosocomial infections dataset. Estimated mean number of septicemias and 95%
confidence band (based on empirical likelihood ratio) plotted against time.
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F1cURE 3. Nosocomial infections dataset. Estimated mean number of urinary tract infections
and 95% confidence band (based on empirical likelihood ratio) plotted against time.

who experienced either pneumonia or septicemia is 547, with 71 patients experiencing both types of infections
at least one time. The total number of pneumonias is 463 (373 patients experienced it) and the total amount of
septicemias is 289. We use the same algorithm procedure as in the preceding section, with the formal replacement
of ELY(-,) by EL,(-,-) (as well as for their bootstrap versions). Hence, for each k, the set Cj, defined in (3.1)
is not an interval anymore, but a bivariate region, and plotting Cy against k is a 3D graph. In order to make
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that graph more readable, we projected it on a plane, eliminating the dimension corresponding to time k, but
keeping the information upon k by introducing a progressive change of colors. Each convex set corresponds to a
day, the first day being at the bottom left corner and the last day at the upper right corner. As in dimension 1,
one can notice that this confidence tube is not elliptic as would be expected if we had used the functional central
limit theorem. Once again, this is due to empirical likelihood procedure (Fig. 4).

4. SIMULATION STUDY

In order to assess the performance of empirical likelihood method to build confidence bands for the mean
function p(-), we have driven a simulation study. We will restrict our attention to the case where the recurrent
events are of a single type. This is easier and however sufficient to understand how this empirical likelihood
ratio method works on finite samples. Let N(-) denote the counting process of the number of events. Following
Dauxois and Sencey [15], we use a bivariate exponential distribution to simulate the counting process N and
the terminal event D. Recall that (X7, X2) is bivariate exponentially distributed with parameters (A1, A2, A12)
if and only if there exists Uy ~ E(1/A1), Uy ~ E(1/A2) and Ujs ~ E(1/\12) mutually independent such that
X1 =U1 ANUjp and X9 = Uy A Uyo. We shall write (Xl,Xg) ~ BVE ()\1, )\2,)\12).

Let Ty < Ty < ... < T, < ... denote the successive occurrences times of the recurrent event process. The
random vector (77, D) is drawn according to the BVE (A1, Ap, A12). The others jumps of N are then simulated
such that (T3, T;+1 — T;) ~ BVE (A1, A2, A12). The parameters are chosen in order to have corr(T;, Ty — T;) =
corr(D,Ty) = p. It then follows that:

2p
M=X=-—" and M\p=-—""-.
1 2 1+ p 12 1+,

Two values of p are selected: p =0 and p = 0.25.
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TABLE 1. Simulation results. Monte Carlo estimates of the confidence band levels obtained
by the algorithm in dimension 1 (resp. by direct bootstrap algorithm, in italic and between
parentheses) for selected values of the sample size n, the mean number of events, the percentage
of censoring, the correlation p and the nominal level (a1 = 1%, a5 = 5% and a9 = 10%).

Mean number of events: 1
p=0 p=0.25
0% 30% 0% 30%
a1 1.40 (7.51) 1.16 (10.41) 2.12 (4.46) 1.91 (6.77)
n=30 as 6.13 (12.26) 5.78 (15.98) 6.92 (8.95) 6.18 (11.82)
aio  11.46 (17.61) 11.59 (21.98) 12.18 (14.55) 11.50 (17.36)
a1 1.23 (3.11) 0.93 (4.44) 1.12 (2.00) 1.00 (2.71)
n =100 as 5.31 (7.41) 5.05 (9.51) 5.31 (6.03) 5.34 (7.29)
a0 10.66 (12.52) 10.47 (15.32) 10.06 (11.17) 10.70 (12.72)
Mean number of events: 2
p=0 p=0.25
0% 30% 0% 30%
ay 0.96 (5.96) 1.09 (11.59) 1.48 (6.04) 1.00 (8.94)
n=30 as 4.99 (10.42) 5.18 (16.86) 5.95 (10.56) 5.38 (14.65)
aio  10.28 (15.85) 10.92 (22.77) 11.12 (15.82) 10.66 (20.6)
ay 0.94 (2.55) 0.90 (5.02) 1.00 (2.59) 1.01 (4.29)
n =100 as 4.84 (6.75) 4.99 (10.43) 4.70 (7.12) 4.76 (9.54)
a0 9.98 (11.94) 10.37 (16.35) 9.95 (12.49) 10.55 (14.78)

The censoring random variable C' is chosen to be uniformly distributed on an interval [0, c|, where ¢ is a
constant. The values of A\p and ¢ are chosen empirically to get approximately 1 or 2 observed events per
subject. Finally, two different sample sizes are selected: n = 30 and n = 100.

We used the algorithm in dimension 1 decribed in Section 3.1 to build asymptotic confidence bands, consid-
ering three different levels: 1%, 5% and 10%.

These procedures have been replicated 10000 times and we have calculated the percentage of obtained con-
fidence intervals containing the true value of the parameter, giving us an empirical estimation of the confidence
band level. The results are listed in Table 1. One can see that the empirical level generally becomes closer to
the nominal level when one increases the sample size or the mean number of events. It is interesting to note
that this is also the case when the percentage of censoring increases. This kind of phenomenon, which at a first
glance appears to be paradoxical, has also been observed by Dauxois and Sencey [15]. It is nothing but the fact
that the estimation is easier when the observation of the recurrent process is stopped by an independent right
censoring rather than by a dependent terminal event.

Finally, one can observe that the empirical levels appear to be slightly greater than the nominal values. This
should be, at least partially, due to the bootstrap procedure used to estimate the limiting distribution of the
empirical likelihood ratio. Indeed, it may happen that the bootstrap sample (an, e Zf, ,,) does not contain the
process N;, which jumps the first among all the initial simple counting processes (N;)1<i<n. Thus the domain
where is searched the supremum of the empirical likelihood ratio is reduced. This induces a negative bias on
this supremum and leads to a positive bias on the confidence band level.

