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LOCAL POLYNOMIAL ESTIMATION OF THE MEAN FUNCTION
AND ITS DERIVATIVES BASED ON FUNCTIONAL DATA

AND REGULAR DESIGNS
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Abstract. We study the estimation of the mean function of a continuous-time stochastic process and
its derivatives. The covariance function of the process is assumed to be nonparametric and to satisfy
mild smoothness conditions. Assuming that n independent realizations of the process are observed
at a sampling design of size N generated by a positive density, we derive the asymptotic bias and
variance of the local polynomial estimator as n, N increase to infinity. We deduce optimal sampling
densities, optimal bandwidths, and propose a new plug-in bandwidth selection method. We establish
the asymptotic performance of the plug-in bandwidth estimator and we compare, in a simulation study,
its performance for finite sizes n, N to the cross-validation and the optimal bandwidths. A software
implementation of the plug-in method is available in the R environment.
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1. Introduction

Local polynomial smoothing is a popular method for nonparametric regression. In addition to its fast imple-
mentation [10], it enjoys good statistical properties such as design adaptation, optimal convergence rate, and
minimax efficiency [8]. Classical examples of local polynomial estimators of order zero are the Nadaraya–Watson
and Gasser–Müller kernel estimators. These estimators, however, do not share all the features of higher order
local polynomials described above.

There is a vast literature on local polynomial regression under independent measurement errors. Asymptotic
bias and variance expressions can be found in [8, 27]. Such results offer key qualitative insights into how the
bandwidth affects the estimation. They are also useful in the key problem of selecting the bandwidth. Indeed,
they give access to the optimal theoretical bandwidth which in turn can be exploited for data-driven bandwidth
selection [9, 25, 26].

In the case of correlated errors, reference [19] give an extensive review of the available asymptotic theory
and smoothing parameter selection methods. Local polynomial estimation is studied under mixing conditions
in [18], under association in [17], and under (stationary) short-range dependence in [13, 20]. Reference [14]
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develop bootstrap and cross-validation methods to select the bandwidth under short and long-range dependence,
while [12] propose a plug-in method for short-range dependent errors.

In the above references, data are essentially modeled as smooth mean functions plus discrete time series
errors. In many applications however, data are more adequately represented as observations of continuous-
time processes or random functions. This continuous-time framework, which is characteristic of functional data
analysis [23], it markedly differs from discrete-time models with respect to statistical estimation properties. In
particular, consistent estimation of the mean function with functional data entails that the number of observed
curves goes to infinity. In addition, the estimation variance primarily depends on the number of curves; it only
depends on the size of the observation grid at the second order [6,15]. Studying kernel regression with continuous-
time, stationary error processes, reference [15] derive the asymptotic bias and variance of the Gasser–Müller
estimator; they select the bandwidth by optimizing an estimate of the integrated mean squared error based on
the empirical autocovariance. Reference [11] extend this work to nonstationary error processes with parametric
covariance. Reference [2] obtain bias and variance expressions under nonstationary error processes with regular
covariance. Reference [3] extend their results to quantized (noisy) observations. Examining smoothing splines
in the context of functional data, reference [24] propose a cross-validation method adjusted to functional data
that leaves one curve out at the time; the optimality of this method is established in [16]. Limiting distributions
of local polynomial regression estimators for longitudinal or functional data can be found in [28]. Reference [7]
devises simultaneous confidence bands for local linear estimators based on a functional central limit theorem.
However, no result seems available in the functional data setting for the local estimation of regression derivatives
and with general (not necessarily stationary) autocorrelated processes.

In this paper we consider the usual functional data framework where for each of n statistical units, a curve is
observed at the same N sampling points generated by a regular density function. The data-generating process
is the sum of a mean function m and a general continuous-time error process. We are interested in the local
polynomial estimation of m and its derivatives. We derive second-order asymptotic expressions for the bias
and variance of the estimators. From these expressions we deduce optimal sampling densities (see e.g. [1, 4] for
related examples), optimal bandwidths, and asymptotic normality results. Applying these results to bandwidth
selection, we develop a plug-in method for the estimation of m and m′ and study its convergence properties.
We also conduct extensive simulations to compare the performances of local polynomial regression based on
different orders of fit and different bandwidths (optimal, plug-in, and cross-validation).

The rest of the paper is organized as follows. The statistical model and local polynomial estimators are
defined in Section 2. Theoretical results on the estimation bias and variance are exposed in Section 3. The
plug-in method is developed in Section 4. Section 5 presents a simulation study. A discussion is provided in
Section 6. Proofs are deferred to the Appendix.

