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Abstract. In this paper, we address the issue of estimating the parameters of general multivariate
copulas, that is, copulas whose partial derivatives may not exist. To this aim, we consider a weighted
least-squares estimator based on dependence coefficients, and establish its consistency and asymptotic
normality. The estimator’s performance on finite samples is illustrated on simulations and a real dataset.
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1. Introduction

The concept of copulas is useful to model multivariate distributions. Given a multivariate random vector of
interest, copulas allow to separate the analysis of the margins from the dependence structure. Standard books
covering this subject include [9, 24, 29]. See also [15] for an introduction to this topic.

Some copulas possess a singular component, meaning that they are not absolutely continuous (with respect
to the Lebesgue’s measure). For instance, let us consider the copula given below, introduced in [8]:

C(u1, u2, u3, u4) =
4∏

i=1

u
1−∑ j �=i θij

i

∏
i<j

min(ui, uj)θij , (1.1)

∑
j �=i

θij ≤ 1, i = 1, . . . , 4, θij = θji ∈ [0, 1].

One can see that, on the diagonal of the unit hypercube, the partial derivatives do not exist. Yet, most inference
methods for multivariate copulas make the assumption that these derivatives exist, and even are continuous.
This is the case, for example, for the minimum-distance estimator [35], the simulated method of moments [31],
and, of course, likelihood-based methods ([17], [24] Sect. 10.1). When this assumption is not made, some methods
can still be applied but only in specific situations. For example, when there are only two dimensions, one can
rely on the inversion of the Kendall’s tau (see [13, 15]). When there is an arbitrary number of dimensions but
only one parameter to estimate, an extension of this method can also be found in [19]. Also, if the copulas of
interest are elliptical copulas, one can use the analysis of covariance structures [25]. The issue that the partial
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derivatives need to exist and be continuous on the unit hypercube in order to properly apply most inference
methods was also raised in [3,34]. In these papers, the authors show how to weaken the classical differentiability
assumptions in the empirical copula process theory.

In order to estimate the parameters of general multivariate copulas, we consider a weighted least-squares
(WLS) estimator based on dependence coefficients. The consistency and asymptotic normality of the estimator
are derived without assuming that the copulas of interest have partial derivatives at all. This method is therefore
broadly applicable and allows to estimate the parameters of any kind of copulas, provided that one can calculate
their dependence coefficients.

In Section 2 of this paper, the consistency and asymptotic normality of the WLS estimator are established.
The theoretical results are illustrated on simulated and real datasets in Section 3. The proofs are postponed to
the Appendix.

2. Asymptotic properties of the WLS estimator based on dependence

coefficients

We derive the consistency and asymptotic normality of a generic WLS estimator in Section 2.1 and give
three examples based on the Spearman’s rho, the Kendall’s tau, and the extremal dependence coefficients in
Section 2.2.

Let X(1), . . . ,X(n) with X(k) = (X(k)
1 , . . . , X

(k)
d ), k = 1, . . . , n, be independent and identically distributed

copies of a vector X = (X1, . . . , Xd) with distribution F and copula C. The marginal distributions F1, . . . , Fd

are assumed to be continuous. The copula C is assumed to belong to the family (Cθ) for θ ∈ Θ ⊂ R
q. The

true parameter vector is denoted by θ0, that is, C = Cθ0 . Let p = d(d − 1)/2 be the number of variable pairs
(Xi, Xj), for i = 1, . . . , d − 1, j = 2, . . . , d, i < j. Let us define the vector map

D : Θ → D(Θ) ⊂ R
p (2.1)

θ �→ (D1,2(θ), . . . ,Dd−1,d(θ)) ,

where Di,j(·) can represent, but is not limited to, a well chosen dependence coefficient between the variables Xi

and Xj (see Sect. 2.2 for examples). The space D(Θ) stands for the image of Θ by the multivariate map D.
The coordinates of D(θ) are the Di,j(θ) sorted in the lexicographic order. When the map D is differentiable,
its Jacobian matrix at θ = (θ1, . . . , θq) is denoted by

Ḋ(θ) =

⎛⎜⎜⎝
∂D1,2(θ)

∂θ1

∂D1,2(θ)
∂θ2

· · · ∂D1,2(θ)
∂θq

...
...

∂Dd−1,d(θ)
∂θ1

∂Dd−1,d(θ)
∂θ2

· · · ∂Dd−1,d(θ)
∂θq

⎞⎟⎟⎠ .

Besides, let D̂ = (D̂1,2, . . . , D̂d−1,d) be an empirical (nonparametric) estimator of D(θ0). To simplify the nota-
tions, we shall write Ḋ(θ0) = Ḋ, Di,j(θ0) = Di,j and D = D(θ0). Vectors are assumed to be column vectors
and T denotes the transpose operator.

The WLS estimator of θ0 studied in this paper is defined as

θ̂ := arg min
θ∈Θ

(
D̂ − D(θ)

)T

Ŵ
(
D̂ − D(θ)

)
, (2.2)

where Ŵ = Ŵn is a sequence (n = 1, 2, . . . ) of symmetric and positive definite matrices with full rank. Let us
denote by �̂(θ) the loss function to be minimized in (2.2). In general, the minimizer θ̂ of �̂(·) may not exist, or
may not be unique. However, it will be seen in Section 2.1 that the existence and uniqueness of θ̂ hold with
probability tending to one as the sample size increases. Since Ŵ is positive definite, the loss function �̂ is such
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that �̂(θ) ≥ 0 for all θ ∈ Θ and vanishes at θ̂ if and only if θ̂ ∈ D−1({D̂}), where D−1({D̂}) denotes the set of
all θ in Θ such that D(θ) = D̂. In this case, the WLS estimator does not depend on the weights and D(θ̂) = D̂.
Moreover, if the multivariate map D is one-to-one, then the WLS estimator takes the form θ̂ = D−1(D̂).

2.1. Asymptotic properties of the generic WLS estimator

The assumptions needed to derive the asymptotic properties of the WLS estimator are given below. The
symbol ‖ · ‖ denotes the Euclidean norm.

Assumptions

(A1) The true parameter vector θ0 lies in the interior of Θ. Moreover, there exists ε0 > 0 such that the set
{θ ∈ Θ : ‖θ − θ0‖ ≤ ε0} is closed (and thus compact) in R

q.
(A2) As n → ∞, the sequence of weight matrices Ŵ converges in probability to a symmetric and positive

definite matrix W with full rank.
(A3) The map D defined in (2.1) is a twice continuously differentiable homeomorphism such that Ḋ is full

rank.
(A4) As n → ∞, the empirical estimator D̂ is such that

D̂ P→ D, and,
√

n
(
D̂ − D

)
d→ Np(0, Σ),

where Σ is some symmetric, positive definite p × p matrix noted as follows

Σ =

⎛⎜⎜⎝
Σ1,2;1,2 Σ1,2;1,3 . . . Σ1,2;d−1,d

Σ1,3;1,2 Σ1,3;1,3 . . . Σ1,3;d−1,d

...
...