We have compared our empirical likelihood confidence bands built through the algorithm in dimension 1
to another type of bootstrapped confidence bands that one can obtain thanks to our Theorem 2.2. Let us
now explain this other algorithm - which we will call the direct bootstrap algorithm- recalling notations of
Section 2.2, from the simulation of a sample (Z1, ..., Z,), we derive the estimated mean function ji(-). Then, we
draw 1000 bootstrap samples (an, cee Zf,n) from (Z1,...,Z,). For each sample, we calculate the estimator
4B (-) and the supremum of the process |12 (-) — ji(-)|. With u, defined as the a-quantile of the family of those
1000 supremums, a (1 — «)-confidence band for u(-) is given by the two processes: fi(+) + u1_q.
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This procedure has also been replicated 10000 times and we have obtained an empirical estimation of the
confidence band level as before. These empirical confidence band levels are listed between parentheses in the
same Table 1. One can observe that, as it is rather frequently observed in the literature, the levels are better
with Empirical Likelihood rather than directly by bootstrap. The two usual heuristic explanations of this
phenomenon can again be served here: the internal studentization of the procedure allows to avoid the variance
estimation phase and the Empirical Likelihood approach captures the first order asymmetry of the sample.
On the other hand, as expected, the empirical levels are improved when one increases n, but the convergence
appears to be slower than with Empirical Likelihood. Finally, one can see that, when one changes the percentage
of censoring, the empirical level of the bootstrapped confidence band behaves oppositely than with empirical
likelihood. Here, the empirical level is worse under censoring than without. The reasons of this contradictory
phenomenon could be the followings. As already mentioned by Dauxois and Sencey, increasing the percentage of
censoring improves slightly the consistency of the estimator. On the opposite, resampling is negatively affected
by the presence of censoring since the real percentage of censoring in the initial sample is often far away from
the theoretical percentage. But this negative phenomenon seems to be attenuated by the Empirical Likelihood
procedure, probably still for the same reasons: this method possesses the property of auto-normalization and
the capability to capture the asymmetric features of the sample.

5. PROOF OF THEOREM 2.2

In parallel with our proof of Theorem 2.2, we will also give another proof of Theorem 2.1 in order to emphasize
the nonnecessity of martingales in the present statistical framework. Recall that p;, j = 1,2 have been formally
defined in (2.1). To make the link with Section 3, diseases corresponding to j = 1 and j = 2 denote pneumonias
and septicemias, respectively.

5.1. Plug in representations

Let us first note that (2.1) can be rewritten through the following plug-in expression, as processes indexed
by [0, 7]:

p) = [ SR e N w)
(0,-]

P(X > u)
[ KM(Fy,F)
- Jog 1 - (Foo+f’11)_ & 6.1)
=: ¢(f;, Fo, F1)(:) (5.2)

where
Fy(t):=P(X <t,6=4), for {=0,1and ¢ € [0, 7],
;(t) :==E(N;(t)), for j € {1,2} and t € [0, 7],

and where KM (Fp, Fy)(+) is the image of subdistribution functions (Fp, Fy) by the Kaplan—Meier function KM.
This function is defined in details Proposition A.5 of Section A. Note that KM (Fy, F1)(-) =P (D > -).
Similarly, write

1 n
Fn,O(t) = E Z(l — 5i)]1[0,t](Xi)7 for t € [0,7’],
=1

1 n
Foa(t) =~ > 6il(X;), fort € [0,7],
=1

=l
=
~
=
I

1 n
- ZNi,j(t)v for j € {1,2} and t € [0, 7],
i=1
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and note that KM (F, o, F,1)(-) = S(-). Then, by definition of ji;(-) in (2.2), we have almost surely:
f1;() = & (Nj, Fuo, Fup) (-

Similarly, the same representation holds for the bootstrap versions. Namely, for any n > 1, we have:
() =6 (N7 Pl B2 ()

with

o
S
o
=
||

—Z ]l[of( in ),forte[(),T],

EB(t) = - Z&fnn[o,t] (X5,), for t € [0,7],

NI (t) _Z B (), for j € {1,2} and t € [0,7].

Such plug-in representations clearly show the importance of convergence result for empirical processes and their
bootstrap analogues. This is the subject of the following section.

5.2. Some convergence results for empirical processes and their bootstrap version

The following result will be the very base of our methodology.

Proposition 5.1. The following assertions hold.
(I) We have, in D* ([0, 7]):
Ni() = ()

| ™0 -0 | 2 g
Vil B — () | GO
Fn,l(') - Fl()

where G(+) is a R* valued Gaussian process.

(IT) In addition, all the four aforementioned processes between parentheses have (measurable) || - ||j0,7] norms
which are almost surely o(1).

(III) Moreover we have

Ny () = Ni()
| MO0 |2 a,
Fia() = Faa()

outer almost surely.
(IV) In addition, all the four aforementioned processes between parentheses have (measurable) || - ||jo,-) norms
which are almost surely o(1).

The proof of this Theorem clearly uses arguments from empirical processes theory and Vapnik—Chervonenkis
(VC) combinatorics. The following preliminary lemma is a generalization of the arguments of Bilias et al. [3] and
can be of independent interest. Its statement involves notions for which the reader can find definitions in ([44],
Chap. 2.6).
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Lemma 5.2. Let F be a class of real valued functions on a set X. Assume that there exists a totally ordered
set (T, =) such that one can represent F by F = {f, t € T} in a way such that

Vo € X, V(t,t) e T? t <t = fi(x) < fu(z).
Then F is a VC subgraph class of functions on X with VC dimension equal to 1.
Proof of Lemma 5.2. Consider the class of subgraphs of F, namely:
C={{(u,2) eRx X, u< fr(x)}, teT}.

