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CONTINUOUS TIME MEAN-VARIANCE PORTFOLIO OPTIMIZATION
THROUGH THE MEAN FIELD APPROACH

Markus Fischer1 and Giulia Livieri2

Abstract. A simple mean-variance portfolio optimization problem in continuous time is solved us-
ing the mean field approach. In this approach, the original optimal control problem, which is time
inconsistent, is viewed as the McKean–Vlasov limit of a family of controlled many-component weakly
interacting systems. The prelimit problems are solved by dynamic programming, and the solution to
the original problem is obtained by passage to the limit.
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1. Introduction

In this paper, we study and solve a mean-variance portfolio optimization problem in continuous time using
the mean field approach introduced in the context of discrete time mean-variance problems by [2].

The problem of mean-variance portfolio optimization goes back, at least, to [11], who considered a single
period (one time step) model. The model allows investors to be risk averse. Investment decisions are therefore
made following two different objectives: to maximize expected return and to minimize financial risk. The two
conflicting objectives can be combined; decisions are made so as to maximize a difference between expectation
and variance of the random quantity representing wealth at terminal time. In a multi-period framework (discrete
or continuous time models), this kind of optimization problem is time inconsistent in the sense that an investment
strategy that is optimal over the entire time interval need not be optimal over subintervals. As a consequence,
Bellman’s Principle of Dynamic Programming does not hold for the underlying control problem.

Various approaches to multi-period mean-variance portfolio optimization have been explored; here, we men-
tion four different approaches from the mathematically oriented literature.

The first approach, due to [10] in a discrete time setting, works by embedding the time inconsistent mean-
variance optimization problem into a one-parameter family of standard time-consistent optimal control problems.
By solving these problems for each value of the parameter and then choosing the right parameter value according
to a compatibility constraint, one can solve the original problem. This technique is extended to continuous time
models in [14].
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A different approach is based on a game theoretic interpretation of time inconsistent optimal control problems.
Time inconsistency is interpreted in terms of changes in agents’ preferences, and an optimal control problem
is viewed as a game where the players are the future incarnations of their own preferences. Solutions of the
optimization problem are then defined in terms of sub-game perfect Nash equilibria; see [4] and the references
therein. The framework is used in [5] to solve a continuous time mean-variance portfolio optimization problem
with risk-aversion parameter that may depend on current wealth.

A third approach starts from the observation that dynamic mean-variance optimization problems can be seen
as stochastic optimal control problems of McKean–Vlasov or mean field type (cf . [8]). For this class of control
problems, the coefficients of the costs and dynamics may depend on the law of the controlled state process.
As a consequence, the cost functional may be non-linear with respect to the joint law of the state and control
process. In the context of mean-variance optimization, the coefficients of the controlled dynamics have standard
form, while the cost (or gain) functional is a quadratic polynomial of the expected value of the state process;
it is therefore non-linear as a functional of the law of the state process. The connection between mean-variance
optimization and control of McKean–Vlasov type has been exploited in [1]. There, the authors derive a version of
the stochastic Pontryagin maximum principle for continuous time optimal control problems of McKean–Vlasov
type. The maximum principle is then used to obtain the optimal control for the mean-variance problem solved
in [14]. The Pontryagin maximum principle for control problems of McKean–Vlasov type has also been studied
in [6], where a necessary condition for optimality is derived provided that the non-linear dependence on the
law of the state process can be expressed through a function of its expected value; in [7], the authors establish
a necessary as well as a sufficient condition for optimality for systems with general dependence on the law of
the state process, using a particular notion of differentiability for functions defined on a space of probability
measures.

The work by [2], who treat the mean-variance portfolio optimization problem in discrete time, also builds on
the connection with McKean–Vlasov control. Those authors, in order to circumvent the difficulties arising from
time inconsistency, interpret the original control problem as the McKean–Vlasov limit of a family of controlled
weakly interacting systems where interaction through the empirical measure appears only in the gain functional,
while each component (“market clone”) follows the same dynamics as that of the original controlled system. The
approximate K-component control problem has the portfolio mean and portfolio variance replaced with their
empirical counterparts, and dynamic programming can be used to determine the value function and optimal
strategy. The original optimization problem is then solved by letting the number of components K tend to
infinity. The asymptotic connection between systems with measure-dependent coefficients and many-component
(or many-particle) weakly interacting systems lies at the heart of the McKean–Vlasov theory, and it is well
established in the case of uncontrolled systems; see, for instance, [12] or [13].

The Pontryagin principle approach mentioned above works directly with the limit model, that is, with the
optimal control problem of McKean–Vlasov type. The law of the controlled state process, in particular, appears
in both the forward and the adjoint equation. This approach is most useful when the convexity assumptions on
the costs and the Hamiltonian required by the sufficient optimality condition are in force. This is the case for the
problem at hand, which has a linear-quadratic structure if one includes the mean of the controlled state process.
Still, for general convex models, solving the coupled non-linear system of forward and backward equation is
difficult. The mean field approach in the spirit of [2], on the other hand, is based on the McKean–Vlasov limit
and the standard theory of dynamic programming. No particular convexity structure is needed. The difficulty
lies in finding sufficiently explicit solutions for the prelimit problems. The optimal prelimit strategies, if given
in feedback form, should also be regular enough so that the passage to the McKean–Vlasov limit can be carried
out.

Optimal control problems of McKean–Vlasov type are related to – but different from – what is known as mean
field games. Mean field games are limit models for symmetric N -player games with interaction of mean field
type. The optimality criterion for the prelimit models (i.e., the N -player games) is that of a Nash equilibrium.
In the mean field limit, one representative player is left, while the behavior of all the other players is represented
by a flow of probability measures on state space. For any given flow of measures, one has to solve an optimal
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control problem, the optimization problem for the representative player. A solution of the mean field game
then consists in finding a flow of measures m such that the flow of marginal distributions for the optimally
controlled state process of the representative player given m coincides with m. See again [8] for references and
a comparison with optimal control problems of McKean–Vlasov type. Both types of problems have been solved
rather explicitly for a class of linear-quadratic models in [3]; see, in particular, the comparison in Section 6
therein.