...
...

Σd−1,d;1,2 Σd−1,d;1,3 . . . Σd−1,d;d−1,d

⎞⎟⎟⎠ . (2.3)

Assumption (A1), which is rather standard (see, e.g. [10]), is not too restrictive for most copula models. Indeed,
a parameter lying in the parameter space boundaries often means that the copula of interest is in fact the
independence copula or one of the Fréchet–Hoeffding bounds, that is, a copula where the dependence is “perfect”
(see for instance [29], Chap. 2). This is not an issue because one does not encounter perfect dependence in
practice. As for independence, one might carry out a statistical test as in [14], and, based on the results, decide
whether independence holds or not. If not, then one can safely assume that the parameters lie in the interior of
the parameter space.

A sequence of weight matrices verifying Assumption (A2) can always be constructed. A trivial example
is Ŵ = Ip, where Ip is the identity matrix of size p. The construction of optimal weights is addressed in
Proposition 2.5 below.

The estimation of the copula parameter vector is performed by matching the theoretical and empirical
dependence coefficients. Hence, a successful match should ensure that the resulting parameter vector estimate
is close to the true value. This identifiability condition, also made in [10] in order to estimate extreme-value
copulas with a singular component, is the essence of Assumption (A3). Assumption (A3) is hard to check in
practice, except maybe for particular simple cases when p = q, as in Section 3.2. Nonetheless, one can always test
the estimation procedure on simulated data, by, for instance, comparing the expected asymptotic distribution
to its estimated counterpart; see Section 3.1 for an example of how to proceed.

The last assumption (A4) naturally states that one should have convergence of the dependence coefficient
empirical estimator to ensure convergence of the WLS estimator.
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Theorem 2.1. Assume that (A1)–(A4) hold. Then, as n → ∞ and with probability tending to one, the WLS
estimator defined by (2.2) exists and is unique. Moreover, it is consistent and asymptotically normal:

√
n(θ̂ − θ0)

d→ Nq (0, Ξ) , (2.4)

where

Ξ =
(
ḊT

WḊ
)−1

ḊT
WΣWḊ

(
ḊT

WḊ
)−1

.

As usual, the results of Theorem 2.1 allow to derive the asymptotic distribution of quadratic forms in θ̂
and D(θ̂). These asymptotics serve to build confidence regions and statistical tests for the parameters and
the dependence coefficients. Let χ2

q denote the Chi square distribution with q degrees of freedom. Let us write
Ξ = Ξ(θ) and Σ = Σ(θ) to emphasize that in general these matrices depend on θ. The continuity of matrices
with respect to the parameter vector θ is meant elementwise. Corollary 2.2, given below, may serve to build
confidence regions around θ̂ or D(θ̂).

Corollary 2.2. Suppose that the assumptions of Theorem 2.1 hold.

(i) If Ξ(θ) is invertible for all θ in Θ and Σ(·) is continuous at θ0, then, as n → ∞,

n(θ̂ − θ0)T Ξ(θ̂)−1(θ̂ − θ0)
d→ χ2

q.

(ii) Define Σ̂ such that Σ̂ is invertible and converges to Σ(θ0) in probability as n → ∞. Then as n → ∞,

n(D̂ − D(θ0))T Σ̂
−1

(D̂ − D(θ0))
d→ χ2

p.

For a particular value θ�
1 ∈ R

r, r ≤ q − 1, the test H0 : θ01 = θ�
1 against H1 : θ01 �= θ�

1, where θ0 =
(θ01, θ02) ∈ R

r × R
q−r , may be carried out using the asymptotic approximation suggested by Corollary 2.3,

given next. In general, write θ = (θ1, θ2) ∈ R
r × R

q−r for θ ∈ Θ, and, likewise, θ̂ = (θ̂1, θ̂2). Let Ξ1(θ1, θ2)
denote the r × r asymptotic covariance matrix corresponding to θ1, that is, the upper left part of Ξ(θ1, θ2).

Corollary 2.3. Under the assumptions of Corollary 2.2 (i), as n → ∞,

n(θ̂1 − θ�
1)

T Ξ1(θ�
1, θ̂2)−1(θ̂1 − θ�

1)
d→ χ2

r.

The test H0: “the chosen parametric model is the true model of the underlying copula” against H1: “the
chosen parametric model is false” may be carried out by using the asymptotic approximation suggested by
Corollary 2.4 below, adapted from [22].

Corollary 2.4. Suppose that the assumptions of Theorem 2.1 and Corollary 2.2 (ii) hold. For θ ∈ Θ, define

A(θ) := Ḋ(θ)
(
Ḋ(θ)T Ḋ(θ)

)−1

Ḋ(θ)T ,

Â = A(θ̂), and denote by k the rank of Ip −A(θ0). If Σ(θ) is invertible for all θ in Θ and Σ(·) is continuous
at θ0, then as n → ∞,

n
(
D(θ̂) − D̂

)T

(Ip − Â)[(Ip − Â)Σ̂(Ip − Â) + Â]−1(Ip − Â)
(
D(θ̂) − D̂

)
→ χ2

k.

The asymptotic covariance matrix Ξ in (2.4) depends on the weight matrix W. The optimal weight matrix
W�, in the sense that it allows to minimize the asymptotic covariance matrix Ξ, is given in Proposition 2.5 below
(due to [22]). The above mentioned ordering of covariance matrices is to be understood in the following sense.
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The notation A ≥ 0 means that the matrix A is nonnegative definite. For two nonnegative definite matrices A
and B, define A to be less or equal than B if B−A ≥ 0. It is easily checked that A ≤ B implies tr(A) ≤ tr(B),
where tr(·) stands for the trace operator of matrices. Thus, the distribution with the smallest covariance matrix
is the one for which the sum of the variances is minimum. In view of (2.5), an optimal estimator, that is, an
estimator that leads to the smallest asymptotic covariance matrix, can be constructed by letting the sequence
of weight matrices converge to Σ−1.

Proposition 2.5. Suppose that Σ defined in (A4) is invertible. Then the asymptotic covariance matrix Ξ is
minimum for W� such that

W�Ḋ ∝ Σ−1Ḋ, (2.5)

where the symbol ∝ denotes proportionality.