Now take an arbitrary subset Cp := {(u1, 1), (uz,z2)} C R x X. We need to show that C' is not shattered by
C (see [44], p. 135), i.e. that the class {C' N Cy, C € C} is strictly included in that of all subsets of Cy. Assume
that this is untrue. Then their would exist ¢ € 7 such that u1 < fi(z1) and ug > fi(x2), and their would
also exist t' € 7 such that u; > fy(z1) and ug < fi(z2). Now since (7, <) is totally ordered, we have either
t <t ort <t Ift=<t,wehave fi(z1) < fr(x1). Hence one cannot have simultaneously uy < fi(z1) and
uy > fu(z1). Now if ¢ < ¢, one cannot either simultaneously have ug > fi(22) and ug < fi(x2). This leads to a
contradiction. O

We will divide the proof of Proposition 5.1 is in two parts: the first one is dedicated to the convergences in law,
while the second one is dedicated to the results of Glivenko—Cantelli type.

Proof of (I) and (III) in Proposition 5.1. Denote by 1¢ the indicator function of a set C. Note that all the
considered processes are empirical processes (or bootstrap empirical processes) indexed by the following classes
of functions

Fn = {ft = W - 1#(?5)}7 le [O’T]}v
Fo={Lpgxqey,t €[0,7]}, for £=0,1,

where the elements of F are evaluation maps on X := D% ([0,7],A) C D ([0,7]), defined as the set of all
increasing functions on [0, 7] that are bounded by A. Hence, by ([44], Thm. 3.6.2, p. 347), it is sufficient to prove
that each of these classes is uniformly bounded and universally Donsker. It is trivially the case for both Fy
and F; because they are VC classes of (indicators of) sets. For a definition of a VC class of sets and a VC
subgraph class of functions (see, e.g. [44], Chap. 2.6). Now Fy is uniformly bounded by A and satisfies the
following monotonicity property:

Vi € DT ([0,7], B), t — fi(1) is increasing on [0, 7.

Hence, it is a VC subgraph class by Lemma 5.2. This concludes the proof of (I) and (III) of
Proposition 5.1. U

In order to prove (IV) of Proposition 5.1, we first have to introduce a result of almost sure convergence for
bootstrap empirical measures. Such a result is clearly new in regard of the existing literature on bootstrap
empirical measures and may present an interest in itself. For a definition of a pointwise measurable class, we
refer to ([44], p. 110). We will also use the notation

J(F):= /0 sup Viog N(e, F,Q)de,

@ probab. measure

where, for a probability measure @), the integer N (e, F, Q) denotes the minimal number of balls with radius
€ > 0 for the L?(Q) norm that are needed to cover the class F.
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Proposition 5.3. Let ., . ..y, forn>1 and (z1,...,2,) € 2", be a collection of classes of functions such
that F(z, ..., is pointwise measurable, for each n > 1, (21,...,2,) € Z", and such that
sup |f(Z) |§ 00(213"'327’7,)7 (53)

2€2, fE€F (21, .. 2n)
from some measurable function Cy(-) fulfilling, as n — oo:

Co(Z1,...,7y)

T — 0, P—a.s. for some a > 0. (5.4)
n (03

Assume that, for each n >1 and (z1,...,2,) € Z™, we have
J(f(zl,m,zn)) S Cl (21, ey Zn),

for some measurable function Cy(-) fulfilling

lim n Y2C(Z1,...,%,) =0, P— a.s. (5.5)
n—oo
Then we have
1< 1<
lim sup - f(an) — Zf(ZZ) — 0, P—a.s. (5.6)
n—oo fE}-(Zl ..... Zn) n i=1 n i=1

To the best of our knowledge, the most general results on bootstrap empirical measures (see [44], Chap. 3.6
for an overview of them) does not imply an almost sure convergence like in (5.6). They imply only convergences
in probability. Hence the first novelty of Proposition 5.3 is an almost sure convergence to 0, which will be needed
at further stages of this article. The second innovation is that the class of functions may depend of the (non
bootstrap) sample. These two points are, of course, obtained at the price of conditions that are more stringent,
but still covering a large range of statistical applications.

Proof of Proposition 5.3. The begining of the proof makes use of Mc Diarmid’s bounded difference inequality
(see, e.g., [16], p. 7). Recall that the v; ,, and the probability P have been defined in Subsection 2.2. Fix n > 1

and (z1,...,2n) € Z". Now consider the following map on Z™:
1O 1
(zr,rzn) (Bl 00y 20) — sup - fz)—— f(z)
- o el -ty

By (5.3), this map satisfies the bounded difference assumption (see, e.g., [16], p. 7), with bounding constant
2Co(z1,...,2n)/n, and we can hence apply Mc Diarmid’s bounded difference inequality to obtain, for each ¢t > 0:

~ nt2
P (’g(zl,m’zn) (Zn,nv R Zrn,n) - E; (g(zl,...,zn) (zrl‘n, e ztn‘n)) ‘ > t) < 2exp (—m> . (5.7)
PR 1)

Now writing A,, 1= {Co(Z1,...,Z,) < n'~*/?} and integrating (5.7) on A, entails (recalling the independence
between (v; n)i<n and (Z;)i<n)

P({|z1z) (2P0 2) =Bs (90212 (2 ZE,)) | 2 ] 0144)

nt2
<R "™ V1, ) <2 (— “/2t2)
= (eXp< Co(Zl,...,Zn)> A”) xp\Tn ’
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for all large enough n. Hence, by the Borel-Cantelli lemma, in conjunction with

Pl (4] =L

no>1n>ng

which is guaranteed by (5.4), we only need to show the almost sure convergence to 0 of

n n

S SCARES SHEH

Eﬁ (g(Zla---7Z'rL) (ZlBJL"7Z'r?7n)) :]E@ ( sup
i=1 i=1

T€F(z,,....2n)