The aim of this paper is to show that the particle limit approach as introduced by [2] in discrete time can
be successfully applied to continuous time models as well. We consider one of the simplest situations, namely a
market model with exactly one risky asset and one risk-free asset. The risk-free asset is assumed to be constant,
which corresponds to zero interest rate, while the evolution of the price of the risky asset is modeled as an
arithmetic Brownian motion (Bachelier dynamics). The case of a geometric Brownian motion (Merton–Black–
Scholes dynamics) can be handled by re-interpreting the control processes: instead of controlling the (possibly
negative) number of assets, control is exerted in terms of the market value of the assets. In the situation
considered here, we obtain an explicit expression for the optimal investment strategy in feedback form. The
result in itself is, of course, not new. It is essentially a special case of the solution obtained by [14] or [1];
cf . Remark 4.4 in Section 4 below. The result could also be derived by time discretization from the solutions of
the discrete-time problems studied in [2]. Here, however, we rely on dynamic programming in continuous time.
For the passage to the McKean–Vlasov limit, we use a coupling argument in the spirit of [13]. The contribution of
the present paper therefore lies in the fact that we combine standard tools to solve a non-standard optimization
problem, where the methods are suggested by the particle limit interpretation of the problem.

The rest of this paper is organized as follows. In Section 2, we formulate the mean-variance optimization
problem and the corresponding finite horizon optimal control problem. In Section 3, we introduce auxiliary
K-component (“K-clone”) optimal control problems. Those problems, which are of linear-quadratic type, are
solved explicitly using dynamic programming. In Section 4, we pass to the limit as the number of components
(or “clones” or particles) K tends to infinity. We obtain a limit feedback strategy and a limit value function,
which are shown to yield the solution to the original optimization problem.

2. Original optimization problem

We consider a financial market consisting of two assets, one risky (for instance, a stock) and one non-risky (a
bond). For simplicity, we assume that the interest rate for the bond is equal to zero, the bond price therefore
constant and, without loss of generality, equal to one. The price of the risky asset, which we denote by S, is
assumed to follow an arithmetic Brownian motion (or Brownian motion with drift). The process S thus satisfies
the equation

dS(t) = μ dt + σ dW (t) (2.1)

with deterministic initial condition S(0) = s0 > 0. In equation (2.1), μ > 0 is the average rate of return, σ > 0
the volatility, and (W (t))t≥0 a standard one-dimensional Wiener process defined on a filtered probability space
(Ω◦,F◦, (F◦

t ), P◦) satisfying the usual hypotheses.
Taking the point of view of a small investor, let u(t) denote the (not necessarily integer) number of shares of

the risky asset he or she holds at any given time t, and let X(t) be the value of the corresponding self-financing
portfolio, which consists of the risky and the risk-free asset. The process X then evolves according to

dX(t) = μ u(t)dt + σ u(t)dW (t) (2.2)

with deterministic initial condition X(0) = x0, where x0 > 0 is the initial capital. There is an implicit constraint
on the investment strategy u due to the stochastic environment of the problem, namely, u is allowed to depend
on the evolution of the random processes only up to the current time. The strategy u must therefore be non-
anticipative, that is, u has to be (F◦

t )-adapted. Below, we assume that u belongs to H2
T ((F◦

t )), the space of all
real-valued (F◦

t )-progressively measurable processes v such that E

(∫ T

0
|v(t)|2dt

)
< ∞, where T > 0 denotes the
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finite time horizon and E the expectation with respect to P◦. As is well known, if no boundedness or integrability
conditions were placed on the investment strategies, then any distribution at terminal time could be attained.

Our agent wants to choose a strategy u in order to maximize expected return over a fixed time interval [0, T ],
while trying at the same time to minimize financial risk. Interpreting risk as the variance of the underlying
process and switching from gains to be maximized to costs to be minimized, the optimization problem is
therefore to

minimize J(u) .= λVar (X(T ))− E (X(T ))

subject to

{
u ∈ H2

T ((F◦
t )),

X satisfies equation (2.2) with strategy u and X(0) = x0.
(2.3)

In (2.3), λ > 0 is a fixed parameter, the risk aversion parameter. A strategy ū ∈ H2
T ((F◦

t )) is called optimal if
J(ū) = infu∈H2

T ((F◦
t )) J(u). A function z̄ : [0, T ]× R → R is called an optimal feedback control if the equation

X̄(t) = x0 + μ

∫ t

0

z̄
(
s, X̄(s)

)
dt + σ

∫ t

0

z̄
(
s, X̄(s)

)
dW (t), t ∈ [0, T ], (2.4)

possesses a unique strong solution X̄ such that

ū(t, ω) .= z̄
(
t, X̄(t, ω)

)
, t ∈ [0, T ], ω ∈ Ω◦,

defines an optimal strategy, that is, ū ∈ H2
T ((F◦

t )) and J(ū) = infu∈H2
T ((F◦

t )) J(u). The strategy ū will be
referred to as the strategy induced by z̄, and the process X̄ will be referred to as the portfolio process induced
by z̄. Notice that both ū and X̄ depend on z̄ as well as the driving Wiener process.

