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ADAPTIVE ESTIMATION OF A DENSITY FUNCTION USING BETA
KERNELS

Karine Bertin1 and Nicolas Klutchnikoff2

Abstract. In this paper we are interested in the estimation of a density − defined on a compact interval
of R − from n independent and identically distributed observations. In order to avoid boundary effect,
beta kernel estimators are used and we propose a procedure (inspired by Lepski’s method) in order to
select the bandwidth. Our procedure is proved to be adaptive in an asymptotically minimax framework.
Our estimator is compared with both the cross-validation algorithm and the oracle estimator using
simulated data.
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1. Introduction

This paper deals with density estimation using Beta kernel estimators. In a first paper [2] – cited as (B-K)
throughout this paper – the authors investigated the properties of beta kernel estimators of the density in an
asymptotical minimax framework. Such estimators were first introduced by Chen [5, 6] in order to avoid the
classical boundary effect which arises using classical kernels.

Different methods have been developed to solve the boundary bias problem. Let us briefly mention some
of them. A classical and popular method is to reflect the data near the boundary in order to reduce the side
effect (see for example [7,21,22]). Another popular method is to use “boundary kernels” (see [14,16,19], among
others). Last, let us highlight the paper written by Zhang and Karunamuni [24]. In this paper, the authors
investigate a method using the local polynomial fitting method.

The Beta kernel approach is another attempt to solve this problem. Given a sample X1, . . . , Xn, these
asymmetric kernel estimators are defined by:

f̃b(t) =
1
n

n∑
k=1

Kt,b(Xk),

where b is a bandwidth parameter and the asymmetric kernel Kt,b − linked with Beta distribution − is defined
by equation (2.1) in Section 2.3. Let us mention that there exists a generalization of Beta kernels (and Gamma
kernels), called associated kernels (see [1, 15]).
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Beta kernels were successfully used in empirical applications: Renault and Scaillet [20] used such procedures
in order to estimate recovery rate distributions in finance while Gustafsson et al. [11] used them to estimate
operational loss distributions in risk management.

Bandwidth selection is the main problem in kernel density estimation. Several methods have been developed
for choosing the bandwidth. In the case of Beta kernel estimators, few methods have been proposed.

A very popular one is the cross-validation. Such kind of procedure was studied in [12,23] in order to select an
optimal bandwidth for kernel density estimates. But the main assumption of this paper is that kernels are of the
classical form (i.e. obtained by translating and scaling a symmetric kernel). Nevertheless, the heuristic of this
method does not require such an assumption and the cross validation approach was used in [3] in interaction
with beta kernels. Bouezmarni and Rombouts [4] also proved that, in a multivariate framework, this procedure
leads to an optimal choice (in a suitable sense) of the bandwidth among a finite family.

Another method consists in adopting a minimax approach in which one has to assume that the function to
estimate belongs to a given class of functions. In (B-K), it is proved that, if the underlying density belongs to a
Hölder space with smoothness parameter β less than 2 and if, moreover, the quality of estimation is measured
in Lp loss (with 1 ≤ p < 4), then there exists a beta kernel estimator with properly chosen bandwidth which is
optimal (in other words, it attains the minimax rate of convergence n−β/(2β+1)). Unfortunately, as it is always
the case in the minimax approach, the choice of the bandwidth depends on β which is unknown in practical
situations.

The main goal of this work is to treat the smoothness of the density as a nuisance parameter and to find an
adaptive procedure with respect to this parameter: we want to construct a data-driven procedure of estimation
which attains the minimax rate of convergence without knowing the regularity β. This will furnish a new method
for choosing the bandwidth for Beta kernel estimators.

Here, we present a procedure based on the well-known Lepski’s approach (see Lepski [17]). This approach
gives a general framework to construct adaptive estimators. Given a family of estimators indexed by a tuning
parameter b which belongs to a finite collection of bandwidth B, the procedure consists in selecting b̂ ∈ B using
a data-driven criterion. We propose in this paper a Lepski-type procedure based on Beta kernel estimators which
is a modification of the Lepski procedure.

In his paper, Lepski proved that his procedure, applied with classical kernel estimators, gives adaptive esti-
mators. The key point of the proof is a concentration property of the estimators around the estimated density
function (condition A3 in [17]). Obtaining a similar result for Beta kernel estimators is not trivial. This is proved
in Proposition 3.2 which is the essential theoretical contribution of our paper.

We will concentrate our theoretical study to the cases where p ∈ {1, 2}. Let us explain this choice: first it is
well-known that the L1-loss is closely related to the total variation distance between probability measures and
thus is of particular interest for density estimation [9]. On the other hand, one of our goals is to compare our
procedure with the cross-validation method and the heuristic of this method requires the use the L2-loss.

We prove that our procedure is adaptive in L1 and L2 losses. Moreover, we perform simulations and obtain that
our procedure behaves similarly to the oracle estimator. Consequently, since the computer time of our method
is much smaller than that of the cross validation, our procedure can be viewed as a competitive alternative in
order to select a data-driven bandwidth for beta kernel estimators.