) |

Fix (once again) (z1,...,2,) € Z". Under the probability P, the random variable

53 [f(zw) -y f@»)] ‘

i=1 i=1

M(z1,. .., 2n) = sup
fe‘r(zlw-wzn)

n
is the supremum of an empirical process indexed by F., .. .,), with underlying sample law n=1 37 4,, (here .,
i=1
denotes the Dirac point mass at z;). Hence, using the usual symmetrization and subgaussian chaining arguments
(see, e.g., [44], pp. 127-128, but without making the change of variable in the uniform entropy integral at the
middle of p. 128), we have
<

CCy(#1,. -, 2n)
\/EJ (Flarnzy) < LA

v
where € is universal. By (5.5) the latter defines a sequence which is o(1) for P§" almost any sequence (2;)i>1.
This concludes the proof of Proposition 5.3. g

Es (M(21,...,2,)) <

Proof of (I) and (IV) of Proposition 5.1. Since Fy, Fo, F1 are universally Donsker, they are also universally
Glivenko—Cantelli, which implies (II). Now (IV) can be reformulated as

—B — —B —
maX{H Ny = Ni o1l Ny — N2 |

0,7 1| Filo = Fuo o, | Fy — Faa H[O,r]} — 0P —a.s.

Such a convergence is the consequence of the almost sure convergence result for bootstrap empirical measures
established in previous Proposition 5.3. O

5.3. Proofs of Theorems 2.1 and 2.2 by the Functional Delta method

Given Proposition 5.1, Theorems 2.1 and 2.2 will follow from the Functional Delta method with the map
¢ (-, -, ) defined in (5.2). Let us first recall some definitions borrowed from ([44], Chap. 3.9).

Definition 5.4. Let (D, || - ||p) and (E, || - ||g) be two normed spaces and let Dy C D. Let ¢ be a map defined
on a set Dy C D, taking values in E, and let § € Dy. We shall say that ¢ is locally uniformly Hadamard
differentiable (LUHD) at 6 tangentially to Dy whenever, for each h € Dy and for each sequences (0,,),>1 € Dg,

(tn)n>1 €]0,00[N, (hy)pn>1 € DV fulfilling
(9n + t"h")nzl € DN7 H 9" - 9 HDH O’ H h’n - h’ HD_) 07 tn — 07

we have, for some d¢g(h) € E depending only on 6 and h:

£ 1000 + tahn) = 6(6.)] = (0| — 0, (5.8)

and when, in addition, d¢g(-) defines a continuous linear map on (Do, || - ||p)-
We shall say that ¢ is Hadamard differentiable (HD) at 6 tangentially to Dy whenever (5.8) is only required
to hold for constant sequences 6,, = 6.
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The LUHD notion, which is clearly stronger than the usual HD notion, is useful since it adapts very well to
bootstrap empirical measures (see, e.g [44], p. 379). For ¢ in D ([0, 7]), we shall denote by T'V (1) the (possibly
infinite) total variation of ¢ on [0, 7]. For fixed M > 0, we shall write

BVn([0,7]) == {¢ € D([0,7]), TV (¢) < M},
B ([0,7]) := {f € D([0,7]), [| f llo,n< M}.

Using the general results on the functional Delta method for empirical processes and their bootstrap analogues
(see [44], Thms. 3.9.5 and 3.9.13), both Theorems 2.1 and 2.2 will be proved if we prove the following proposition.

Proposition 5.5. For fired M > 0 and ¢ > 0, the map ¢ defined on

Do i= { (1,2, 0, 0a) € BV (0.7, juf [1= Fo = |2 f € D(0.7) by
(1,2, 03, ¥4) = (@(V1, 93, ¥a), P(Y2, Y3, %4))

is LUHD at each (N1, N2, Fy, F1) € Dy, tangentially to D*([0,7]).

Indeed, since we have assumed P (C' > 7) P (X > 7) > 0 and N,(7) < A almost surely, we have (fi1, 12, Fo, F1) €
Dy e nr, for some M > 0 and € > 0. Moreover, Proposition 5.1 in conjunction with the fact that each N; ; is
a.s. bounded by A entail that the following measurable random variables satisfy, almost surely:

im max {TV(Nj),TV(Nf)} <24 (5.9)
n—oo
and
lim min { inf 1 — F, 1 — Fyp, inf 1 — F5 — Ffo} > €/2. (5.10)
n— o0 [OaT] 0""] ’ ’

Hence, the functional Delta method is fully applicable if Proposition 5.5 is proved. Its proof is made by decom-
posing ¢ into a succession of simpler maps and and a careful application of a chain rule. All the technicalities
of this proof are postponed to Section A.

6. PROOF THEOREMS 2.3 AND 2.5

6.1. The main tool

Straightforward calculus shows that:

1ij,p(t) = @sz </O,t S;E( ))dN,g( ) — uj(t)> =0.

Hence, writing
_ S(u-
wﬂw=ﬂwé%%wa—wm
d)( ,ja Fn,l)_(ﬁ(ﬁjaFOaFl)a

we have (with u(t) := (p1(t), p2(t)))

ELY) (11(t), t) = max {anz, szmw =0, p; >0 and sz = 1}

i=1
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and

ELy (p(t), t) = max {anz,w e{1,2} szmz,j =0, p; >0 and sz = 1}
i=1 i=1
From now on we will focus on proving the bivariate parts of Theorems 2.3 and 2.5. The proofs of the univariate
parts follow exactly the same lines (with sometimes even simpler arguments). Hence we will omit those proofs
for sake of brevity.

The main ingredient of our proof is a general result in empirical likelihood theory, due to Hjort, McKeague
and van Keilegom. Unfortunately, their result is not present in the final version of their work (see [23]). Thus,
it seems convenient to write it down in the present article (see also [45] for a generalization to the multi sample
case). Recall that © denotes the Euclidian sphere in R2.