3. Auxiliary prelimit optimization problems

Let K ∈ N \ {1}, and let Wj , j ∈ {1, . . . , K}, be K independent standard one-dimensional Wiener processes
defined on some filtered probability space (Ω,F , (Ft), P). The processes Wj can be interpreted as independent
clones of the Wiener process in (2.1). For j ∈ {1, . . . , K}, define Sj according to equation (2.1) with W replaced
by Wj . If uj is a real-valued (Ft)-adapted process, then the value of the agent’s portfolio in market clone j
follows the dynamics

dXj(t) = μ uj(t)dt + σ uj(t)dWj(t). (3.1)

The R
K-valued process X = (X1, . . . , XK)T (we use boldface symbols for K-dimensional column vectors) thus

obeys the stochastic differential equation

dX(t) = μ u(t)dt + σdiag (u1(t), . . . , uK(t)) dW (t), (3.2)

where u = (u1, . . . , uK)T is the agent’s investment strategy for the K market clones and W = (W1, . . . , WK)T.
Clearly, W is a K-dimensional standard Wiener process.

Given a vector v ∈ R
K , the empirical measure associated with v is the probability measure on the Borel sets

of R given by

μK
v

.=
1
K

K∑
j=1

δvj ,

where δx denotes Dirac measure concentrated in x ∈ R. The empirical mean of a K-dimensional vector is the
mean calculated with respect to its empirical measure, which equals the arithmetic mean:

em(v) .=
∫

R

y μK
v (dy) =

1
K

K∑
i=1

vj .
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Similarly, the empirical variance of a K-dimensional vector is the variance from the empirical mean calculated
with respect to the empirical measure:

empVar(v) .=
∫

R

(y − em(v))2 μK
v (dy)

=
1
K

K∑
j=1

(vj − em(v))2

= em
(
v2
)− em(v)2.

The square in v2 is to be understood component-wise, that is, v2 is the K-dimensional vector (v2
1 , . . . , v

2
K)T.

Recall that T is the finite time horizon. In setting up the K-clone optimization problem, it will be convenient
to allow the initial time and the initial state to vary. In addition, we adopt the weak formulation of a stochastic
control problem, that is, the stochastic basis and the driving noise processes are not fixed but part of the control.
To be more precise, let UK be the set of all triples ((Ω,F , (Ft), P), W , u) such that (Ω,F , (Ft), P) is a filtered
probability space satisfying the usual hypotheses, W is a K-dimensional standard (Ft)-Wiener process, and
u = (u1, . . . , uK)T is such that uj ∈ H2

T ((Ft)) for every j ∈ {1, . . . , K}. With a slight abuse of notation, we
will occasionally write u ∈ UK instead of ((Ω,F , (Ft), P), W , u) ∈ UK . For (t, x) ∈ [0, T ] × R

K , the K-clone
optimization problem is to

minimize JK(t, x; u) .= λE

(
em
(
X(T )2

)− em (X(T ))2
)
− E (em (X(T )))

subject to

{
u ∈ UK ,

X solves equation (3.2) with strategy u and X(t) = x.
(3.3)

The value function associated with (3.3) is defined as

VK(t, x) .= inf
u∈UK

JK(t, x; u), (t, x) ∈ [0, T ]× R
K .

Theorem 3.1. The value function for the optimization problem (3.3) is given by

VK(t, x) =
1
4λ

(
1 − e

μ2(T−t)
σ2(1−1/K)

)
− em(x) + λe−

μ2(T−t)
σ2(1−1/K)

(
em
(
x2
)− em(x)2

)
,

and the function z̄(K) : [0, T ]× R
K → R

K defined by

z̄
(K)
j (t, x) .=

μ

σ2(1 − 1/K)

(
em(x) − xj +

1
2λ

e
μ2(T−t)

σ2(1−1/K)

)
, j ∈ {1, . . . , K},

yields an optimal feedback control.

Proof. The cost functional JK is linear-quadratic in the state vector X(T ). To be more precise, define a K-
dimensional vector c and a K × K symmetric matrix G by

c
.=

1
K

⎡
⎢⎣
1
...
1

⎤
⎥⎦ , G

.=
2λ

K2

⎡
⎢⎢⎢⎢⎣
K − 1 −1 −1 · · · −1
−1 K − 1 −1 · · · −1
−1 −1 K − 1 · · · −1
...

...
...

. . . −1
−1 −1 −1 −1 K − 1

⎤
⎥⎥⎥⎥⎦ .
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Then

JK(t, x; u) = E

(
1
2
〈GX(T ), X(T )〉 + 〈c, X(T )〉

)
.

The controlled dynamics, which are given by equation (3.2), can be rewritten as

dX(t) = b (t, X(t), u(t)) dt + Σ (t, X(t), u(t)) dW (t)

with functions b : [0,∞) × R
K × R

K → R
K , Σ : [0,∞) × R

K × R
K → R

K×K defined as

bj(t, x, γ) .= μ γj, Σij(t, x, γ) .= σ γj δij , i, j ∈ {1, . . . , K}.

The control problem (3.3) is thus of the linear-quadratic type (i.e., linear-affine dynamics, linear-quadratic
costs); its generalized Hamiltonian H is given by

H (t, x, γ, p, P ) .=
K∑

j=1

(
μ pjγj +

σ2

2
Pjjγ

2
j

)
.