Our paper is organized as follows: in Section 2 we present the statistical model and the goals of our study.
Section 3 is devoted to the presentation of our estimation procedure and to the statement of our results. Some
simulations are performed in Section 4 where our procedure is compared with the cross-validation method and
the oracle estimator. Section 5 is devoted to the proofs of the main results of our paper. Finally, Section 6
contains all auxiliary results and their proofs.
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2. Statistical model

2.1. Density estimation

Let us suppose that X1, . . . , Xn are n independent and identically distributed (i.i.d.) observations from a
distribution Pf which admits a density f with respect to the Lebesgue measure on [0, 1]. Our goal is to estimate
with best possible accuracy the unknown density function f .

2.2. Assumption on the density

Following our first work (B-K), it will be supposed that the unknown density function f belongs to a ball
of a Hölder space. The radius of this ball is denoted by L which is a positive known constant. Let us recall
the definition of the Hölder class Σ(β) which consists of all the density functions defined on [0, 1], mβ times
differentiable and such that for all (x, y) ∈ [0, 1]2:∣∣∣f (mβ)(x) − f (mβ)(y)

∣∣∣ ≤ L|x − y|β−mβ ,

where mβ = sup{� ∈ N : � < β}.
Now, we fix a small parameter 0 < ε1 < 3/5 and define:

γ0,1 = ε1 and γ0,2 =
1
2

1 + ε1

1 − ε1
,

and, for p = 1, 2,
Bp = [γ0,p, 2].

Our procedure depends on ε1 which is used to ensure a uniform behavior in concentration inequalities given
in Proposition 3.2. In practice, this parameter will be chosen close to 0 to have Bp as large as possible (see
Sect. 4 where ε1 = 10−4). Such a choice does not impact the performance of our procedure.

The main assumption of this paper is that there exists β in Bp, the nuisance parameter, such that the
unknown density f of the observations belongs to Σ(β).

2.3. Minimax estimation

In order to measure the quality of an arbitrary estimator f̃n of the unknown density function f , we will
introduce, for all 0 < β ≤ 2 its risk over Σ(β) defined by:

Rn,p(f̃n, Σ(β)) = sup
f∈Σ(β)

Rn,p(f̃n, f)

where

Rn,p(f̃n, f) =
(

Ef‖f̃n − f‖p
p

) 1
p

,

and Ef is the expectation with respect to Pf . The minimax rate of convergence on Σ(β) is defined as rn,p(β) =
inf f̃n

Rn(f̃n, Σ(β)) where the infimum is taken over all the estimators. The asymptotic behaviour of rn,p(β) is
well-known up to a multiplicative constant (see [13]) and is of order ϕn(β) = n−β/(2β+1) which does not depend
on p.

This rate of convergence is achieved by beta kernel estimators (see B-K) with properly chosen bandwidth.
Let us recall the definition of these estimators. Define, for all (x, t, b) ∈ [0, 1]2 × (0, 1]:

Kt,b(x) =
x

t
b (1 − x)

1−t
b

B
(

t
b + 1, 1−t

b + 1
) (2.1)

where B is the standard Beta function, i.e., if Γ denotes the Gamma function, then B(u, v) = Γ (u)Γ (v)/Γ (u+v).



ADAPTIVE DENSITY ESTIMATION USING BETA KERNELS 403

In (B-K), it is proved that there exist two positive constants κ1 and κ2 such that, for all β ∈ (0, 2], we have,
for b small enough, the following control on the bias term:

∀t ∈ [0, 1], sup
f∈Σ(β)

|Ef (f̃b(t)) − f(t)| ≤ κ1b
β/2, (2.2)

and the following control on the stochastic term:(∫ 1

0

Ef

∣∣∣f̃b(t) − Ef (f̃b(t))
∣∣∣p)1/p

≤ κ2√
nb1/2

· (2.3)

Using these inequalities, taking b = bn(β) = n−2/(2β+1) and defining:

f̂β(t) = f̃bn(β)(t) =
1
n

n∑
k=1

Kt,bn(β)(Xk),

we obtain:

sup
f∈Σ(β)

(
Ef‖f̂β − f‖p

p

) 1
p ≤ (κ1 + κ2)ϕn(β). (2.4)

2.4. Adaptive estimation

The minimax strategy is not satisfactory in many practical situations since it furnishes a bandwidth that
depends on the unknown regularity β of the estimated function. In this paper, we choose to adopt an adaptive
point of view. In this framework, the quality of an estimator is measured simultaneously with several risks.
Roughly speaking, the goal is to find a procedure of estimation f̂ which achieves the rate ϕn(β) over each
considered functional space Σ(β) simultaneously (i.e. for β ∈ Bp). The precise result is given by Theorem 3.1.

In his paper, Lepski [17] gave a general construction for aggregating minimax estimators in order to obtain
an adaptive procedure. This construction consists mainly in choosing (this choice is data-driven and measurable
with respect to the observations) the best estimator in a given finite (even large) family with respect to a quite
simple criterion.