Theorem 6.1 (Hjort et al., unpublished). Let 0 < 7 < 7o and (W; »)n>1, i<n be a sequence of random elements
taking values in D?([t1,72]). Assume that, for a 2-2 matriz-valued function V(-) fulfilling

0< inf OV (1) < sup 0"V ()0 < oo,

te[ri,ma], 0€O telr,m2], €6

we have, as n — o00:
(A0*): inf  maxI (6'W;,(t) > 0) Lo

te[r,7], i<n
hee

Al*) : ZWnJ i) G()7 in DQ([7—17T2]);

i=1
A2 1 || S Win ()2 - V(- .0,
( ) Z: z,n( ) () _ -
=1
(A3*) : max ||W;, 0.
1<i<n [71,72]

Then, writing

ELn —maX{anu sz zn —0 pi > 1, sz—l}

i=1
we have, as n — 00
D _ ,
—2log EL,(-) — G'( )V ()G(), in D([r1,72]).
Note that we took care to reformulate assumptions of Hjort et al. [23] by four convergences in law, pointing
thus out that the underlying probability space may change with n (which is, in some sense, the case for the

bootstrap).

From Theorem 6.1, one can see that Theorem 2.3 will be proved if we verify (A0*)—(A3*) for the triangular
array of bivariate processes W; () := n 1/Q(mZ 1(+), M4 2). Similarly, Theorem 2.5 will be proved if we show
that, for almost any sequence z; := Z; (w), i > 1, the sequence of processes (with baseline probability space
(2. 4, B))

Wzl,an() = n71/2 (mfl,n(')’ mf&n()) )
where

~B L KM(FrJLBO’FB )( _) B .
e /011—<Fn0+F%><u NS (1) ~ 7y ()

R A
d)( ,g ny nOvFB )(')_d)(ﬁijn,Oan,l)(')
fulfill conditions (A0*)—(A3*), as n — oo.
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First, note that (A1*) is a consequence of Theorems 2.1 and 2.2. The proof of the remaining conditions (A0*),
(A2*) and (A3*) will take place in three separate propositions, that are given in the next sections.

6.2. Verification of (A2*)

We start with two technical lemmas. Recall that KM stands for the Kaplain—Meier map (see Prop. A.5).

Lemma 6.2. The map ¢ defined by

KM(Fy, F1)
Fo, F) = =220, 1)
oo, F1) 1= (Fo + I)
on the set
D¢ = {(Fo,F1) S D([Tl,’TD; [mf](l — Fy — F1) > 0}
T1,T
is continuous with respect to || - ||(r, . In addition, (Fy 0, Fn1) and (Ffo,Ffl) both belong to Dy, P-almost

surely, for n large enough.

Proof. The continuity is a straightforward consequence of the continuity of the product integral with respect to
| - |[fry,r] (see e.g. [44], p. 391), while the second assertion of Lemma 6.2 is a consequence of (5.10) in conjunction
with P (D > 7) > 0. O

Lemma 6.3. Let h be a positive and bounded (by a constant C') function of D([0,7]). Then, for (¢,¢') € {0,1}2,
the class of functions on D2 ([0, 7], A)

00 s
Foi= { tho L€ [7'1,7}},

where

L o
e . - .
t,h (,(/Jla ¢2) (/(\O’t] h dwl) X (/(\O’t] h dw2> s

1s uniformly bounded by (AC)“K/ and is V-C subgraph. Hence, it is universally Donsker.

Proof. The boundedness is immediate, while the V'C property is a consequence of Lemma 5.2, taking 7 = [y, 7]
endowed with its natural order. g

We can now prove the following proposition, which is strong enough to check (A2*), taking (¢,¢') = (1,1).

Proposition 6.4. We have, for each j,j' € {1,2} and £,0' € {0,1}2, (¢,¢') # (0,0)

— 0, a.s., (6.1)

[Tl 7T]

|- 32,00 ) = Cov (i, 0)
=1

I _ :
|5 oA Py n() = Cov (m 5 0miy (O) || =0, as (6.2
i=1
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Proof. Let us first prove (6.1). Fix (£,¢') € {0,1}2\ (0,0). By the triangle inequality we have

12 Z Jit () = Cov (mh (), mf ()

[T1,7]
< H% > (mf,j(')mf:j’(') - mf,j(')mf:j’(')) [r1,7]
=1 ,
|2 S mt om0 = Cov (m O, ) ||
i=1 7
=: An + Bn- (63)

Let us consider the first term A,,. Elementary algebraic computations (recalling that (¢,¢') € {0,1}?) shows
that:

1 ab” = cfdh |<|at | x |b—d|+]d | x|a—c].

Then, we have with probability one

¢ o
A,, < max ‘ﬁ% , X max ‘T/T\LZ/ —my (- + max ‘mi'w X max ‘fnl —my_ (- .
ma ||, 0| oomase [y () =i | rmax|fmey O cmase [ ) - mes0f|
But, since for each i and j, N, ;(-) is a.s. bounded by A on [0, 7], we can write:
A 2A
P (s < d (. <= 6.4
I?Sa‘i(Hm%]()H[Tl,T]— Y(T)+P(X>T) a1l I?Sai{HmZ’]()H[TI’T]_IP)(X>’T) ( )
Hence, in order to get A,, — 0 a.s., it remains to prove the a.s. convergence to 0 of
N M(Fy0,Fn1)  KM(Fo, Fy)
max || i () — my; i (- - x A.
i<n ’ J () J () [71,7] H n0+Fn 1) 1—(F0—|—F1) [71,7]

This is true by Lemma 6.2 and point (IT) of Proposition 5.1.