By the principle of dynamic programming, the value function should solve (at least in the sense of viscosity
solutions) the Hamilton–Jacobi–Bellman terminal value problem

{− ∂
∂tv − infγ∈RK H

(
t, x, γ,∇xv, D2

xxv
)

= 0 if (t, x) ∈ [0, T )× R
K ,

v(T, x) = 1
2 〈Gx, x〉 + 〈c, x〉 if t = T, x ∈ R

K .
(3.4)

The static optimization problem in (3.4) can be solved explicitly whenever P has non-zero diagonal entries. In
fact, for every (t, x, p) ∈ [0, T ] × R

K × R
K , every symmetric K × K matrix P = (Pij) with non-zero diagonal

entries,

argminγ∈RK H (t, x, γ, p, P ) =
(
− μ

σ2

p1

P11
, . . . ,− μ

σ2

pK

PKK

)T

· (3.5)

By a standard verification theorem (for instance, Thm. III.8.1 in [9], p. 135), if v is a classical solution of (3.4),
that is, v is in C1,2([0, T ] × R

K), satisfies (3.4) in the sense of classical calculus, and v as well as its first and
second order partial derivatives are of at most polynomial growth, then v coincides with the value function of
the optimization problem (3.3). In view of the form of the controlled dynamics (linear in the control, no explicit
state dependency), the linear-quadratic terminal costs, zero running costs, and the finite time horizon T , a good
guess for v : [0, T ]× R

K → R
K is

v(t, x) = f(t) + eβ(T−t) 〈c, x〉 +
eα(T−t)

2
〈Gx, x〉

for some constants α, β ∈ [0,∞) and some function f ∈ C1([0, T ]) such that f(T ) = 0. With this ansatz, v
is in C1,2([0, T ] × R

K) and its Hessian D2
xxv always has non-zero diagonal entries. Plugging v into (3.4), and

using (3.5), we find the unknown parameters α, β, and f(·) according to

α = −μ2

σ2

K

K − 1
, β = 0, f(t) =

1
4λ

(
1 − e

μ2(T−t)
σ2(1−1/K)

)
, t ∈ [0, T ].

With this choice of the parameters,

v(t, x) =
1
4λ

(
1 − e

μ2(T−t)
σ2(1−1/K)

)
− em(x) + λe−

μ2(T−t)
σ2(1−1/K)

(
em
(
x2
)− em(x)2

)
,
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which, by the verification theorem cited above, is equal to the value function of control problem (3.3). Calculating
the derivatives ∇xv(t, x), D2

xxv(t, x) with the above choice of parameters and plugging them into (3.5) yields
the feedback control z̄(K). Notice that z̄(K) is Lipschitz continuous in the state vector x so that the equation

dX(t) = μ z̄(K) (t, X(t)) dt + σdiag
(
z̄
(K)
1 (t, X(t)) , . . . , z̄

(K)
K (t, X(t))

)
dW (t)

possesses a unique (Markovian) solution given any deterministic initial condition. It follows (cf . [9], p. 136)
that z̄(K) is an optimal feedback control. Since the argmin in (3.5) is unique, the optimal feedback control
z̄(K) is unique. The corresponding optimal strategy for initial condition X(t0) = x is determined by u(t, ω) .=
z̄(K) (t, X(t, ω)), t ≥ t0, ω ∈ Ω; notice that u ∈ UK . �

Remark 3.2. In the proof of Theorem 3.1, we made a linear-quadratic ansatz for the function v. The non-
standard part of our guess is the choice of the matrix G for the quadratic form and the vector c for the linear
part. The choice of c comes from the symmetry of dynamics and costs with respect to the components of the
state vector. Notice that there is no direct interaction between components in the dynamics of the controlled
process X. The choice of G is also suggested by the terminal condition of the HJB equation (3.4) or, equivalently,
the terminal costs in the definition of the cost functional JK . Alternatively, though less convincingly, one can
obtain a good guess for v by looking at the discrete time situation studied in [2].

4. Passage to the limit

We next show that, by letting the number of clones K tend to infinity, we obtain a feedback control that
is optimal for the original optimization problem (2.3). By Theorem 3.1, the optimal feedback control for the

K-clone optimization problem is given by z̄(K) =
(
z̄
(K)
1 , . . . , z̄

(K)
K

)T

with

z̄
(K)
j (t, x) =

μ

σ2(1 − 1/K)

(
em(x) − xj +

1
2λ

e
μ2(T−t)

σ2(1−1/K)

)
. (4.1)

In passing to the limit, it will be convenient to work with a fixed stochastic basis carrying an infinite family of
independent one-dimensional standard Wiener processes. Thus, let (Ω,F , (Ft), P) be a filtered probability space
satisfying the usual hypotheses and carrying a sequence (Wj)j∈N of independent one-dimensional (Ft)-Wiener
processes. Recall that x0 is the initial state at time zero for the portfolio process of the original problem (2.3).

For K ∈ N \ {1}, set x
(K)
0

.= (x0, . . . , x0)
T ∈ R

K , and let X̄
(K) =

(
X̄

(K)
1 , . . . , X̄

(K)
K

)T

denote the unique strong
solution of the system of stochastic differential equations

dX̄
(K)
j (t) = μ z̄

(K)
j

(
t, X̄

(K)(t)
)

dt + σ z̄
(K)
j

(
t, X̄

(K)(t)
)

dWj(t), (4.2)

j ∈ {1, . . . , K}, with initial condition X̄
(K)(0) = x

(K)
0 . The process X̄

(K) has the same distribution as the
unique solution to equation (3.2) (or the system of equations determined by (3.1)) when feedback control z̄(K)

is applied and the initial condition is x
(K)
0 at time zero; for the corresponding costs we have

λE

(
em
(
X̄

(K)(T )2
)
− em

(
X̄

(K)(T )
)2
)
− E

(
em
(
X̄

(K)(T )
))

= VK

(
0, x

(K)
0

)
.

Define the function z̄ : [0, T ]× R → R by

z̄(t, x) .=
μ

σ2

(
x0 +

1
2λ

e
μ2

σ2 T − x

)
. (4.3)
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The function z̄ will turn out to be an optimal feedback control for the optimization problem of Section 2. Notice
that z̄ is Lipschitz continuous in the space variable. For j ∈ N, let X̄j be the unique strong solution of

X̄j(t) = x0 + μ

∫ t

0

z̄
(
s, X̄j(s)

)
ds + σ

∫ t

0

z̄
(
s, X̄j(s)

)
dWj(s). (4.4)

Lemma 4.1. Define functions m, n : [0, T ] → R by

m(t) .= x0 +
1
2λ

(
e

μ2

σ2 T − e
μ2

σ2 (T−t)

)

n(t) .= x2
0 +

x0

λ

(
e

μ2

σ2 T − e
μ2

σ2 (T−t)

)
+

1
4λ2

(
e2 μ2

σ2 T − e
μ2

σ2 (2T−t)

)
.