Our procedure of estimation follows the main lines of this method and the main contribution of our paper is
the derivation of new concentration inequalities for Beta kernel estimators.

3. Procedure of estimation and main result

The Lepski procedure, adapted to our framework, selects the largest bandwidth such that the beta kernel
estimator constructed using this bandwidth is not significantly different from beta kernel estimators constructed
with smaller bandwidth which correspond to smaller rates of convergence. Let us define our procedure of
estimation in three steps.

3.1. Construction of a grid

Since the procedure is based on a pairwise comparison between estimators we have to construct a finite subset
of all bandwidths which is sufficient to approximate all estimators (or, more precisely, all rates of convergence) in
our family. To do so, let us consider a regular grid of Bp. Set K(n) = �log n�2 and for all k ∈ Kn = {0, . . . , K(n)}
let us consider:

γk = γ0,p +
k

K(n)
(2 − γ0,p).

Let us remark that this choice of K(n) leads to the following property: ϕn(γk)/ϕn(γk+1) → 1 when n → +∞.
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3.2. Admissible indexes

Let us define a set of admissible indexes as follows:

A =
{

k ∈ Kn : ∀� ≤ k, ∀m ≤ �, ‖f̂γm − f̂γ�
‖p ≤ 2C∗

pϕn(γm)
}

,

where
C∗

1 = κ1 + κ2 + ε2 and C∗
2 = κ1 +

√
2ε2 + κ2

2 (3.1)

with ε2 is a constant in (0, 1) that can be chosen as small as we want and κ1 and κ2 are defined in equations (2.2)
and (2.3). An index k which belongs to A , and the corresponding estimator f̂k, are called admissible

3.3. Data-driven choice of our estimator

Next, let us define a data-driven index by k̂ = sup A . As k̂ is the supremum of a finite and nonempty set (0
ever belongs to this set) it is measurable with respect to the observations. Finally, set f̂ = f̂γk̂

. In other words,
f̂ is the admissible estimator with the smallest standard deviation.

Our procedure is then designed so that the bias term of admissible estimators are well controlled. Indeed, the
difference between the estimators (in the definition of the set of admissible indexes) is roughly the difference
between the bias terms (if n large enough) of the corresponding estimators. So the procedure consists in choosing
the estimator with the smallest deviation among the estimators with well-controlled bias.

3.4. Statement of the results

Equipped with these definitions we can state the main result of our paper which ensures that our procedure
f̂ achieves the minimax rate of convergence ϕn(β) simultaneously over each functional Hölder space Σ(β) for
β ∈ Bp.

Theorem 3.1. For p = 1, 2, the estimator f̂ satisfies

lim sup
n→∞

sup
β∈Bp

ϕ−1
n (β)Rn,p(f̂ , Σ(β)) < +∞.

Proof of this result − given in Section 5 − is based on the following proposition which corresponds to the
condition A3 in [17].

Proposition 3.2. There exists an absolute constant a > 0, such that, for p = 1, 2 and all β ∈ Bp, we have:

sup
f∈Σ(β)

sup
γ0,p≤γ≤β

Pf

(
‖f̂γ − f‖p > C∗

pϕn(γ)
)
≤ exp (−na) .

This proposition gives a concentration inequality of the beta kernel estimator around f . This result is new
and is the key-property to obtain adaptive estimators by Lepski method. Its proof is given in Section 5.2.

3.5. Comment

The main difference between our procedure and those presented in Lepski [17] consists in the definition of
the set A . The original Lepski’s procedure defines a set Ã in the following way:

Ã =
{
k ∈ Kn : ∀� ≤ k, ‖f̂γk

− f̂γ�
‖p ≤ Cϕn(γ�)

}
,

where C is a positive constant. Unlike Ã , our set A consists of consecutive integers which implies that finding
the supremum is more efficient. Indeed, whereas it is always necessary to perform all the comparisons in the
standard Lepski’s procedure, our procedure stops as soon as an integer does not belong to A . Consequently the
computer time can be drastically reduced in favorable cases.
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4. Simulations

4.1. Presentation

The cross-validation is widely used to select the bandwidth in practical situations. As far as we know, this
method is the only data-driven method that has been used with beta kernels (see [3,4]). Our goal in this section
is to compare, on simulated data, our procedure with both cross-validation and the oracle defined by:

f∗ = f̂γk∗ where k∗ = arg min
k=0,...,Kn

‖f̂γk
− f‖2

2

if f is the density function to be estimated. Notice that our procedure depends on two tuning constants ε1

and C∗
2 . As explained above, we choose ε1 = 0.001. In Section 4.2 we explain how to calibrate C∗

2 in practice.
Since our goal here is to compare the accuracy of our procedure with respect to cross-validation, which is

designed to minimize the L2 risk, the results are presented only for p = 2. However the behaviour of the proposed
procedure with respect to the oracle is similar whenever p = 1 or p = 2.

We consider three densities of probability with different behaviour with respect to the smoothness.
Firstly, f1 is defined as a truncated gaussian density:

f1(x) = c1 exp
(
− (x − 0.5)2

0.3

)
I[0,1](x)

where c1 is a normalizing constant.
Secondly, let us define f2 as follow:

f2(x) = 1 + cos(4πx).