2. Local polynomial regression

We consider the statistical problem of estimating a mean function and its derivatives in a fixed design
experiment. Assume that for each of n experimental units, N measurements of the response are available on a
regular grid:

Yi(xj) = m(xj) + εi(xj), i = 1, . . . , n, j = 1, . . . , N, (2.1)

where m is the unknown mean function and the εi are i.i.d. error processes with mean zero and autocovariance
function ρ. The observation points xj are taken to be regularly spaced quantiles of a continuous positive density
f on [0, 1]: ∫ xj

0

f(x)dx =
j − 1
N − 1

, j = 1, . . . , N. (2.2)

Note that the uniform density f ≡ 1 corresponds to an equidistant design.
Assume that m is at least p times differentiable on [0, 1]. Write βk(x) = m(k)(x)/k!, β(x) = (β0(x), . . . , βp(x))′,

and Y ·j = 1
n

∑n
i=1 Yi(xj). Let 0 ≤ ν ≤ p be an integer. For each x ∈ [0, 1], the local polynomial estimator of
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m(ν)(x) of order p is defined as m̂ν,p(x) = ν! β̂ν(x), where β̂N (x) =
(
β̂0(x), . . . , β̂p(x)

)′ is the solution to the
minimization problem

min
β(x)

N∑
j=1

(
Y ·j −

p∑
k=0

βk(x) (xj − x)k

)2

K

(
xj − x

h

)
. (2.3)

In (2.3), h denotes a positive bandwidth and K is a kernel function. Let YN = (Y ·1, . . . , Y ·N )′ and denote the
canonical basis of R

p+1 by (ek)k=0,...,p (ek has a 1 in the (k + 1)th position and 0 elsewhere). Finally define the
matrix

XN =

⎛⎜⎝1 (x1 − x) · · · (x1 − x)p

...
...

...
1 (xN − x) · · · (xN − x)p

⎞⎟⎠
and WN = diag

(
(1/Nh)K

(
(xj − x)/h

))
. The estimator m̂ν,p(x) expresses as

m̂ν,p(x) = ν! e′ν β̂N (x), with β̂N (x) = (X′
NWNXN )−1X′

NWNYN . (2.4)

3. Asymptotic study

3.1. Asymptotic bias and variance

We make the following hypotheses for the asymptotic study:

(H1) The kernel K is a Lipschitz-continuous, symmetric density function with compact support.
(H2) The bandwidth h = h(n, N) satisfies h → 0, Nh2 → ∞, and nh2ν → ∞ as n, N → ∞.
(H3) The regression function m is (p + 2) times continuously differentiable on [0, 1].
(H4) The sampling density f is continuously differentiable on [0, 1].
(H5) The covariance function ρ is continuous on the unit square [0, 1]2 and has continuous first-order partial

derivatives outside the main diagonal. These derivatives have left and right limits on the main diagonal
determined by ρ(0,1)(x, x−) = limy↗x ρ(0,1)(x, y) and ρ(0,1)(x, x+) = limy↘x ρ(0,1)(x, y).

The kernel condition (H1) and regularity conditions (H3) and (H4) are usual in nonparametric regression. (H2)
ensure that the bandwidth h goes to zero slowly enough. More precisely, the condition nh2ν → ∞ guarantees that
the variance of m̂ν,p(x) goes to zero as n, N → ∞ and the condition Nh2 → ∞ is required to obtain second-order
bias and variance expansions. (H5) is a mild smoothness assumption satisfied by many processes, for example
Wiener and Ornstein−Uhlenbeck processes where ρ admits uniformly bounded second partial derivatives outside
the main diagonal.

Define the vectors c = (μp+1, . . . , μ2p+1)′ and c̃ = (μp+2, . . . , μ2p+2)′, where μk =
∫ +∞
−∞ ukK(u)du denotes

the kth moment of K. Let S = (μk+l), S̃ = (μk+l+1), S∗ = (μkμl), and A =
(

1
2

∫∫
R2 |u − v|ukvlK(u)K(v)dudv

)
be matrices of size (p + 1) × (p + 1) with elements indexed by k, l = 0, . . . , p. For x ∈ (0, 1), define the jump
function

α(x) = ρ(0,1)(x, x−) − ρ(0,1)(x, x+) .