Then the following convergences hold uniformly in t ∈ [0, T ]:

(a) limK→∞ em
(
X̄

(K)(t)
)

= m(t) in L2(P);

(b) limK→∞ E

(
em
((

X̄
(K)(t)

)2
))

= n(t);

(c) for every j ∈ N,

lim
K→∞

z̄
(K)
j (t, X̄(K)(t)) = z̄(t, X̄j(t)), lim

K→∞
X̄

(K)
j (t) = X̄j(t) in L2(P).

Moreover, for every j ∈ N, every t ∈ [0, T ],

E
(
X̄j(t)

)
= m(t), E

((
X̄j(t)

)2) = n(t).

Proof. For K ∈ N \ {1}, t ∈ [0, T ], set

Y (K)(t) .= em
(
X̄

(K)(t)
)

, L(K)(t) .= em
(
X̄

(K)(t)2
)

, CK
.=

μ

σ2(1 − 1/K)
,

gK(t) .=
1
2λ

e
μ2

σ2(1−1/K)
t
, g(t) .=

1
2λ

e
μ2

σ2 t.

Clearly, CK → μ/σ2, gK(t) → g(t) uniformly in t ∈ [0, T ] as K → ∞. By definition, Y (K)(t) = 1
K

∑K
j=1 X̄

(K)
j (t),

L(K)(t) = 1
K

∑K
j=1 X̄

(K)
j (t)2. Notice that

m(t) = x0 + g(T ) − g(T − t).
n(t) = m(t)2 − g(T − t/2)2 − g(T − t)2 + 2g(T )g(T − t).

In view of (4.1) and (4.2), Y (K) solves the stochastic differential equation

dY (K)(t) = μ CK gK(T − t) dt +
1
K

K∑
j=1

σ CK

(
Y (K)(t) − X̄

(K)
j (t) + gK(T − t)

)
dWj(t) (4.5)

with initial condition Y (K)(0) = x0, while L(K) solves

dL(K)(t) = 2μ CK

(
Y (K)(t)2 − L(K)(t) + Y (K)(t) gK(T − t)

)
dt

+ σ2C2
K

(
L(K)(t) − Y (K)(t)2 + gK(T − t)2

)
dt

+
1
K

K∑
j=1

2σ CK X̄
(K)
j (t)

(
Y (K)(t) − X̄

(K)
j (t) + gK(T − t)

)
dWj(t) (4.6)
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with initial condition L(K)(0) = x2
0. By the independence of the Wiener processes W1, . . . , WK , the Burkholder–

Davis–Gundy inequality, and Gronwall’s lemma, X̄(K)
1 , . . . , X̄

(K)
K , Y (K), L(K) possess moments of any polynomial

order; moreover,

sup
K∈N

sup
s∈[0,T ]

E

(
L(K)(s)

)
= sup

K∈N

sup
s∈[0,T ]

E

⎛
⎝ 1

K

K∑
j=1

∣∣∣X̄(K)
j (s)

∣∣∣2
⎞
⎠ < ∞. (4.7)

In order to prove the limit in (a), it is enough to show that

lim sup
K→∞

sup
t∈[0,T ]

E

(∣∣∣Y (K)(t) − m(t)
∣∣∣2) ≤ 0.

Integration of equation (4.5) yields, for every t ∈ [0, T ],

Y (K)(t) = x0 + gK(T ) − gK(T − t) +
1
K

K∑
j=1

∫ t

0

σ CK

(
Y (K)(s) − X̄

(K)
j (s) + gK(T − s)

)
dWj(s).

Using Itô’s isometry and the independence of the Wiener processes, one finds that

E

(∣∣∣Y (K)(t) − m(t)
∣∣∣2) ≤ 2 (gK(T ) − g(T ) + g(T − t) − gK(T − t))2

+
2μ2

σ2(K − 1)2
E

⎛
⎜⎝
⎛
⎝ K∑

j=1

∫ t

0

(
Y (K)(s) − X̄

(K)
j (s) + gK(T − s)

)
dWj(s)

⎞
⎠

2
⎞
⎟⎠

= 2 (gK(T ) − g(T ) + g(T − t) − gK(T − t))2

+
2μ2

σ2(K − 1)2

K∑
j=1

∫ t

0

E

((
Y (K)(s) − X̄

(K)
j (s) + gK(T − s)

)2
)

ds

≤ 2 (gK(T ) − g(T ) + g(T − t) − gK(T − t))2

+
16Tμ2

σ2(K − 1)2

⎛
⎝K gK(T )2 + sup

s∈[0,T ]

E

⎛
⎝ K∑

j=1

(
X̄

(K)
j (s)

)2

⎞
⎠
⎞
⎠ .

Since gK(t) → g(t) uniformly and thanks to (4.7),

lim sup
K→∞

sup
t∈[0,T ]

E

(∣∣∣Y (K)(t) − m(t)
∣∣∣2)

≤ lim sup
K→∞

16Tμ2K

σ2(K − 1)2

⎛
⎝gK(T )2 + sup

s∈[0,T ]

E

⎛
⎝ 1

K

K∑
j=1

(
X̄

(K)
j (s)

)2

⎞
⎠
⎞
⎠ = 0.