Finally, set β = 0.6 and let us define f3 as:

f3(x) = 1 + 2
4∑

k=1

(−1)k+1

(
1
8β

−
∣∣∣∣x − 2k − 1

8

∣∣∣∣β
)

I[ k−1
4 , k

4 ](x).

Note that f1 and f2 are of regularity β for all β ≤ 2 and f3 is of regularity 0.6. Moreover the function f2 is
more difficult to estimate due to its oscillatory behaviour.

For each of these functions, we generate samples of size n = 100, 200, 500 and 1000. For each sample, with
a density fj, we compute f̂j (the estimator obtained by our procedure), f̄j (the estimator obtained by cross-
validation) and f∗

j the oracle estimator. Then we compute the integrated squared error of these estimators.
We replicate these simulations 200 times. The obtained values are represented in boxplots to visualize the
performance of the estimators.

Figures 1−3 present these boxplots. For each figure, the boxplots BK, CV and O correspond to the integrated
squared error (ISE) of respectively: (i) our procedure, (ii) the cross-validation procedure and (iii) the oracle
estimator for different sample size values.

4.2. Calibration of the procedure

In our procedure, the choice of the tuning parameter C∗
2 is very important and can be explicitly obtained.

However, this constant is large and leads, in numerical simulations, to oversmoothing estimation.
In practice, in order to calibrate this constant, we adopt a similar strategy to that presented in [8].
We choose the constant C∗

2 that leads to the best estimation for the beta distribution with parameters (2, 2)
(namely B(2, 2)) which is a classical symmetric and regular density with support [0, 1].

More precisely, for a given size of sample n ∈ {100, 200, 500, 1000}, we simulate 200 samples of distribution
B(2, 2) of size n. Then, we consider a grid of constants from 0.05 to 1 by step 0.05. For each value in this grid,
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Figure 1. Boxplot of the ISE for f1. BK: our procedure; CV : cross-validation procedure; O:
oracle estimator.
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Figure 2. Boxplot of the ISE for f2. BK: our procedure; CV : cross-validation procedure; O:
oracle estimator.

we compute 200 estimators f̂ based on the 200 samples and then we estimate the mean squared error. We select
the value of the grid which minimizes this estimated mean squared error. We give the computed values for C∗

2

(which depend on n) in the following table:

n 100 200 500 1000
C∗

2 0.5 0.5 0.6 0.65

Figure 4 represents the estimated MISE drawn for different values of the tuning constant for a 500-sample
with distribution B(2, 2).
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Figure 3. Boxplot of the ISE for f3. BK: our procedure; CV : cross-validation procedure; O:
oracle estimator.
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Figure 4. Estimated MISE (using a Monte-Carlo method with 200 replications) as a function
of the tuning constant for a sample of size 500 with distribution B(2, 2).

4.3. Comments

Our procedure and cross validation behave similarly and give estimations close to the oracle estimator. For
example, the median ratio between our procedure and the oracle is around 1.1 for a 500-sample of each of the
three functions. As one can expect, quality of estimation improves with sample size for the three functions. The
quality of estimation is better for function f1 (which is a very regular function), than for the two other functions
which are more irregular or oscillating.

The decisive advantage of our procedure is the computer time. In the following table, we put the running
mean time (in seconds) for different sample sizes.
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n 100 200 500 1000
Our procedure 0.035 0.064 0.183 0.329

Cross Validation 0.507 1.546 6.816 19.405

This advantage, combined with both good theoretical and practical behaviour, allow us to consider our estimator
as a competitive alternative to the cross-validation for practical purpose.

5. Proof of main results

In the following, the letter C will denote a positive constant, the value of which may vary from line to line
and may depend only on L.

5.1. Proof of Theorem 3.1

Set p ∈ {1, 2}, β ∈ Bp and f ∈ Σ(β). First, we need to introduce an index k(β) such that γk(β) is the
“nearest” point of β in our grid. Let us define this index as:

k(β) =
⌊

β − γ0,p

2 − γ0,p
K(n)

⌋
.

In particular the rates of convergence satisfy ϕn(β)/ϕn(γk(β)) → 1 as n → ∞. Our goal is to study the
following quantity:

Ef

[
‖f̂ − f‖p

p

]
= Δ1(n) + Δ2(n),

where

Δ1(n) =
k(β)−1∑

k=0

Ef

[
‖f̂γk

− f‖p
pI{k̂=k}

]
and Δ2(n) = Ef

[
‖f̂γk̂

− f‖p
pI{k̂≥k(β)}

]
.

Study of Δ1(n)

Set k < k(β). On the event {k̂ = k}, by definition of k̂ we deduce that there exists � < k(β) and m ≤ � such
that:

‖f̂γ�
− f̂γm‖p > 2C∗

pϕn(γm).