An estimate of the optimal weight matrix Σ−1 can be based on empirical data or constructed as follows.
Define the zero-step estimator θ̂

0
to be the WLS estimator (2.2) with Ŵ = Ip. Define the one-step estimator

θ̂
1

to be the WLS estimator with Ŵ = Σ−1(θ̂
0
), where Σ(θ̂

0
) is an estimate of Σ based on the zero-step

estimator. For instance, one may simulate data according to C = C(θ̂
0
) and use them to construct Σ(θ̂

0
). This

one-step estimator is then an optimal estimator. The performances of the zero-step and the optimal estimators
will be compared in Section 3.1.

When there are as many pairs as parameters, the WLS estimator does not depend on the weights, as stated
in the next proposition.

Proposition 2.6. Suppose that the assumptions of Theorem 2.1 hold. If p = q then, as n → ∞ and with
probability tending to one,

θ̂ = D−1
(
D̂
)

, (2.6)

and

√
n(θ̂ − θ0)

d→ Nq

(
0,
(
ḊT Ḋ

)−1

ḊT
ΣḊ

(
ḊT Ḋ

)−1
)

. (2.7)

2.2. Examples of three dependence coefficients verifying Assumption (A4)

Three examples of a dependence coefficient for which the pair of vectors (D, D̂) satisfies Assumption (A4) are
provided. These coefficients are the Spearman’s rho, the Kendall’s tau, and the extremal dependence coefficient.
They are widely used in practice, and that is why we illustrate our methodology on them. But others can be
used, as long as (A4) holds. See [24,29] for more about these coefficients and [23] for their asymptotic properties.
Recall that Fi is the distribution of Xi and let

F̂i(x) =
1

n + 1

n∑
k=1

1(X(k)
i ≤ x), x ∈ R.

Put Ui = Fi(Xi) and Û
(k)
i = F̂i(X

(k)
i ). Recall that Fi,j is the distribution function of (Xi, Xj) and that Ci,j

denotes its copula.

Example 1 (Spearman’s rho). The Spearman’s rho dependence coefficient of the pair (Xi, Xj) is given by

Di,j = 12
∫

[0,1]2
Ci,j(u, v) du dv − 3. (2.8)
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Its empirical counterpart is defined as

D̂i,j =

∑n
k=1

(
Û

(k)
i − Û i

)(
Û

(k)
j − Û j

)
[∑n

k=1

(
Û

(k)
i − Û i

)2∑n
k=1

(
Û

(k)
j − Û j

)2
]1/2

,

where Ûi =
∑n

k=1 Û
(k)
i /n. This empirical estimator is a U -statistic [23], whose theory is well known, see, e.g. [36]

Chapter 12. In particular, it has been established in [23] Section 9 that Assumption (A4) holds with

Σi,j;k,l = 9
∫

[0,1]2
[(1 − 2ui)(1 − 2uj) − 2ui − 2uj + 4Ii(uj) + 4Ij(ui) −Di,j ]

× [(1 − 2uk)(1 − 2ul) − 2uk − 2ul + 4Ik(ul) + 4Il(uk) −Dk,l] dC(u1, . . . , ud),

where Ij(u) =
∫ 1

0 Cij(u, v)dv and Ii(v) =
∫ 1

0 Cij(u, v)du. Let us note that this result holds without any condition
on the underlying copula.

Example 2 (Kendall’s tau). The Kendall’s tau dependence coefficient of the pair (Xi, Xj) is given by

Di,j = 4
∫

[0,1]2
Ci,j(u, v) dCi,j(u, v) − 1. (2.9)

Its empirical counterpart is defined as

D̂i,j =
(

n

2

)−1∑
k<l

sign
(
(X(k)

i − X
(l)
i )(X(k)

j − X
(l)
j )

)
, (2.10)

where sign(x) = 1 if x > 0, −1 if x < 0 and 0 if x = 0. This empirical estimator is also a U -statistic and the
same discussion as in Example 1 also yields that Assumption (A4) holds with

Σi,j;k,l = 4
∫

[0,1]2
[4Ci,j(ui, uj) + 1 −Di,j − 2ui − 2uj]

× [4Ck,l(uk, ul) + 1 −Dk,l − 2uk − 2ul] dC(u1, . . . , ud). (2.11)

Again, let us note that this result holds without any condition on the underlying copula.

The third example deals with extreme-value copulas, which are theoretically well grounded for performing a
statistical analysis of extreme values, such as maxima of samples. Recall that a copula C# is an extreme-value
copula if there exists a copula C̃ such that

C#(u1, . . . , ud) = lim
m↑∞

C̃m(u1/m
1 , . . . , u

1/m
d ), (u1, . . . , ud) ∈ [0, 1]d,

see, e.g. [20]. The class of extreme-value copulas corresponds exactly to the class of max-stable copulas, that is,
the copulas C# such that

Cm
# (u1/m

1 , . . . , u
1/m
d ) = C#(u1, . . . , ud), m ≥ 1, (u1, . . . , ud) ∈ [0, 1]d.

The extremal dependence coefficient is implicitely defined by the following representation of bivariate extreme-
value copulas on the diagonal of the unit square:

C#(u, u) = u2−λ, λ ∈ [0, 1]. (2.12)
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If λ = 0 then C#(u, u) = Π(u, u) = u2, where Π stands for the independence copula. If λ = 1 then C#(u, u) =
M(u, u) = min(u, u) = u, where M stands for the Fréchet–Hoeffding upper bound for copulas, that is, the case
of perfect dependence. In the case of extreme-value copulas, the extremal dependence coefficient corresponds to
the well known upper tail dependence coefficient

λ = lim
u↑1

1 − 2u + C#(u, u)
1 − u

,

which measures the dependence in the tails. Nonetheless, for extreme-value copulas, the interpolation between Π
and M on the diagonal of the unit square (2.12) makes the extremal dependence coefficient a natural coefficient
of general dependence, and not just a coefficient that measures dependence in the tails. For further information
about extreme-value statistics, see, e.g. [5]. An account about extreme-value copulas can be found in [20].

Estimators of the extremal dependence coefficient for which the asymptotic properties are derived under
unknown margins can be found in [2, 16]. However, in order to obtain the results, the existence of partial
derivatives for the underlying copulas was assumed. Hence, these estimators cannot be used since we aim at
estimating the parameters of copulas for which these derivatives may not exist.

If the marginal distributions are assumed to be known, however, various estimators of the extremal dependence
coefficient and their asymptotic properties can be found in the literature [4,7,11,21,32]. A review can be found
in [20]. Our choice of the estimator presented in Example 3 below, that of [11], is arbitrary. One can choose an
other estimator in the literature and adapt the results.