Now, for the second term B, let us first consider the most complicated case where (¢,¢') = (1,1). We
will follow the notation of Lemma 6.3. Write h(-) := S7(-)/P (X > -). Expanding an empirical covariance and
recalling that E (m; ;(-)) = 0, we can split B,, as follows:

anle<f1°(N”,N ) =B (£ Nig)) ) (% (Vi Nig) = B (£%5 (No Ni)) )

= B (mi i (-)mi ()

[71,7]

<H—§jf“ b M)~ B (S5 Ny, Neg) ) || (6.5)
B (o) ||l Zf“) 5 Nug) =B (IR, N ) || (66)
+| (s )| x|l Zf‘“ 5 Nig) ~E (SR N, Nog)) || 67)
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This majorant tends to zero almost surely, because of its expression with respect of the suprema of empirical

processes indexed by fg’l, .7-111’0 and fﬁ’l (recall Lem. 6.3 and note that the expectation terms are bounded by
A/P(X > 71)). Now considering the case where (¢,¢') = (0,1) or (1,0), we have

n—H—Zf” 3+ Nig) = E (5 (i, Niy))

[r1,7)

and hence the same arguments apply. This proves (6.1).
Let us now consider (6.2). We use the same kind of inequalities as above, formally replacing Z; by an and

(fi1, iz, Fo, F1) by (N1,Na, F, 0, F,1). Hence, writing
m,j’ﬂ() ¢( zgna ’ﬂOvF )_¢(vaFn,OaFn,l)

for the bootstrap analogue of m; ;(-) and denoting AZ and B the bootstrap analogues of A,, and B, in (6.3),
it will be sufficient to prove that the following points hold almost surely:

nh_{%or&ax H m 0,7, n( ) H[Tl,‘r]< o, (68)
nhngomax H m 0,7, n( ) H[Tl,‘r]< o, (69)
— i<n

— 0, (6.10)

[Tl aT]

H KM(FEB, F5)) KM (F,0,Fp1)
1—( Ffo"'Ffl) 1—(Fno+ Faun)

V() € {0,132\ {(0,0)},

—0. (6.11)

[Tl 77—]

LS ) (8 0) B () (150
i=1

Indeed, the a.s. convergence to 0 of AP will be a consequence of (6.8), (6.9) and (6.10) while the a.s convergence
to 0 of BZ will be a consequence of (6.11).
First, note that we have, almost surely, for each n > 1:

02550 () [, m < . + .
max m 1,7 >
i<n (et TS T (EB T EB ) (7o) 1= (Fao + Fua) ()
24
B
max ||m; . (- < )
wax |l Ol S T E e

Hence, (6.8) and (6.9) are obtained thanks to Lemma 6.2. On the other hand, (6.10) is an immediate consequence
of Lemma 6.2 together with point (IV) of Proposition 5.1.
Finally, it remains to prove (6.11). We will use the same arguments as those used to bound B,,. Writing

~

. S
h:h(Z177Zn) = ?7

9

we can assert that the bootstrap analogues of (6.5), (6.6) and (6.7) converge almost surely to zero if

_Zflo 7]’ ) XH%Z;[fohl(NBgna i,j'\n __Zf()l 237 )]
_me N H_ llONBgm ,jn Zflo i N, )]

_lelNszm ”n_ Zfll N )]

— 0

[r1,7] ’

[71,7]

— 0, and
[TlaT]

— 0.
[71,7]
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But, from (6.1) we have:

[E Zf‘“ N, = H—me | =0,
H_Zflo i.i» Nigr) nr]_H_me )+ 45(-) [TlT]:O(l)v
Thus, it is sufficient to prove that, for any (¢, ¢') € {0,1}?, we have, as n — oo:
L | e M
> [f,,,ﬂ, (NB s NEy ) Zf Nig Nog)| || = 0as (6.12)
i=1 '

In this order, let us recall the setup of Proposition 5.3. From Lemma 6.3, we know that, for each n > 1 and

(21,...,2n) € 2", the class F(., . ..y = ffl(ez ) is uniformly bounded by
3 1
o+
A
CO(Zla"'aZn) = —n
% > I (v >T)
i=1
Moreover, since F(., .. .,) is VC subgraph with dimension 1 and admits the constant Cp(z1,...,2,) as an

envelope, we have
J(Fizr,z)) S KCo(21, .05 2n) = C1(21, ..., 2n),

where K only depends on the VC dimension of 7., . . ) and hence is universal (see [44], p. 141). Now since,
we have almost surely

P o+
M) > 07
A

conditions (5.4) and (5.5) are satisfied. Hence, an application of Proposition 5.3 proves (6.12) and concludes the
proof of Proposition 6.4. g

6.3. Proof of (A3)*

From (6.4), we have

OOI(Zl,...,Zn)—>(

r2n<ax H mi’j H[Tl,‘f‘] = O(\/ﬁ)

r2n<ax I ng H[Tl T = O(\/ﬁ)

which prove that assumption (A3)* is satisfied for the W ,, () and WZBH()

6.4. Proof of (A0)*

In order to check (A0)* (and hence conclude the proofs of Thms. 2.3 and 2.5), we will use the following
lemma.

Lemma 6.5. Let (ai,...,a,) € R™ and let

. 1 & _ 2__1 —\2
n:RZ;‘az—a‘ and o .—EZ(ai_a)a
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88
where @ =Y, a;/n. Then, for all 6 > 0, we have
i=1
1271:]( ><5)>772 I(@a+n<y)
n i o2 @
Proof. Since
1< 1
=) I(a;20)=>—>» I(a;=a —I(a <0),
PNCELER NI RN ED

1« _ _
EZI(az—a>n) X 02 > Ez:(az—a)l(az—azm
i=1 i=1
> IS @ (s —a>0) 123( D0 < a;i—a<n)
— a; —a)l (a; —a>0)— — a; —a a; —a
on i=1 n i=1 !
> 277 -
where, for the last inequality, we used the identity
O

n n
Z\ai—a\:22(ai—a)l(ai—620).
i=1 i=1

nB, ,mB, ). The condition (A0)* will be fulfilled in the two

ot e — (7 Y ~B _
Now, set m; = (1 1,7;2)" and m;, = (mi,l,n7 i.2,n
cases under consideration once the following proposition has been established.