In order to prove (b), set

nK(t) .= E

(
L(K)(t)

)
, t ∈ [0, T ].
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We have to show that limK→∞ nK(t) = n(t) for every t ∈ [0, T ]. Integration of equation (4.6) yields, for t ∈ [0, T ],

L(K)(t) = x2
0 +

(
2μ CK − σ2C2

K

) ∫ t

0

(
Y (K)(s)2 − L(K)(s)

)
ds

+ 2μ CK

∫ t

0

Y (K)(s) gK(T − s) ds + σ2C2
K

∫ t

0

gK(T − s)2ds

+
1
K

K∑
j=1

∫ t

0

2σ CK X̄
(K)
j (s)

(
Y (K)(s) − X̄

(K)
j (s) + gK(T − s)

)
dWj(s).

The stochastic integral in the above display is a true martingale thanks to the Lp-integrability of the components
of X̄

(K). Using the Fubini–Tonelli theorem, it follows that nK(·) satisfies the integral equation

nK(t) = x2
0 +

(
2μ CK − σ2C2

K

) ∫ t

0

(
E

(
Y (K)(s)2

)
− nK(s)

)
ds

+ 2μ CK

∫ t

0

E

(
Y (K)(s)

)
gK(T − s) ds + σ2C2

K

∫ t

0

gK(T − s)2ds.

Notice that limK→∞ σ2C2
K = μ2

σ2 = limK→∞ μ CK . Let n̄(·) denote the unique solution over [0, T ] of the integral
equation

n̄(t) = x2
0 +

μ2

σ2

∫ t

0

(m(s) + g(T − s))2 ds − μ2

σ2

∫ t

0

n̄(s)ds.

By part (a), E
(
Y (K)(s)

)→ m(s) and E
(
Y (K)(s)2

)→ m(s)2 as K → ∞, uniformly in s ∈ [0, T ]. It follows that

limK→∞ nK(t) = n̄(t), uniformly in t ∈ [0, T ]. Since m(s) + g(T − s) = x0 + 1
2λe

μ2

σ2 T , n̄(·) is the unique solution
over [0, T ] of the integral equation

n̄(t) = x2
0 +

μ2

σ2
t

(
x0 +

1
2λ

e
μ2

σ2 T

)2

− μ2

σ2

∫ t

0

n̄(s)ds

or, equivalently, the unique solution over [0, T ] of the differential equation

d
dt

n̄(t) =
μ2

σ2

(
x0 +

1
2λ

e
μ2

σ2 T

)2

− μ2

σ2
n̄(t)

with initial condition n̄(0) = x2
0. That solution is given by

n̄(t) = e−
μ2

σ2 t

(
x2

0 +
μ2

σ2

(
x0 +

1
2λ

e
μ2

σ2 T

)2 ∫ t

0

e
μ2

σ2 sds

)

= x2
0 +

x0

λ

(
e

μ2

σ2 T − e
μ2

σ2 (T−t)

)
+

1
4λ2

(
e2 μ2

σ2 T − e
μ2

σ2 (2T−t)

)
.

Therefore, limK→∞ nK(t) = n̄(t) = n(t), uniformly in t ∈ [0, T ].
For part (c), fix j ∈ N, and let X̄j be the unique solution of equation (4.4) with X̄j(0) = x0 and driving

Wiener process Wj . In order to prove (c), it is enough to show that

lim sup
K→∞

sup
t∈[0,T ]

E

(∣∣∣z̄(K)
j

(
t, X̄

(K)(t)
)
− z̄

(
t, X̄j(t)

)∣∣∣2) ≤ 0,
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and analogously for X̄
(K)
j (t) and X̄j(t). For t ∈ [0, T ], K ∈ N, set

RK(t) .=
μ

σ2(1 − 1/K)

(
em
(
X̄

K
j (t)

)
+ gK(T − t)

)
− μ

σ2
(x0 + g(T )) +

μ

σ2(K − 1)
X̄

(K)
j (t).

Clearly, limK→∞ μ
σ2(1−1/K) = μ

σ2 . Thanks to part (a),

em
(
X̄

(K)(t)
)

+ gK(T − t) K→∞−→ m(t) + g(T − t) = x0 + g(T )

in L2(P), uniformly in t ∈ [0, T ]. By the symmetry of equation (4.2) and the initial condition,
X̄

(K)
1 (t), . . . , X̄(K)

K (t) have the same distribution for every t ∈ [0, T ]. Estimate (4.7) therefore implies that

sup
K∈N

sup
t∈[0,T ]

E

(∣∣∣X̄(K)
j (t)

∣∣∣2) < ∞.

It follows that
sup

t∈[0,T ]

E

(
|RK(t)|2

)
K→∞−→ 0.

Now, for every t ∈ [0, T ],∣∣∣z̄(K)
j

(
t, X̄

(K)(t)
)
− z̄

(
t, X̄j(t)

)∣∣∣2 =
∣∣∣ μ

σ2

(
X̄

(K)
j (t) − X̄j(t)

)
+ RK(t)

∣∣∣2
≤ 2

μ2

σ4

∣∣∣X̄(K)
j (t) − X̄j(t)

∣∣∣2 + 2 |RK(t)|2 .

In view of equations (4.2) and (4.4), respectively, using Hölder’s inequality, Itô’s isometry, and the Fubini–Tonelli
theorem, we have

E

(∣∣∣X̄(K)
j (t) − X̄j(t)

∣∣∣2) ≤ 2μ2
E

((∫ t

0

(
z̄
(K)
j

(
s, X̄

(K)(s)
)
− z̄

(
s, X̄j(s)

))
ds

)2
)

+ 2σ2
E

((∫ t

0

(
z̄
(K)
j

(
s, X̄

(K)(s)
)
− z̄

(
s, X̄j(s)

))
dWj(s)

)2
)

≤ 2
(
μ2T + σ2

) ∫ t

0

E

(∣∣∣z̄(K)
j

(
s, X̄

(K)(s)
)
− z̄

(
s, X̄j(s)

)∣∣∣2) ds.