Example 3 (Extremal dependence coefficient). Assume that the copula of interest C is an extreme-value copula
and let Di,j be the extremal dependence coefficient of the pair (Xi, Xj), implicitely defined in (2.12), and given
by

Di,j = 2 + log Ci,j(e−1, e−1). (2.13)

Its empirical counterpart, as defined in [11], is given by

D̂i,j = 3 − 1

1 −∑n
k=1 max(U (k)

i , U
(k)
j )/n

·

By adapting [11] to the multivariate case, Assumption (A4) holds with

Σi,j;k,l = (3 − Di,j)2(3 −Dk,l)2 Cov (max(Ui, Uj), max(Uk, Ul)) . (2.14)

In practice, the margins are usually unknown. However, assuming that F is an extreme-value distribution,
the margins should be Generalized Extreme-Value (GEV) distributions, see [5]. Therefore, to estimate the
parameters of the GEV, one can apply a method known as “inference functions for margins” (IFM, see [24],
Sect. 10) whose asymptotic properties are well established.

3. Illustrations on simulated and real datasets

In order to assess the WLS estimator’s performance on finite samples, numerical experiments are undertaken
in Section 3.1 and a real dataset application is presented in Section 3.2. In both the experiments and the
application, we aim at estimating the parameters of multivariate copulas possessing a singular component.

3.1. Estimating the parameters of multivariate copulas possessing a singular component

By substituting the Fréchet copulas [12]

C0k(u0, uk) = θk min(u0, uk) + (1 − θk)u0uk, θk ∈ [0, 1]
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Table 1. MAEs for the three studied situations with respect to the data sample size n and
dimension d. The results are averaged over 200 replications.

d = 4 d = 10
zero-step one-step zero-step one-step

(S1) 0.11 0.11 0.10 0.12
n = 50 (S2) 0.10 0.10 0.09 0.10

(S3) 0.18 0.18 0.17 0.20
(S1) 0.06 0.06 0.05 0.05

n = 200 (S2) 0.05 0.05 0.04 0.04
(S3) 0.10 0.10 0.09 0.09
(S1) 0.04 0.04 0.03 0.03

n = 500 (S2) 0.03 0.03 0.03 0.03
(S3) 0.06 0.06 0.06 0.05

into the one-factor copula [27]

C(u1, . . . , ud) =
∫ 1

0

d∏
k=1

∂C0k(u0, uk)
∂u0

du0,

one obtains a copula C with a singular component and whose bivariate margins are given by the following
Fréchet copulas

Cij(ui, uj) = θiθj min(ui, uj) + (1 − θiθj)uiuj , θi, θj ∈ [0, 1]. (3.1)

The Spearman’s rho and Kendall’s tau coefficients of (3.1) are respectively equal to θiθj and θiθj(θiθj + 2)/3.
The extreme-value copula C# associated to C can be derived by calculating the limit

C#(u1, . . . , ud) = lim
n↑∞

Cn(u1/n
1 , . . . , u

1/n
d ).

It appears that the bivariate margins of C# are Cuadras–Augé copulas [6]

C#,ij(ui, uj) = min(ui, uj)max(ui, uj)1−θiθj , θi, θj ∈ [0, 1]

with extremal dependence coefficient given by θiθj . Similarly to C, C# possesses a singular component.
The two copulas C and C# are considered in the following numerical experiment. For each combination (d, n)

with d = 4, 10 and n = 50, 200, 500, we generated 200 datasets according to these copulas. The true parameter
vector coordinates θ0k, k = 1, . . . , d, were chosen to be regularly spaced between 0.3 and 0.9. Three situations
were studied:

(S1) the parameters of C are estimated with the Spearman’s rho (see Example 1),
(S2) the parameters of C are estimated with the Kendall’s tau (see Example 2), and
(S3) the parameters of C# are estimated with the extremal dependence coefficient (see Example 3).

In situation (S1), Assumption (A3) is verified, see [28]. For each situation (Si) above, the zero-step and one-step
WLS estimators of Section 2.1 were tested (recall that the one-step estimator is optimal, see Prop. 2.5). For
each dataset and each situation (Si), the mean absolute error, defined as

MAE =
1
d

d∑
k=1

|θ̂k − θ0k|

was computed and averaged over the 200 replications. These criteria are reported in Table 1. It appears from this
Table that there is almost no difference between the zero-step and one-step estimators. This lack of weighting
effect was also mentioned in ([31], Sect. 3). This suggests that the zero-step estimator is already near optimal.
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Figure 1. Histograms of n(θ̂
(r) − θ0)T Ξ(θ̂

(r)
)−1(θ̂

(r) − θ0), r = 1, . . . , 200 together with the
density of a χ2

d distribution. The considered experiment parameters were n = 500 and d = 4.
Upper left : (S2). Upper right : (S1). Bottom: (S3).

The comparison of the rows (S1) and (S2) shows that the choice between the Spearman’s rho and Kendall’s tau
in the WLS estimator has very little impact on its performance. Estimating the parameters of an extreme-value
copula with the extremal dependence coefficient, however, appears to be less accurate – see the (S3) row of
the table. Finally, the comparison of the two columns d = 4 and d = 50 shows that the dimension of the
inference problem does not seem to affect the estimator’s performance. This property makes it very attractive
to deal with high-dimensional applications. To complete the study of the estimator’s abilities, its asymptotic
distribution derived in Theorem 2.1 is tested. Since this distribution is multivariate, we checked the Chi-square
approximation of Corollary 2.2 instead. The values n(θ̂

(r) − θ0)T Ξ(θ̂
(r)

)−1(θ̂
(r) − θ0), r = 1, . . . , 200, should

be approximately χ2
d distributed (here the dimension is equal to the number of parameters), where θ̂

(r)
denotes

the parameter vector estimated on the rth dataset replication. This approximation, shown in Figure 1, seems
rather satisfactory.
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3.2. Measuring uncertainty for multivariate return periods in hydrology

In hydrology, the severity and frequency of extreme events must be quantified. Such potentially dangerous
events are underlain by the behavior of a random vector (X1, . . . , Xd) distributed according to a certain dis-
tribution F with continuous margins F1, . . . , Fd and copula C. Suppose that C is determined by a parameter
vector θ in Θ. For a certain potentially dangerous event, define the return period T and the critical level p
through the relationship

T =
1

1 − Kθ(p)
, (3.2)

where Kθ(t) = P (C(F1(X1), . . . , Fd(Xd)) ≤ t), t ∈ [0, 1], is called the Kendall’s distribution function associated
to C, see [30]. The return period can be interpreted as the average time elapsing between two dangerous events.
For instance, T = 30 years means that the event happens once every 30 years in average. The critical level can
be viewed as a measure of how dangerous the underlying event is. The following question naturally arises: given
a certain return period, what is the critical level of the underlying event? To answer this question, it suffices to
invert (3.2) to get p as a function of T :

pT (θ) = K−1
θ (1 − 1/T ).