Proposition 6.6. Under assumption (2.4) we have, almost surely,
(6.13)

1 n
lim inf =D T (6tm,(t) >0) >0
n—oo te[T1,7], 0€O N ; ( Z( ) )

1S~ gtpn
o ;1 (0'mf (t) > 0) > 0, (6.14)

lim inf
n—oo t€[T1,7],

which entail
inf I(0'my(t) >0 1
telrir), 060 ion (6 (t) > 0) —
inf max [ (Gtrhfn(t) >0) — 1,

te[r,7], 0€O i<n

as m — 0o
Proof. Fix n > l,w € 2, # € © and t € [, 7]. An application (for any specified w) of Lemma 6.5 with
a; := 0'vn;(t,w) (resp. a; = 0'mP(t,w)) entails the following almost sure inequalities, for any § > 0:

. (% i@tmi(t) 4+ zn: | [Htrhi(t) - %ﬁ:etmi(t)] < 5)

1 ‘o
EZI(Qmi(t)>O)+I 4 s
i=1 =1 i=1 =1
n n 2
(s £l w15 rm0])
Z i=1 i=1 (615)

s

Il
—

1
n

<9tri1i(t) S etmi(t))2

K3
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and

lzf(etmfn(t) >0)+1 (%igtmfn(t) %Z‘ [91‘ ; Zef m? ( )] ‘<5>
: : e
0

" i=1 i=1 i=
n n 2
(&2 ||z - £ £ oz, )
> =1 =1
- n n 2
%z(%ﬁmw—%zwmﬂw)
=1 =1

1 n
(E 2, : IR (] 0'my(¢) )’
lim inf =1 =1 5~ > inf GE( 0'mu () ])) >0, by (2.4), (6.16)
n—ocot€lr,r] | ) 18 telr,r] | ((gtml(t))2)
- S| 0ty (t) — - > 0tm,(t)
=1 =1
n n 2
1 taBpy 1 t.~ B
lim 1[nf | 5 > 1[nf | > >0, (6.17)
n—oo t€|71,T n n te|r, T t
%2@%%%&2%&@) E((¢'mi(0)°)
i=1 i=1
1 — 1 &
li f B — tn; (t) — = ‘1h; > f E 1
niniotelg'll, ZG 4n pt ‘ [9 ;i (t) n ;9 m (t)] ‘ tel[Ifll,r] (‘ & m () |) >0, (6.18)
1 & 1 &
li inf —Y 6'm? (1) +— 0'm? (t 0'tp > inf E(] 6 : 1
nl_rriotel[?lﬁ] n ; m”"( )+ 4n ;’ l m”"( )~ n Z; ] ‘ telrfll,r] (‘ m (?) |) >0 (6.19)

Now take 0 := d¢/2, where Jy is the infimum on the right hand side of (6.18). This entails

(et )0

almost surely. Now inject both (6.16) and (6.20) in (6.15), and take the almost sure inferior limit to prove (6.13).
Finally (6.14) is proved following the same way with bootstrap versions (6.17) and (6.19). O

APPENDIX A: PROOF OF PROPOSITION 5.5

The idea to prove Proposition 5.5 is to use the chain (or composition) rule. Such a rule is often essen-
tial to prove a HD (see, e.g. Van der Vaart and Wellner [44], p. 373). But, this chain rule is not in general
sufficient to prove a LUHD property. An additional continuity condition is necessary. This is the aim of the
next lemma to clarify this point. Even if its demonstration is obvious (and not detailed here), we state it as a
lemma since we could not find any appropriate statement in the existing literature.

Lemma A.1 (Chain rule). Let ¢ be a map from Dy C D to (E,|| - ||g) and let € Dy. Assume that ¢ is LUHD
at 0 tangentially to Dy. }

Let ¢ be a map from Dy C E to a normed space (F, || - [|r), and suppose that $(Dy) C Djz. Assume that ¢ is
LUHD at ¢(0) tangentially to dgg(Do). Also assume that ¢ is || - ||p-continuous at 0. Then ¢ o ¢ is LUHD at 0
tangentially to Dy, with derivative

d(gg o ¢)9 = d(;¢(g) o dgbg
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Our proof of Proposition 5.5 relies on this chain rule. As a consequence, all the following technicalities (from
Lem. A.2 to the end of this section) are careful verifications of the applicability of the chain rule. Our first
lemma is straightforward and its proof is therefore omitted.

Lemma A.2. For M,e > 0, define

DY, = {(A, B) € BV ([0,7])%, inf A > 6} .

(0,7

The map ¢ (-,-) defined on Dy = DEIJQ by
# : (A,B) — (1/A,B) € D([0,7])?

is continuous on DS]%/[ It is also LUHD at each (A,B) € D(l&, tangentially to D([0,7])?, with derivative

€
given by
A

a9y : (b4, ) ( " ,hB) e D(0, 7))

Moreover we have
oV (D1,) < {(A, B) € BV (10,7)) x BVa([0,7]), || A llp.ri< ¢} = DE)y.

Throughout the remainder of this section, we extend the notation f(o 1 AdB to the case where B is not of
bounded variation but A is, thanks to the following (integration by parts) formula:

/ AdB = AB(t) — AB(0) — [ B~dA. (A1)
(0,t] (0,t]

Lemma A.3. The map ¢? defined on Dye) = Dg@ by
¢ : (A, B) — /(0 ]A*dB e D([0,7])
is continuous on Dyw). It is also LUHD at each (A, B) € Dy, tangentially to D([0,7])?, with derivative
Aoy« (W, RP) — . ]hAdB+/(O ]Ath e D([0,7]).

Moreover we have ¢ (D£21)\/1) C BVig([0,7]).