This implies that
{k̂ = k} ⊂

⋃
�≤k(β)

⋃
m≤�

A�,m,

where

A�,m =
{
‖f̂γ�

− f̂γm‖p > 2C∗
pϕn(γm)

}
⊂
{
‖f̂γ�

− f‖p > C∗
pϕn(γm)

}
∪
{
‖f̂γm − f‖p > C∗

pϕn(γm)
}

⊂
{
‖f̂γ�

− f‖p > C∗
pϕn(γ�)

}
∪
{
‖f̂γm − f‖p > C∗

pϕn(γm)
}

.

Thus we obtain:

Δ1(n) ≤
∑

k<k(β)

∑
�≤k(β)

∑
m≤�

Ef

(
‖f̂γk

− f‖p
pIA�,m

)
.

Using Lemma 6.1, we have for n large enough:

∀x ∈ [0, 1], Kt,bn(γk)(x) ≤ 2b−1
n (γk).
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This implies that, using Lemma 6.2, we obtain:

‖f̂γ�
− f‖p ≤ Cb−1

n (γk).

Thus, since γ0,p ≤ γk, we have:

Δ1(n) ≤ Cb−p
n (γk)

∑
k<k(β)

∑
�≤k(β)

∑
m≤�

Pf (A�,m)

≤ Cb−p
n (γ0,p)(log n)6 sup

γ0,p≤γ≤β
Pf

(
‖f̂γ − f‖p > C∗

pϕn(γ)
)

≤ Cn2p(log n)6 sup
γ0,p≤γ≤β

Pf

(
‖f̂γ − f‖p > C∗

pϕn(γ)
)

.

Using Proposition 3.2 we obtain, for n large enough, that:

Δ1(n) ≤ Cϕp
n(β).

Study of Δ2(n)

By construction of the procedure, we have, using that ϕn(β)/ϕn(γk(β)) → 1 as n tends to infinity,

Δ2(n) ≤ CEf

[(
‖f̂k̂ − f̂γk(β)‖p

p + ‖f̂γk(β) − f‖p
p

)
I{k̂≥k(β)}

]
≤ C
(
ϕp

n(γk(β)) + Ef‖f̂γk(β) − f‖p
p

)
≤ C
(
ϕp

n(β) + Ef‖f̂γk(β) − f‖p
p

)
≤ C

(
ϕp

n(β) +

(
bβ/2
n (γk(β)) +

1

n1/2b
1/4
n (γk(β))

)p)
≤ Cϕp

n(β),

where the fourth line is a consequence of equations (2.2) and (2.3).

5.2. Proof of Proposition 3.2

In order to prove Proposition 3.2, we do not use the same techniques if p = 1 or p = 2. In the first case, we
use a general concentration inequality for functions satisfying a bounded difference assumption. In the second
case such a method fails and our proofs are based on classical Hoeffding’s or Bernstein’s inequalities.

First case (p = 1)

Our proof is based on a method used by Devroye and Lugosi [9] in order to obtain concentration inequalities
for classical kernels in L1-loss. Here, we adapt the proof in order to obtain our result. We have:

Pn(γ) = Pf

(
‖f̂γ − f‖1 ≥ C∗

1ϕn(γ)
)

= Pf (g(X1, . . . , Xn) ≥ C∗
1ϕn(γ))

≤ Pf (g(X1, . . . , Xn) − Efg(X1, . . . , Xn) ≥ (C∗
1 − κ1 − κ2)ϕn(γ)) ,
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where g is defined in Lemma 6.4. Last inequality follows from the fact Efg(X1, . . . , Xn) ≤ (κ1 + κ2)ϕn(γ)
thanks to equation (2.4). Set 0 < ε < 1/4. Using Lemmas 6.3 and 6.4, for b = bn(γ) small enough, we obtain:

Pn(γ) ≤ exp
(
−2

(C∗
1 − κ1 − κ2)2ϕ2

n(γ)
n−1b−2ε

)
≤ exp

(−ε2
2nb2εϕ2

n(γ)
)

≤ exp
(
−ε2

2n
1−4ε
2γ+1

)
≤ exp

(
−ε2

2n
1−4ε

5

)
.

Since 1 − 4ε > 0, Proposition 3.2 follows.

Second case (p = 2)

Let us introduce some notations used throughout this proof. Let β ∈ B2, f ∈ Σ(β) and X1, . . . , Xn are i.i.d.
variables with density f . For all b ∈ (0, 1), we define:

ηk,b(t) = Kt,b(Xk) − Ef (Kt,b(Xk))

Yk,k′ (b) =
∫ 1

0

ηk,b(t)ηk′,b(t)dt

Yk(b) = Yk,k(b) = ‖ηk,b‖2
2 =
∫ 1

0

η2
k,b(t)dt.

Our goal is now to bound the quantity

Pn(γ) = Pf

(
‖f̂γ − f‖2 ≥ C∗

2ϕn(γ)
)

.

We have, thanks to equation (2.2):

Pn(γ) ≤ P

(
‖f̂γ − Ef̂γ‖2 + ‖Ef̂γ − f‖2 > C∗

2ϕn(γ)
)

≤ P

(
‖f̂γ − Ef̂γ‖2 > (C∗

2 − κ1)ϕn(γ)
)

≤ P

⎛⎝∥∥∥∥∥
n∑

k=1

ηk,bn(γ)(·)
∥∥∥∥∥

2

2

> (C∗
2 − κ1)2(nϕn(γ))2

⎞⎠ .