The asymptotic bias and variance of the estimator m̂ν,p(x) are established hereafter.
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Theorem 3.1. Assume (H1)–(H5). Then as n, N → ∞,

E
(
m̂ν,p(x)

)− m(ν)(x) =
ν! m(p+1)(x)

(p + 1)!
(
e′νS

−1c
)
hp+1−ν + o(hp+2−ν)

+ ν!
{

m(p+2)(x)
(p + 2)!

e′νS
−1c̃ +

m(p+1)(x)
(p + 1)!

f ′(x)
f(x)

(
e′νS

−1c̃ − e′νS
−1S̃S−1c

)}
hp+2−ν

and

Var
(
m̂ν,p(x)

)
=

(ν!)2ρ(x, x)
nh2ν

e′νS
−1S∗S−1eν − (ν!)2 α(x)

nh2ν−1
e′νS

−1AS−1eν + o

(
1

nh2ν−1

)
·

Remark 3.2. The asymptotic bias in Theorem 3.1 does not depend on the stochastic structure of the data
(here, continuous-time process). A similar bias expansion (but only at the first order) can be found in [8] in the
context of independent errors. Also, the asymptotic variance in Theorem 3.1 extends the results of [3] and [15]
on the kernel estimation of m.

Remark 3.3. The reason for presenting second-order expansions in Theorem 3.1 is that first-order terms may
vanish due to the symmetry of K which causes its odd moments to be zero. For instance, the first-order term
in the bias vanishes if (p− ν) is even and the first-order term in the variance vanishes if ν is odd. In both cases
the second-order terms generally allow to find exact rates of convergence and asymptotic optimal bandwidths.

If the covariance ρ has continuous first derivatives at (x, x), the second-order variance term in Theorem 3.1
vanishes since ρ(0,1)(x, x−) = ρ(0,1)(x, x+). In this case the variance expansion does not depend on h if ν = 0
or ν is odd (see Rem. 3.3). This makes it impossible to assess Var(m̂ν,p(x)) with Theorem 3.1 alone. This issue
can be solved by deriving higher-order variance expansions under stronger differentiability assumptions on f
and ρ. For simplicity we restrict our attention to the case of an equidistant sampling grid. Define the matrices
A1 =

(
1
2 (μkμl+2 + μk+2μl)

)
, A2 = (μk+1μl+1), and A3 =

(
1
6 (μk+3μl+1 +μk+1μl+3)

)
indexed by k, l = 0, . . . , p.

Theorem 3.4. Assume (H1)–(H5) with f ≡ 1 on [0, 1].

• Case ν even. Assume further that ρ is twice continuously differentiable at (x, x) and Nh3 → ∞ as n, N → ∞.
Then

Var
(
m̂ν(x)

)
=

(ν!)2ρ(x, x)
nh2ν

e′νS
−1S∗S−1eν

+
(ν!)2ρ(0,2)(x, x)

nh2ν−2
e′νS

−1A1S−1eν + o

(
1

nh2ν−2

)
·

• Case ν odd. Assume further that ρ is four times continuously differentiable at (x, x) and Nh5 → ∞ as
n, N → ∞. Then

Var
(
m̂ν(x)

)
=

(ν!)2ρ(1,1)(x, x)
nh2ν−2

e′νS
−1A2S−1eν

+
(ν!)2ρ(1,3)(x, x)

nh2ν−4
e′νS

−1A3S−1eν + o

(
1

nh2ν−4

)
·

Remark 3.5. Looking at Theorems 3.1 and 3.4, it is not clear whether the variance of m̂ν,p(x) is a decreasing
function of h. In other words, smoothing more may not always reduce the variance of the estimator. See [5] for
a similar observation in the context of functional principal components analysis.
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3.2. Optimal sampling densities and bandwidths

In this section we discuss the optimization of the (asymptotic) mean squared error

MSE = E
(
m̂ν,p(x) − m(ν)(x)

)2
= Bias

(
m̂ν,p(x)

)2 + Var
(
m̂ν,p(x)

)
in Theorem 3.1 with respect to the sampling density f and the bandwidth h. A similar optimization can
be carried out in Theorem 3.4 where the covariance ρ is assumed to be more regular (twice or four times
differentiable).

We first examine the choice of f that minimizes the asymptotic squared bias of m̂ν(x). Indeed the asymptotic
variance of m̂ν(x) is independent of f , as can be seen in Theorem 3.1. This optimization is particularly useful
in practice when the grid size N is not too large and subject to a sampling cost constraint.