Let θ0 denote the true parameter vector and let pT = pT (θ0). The estimation of pT , or, in other words, the
estimation of θ0, was performed in [8] for all the pairs of d = 3 sites in Italy (Airole, Merelli and Poggi). The
parametric model proposed for C was the extreme-value copula

C(u1, . . . , ud) =

(
d∏

i=1

u1−θi

i

)
min

i=1,...,d
(uθi

i ), θi ∈ [0, 1], i = 1, . . . , d. (3.3)

As it can be seen from (3.3), this copula has a singular component. The authors chose to base the inference on
the Kendall’s tau (see Example 2). For θ in [0, 1]d, the Kendall’s tau coefficients are given by

τi,j(θ) =
θiθj

θi + θj − θiθj
, i < j. (3.4)

By inverting (3.4), one obtains

θ̂i =
1
2

(
1 +

1
τ̂ i,j

+
1
τ̂ i,k

− 1
τ̂ j,k

)
, (3.5)

where i, j, k denote the indexes of the three sites and τ̂i,j is given by (2.10). Observe that this is the solution of the
equation (2.6), and, under the light of Proposition 2.6 (since p = q = d = 3), we see that this estimator has the
smallest asymptotic variance within the class (2.2). However, in [8], the asymptotic behavior of θ̂ = (θ̂1, θ̂2, θ̂3)
was not derived. This is done next, and we shall see that it allows to quantify the uncertainties around the
critical levels.

The asymptotic normality of
√

n(θ̂ − θ0) is established by applying Theorem 2.1. It suffices to verify that
assumption (A3) holds, which is easily checked from (3.4). Hence, as n → ∞

√
n(θ̂ − θ0)

d→ N(0, Ξ), (3.6)

where Ξ is given by (2.7) and (2.11). Now, the derivation of the asymptotic behavior of the critical levels is
straightforward. From (3.6), we get by the delta-method that, as n → ∞

√
n
(
pT (θ̂) − pT

)
d→ N(0, s2

T ), (3.7)
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Figure 2. Critical levels pT (θ̂) for T = 2, . . . , 40 together with 95% confidence intervals.

with s2
T = ṗT ΞṗT

T , and where ṗT is the Jacobian of pT (·) at the true parameter value. It follows that confidence
intervals can be computed from the finite-sample approximation of (3.7), provided that the sample size is large
enough. In [8], the critical levels in terms of return periods were reported for the three pair of sites (Airole,
Merelli), (Airole, Poggi) and (Merelli, Poggi). We added to their figure 95% confidence intervals for the critical
levels (Fig. 2).
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Table 2. Proportion of inclusions within the 95% confidence intervals for the true value pT .

pair (Airole, Merelli) (Airole, Poggi) (Merelli, Poggi)
n T 10 20 30 10 20 30 10 20 30
34 0.95 0.95 0.93 0.89 0.84 0.82 0.90 0.87 0.82
100 0.95 0.94 0.94 0.96 0.94 0.93 0.96 0.94 0.93

The test based on Corollary 2.4 has no power to detect a wrong model in this situation. Indeed, since
D(θ̂) = D̂, the test statistic is always zero. Other tests can be performed to achieve such a task, see the original
paper [8].

When studying extreme events, it is common to have only a limited amount of data. For instance, in [8],
only n = 34 (multivariate) observations were available. With such a small sample size, the approximation of the
distribution of

√
n(pT (θ̂) − pT ) to a normal distribution may be questionable. To assess the goodness of this

approximation for small and moderate sample sizes, we carried out the following numerical experiment. N = 500
datasets of size n ∈ {34, 100} were generated according to (3.3) with θ0 = (0.6, 0.7, 0.2). For the mth dataset

(m = 1, . . . , N), the parameter vector estimate θ̂
(m)

was computed. Let sT (θ̂
(m)

) be the asymptotic standard

deviation in (3.7) at θ̂
(m)

where sT (θ) is regarded as a function of θ. The critical levels pT (θ̂
(m)

) together

with the 95% confidence bands pT (θ̂
(m)

) ± 1.96sT (θ̂
(m)

)/
√

n were computed for T = 10, 20, 30. Some of the

θ̂
(m)

did not lie in their theoretical bounds [0, 1], which led to numerical difficulties for computing sT (θ̂
(m)

).
Therefore, these were dropped from the experiment. The results reported Table 2 show that the finite sample
approximation is rather good for n = 100. Even for n = 34, this approximation appears to be good for the pair
Airole–Merelli. Despite these encouraging results for moderate and small samples, we finish by stressing that
the number of missing outputs (recall that this happens when θ̂

(m)
do not belong to [0, 1]) were quite high: 354

and 298 over the 500 dataset replications for n = 34 and n = 100 respectively. Consequently, it would be of
interest to improve the estimator (3.5) to reduce this vexing effect.

One can observe from Figure 2 that the curves for the pairs (Airole, Poggi) and (Merelli, Poggi) are similar
comparing to that of the pair (Airole, Merelli). Hence to illustrate the use of Corollary 2.3, we performed the test
H0 : θ1 = θ2 versus H1 : θ1 �= θ2. The change of parameters μ1 := θ1−θ2, μ2 := θ1+θ2 and μ3 := θ3 was applied
to the copula model (3.3). By Corollary 2.3, the test statistics nμ̂2

1/Ξ1(0, μ̂2, μ̂3) converges in distribution to
a χ2

1 variable. We obtained a p-value of 95%, indicating that there is no statistical arguments against the null
hypothesis. This high p-value also suggests that this test has little power for n = 34 data. The p-value for testing
θ2 = θ3 and θ1 = θ3 were 83% and 84% respectively. The search of powerful tests for copulas is still an active
area of research [1, 18, 26].

4. Discussion

In this paper, we considered a weighted least-squares (WLS) estimator in order to estimate the parameters of
general multivariate copulas, that is, copulas for which the partial derivatives may not exist. We established its
asymptotic properties and studied its performance on finite samples. In particular, the numerical experiments
revealed that the weights may have little impact on the accuracy. Moreover, and this is interesting for practical
purposes, the accuracy of the WLS estimator does not seem to depend on the dimension of the statistical
problems being addressed. In our work, we provided three dependence coefficients which can be used to form
the WLS estimator: the Spearman’s rho, the Kendall’s tau, and the extremal dependence coefficient. We chose
popular dependence coefficients, but others can be used. Even combinations of them may be considered, as long
as the formed vector D̂ verifies Assumption (A4). In the hydrological application of Section 3.2, this may help
to make the system of equations (3.5) more robust numerically.
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Appendix: proofs

In order to prove Theorem 2.1, we first establish two lemmas. These lemmas, as well as their proofs, are
adapted from [10]. It will appear that the proof of the theorem is a straightforward application of these lemmas.