In order to improve the readability, let us denote bn = bn(γ), ϕn = ϕn(γ), Yk = Yk(bn(γ)) and Yk,k′ =
Yk,k′ (bn(γ)). Thanks to equation (2.3), one can deduce that:

EfYk ≤ κ
2
2nϕ2

n.

Then the following inequalities hold:

Pn(γ) ≤ P

⎛⎝ n∑
k=1

Yk +
∑
k �=k′

Yk,k′ > (C∗
2 − κ1)2(nϕn)2

⎞⎠
≤ P

⎛⎝ n∑
k=1

(Yk − EfYk) +
∑
k �=k′

Yk,k′ > ((C∗
2 − κ1)2 − κ

2
2)(nϕn)2

⎞⎠ .
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Thus, we have:

Pn(γ) ≤ P

(
n∑

k=1

(Yk − EfYk) > ε2(nϕn)2
)

+ P

⎛⎝∑
k �=k′

Yk,k′ > ε2(nϕn)2

⎞⎠ .

On the one hand, the first term can be bounded using Hoeffding’s inequality and Lemma 6.5. Indeed we
obtain:

P

(
n∑

k=1

(Yk − EfYk) > ε2(nϕn)2
)

≤ exp
(
− 2ε2

2(nϕn)4

κ2
3nb−2

n log2 n

)

≤ exp

(
−Cn

2γ−1
2γ+1

log2 n

)

≤ exp
(
− Cnε1

log2 n

)
· (5.1)

On the other hand, the second term can be bounded using Bernstein type inequality for U-statistics see [10]
combined with decoupling argument see [25] and Lemma 6.5. We have:

P

⎛⎝∑
k �=k′

Yk,k′ > ε2(nϕn)2

⎞⎠ ≤ C exp

(
−ε2

2

C
min

[
n1/2

(log n)1/2
,

b
−5/8
n

(log n)1/2
,

n1/3

(log n)2/3

])

≤ C exp
(
−ε2

2

C

n1/4

log n

)
(5.2)

Combining equations (5.2) and (5.1), proposition follows.

6. Auxiliary results

Lemma 6.1 (Chen [6]). There exists an absolute constant c > 0 such that, for all b ∈ (0, 1) and all t, x ∈ [0, 1],
we have:

Kt,b(x) ≤ min

{
c√

bt(1 − t)
, (1 + b)b−1

}
.

Lemma 6.2. There exists an absolute positive constant Q that only depends on L such that for all β ∈ (0, 2]:

sup
f∈Σ(β)

‖f‖∞ ≤ Q.

This lemma can be easily proved using the mean value theorem.

Lemma 6.3. Let g : [0, 1]n → R. Assume that for all i, there exists a constant ci such that:

sup
x1,...,xn,x′

i

|g(x1, . . . , xn) − g(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ ci. (6.1)

Then for all random vector (Z1, . . . , Zn) in [0, 1]n and η > 0, we have:

P (g(Z1, . . . , Zn) − Eg(Z1, . . . , Zn) > η) ≤ exp
(
−2

η2∑n
i=1 c2

i

)
·

This Lemma is proved in McDiarmid [18] using martingales techniques.
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Lemma 6.4. Set g : [0, 1]n → R defined by

g(x1, . . . , xn) =
∫ 1

0

∣∣∣∣∣ 1n
n∑

k=1

Kt,b(xk) − f(t)

∣∣∣∣∣ dt.

Set 0 < ε < 1/3. Then, for b small enough the function g satisfies equation (6.1) with all ci equal to b−ε/n
up to a multiplicative constant.

Proof. Set (x1, . . . , xn) ∈ [0, 1]n. Set an index i and x′
i ∈ [0, 1]. Let us also denote (x̃1, . . . , x̃n) the vector defined

by the following equations:

x̃k =

{
xk if k �= i

x′
i otherwise.

We have:

|g(x1, . . . , xn) − g(x̃1, . . . , x̃n)| ≤
∫ 1

0

∣∣∣∣∣
∣∣∣∣∣ 1n∑

k

Kt,b(xk) − f(t)

∣∣∣∣∣−
∣∣∣∣∣ 1n∑

k

Kt,b(x̃k) − f(t)

∣∣∣∣∣
∣∣∣∣∣ dt

≤
∫ 1

0

∣∣∣∣∣ 1n∑
k

(Kt,b(xk) − Kt,b(x̃k))

∣∣∣∣∣ dt

≤ 1
n

∫ 1

0

|Kt,b(xi) − Kt,b(x′
i)| dt

≤ 2
n

sup
x∈[0,1]

∫ 1

0

Kt,b(x)dt

≤ 4
n

sup
x∈[0,1/2]

∫ 1/2

0

Kt,b(x)dt.

Thus, we have to control

Ib(x) =
∫ 1/2

0

Kt,b(x)dt.