Proof. Let us write shortly [ instead of [ 0. In order to prove the continuity of ¢(?), let us consider a sequence
(An, By) of elements of D) such that || A, — A |[o,-) and || B, — B |[jo,;j— 0 for some (A, B) € Dy . By the
triangle inequality, its continuity is obtained if we prove separately that

| am-n]
H/(A; ~ A7)dB,

as n — o0o. Note that (A.3) is a direct consequence of B,, € BV}, for all n > 1. Now, by integration by parts,
we have:

0, (A.2)

—
(0,7]

— 0
[0,7]

(A.3)

9

/ A=d(B, — B) = A~ (B, — B) — A~ (B, — B)(0) — / (B — B)d(A"). (A4)

Thus, the convergence (A.2) followed from the hypothesis that A is of bounded variation.
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Let us now prove the LUHD property. First, write

tgl (¢(2) (An + tnhr‘?a Bn + tnhrl?) - ¢(2) (Ana Bn)) - d¢§42’)3(hAv hB)

/hﬁ‘d(Bn - B)+ / (An +tohit — A) " dnB + /A*d(hf —hB)+ /(h;‘; —h"~dB
= Rl,n + R2,n + RS,n + R4,n~
By the same arguments as above, both || R3 ,, [[j0,-] and || R4 n [|j0,] straightforwardly tend to 0. By integration

by parts, the term || Rz, |0, tends to 0 if we show that

H/hfid ((An—i-tnhf—A)_) H[O’T] — 0. (A.5)

This is done (as well as proving that || Ry, [[jo,-j— 0) by following arguments of Van der Vaart and
Wellner ([44], p. 382), and also borrowing their notations. For fixed n > 0, let us approximate hg~ by

hB =3 hB ™ (ti) 14, , 4, so that || B~ — hB ll0,71< - Then,
i=1

[0,7] X 62

I /hf‘d (Ap + toht — A) H[O
+30[r )
=1

where the factor 2M/€? is due to the fact that both A and A, +t,h;; belong to BVj/c2([0,7]). This proves (A.5)
since both || hZ — 1B |- and || A, + t,hi — A |[j0,- tend to 0 by assumption. The control of Ry, is done
very similarly and is hence omitted. O

]Sl\hf—ﬁBl

)

)

| (A tahit = A) (1) = (A + tahid = A) (tie0)| + BP0 | (An + tahit = 4) {7)

Our next lemma states the appropriate regularity properties of the product integral. Once again, we will
borrow the notations of Van der Vaart and Wellner ([44], p. 390).

Lemma A.4. The map ¢ defined on D) := BVy([0,7]) N Bar ([0, 7]) by

¢®: A= 1T (1+dA) e D([0,7])
0<s<-

is continuous on Dy . It is also LUHD at each A € D), tangentially to D([0,7]), with derivative

¢ (4)

dgl(h) : A — ¢ (4) x / A dh & D([0,]).

Moreover, we have ¢®) (D¢(3)) C BV(ar+ M7y exp(M+M7) N Bexp(v+a17)-

Proof. The continuity of the product integral with respect to || - [[(-, ;] is well known, as well as the following
equality, as functions on [0, 7], known as the Duhamel equation (see [44], pp. 390-391):
¢ (A)”
o)~ 69 (B) =6 (B) x [ LB - ) (A6)
( 0.1 0P(B)

Hence we have

®) -
tn! (sb(?’) (A + tohy) — ¢ (An)) _ ¢(3)(An)/ ¢ (A + tnhn)

dhn, AT
0,] p®) (An) (A7)
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Now, the arguments of Van der Vaart and Wellner [44], page 391 (where they approximate the h,, and their
limit & by a common function / of bounded variation) still apply in this context. Thus, it suffices to show that,
for any function h of bounded variation, we have:

¢ (A +tohy)”
(0,] ¢B3(An)

. (3)(,4)* -
dh — ¢®) (4 ¢‘7dh, as n — oo.
eoA) (0,] 93 (A)

¢(3) (A,)

This is true by continuity of ¢(3) with respect to || - ||jo,,] together with the fact that h is of bounded variation.
We omit details. 0

A first consequence of the preceding lemmas is that the maps defining the Nelson—Aalen and the Kaplan—
Meier estimators are both LUHD.

Proposition A.5. For M,e > 0, define
Dl = {0 1) € V(0% ot [1-Fo -y |2 o

The Nelson-Aalen map ¢, defined on Dy = Dgé),e by

oD = (Fy, ) H/ﬁdm e D([0,7]),

is continuous on DE\?,e' It is also LUHD at each (Fo,Fy) € D§\4/I)76, tangentially to D([0,7])?, with derivative

given by
hfo 4+ pf1)= dnfr
hFO,hF1—>/ ( dF+/—€D 0,7]).
W= w2 Tmme s PO

Moreover, we have ¢p*) (Dgé),e) C BVag/e([0,7]) N Bagse ([0, 7]).
As a consequence, the Kaplan—Meier function KM = ¢®) o ¢ is LUHD at each (Fo, Fy) € Dg\?e, tangen-
tially to D(]0,7])?, with derivative given by

KM(Fy, F1)
KM(FOaFl)_

(hFo 4+ nF1)~ At

rfo hfYy — KM(F,, Fy) x T
( ) (Fo, 1) 1—(Fo+F)-)?  1—(Fo+F)"

e D([0,7]).

In addition, we have KM (Dgé)’e) C BVapre—1 exp2me—1) N Bexp(2ne—1)-

Proof. Apply the chain rule for the composition ¢(?) o ¢(!) o ¢, where ¢ is the continuous linear map (Fo, F1) —
(1~ (Fo + F1)7), F1), for which ¢(D4}).) € DM(2M,€). We omit details. O

Now we just have to recall the previous results in order to prove the Proposition 5.5.
Proof of Proposition 5.5. One can decompose the map ¢(-, -, ) like
¢ (71, Fo, F1) = 62 (6 (KM(Fo, Fi), 1 = Fy = Fo) )

From the above lemmas and the chain rule (Lem. A.1) one can get the result of Proposition 5.5. O
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