Let Θ and ε0 be defined as in assumption (A1). Define the vector map

ϕ : Θ ⊂ R
q → ϕ(Θ) ⊂ R

p (A.1)

ϕ(θ) �→ (ϕ1(θ), . . . , ϕp(θ))T ,

and assume that ϕ is twice continuously differentiable. Denote by ϕ̇(θ) the p × q Jacobian matrix of ϕ at θ
and define ϕ̇ := ϕ̇(θ0). Let

Yn = (Yn,1, . . . , Yn,p)T

be a random vector in R
p depending on an integer n and assume that Yn

P→ ϕ(θ0) as n → ∞. Let Ŵ = Ŵn

be a p × p symmetric and positive definite matrix with full rank and suppose that Ŵ converges in probability
to a symmetric and positive definite matrix W with full rank as n → ∞. Then the Cholesky decomposition
entails that Ŵ = V̂T V̂ for some p × p matrix V̂. Denote by Θ̂n the set of all minimizers of the loss function

�n(θ) = (Yn − ϕ(θ))T Ŵ (Yn − ϕ(θ)) =
∥∥∥V̂ (Yn − ϕ(θ))

∥∥∥2

, θ ∈ Θ, (A.2)

where ‖ · ‖ stands for the Euclidean norm. Observe that this set may contain several or no elements. Let Hn(θ)
be the Hessian matrix of �n at θ, that is, the matrix whose (k, l) element is given by

Hn,kl(θ) =
∂2�n(θ)
∂θk∂θl

·

Let Q(θ) be the q × q matrix whose (k, l) element writes

Qkl(θ) =
(

∂2ϕ1(θ)
∂θk∂θl

, . . . ,
∂2ϕp(θ)
∂θk∂θl

)
WT (ϕ(θ) − ϕ(θ0)) ,

and H(θ) be the q × q matrix defined by

H(θ) = 2
(
Q(θ) + ϕ̇(θ)T WT ϕ̇(θ)

)
.

Finally write Bε(θ0) = {θ ∈ Θ : ||θ − θ0|| ≤ ε} the closed ball around θ0 with radius ε > 0 and assume that
there exists ε0 > 0 such that Bε0(θ0) is closed. Then Bε(θ0) is compact for all 0 < ε ≤ ε0.

Lemma A.1.

(i) The elementwise convergence Hn(θ) P→ H(θ) holds uniformly for all θ in Bε0(θ0).
(ii) If ϕ̇ is of full rank then, with probability tending to 1, Hn(θ) is positive definite for all θ in some closed

neighborhood of θ0.

Proof. (i) It is easily seen that Hn(θ) = 2
(
ϕ̇(θ)TŴT ϕ̇(θ) + Qn(θ)

)
where Qn(θ) is a q × q matrix such

that its (k, l) element is given by

Qn,kl(θ) =
(

∂2ϕ1(θ)
∂θk∂θl

, . . . ,
∂2ϕp(θ)
∂θk∂θl

)
ŴT (ϕ(θ) − Yn) .
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Let Ŵji denote the element of Ŵ in the jth row and ith column. For all θ in Bε0(θ0),

1
2
|Hn,kl(θ) − Hkl(θ)| ≤

p∑
i,j=1

∣∣∣∂ϕi(θ)
∂θk

∂ϕj(θ)
∂θl

∣∣∣∣∣∣Ŵij − Wij

∣∣∣
+

p∑
i,j=1

∣∣∣∂2ϕi(θ)
∂θk∂θl

∣∣∣∣∣∣Ŵij − Wij

∣∣∣∣∣ϕj(θ) − Yn,j

∣∣
+

p∑
i,j=1

∣∣∣∂2ϕi(θ)
∂θk∂θl

∣∣∣∣∣Wij

∣∣∣∣ϕj(θ0) − Yn,j

∣∣.
Since ϕj and its first and second order derivatives are continuous on the closed and thus compact set Bε0(θ0),
they are uniformly bounded by some constant on this set. Therefore, as n → ∞,

sup
θ∈Bε0(θ0)

|Hn,kl(θ) − Hkl(θ)| P→ 0,

which follows from the weak consistency of Yn and Ŵ.
(ii) The matrix H(θ0) is positive definite. Hence its eigenvalues are positive. Since an eigenvalue is a continuous

function of the parameter vector [33] (Thm. 3.13), for each eigenvalue of H , there exists a neighborhood such
that if θ belongs to this neighborhood, then this eigenvalue at θ is positive. Hence, since there is only a finite
number of eigenvalues, it follows that there exists a neighborhood Bδ(θ0) (δ > 0) on which H(θ) is positive
definite.

Now define

Aij =

{
sup

θ∈Bε0 (θ0)

|Hn,ij(θ) − Hij(θ)| ≤ inf
x∈Rq,x �=0, θ∈Bδ(θ0)

xT H(θ)x
2
∑q

i,j=1 |xixj |

}

and put A =
⋂
i,j

Aij . On the event A, for all x �= 0 and for all θ in Bε0(θ0), we have

∣∣xT (H(θ) − Hn(θ))x
∣∣ ≤ q∑

i,j=1

|xixj | inf
x∈Rq,x �=0, θ∈Bδ(θ0)

xT H(θ)x
2
∑q

i,j=1 |xixj | ≤ inf
θ∈Bδ(θ0)

xTH(θ)x
2

·

If, moreover, θ ∈ Bδ(θ0), then

xTHn(θ)x ≥ xT H(θ)x
2

> 0

because H(θ) is positive definite on Bδ(θ0). Hence on A and for all θ in Bδ(θ0)
⋂

Bε0(θ0), the matrix Hn(θ)
is positive definite. By (i), P (A) → 1 as n → ∞, which concludes the proof. �

Lemma A.2.

(i) If ϕ in (A.1) is an homeomorphism, then for all ε such that 0 < ε ≤ ε0, as n → ∞,

P
[
Θ̂n �= ∅ and Θ̂n ⊂ Bε(θ0)

]
→ 1.