It follows that, for every t ∈ [0, T ],

E

(∣∣∣z̄(K)
j

(
t, X̄

(K)(t)
)
− z̄

(
t, X̄j(t)

)∣∣∣2)

≤ 4
(

μ4

σ4
T +

μ2

σ2

)∫ t

0

E

(∣∣∣z̄(K)
j

(
s, X̄

(K)(s)
)
− z̄

(
s, X̄j(s)

)∣∣∣2) ds + 2 sup
s∈[0,T ]

E

(
|RK(s)|2

)
.

Therefore, by Gronwall’s lemma,

sup
t∈[0,T ]

E

(∣∣∣z̄(K)
j

(
t, X̄

(K)(t)
)
− z̄

(
t, X̄j(t)

)∣∣∣2) ≤ 2 sup
t∈[0,T ]

E

(
|RK(t)|2

)
e4
(

μ4

σ4 T+ μ2

σ2

)
T
.

Since supt∈[0,T ] E

(
|RK(t)|2

)
→ 0 as K → ∞, we have

lim sup
K→∞

sup
t∈[0,T ]

E

(∣∣∣z̄(K)
j

(
t, X̄

(K)(t)
)
− z̄

(
t, X̄j(t)

)∣∣∣2) ≤ 0.
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Similarly, for every t ∈ [0, T ],

E

(∣∣∣X̄(K)
j (t) − X̄j(t)

∣∣∣2)

≤ 4
(

μ4

σ4
T +

μ2

σ2

)∫ t

0

E

(∣∣∣X̄(K)(s) − X̄j(s)
∣∣∣2) ds + 4T

(
μ2T + σ2

)
sup

s∈[0,T ]

E

(
|RK(s)|2

)
.

Thus, again by Gronwall’s lemma and since supt∈[0,T ] E

(
|RK(t)|2

)
→ 0,

lim sup
K→∞

sup
t∈[0,T ]

E

(∣∣∣X̄(K)
j (t) − X̄j(t)

∣∣∣2) ≤ 0.

The last part of the assertion is now a consequence of parts (a)–(c), and the fact that X̄
(K) has identically

distributed components for every K ∈ N. Alternatively, the first and second moments of X̄j(t) can be calculated
directly from equations (4.4) and (4.3), the definition of z̄. �

Theorem 4.2. The function

z̄(t, x) .=
μ

σ2

(
x0 +

1
2λ

e
μ2

σ2 T − x

)
, (t, x) ∈ [0, T ]× R,

yields an optimal feedback control for the original optimization problem (2.3), and the minimal costs are given by

λVar
(
X̄(T )

)− E
(
X̄(T )

)
=

1
4λ

(
1 − e

μ2

σ2 T

)
− x0,

where X̄ is the portfolio process induced by z̄.

Before giving the proof of Theorem 4.2, we make a few remarks regarding the optimal feedback control z̄.

Remark 4.3. The optimal feedback control z̄ is affine-linear in the current state x, does not depend on the
current time t, while it depends on the time horizon T as well as the initial state x0. This last dependence is due
to the non-linear nature of the cost functional, which makes the optimization problem inconsistent in time. The
fact that z̄ does not depend on the current time t is something of a coincidence, due to our choice of interest
rates equal to zero. Recall that, by Lemma 4.1,

m(t) .= x0 +
1
2λ

(
e

μ2

σ2 T − e
μ2

σ2 (T−t)

)
,

is the L2-limit of the empirical means of the K-clone optimization problem. For the optimal strategy z̄, we can
therefore write

z̄(t, x) =
μ

σ2

(
m(t) +

1
2λ

e
μ2

σ2 (T−t) − x

)
. (4.8)

This expression coincides, in the limit as K → ∞, with the expression for the optimal feedback strategy z̄
(K)
j

established in Theorem 3.1 for the jth component of the K-clone optimization problem. In (4.8), z̄ apparently
depends on current time, but this dependence cancels out when we plug in the expression for m(t). On the other
hand, z̄ truly depends – through m(·) – on the initial state x0, since m(0) = x0. Also notice that m(t) = E

(
X̄(t)

)
,

where X̄ is the optimal portfolio process, the one induced by z̄.
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Remark 4.4. Expression (4.8) coincides with the optimal feedback strategy found at the end of Section 5 of [1]
in the special case of zero interest rate (ρt ≡ 0), constant volatility (σt ≡ σ), and constant average rate of return
(αt ≡ μ); our risk aversion parameter λ corresponds to γ/2 there. In Section 5 of [1], the price of the risky asset
follows a geometric Brownian motion, not an arithmetic as here, but the resulting mean-variance optimization
problem, including the dynamics for the portfolio process, is the same as in our case. The difference lies entirely
in the different interpretation of the investment strategies, namely as control expressed in terms of (real-valued)
number of assets versus market value of assets.

Remark 4.5. The solution to the mean-variance optimization problem seen above is known as precommitment
solution. This refers to the fact that we solve the optimization problem exclusively from the point of view of
the agent’s state at time zero, ignoring intermediate times. The game-theoretic approach leads to a different
interpretation of the optimization problem and to a different solution. The optimal feedback strategy found
in [4, 5] for the special case of constant interest rate r, constant volatility σ, constant average rate of return
(α = μ), and constant risk aversion parameter (γ/2 = λ) is given by ẑ(t, x) = μ−r

σ2
1
2λer(T−t). In particular, if

r = 0, then

ẑ(t, x) ≡ μ

σ2

1
2λ

·
It would therefore be optimal to hold a constant number of assets (Bachelier dynamics, arithmetic Brownian
motion) or a constant market value of assets (Merton–Black–Scholes dynamics, geometric Brownian motion),
independently of current or initial wealth. This is in stark contrast with (4.3) and (4.8), respectively.