Using Lemma 6.1, we obtain for all 0 < ε < 1:

Ib(x) ≤ (1 + b)b−ε +
∫ 1/2

b1−ε

Kt,b(x)dt

≤ (1 + b)b−ε + Jb(x)

where

Jb(x) =
∫ 1/2

b1−ε

Kt,b(t) exp
{

t

b
log
(

1 +
x − t

t

)
+

1 − t

b
log
(

1 − x − t

1 − t

)}
dt

≤
∫ 1/2

b1−ε

Kt,b(t) exp
(
− (t − x)2

6b

)
dt.

Last inequality follows from two classical inequalities:

∀u ∈ (−1, +∞), log(1 + u) ≤ u and ∀u ∈ (−1, +∞), log(1 − u) ≤ −u − u2

6
·
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Using Lemma 6.1 we obtain:

Jb(x) ≤ a

∫ 1/2

b1−ε

exp
(
− (t − x)2

6b

)
dt√
bt

≤ a(J1
b (x) + J2

b (x))

where, assuming ε < 1/3,

J1
b (x) =

∫ b2ε

b1−ε

exp
(
− (t − x)2

6b

)
dt√
bt

and

J2
b (x) =

∫ 1/2

b2ε

exp
(
− (t − x)2

6b

)
dt√
bt
·

The quantity J1
b (x) can be written as follows:

J1
b (x) =

∫ b2ε−x√
b

b1−ε−x√
b

exp
(
−u2

6

)
du√

x +
√

bu
·

As the function under the integral sign (including the characteristic function of the segment which depends on
b) tends to 0 almost everywhere and is bounded by u �→ exp(−u2/6)/

√
x which is integrable, one can conclude

that J1
b (x) goes to 0 with b.

The quantity J2
b (x) can be bounded as follows:

J2
b (x) =

∫ 1/2−x√
b

b2ε−x√
b

exp
(
−u2

6

)
du√

x +
√

bu

≤ b−ε

∫ 1/2−x√
b

b2ε−x√
b

exp
(
−u2

6

)
du

≤ b−ε

∫
R

exp
(
−u2

6

)
du.

Finally, for all 0 < ε < 1/3, the quantity Ib(x) is smaller than b−ε up to a multiplicative constant which does
not depend on x. Lemma follows. �

Lemma 6.5. There exists absolute positive constants κ3 and κ4 such that, for all β ∈ B2, f ∈ Σ(β) and any
sequence (bn) that satisfies n−2 ≤ bn ≤ 1, we have:

• Almost surely:
Yk(bn) ≤ κ3b

−1
n (log n) and |Yk,k′ (bn)| ≤ κ3b

−1
n (log n).

• If k �= k′:
EfYk,k′ (bn) = 0, EfY 2

k,k′ (bn) ≤ κ4b
−3/4
n log n.

Proof. For the sake of simplicity, we will denote Yk,k′ = Yk,k′ (bn) and Yk = Yk(bn).
Firstly, let us remark that, using Lemma 6.2, we have:

|ηk,bn(t)| ≤ Kt,bn(Xk) + Q.
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Using this inequality combined with Lemma 6.1 we deduce the following bound on η2
k,bn

(t):

η2
k,bn

(t) ≤ C min
{
b−2
n , (bnt(1 − t))−1

}
.

Now, we obtain:

Yk =
∫ 1

0

η2
k,bn

(t)dt

≤ C

∫ 1

0

min
{
b−2
n , (bnt(1 − t))−1

}
dt

≤ C

∫ 1/2

0

min
{
b−2
n , (bnt(1 − t))−1

}
dt

≤ C

∫ bn

0

b−2
n dt +

∫ 1/2

bn

(bnt(1 − t))−1dt.

Since bn ≥ n−2, this leads to

Yk ≤ C
(
b−1
n + b−1

n (log(b−1
n ) + log 2)

)
≤ Cb−1

n log n.

First inequality is proved.
The second inequality is quite simple because |Yk,k′ | ≤ √

YkYk′ .
The first equality EfYk,k′ = 0 follows easily from the independence of the Xk’s.
Finally, let us prove the third inequality:

EfY 2
k,k′ =

∫ 1

0

∫ 1

0

Ef (ηk,bn(t)ηk,bn(u)) Ef (ηk′,bn(t)ηk′,bn(u)) dtdu

=
∫ 1

0

∫ 1

0

(Ef (ηk,bn(t)ηk,bn(u)))2 dtdu

=
∫ 1

0

∫ 1

0

(Ef (Kt,bn(X1)Ku,bn(X1)) − Ef (Kt,bn(X1)) Ef (Ku,bn(X1)))
2 dtdu. (6.2)

Now we have to control the two following quantities:{
E1 = Ef (Kt,bn(X1)Ku,bn(X1))
E2 = Ef (Kt,bn(X1)) Ef (Ku,bn(X1)) .

The control of E2 is simple because EfKt,bn(X1) = Ef(ξ) where ξ ∼ Kt,bn . As f is bounded by Q we obtain:

E2 ≤ Q2.