For p−ν even, e′νS
−1c = 0 so that the first-order term in the bias vanishes, as noted in Remark 3.3. Moreover,

the second-order term can be rendered equal to zero (except at zeros of m(p+1)(x)) by taking a sampling density
f such that gp,ν(x) = 0, where

gp,ν(x) =
m(p+2)(x)
(p + 2)!

e′νS
−1c̃ +

m(p+1)(x)
(p + 1)!

f ′(x)
f(x)

(
e′νS

−1c̃ − e′νS
−1S̃S−1c

)
.

The solution of the previous equation is

f∗(x) = d−1
0

∣∣∣m(p+1)(x)
∣∣∣γ/(p+2)

, (3.1)

with d0 such that
∫ 1

0 f∗(x)dx = 1 and γ = e′νS−1c̃/(e′νS−1S̃S−1c−e′νS−1c̃). Observe that f∗(x) is well-defined
over [0, 1] if and only if m(p+1)(x) �= 0 for all x ∈ [0, 1]. With the choice f = f∗, the bias of m̂ν,p(x) is of order
o(hp+2−ν), so that a higher order expansion would be required to get the exact rate of convergence. In practice,
the density f∗ depends on the unknown quantity m(p+1)(x). It can be approximated by replacing m(p+1)(x)
in (3.1) with m̂p+1,p+k(x) for some k ≥ 1.

For p − ν odd, the first-order term in the bias is non zero (if m(p+1)(x) �= 0) but does not depend on f . On
the other hand, the second-order term vanishes for any sampling density f . Therefore, a higher order expansion
of the bias would be required to optimize the MSE with respect to f .

We turn to the optimization of the bandwidth h and start with a lemma.

Lemma 3.6. Assume (H5). Then the jump function satisfies α(x) ≥ 0.

This lemma is easily checked for covariance-stationary processes [see e.g. 15] but is less intuitive for general
covariance functions ρ. It is helpful for determining whether the asymptotic variance of m̂ν,p(x) is a decreasing
function of h, in which case the MSE can be optimized. To make this optimization possible, we assume that
α(x) > 0 (or higher order differentiability for ρ if α(x) = 0; see Rem. 3.9) throughout this section.

When estimating the regression function itself (ν = 0), the leading variance term in Theorem 3.1 does
not depend on h. If e′0S

−1AS−1e0 ≤ 0, then the second-order variance term (in h/n) is nonnegative and
the optimization of the MSE yields the solution h = 0, which is not admissible. In fact, we suspect that
e′0S−1AS−1e0 > 0 for all kernels K satisfying (H1) and all integers p ≥ 0, although we have only checked it for
the special cases p ≤ 2 (local constant, linear, or quadratic fit). Under this conjecture, the optimal bandwidth for
the MSE exists and can be obtained from Theorem 3.1. The cases p even and p odd must be treated separately
as they correspond to different bias expressions (see Rem. 3.3 and the optimization of f above). More precisely,
if ν = 0 and p is odd, then the asymptotic optimal bandwidth is

hopt =

{
(p + 1)!2 (e′0S−1AS−1e0)α(x)

(2p + 2)
(
m(p+1)(x)

)2 (e′0S−1c)2

}1/(2p+1)

n−1/(2p+1).
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In the case where ν = 0 and p is even, the asymptotic optimal bandwidth becomes

hopt =
{

(e′0S
−1AS−1e0)α(x)

(2p + 4) gp,0(x)2

}1/(2p+3)

n−1/(2p+3).

Note that we have assumed that gp,0(x) �= 0 in the previous optimization, which means that f differs from the
optimal sampling density f∗. To optimize the MSE when f = f∗, it would be necessary to derive a higher order
expansion for the bias; the optimal bandwidth would then be of order at least n−1/(2p+5).

In the following corollary, we give the optimal bandwidth h in two important cases (ν = 0, 1), using, for
simplicity, a uniform sampling density f ≡ 1 on [0, 1]. Optimal bandwidths can be obtained similarly for ν ≥ 2.

Corollary 3.7. Assume (H1)–(H5) with f ≡ 1 on [0, 1] and α(x) > 0.

1. Local constant or linear estimation of m (ν = 0, p ∈ {0, 1}). Assume further that m′′(x) �= 0 and Nn−2/3 →
∞ as n, N → ∞. Then the optimal bandwidth for the asymptotic MSE of m̂0(x) is

hopt =
(

α(x)
2μ2

2 m′′(x)2

∫∫
R2

|u − v|K(u)K(v)dudv

)1/3

n−1/3.