Proof of Theorem 4.2. The strategies and portfolio processes of the original optimization problem (2.3) are
all defined on the filtered probability space (Ω◦,F◦, (F◦

t ), P◦) with W an (F◦
t )-Wiener process. Let X̄ be the

portfolio process induced by z̄, that is, X̄ is the unique strong solution of equation (2.4):

X̄(t) = x0 + μ

∫ t

0

z̄
(
s, X̄(s)

)
ds + σ

∫ t

0

z̄
(
s, X̄(s)

)
dW (s), t ∈ [0, T ].

Let ū be the strategy induced by z̄:

ū(t, ω) .= z̄
(
t, X̄(t, ω)

)
, t ∈ [0, T ], ω ∈ Ω.

Then ū is a real-valued square-integrable process with continuous trajectories, and ū is adapted to the filtration
generated by the Wiener process W . It follows that ū ∈ H2

T ((F◦
t )). Moreover, X̄ coincides with the unique

solution of equation (2.2) with strategy u = ū and initial condition X̄(0) = x0. By definition,

J(ū) = λ
(

E
(
X̄(T )2

)− E
(
X̄(T )

)2)− E
(
X̄(T )

)
.

Let ũ ∈ H2
T ((F◦

t )) be any admissible strategy, and let X̃ be the unique solution of equation (2.2) with strategy

u = ũ and initial condition X̃(0) = x0. To prove the statement, we have to show that J(ū) = 1
4λ

(
e

μ2

σ2 T − 1
)
−x0

and that J(ū) ≤ J(ũ). Set

Ω
.= ×∞

i=1Ω◦, F .= ⊗∞
i=1F◦, Ft

.= ⊗∞
i=1F◦

t , t ≥ 0, P = ⊗∞
i=1P◦.

Then (Ω,F , (Ft), P) is a filtered probability space satisfying the usual hypotheses. For every j ∈ N, define
processes Wj , ūj, X̄j , ũj , X̃j by setting, for t ≥ 0, ω = (ωi)i∈N ∈ Ω,

Wj(t, ω) .= W (t, ωj), ūj(t, ω) .= ū(t, ωj), X̄j(t, ω) .= X̄(t, ωj),

ũj(t, ω) .= ũ(t, ωj), X̃j(t, ω) .= X̃(t, ωj).
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All processes thus defined are (Ft)-progressively measurable, and W1, W2, . . . are independent standard (Ft)-
Wiener processes. The processes Wj , ūj , X̄j , ũj, X̃j , j ∈ N, are i.i.d. copies of the processes W , ū, X̄ , ũ, X̃.
More precisely, (Wj , ūj, X̄j , ũj, X̃j)j∈N is a family of independent and identically distributed R

5-valued processes
living on (Ω,F , P), and for every j ∈ N,

P ◦
(
Wj , ūj, X̄j , ũj, X̃j

)−1

= P◦ ◦
(
W, ū, X̄, ũ, X̃

)−1

.

In fact, X̄j , X̃j solve equation (2.2) with Wiener process Wj in place of W , initial condition x0 at time zero,
and strategy u = ū and u = ũ, respectively. Moreover, X̄j solves equation (4.4). By Lemma 4.1, it follows that

J(ū) = λ
(

E
(
X̄1(T )2

)− E
(
X̄1(T )

)2)− E
(
X̄1(T )

)
= λ

(
n(T ) − m(T )2

)− m(T )

=
1
4λ

(
1 − e

μ2

σ2 T

)
− x0.

It remains to show that J(ũ) ≥ J(ū). Observe that

J(ū) = lim
K→∞

VK

(
0, x

(K)
0

)
,

where VK is the value function of Theorem 3.1 and x
(K)
0 = (x0, . . . , x0)

T ∈ R
K as above. By construction,

J(ũ) = λ

(
E

(
X̃1(T )2

)
− E

(
X̃1(T )

)2
)
− E

(
X̃1(T )

)
.

For K ∈ N \ {1}, set X̃
(K) .= (X̃1, . . . , X̃K)

T
and ũ(K) .= (ũ1, . . . , ũK)T. Then(

(Ω,F , (Ft), P), (W1, . . . , WK)T
, ũ(K)

)
∈ UK

and X̃
(K)

solves equation (3.2) with strategy u = ũ(K) and initial condition X̃
(K)

(0) = x
(K)
0 . Recalling the

definition of the cost functional in (3.3), we have

JK

(
0, x

(K)
0 ; ũ(K)

)
= λE

(
em
(
X̃

(K)
(T )2

)
− em

(
X̃

(K)
(T )
)2
)
− E

(
em
(
X̃

(K)
(T )
))

.

By construction, (X̃j(T ))j∈N is an i.i.d. sequence of real-valued square-integrable random variables on (Ω,F , P).
Therefore,

E

(
em
(
X̃

(K)
(T )
))

= E

(
X̃1(T )

)
, E

(
em
(
X̃

(K)
(T )2

))
= E

(
X̃1(T )2

)
,

while

E

(
em
(
X̃

(K)
(T )
)2
)

=
K(K − 1)

K2
E

(
X̃1(T )

)2

+
K

K2
E

(
X̃1(T )2

)
.

It follows that
lim

K→∞
JK

(
0, x

(K)
0 ; ũ(K)

)
= J(ũ).

Since JK

(
0, x

(K)
0 ; ũ(K)

)
≥ VK

(
0, x

(K)
0

)
for every K ∈ N \ {1} by definition of the value function and

limK→∞ VK

(
0, x

(K)
0

)
= J(ū), we conclude that J(ũ) ≥ J(ū). �
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