(ii) If, moreover, ϕ̇(θ0) is of full rank then as n → ∞,

P
[

card Θ̂ = 1
]
→ 1,
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where card denotes the cardinal of a set. Define θ̂ to be the unique element of Θ̂ if card Θ̂ = 1, and any
arbitrary point otherwise. Then θ̂

P→ θ0 as n → ∞.
(iii) If in addition to the assumptions of (i) and (ii)

√
n(Yn − ϕ(θ0))

d→ Np(0, Σ)

then
√

n(θ̂ − θ0)
d→ Nq

(
0,
(
ϕ̇TWϕ̇

)−1
ϕ̇TWΣWϕ̇

(
ϕ̇T Wϕ̇

)−1
)

Proof.
(i) Let 0 < ε ≤ ε0. Since ϕ is a homeomorphism and Ŵ has full rank, V̂ϕ is also an homeomorphism. Hence

there exists δ > 0 such that θ ∈ Θ and ‖V̂ (ϕ(θ) − ϕ(θ0)) ‖ ≤ δ imply ‖θ − θ0‖ ≤ ε. Thus for every θ ∈ Θ

with ‖θ − θ0‖ > ε we have ‖V̂ (ϕ(θ) − ϕ(θ0)) ‖ > δ. On the event An = {‖V̂ (ϕ(θ0) − Yn) ‖ ≤ δ/2} and for θ
outside Bε(θ0), the inequality

‖V̂ (ϕ(θ) − ϕ(θ0)) ‖ ≤ ‖V̂ (ϕ(θ) − Yn) ‖ + ‖V̂ (Yn − ϕ(θ0)) ‖
implies

‖V̂ (ϕ(θ) − Yn) ‖ ≥ ‖V̂ (ϕ(θ) − ϕ(θ0)) ‖ − ‖V̂ (Yn − ϕ(θ0)) ‖
> δ − δ/2
= δ/2

≥ ‖V̂ (Yn − ϕ(θ0)) ‖.
Therefore

min
θ∈Bε(θ0)

‖V̂ (Yn − ϕ(θ)) ‖ ≤ inf
θ/∈Bε(θ0)

‖V̂ (Yn − ϕ(θ)) ‖,

where in the left hand side the minimum is attained because Bε(θ0) is compact. By consistency of Yn and Ŵ,
we have P (An) → 1. It follows that the event

{
Θ̂n �= ∅ and Θ̂n ⊂ Bε(θ0)

}
has probability tending to 1.

(ii) Without loss of generality denote by Bη(θ0), η < ε0, the closed neighborhood of Lemma A.1 (ii). Assume
that the event {

Θ̂ �= ∅, Θ̂ ⊂ Bη(θ0) and Hn(θ) is positive definite for all θ in Bη(θ0)
}

(A.3)

happens. Let θ ∈ Bη(θ0) and θ� be a vector in Θ̂. A Taylor expansion of �n in (A.2) at θ� gives

�n(θ) = �n(θ�) + (θ − θ�)T ��n(θ�) +
1
2
(θ − θ�)T Hn(θ̃)(θ − θ�),

where θ̃ = tθ + (1 − t)θ�, t ∈ (0, 1) and ��n denotes the gradient of �n. In view of Lemma A.2 (i), θ� is in
some open neighborhood of θ0 and thus ��n(θ�) = 0. The fact that θ̃ ∈ Bη(θ0) entails that Hn(θ̃) is positive
definite. Therefore, we have shown that �n(θ) > �n(θ�) for all θ in Bη(θ0). This implies that the cardinal of
Θ̂ is 1 when (A.3) holds. By Lemma A.1 (ii) and Lemma A.2 (i), the event (A.3) has probability tending to 1,
hence, P [ card Θ̂ = 1] → 1. Now let θ̂ be as in Lemma A.2 (ii) and let ε > 0. Without loss of generality, assume
that ε ≤ ε0. Then

lim
n→∞P

[
θ̂ ∈ Bε(θ0)

]
= lim

n→∞ P
[
θ̂ ∈ Bε(θ0) and card Θ̂ = 1

]
= 1,
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the last equality holding because of Lemma A.2 (i). Thus the consistency of θ̂ is proved.
(iii) A Taylor expansion for the gradient ��n of �n in equation (A.2) around θ0 entails

��n(θ̂) = ��n(θ0) + Hn(θ̃)(θ̂ − θ0),

where θ̃ = tθ̂ + (1 − t)θ0, t ∈ (0, 1). By the same arguments as in the proof of Lemma A.2 (ii), ��n(θ̂) = 0,
hence,

√
nHn(θ̃)(θ̂ − θ0) =

√
n
(
��n(θ̂) − ��n(θ0)

)
= −√

n��n(θ0)

= 2ϕ̇T Ŵ
√

n (Yn − ϕ(θ0)) .

For x in R
q, we have

P
[√

nHn(θ̃)(θ̂ − θ0) ≤ x
]

= P
[√

nHn(θ̃)(θ̂ − θ0) ≤ x and card Θ̂ = 1
]

+ P
[√

nHn(θ̃)(θ̂ − θ0) ≤ x and card Θ̂ �= 1
]
. (A.4)

Since the second term in the sum in the right hand side of (A.4) tends to 0, we have that

lim
n→∞P

[√
nHn(θ̃)(θ̂ − θ0) ≤ x and card Θ̂ = 1

]
= lim

n→∞ P
[√

nHn(θ̃)(θ̂ − θ0) ≤ x
]

= lim
n→∞ P

[
2ϕ̇TŴ

√
n (Yn − ϕ(θ0)) ≤ x

]
.

By the assumptions of Lemma A.2 (iii) and by consistency of Ŵ, we have

2ϕ̇T Ŵ
√

n (Yn − ϕ(θ0))
d→ Nq

(
0, 4ϕ̇T WΣWT ϕ̇

)
.

If Hn(θ̃) converges in probability to H(θ0) = 2ϕ̇Wϕ̇, then

√
n(θ̂ − θ0)

d→ Nq

(
0,
(
ϕ̇TWT ϕ̇

)−1
ϕ̇T WΣWT ϕ̇

[(
ϕ̇TWT ϕ̇

)−1
]T
)

.

Therefore, to conclude the proof, it suffices to prove that Hn(θ̃) P→ H(θ0).
Let ε > 0. Assume that

sup
θ∈Bε0(θ0)

|Hn,ij(θ) − Hij(θ)| <
ε

2
·

The map θ �→ Hn,ij(θ) is continuous, hence, there exists δ > 0 such that |θ̃ − θ0| < δ implies |Hn,ij(θ̃) −
Hn,ij(θ0)| < ε/2. Assume that θ̂ ∈ Bδ(θ0) and suppose without loss of generality that δ ≤ ε0. Then it holds
that

|Hn,ij(θ̃) − Hij(θ0)| ≤ |Hn,ij(θ̃) − Hn,ij(θ0)| + |Hn,ij(θ0) − Hij(θ0)|
<

ε

2
+

ε

2
= ε.

By Lemmas A.1 (i) and A.2 (i) we have shown that for all ε > 0, the event
{
|Hn,ij(θ̃) − Hij(θ0)| ≤ ε

}
has

probability tending to 1. Hence the proof is finished. �
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Proof of Theorem 2.1

The Proof of Theorem 2.1 is a direct application of Lemma A.2 with ϕ = D and Yn = D̂.

Proof of Corollary 2.2

(i) The limiting covariance matrix of θ̂, viewed as a function of θ is given by

Ξ(θ) =
(
Ḋ(θ)TWḊ(θ)

)−1

Ḋ(θ)TWΣ(θ)WḊ(θ)
(
Ḋ(θ)TWḊ(θ)

)−1

.