The control of E1 is quite complex. Firstly, we have

E1 = E[f(Y )]
B
(

t+u
bn

+ 1, 1−t+1−u
bn

+ 1
)

B
(

t
bn

+ 1, 1−t
bn

+ 1
)

B
(

u
bn

+ 1, 1−u
bn

+ 1
) ,

where the distribution of Y is of beta type with parameters (t + u)/bn + 1 and (1 − t + 1 − u)/bn + 1.
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Following (B-K), let us introduce the R function defined, for all z ≥ 0 by:

R(z) =
1

Γ (z + 1)

(z

e

)z √
2πz.

Using our bound on f , we obtain:

E1 ≤ Q
Γ 2
(

1
bn

+ 2
)

Γ
(

t+u
bn

+ 1
)

Γ
(

1−t+1−u
bn

+ 1
)

Γ
(

2
bn

+ 2
)

Γ
(

t
bn

+ 1
)

Γ
(

u
bn

+ 1
)

Γ
(

1−t
bn

+ 1
)

Γ
(

1−u
bn

+ 1
)

≤
Q
(

1
bn

+ 1
)2

√
2π
(

2
bn

+ 1
)
(

1
bn

) 2
bn

(
2
bn

) 2
bn

+ 1
2
R̃(t, u, bn)g(t, u) exp

{
1
bn

f(t, u)
}

,

where

R̃(t, u, bn) =
R
(

2
bn

)
R
(

t
bn

)
R
(

u
bn

)
R
(

1−t
bn

)
R
(

1−u
bn

)
R
(

t+u
bn

)
R
(

1−t+1−u
bn

)
R2
(

1
bn

) ,

g(t, u) =
(

(t + u)(1 − t + 1 − u)
tu(1 − t)(1 − u)

)1/2

,

f(t, u) = (t + u) log(t + u) + (1 − t + 1 − u) log(1 − t + 1 − u)

− t log(t) − u log(u) − (1 − t) log(1 − t) − (1 − u) log(1 − u).

Then using that R is an increasing function that tends to 1 to ∞, we deduce that for bn small enough

E1 ≤ Cb
− 1

2
n g(t, u) exp

{
1
bn

(f(t, u) − 2 log 2)
}
·

Now, let us consider the function

h : (t, u) �→ f(t, u) +
1
4
(t − u)2

(
1

t + u
+

1
1 − t + 1 − u

)
.

Since ∇h(t, u) = 0 ⇐⇒ t = u and h(t, t) = f(t, t) = 2 log 2 it follows easily that:

f(t, u) ≤ 2 log 2 − 1
4
(t − u)2

(
1

t + u
+

1
1 − t + 1 − u

)
≤ 2 log 2 − (t − u)2.

Using this result we obtain:

E1 ≤ Cbn
− 1

2 g(t, u) exp
{
− (t − u)2

bn

}
·

Now, combining our bounds on E1 and E2 with equation (6.2) and applying Lemma 6.1 we obtain:

EfY 2
k,k′ ≤ C

(
a2

nb−4
n + b−1

n (I1 + I2) + Q4
)
,

where

I1 =
∫ 1−an

an

∫ 1−an

an

g2(t, u) exp
{
−2(t − u)2

bn

}
I{|t−u|>cn}dtdu
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and

I2 =
∫ 1−an

an

∫ 1−an

an

g2(t, u) exp
{
−2(t − u)2

bn

}
I{|t−u|<cn}dtdu

where the sequences an and cn tend to 0 as n tends to infinity and will be fixed later.
Firstly, let us bound I1. We have, for n large enough:

I1 ≤ exp
{
−2c2

n

bn

}∫ 1−an

an

∫ 1−an

an

g2(t, u)dtdu

≤C exp
{
−2c2

n

bn

}
(log(an))2.

Secondly, in order to bound I2 let us remark that for n large enough

I2 = I3 + I4

where

I3 =
∫ 1/2

an

∫ 1/2+cn

an

g2(t, u) exp
{
−2(t− u)2

bn

}
I{|t−u|<cn}dtdu

and

I4 =
∫ 1−an

1/2

∫ 1−an

1/2−cn

g2(t, u) exp
{
−2(t − u)2

bn

}
I{|t−u|<cn}dtdu.

Moreover we have

I3 ≤8
∫ 1/2

an

∫ 1/2+cn

an

t + u

tu
I{|t−u|<cn}(It≥u + It≤u)dtdu

≤C

∫ 1/2+cn

an

1
t

(∫ 1/2+cn

an

I{|t−u|<cn}du

)
dt

≤Ccn log(an).

By symmetry, we have also I4 ≤ Ccn log(an). Finally, we obtain that

EfY 2
k,k′ ≤ C

(
a2

nb−4
n + b−1

n exp
{
−2c2

n

bn

}
(log(an))2 + b−1

n cn log(an)
)

.

Now choosing an = b3
n and cn = b

1/4
n , we obtain that for n large enough

EfY 2
k,k′ ≤ Cb−3/4

n log n.

Lemma is then proved. �
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