By assumption, Ḋ(·) and Σ(·) are continuous at θ0, hence so is Ξ(·). Therefore, since θ̂ converges in
probability to θ0, we also have that Ξ(θ̂) converges in probability to Ξ(θ0). Moreover, since Ξ(θ) is
invertible and nonnegative definite for all θ in Θ, we have Ξ(θ) = Ξ1/2(θ)Ξ1/2(θ) where Ξ1/2(θ) is also
invertible. Therefore, by Theorem 2.1, as n → ∞,

√
nΞ(θ̂)−1/2(θ̂ − θ0)

d→ N(0, Iq),

leading to the desired result.
(ii) By Assumption (A4),

√
n
(
D̂ − D(θ0)

)
d→ Np(0, Σ(θ0))

as n → ∞. The arguments in the proof of (i) can be easily adapted to prove (ii).

Proof of Corollary 2.3

The Proof of Corollary 2.3 is similar to that of Corollary 2.2 (i).

Proof of Corollary 2.4

Note D0 := D(θ0) and write

D(θ̂) − D̂ = D(θ̂) − D0 + D0 − D̂. (A.5)

A Taylor expansion yields

D(θ̂) − D0 = ˜̇D(θ̂ − θ0) (A.6)

where ˜̇D := Ḋ(θ̃) with θ̃ being a vector between θ̂ and θ0. Substitute (A.6) into (A.5) to get

D(θ̂) − D̂ = ˜̇D(θ̂ − θ0) + D0 − D̂. (A.7)

From (A.6), we have

θ̂ − θ0 = ( ˜̇DT ˜̇D)−1 ˜̇DT

(D(θ̂) − D0). (A.8)

Substitute (A.8) into (A.7) to obtain

D(θ̂) − D̂ = ˜̇D( ˜̇DT ˜̇D)−1 ˜̇DT (
D(θ̂) − D0

)
+
(
D0 − D̂

)
.

Since

D(θ̂) − D0 =
(
D(θ̂) − D̂

)
+
(
D̂ − D0

)
,
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we have (
Ip − ˜̇D( ˜̇DT ˜̇D)−1 ˜̇DT

)(
D(θ̂) − D̂

)
=

(
Ip − ˜̇D( ˜̇DT ˜̇D)−1 ˜̇DT

)(
D0 − D̂

)
.

Take θ ∈ Θ and define A = A(θ) := Ḋ(θ)
(
Ḋ(θ)T Ḋ(θ)

)−1

Ḋ(θ)T . Likewise, write Ã := A(θ̃). By Assumption
(A4) and because D is continuously differentiable, as n → ∞,

(Ip − Ã)
√

n
(
D(θ̂) − D̂

)
d→ N (0, (Ip − A0)Σ(Ip − A0)) (A.9)

where A0 := Ḋ0

(
ḊT

0 Ḋ0

)−1

ḊT

0 and Ḋ0 := D(θ0). Now write Ip − A0 = QΔQT , where QQT = QTQ = Ip,
and Δ = diag(1, . . . , 1, 0, . . . , 0) with the number of ones being equal to k. Pre-multiply the left member of (A.9)
by

QT [(Ip − A0)Σ(Ip − A0) + A0]
−1/2 =

[
ΔQT ΣQΔ + Ip − Δ

]−1/2
QT ,

Note that the matrix between the brackets in the right-hand side is block-diagonal. It then can be verified that
the limit normal distribution in the right member will have covariance matrix Δ, entailing

n
(
D(θ̂) − D̂

)T

(Ip − Ã)[(Ip − A0)Σ(Ip − A0) + A0]−1(Ip − Ã)
(
D(θ̂) − D̂

)
→ χ2

k.

Put Â := A(θ̂). Since Ã → A0 in probability, we can replace Ã and A0 by Â to get the desired result.

Proof of Proposition 2.5

(This proof is adapted from [22] but is given here for sake of completeness.) Without loss of generality, assume
that W�Ḋ = αΣ−1Ḋ for some scalar α. Let θ̂ = θ̂(W) and note θ̂(W�) the estimator for which W = W�.
Denote by Ξ(W) and Ξ(W�) the associated limiting covariance matrices of Theorem 2.1. We have

Ξ(W) − Ξ(W�)

=
(
ḊT

WḊ
)−1

ḊT
WΣWḊ

(
ḊT

WḊ
)−1

− α
(
ḊT

W�Ḋ
)−1

=
(
ḊT

WḊ
)−1

(
ḊT

WΣWḊ − ḊT
WḊα

(
ḊT

W�Ḋ
)−1

ḊT
WḊ

)(
ḊT

WḊ
)−1

=
(
ḊT

WḊ
)−1

ḊT
WΣ1/2

(
Ip − Σ−1/2Ḋα

(
ḊT

W�Ḋ
)−1

ḊT
Σ−1/2

)
Σ1/2WḊ

(
ḊT

WḊ
)−1

,

where Σ1/2 is the symmetric and invertible matrix such that Σ = Σ1/2Σ1/2. Write A =

Σ−1/2Ḋα
(
ḊT

W�Ḋ
)−1

ḊT
Σ−1/2. Note that A is idempotent, that is, A2 = A. Indeed,

A2 = Σ−1/2Ḋα
(
ḊT

W�Ḋ
)−1

ḊT
Σ−1Ḋα

(
ḊT

W�Ḋ
)−1

ḊT
Σ−1/2

= Σ−1/2Ḋα
(
ḊT

W�Ḋ
)−1

ḊT
W�Ḋ

(
ḊT

W�Ḋ
)−1

ḊT
Σ−1/2

= Σ−1/2Ḋα
(
ḊT

W�Ḋ
)−1

ḊT
Σ−1/2

= A.
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Hence Ip − A is idempotent as well and therefore

Ξ(W) − Ξ(W�) =
(
ḊT

WḊ
)−1

ḊT
WΣ1/2(Ip − A)(Ip − A)Σ1/2WḊ

(
ḊT

WḊ
)−1

which is easily seen to be nonnegative definite.

Proof of Proposition 2.6

The gradient of the loss function (2.2) is equal to 0 if and only if

ḊT
Ŵ

(
D(θ) − D̂

)
= 0.

But since Ḋ is of full rank and p = q, the kernel of ḊT
is null, hence

Ŵ
(
D(θ) − D̂

)
= 0.

The fact that Ŵ is of full rank concludes the proof.
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[4] P. Capéraà, A.L. Fougères and C. Genest, A nonparametric estimation procedure for bivariate extreme value copulas.
Biometrika 84 (1997) 567–577.

[5] S. Coles, An Introduction to Statistical Modeling of Extreme Values. Springer (2001).
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