2. Local linear or quadratic estimation of m′ (ν = 1, p ∈ {1, 2}). Assume further that m(3)(x) �= 0 and
Nn−2/5 → ∞ as n, N → ∞. Then the optimal bandwidth for the asymptotic MSE of m̂1(x) is

hopt =
(
− 9 α(x)

2μ2
4 m(3)(x)2

∫∫
R2

|u − v|uvK(u)K(v)dudv

)1/5

n−1/5.

Corollary 3.7 provides the theoretical basis for the plug-in bandwidth selection method to be developed in
Section 4.

Remark 3.8. In the cases (ν, p) = (0, 1) and (ν, p) = (1, 2) of Corollary 3.7, the results actually hold for any
sampling density f satisfying (H4). Also, the first part of the corollary corresponds to Theorem 3 of [15] and
Corollary 2.1 of [3] when the Gasser−Muller estimator is used with an equidistant design.

Remark 3.9. Under the assumptions of Theorem 3.4, in case 1 of Corollary 3.7, the optimal bandwidth is
hopt = |2 ρ(0,2)(x, x)|1/2 (μ2m

′′(x)2)−1/2 n−1/2 provided that ρ(0,2)(x, x) < 0 and Nn−3/2 → ∞ as n, N → ∞. In
case 2, the optimal bandwidth is hopt = |6μ2ρ

(1,3)(x, x)|1/2 (μ4m
(3)(x)2)−1/2 n−1/2 provided that ρ(1,3)(x, x) < 0

and Nn−5/2 → ∞ as n, N → ∞.

Theorem 3.1 also provides optimal bandwidths for global error measures such as the integrated mean squared
error

MISE =
∫ 1

0

E
(
m̂ν,p(x) − m(ν)(x)

)2dx. (3.2)

More precisely, denoting by [−τ, τ ] the support of K, the bias and variance expressions in Theorem 1 hold
uniformly over [τh, 1 − τh], and their orders are the same near the boundariesy regions [0, τh) and (1 − τh, 1]
(only the multiplicative constants are lost). As n, N → ∞, the MISE is therefore equivalent to the weighted
integral over [0, 1] of the (squared) bias plus variance expansions of Theorem 3.1. One can thus replace the terms
α(x) and (m(ν)(x))2 in Corollary 3.7 by

∫ 1

0 α(x)dx and
∫ 1

0 (m(ν)(x))2dx, respectively, to obtain global optimal
bandwidths.
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3.3. Asymptotic normality

Theorems 3.1 and 3.4 provide the normalization for the limiting distribution of m̂ν,p(x). Further, m̂ν,p(x) =
1
n

∑n
i=1 m̂i(x), where m̂i is the local polynomial smoother applied to the Yi(xj), j = 1, . . . , N . Since the m̂i

are i.i.d. with finite variance like the Yi, i = 1, . . . , n, the central limit theorem applies. We now present the
asymptotic distribution of m̂ν(x) according to the parity of ν and p (see Rem. 3.3 on the vanishing terms in
the asymptotic variance). Denote convergence in distribution by −→ and the centered normal distribution with
variance σ2 by N(0, σ2). Imposing extra conditions on the bandwidth h to ensure negligibility of the bias, we
have the following result.

Theorem 3.10. Assume (H1)–(H5).

• Case ν even. Assume further that nh2p+4 → 0 if p is even, resp. nh2p+2 → 0 if p is odd, as n, N → ∞. Then
√

nh2ν
(
m̂ν,p(x) − m(ν)(x)

) −→ N
(
0, (ν!)2 ρ(x, x)

(
e′νS

−1S∗S−1eν

) )
.

• Case ν odd and α(x) > 0. Assume further that nh2p+1 → 0 if p is even, resp. nh2p+3 → 0 if p is odd, as
n, N → ∞. Then

√
nh2ν−1

(
m̂ν,p(x) − m(ν)(x)

) −→ N
(
0, (ν!)2 α(x)

∣∣e′νS−1AS−1eν

∣∣ ).
• Case ν odd and α(x) = 0. Assume further that f ≡ 1, ρ is four times differentiable at (x, x), Nh5 → ∞,

and that nh2p → 0 if p is even, resp. nh2p+2 → 0 if p is odd, as n, N → ∞. Then
√

nh2ν−2
(
m̂ν,p(x) − m(ν)(x)

) −→ N
(
0, (ν!)2 ρ(1,1)(x, x)

(
e′νS

−1A2S−1eν

) )
.

4. Plug-in bandwidth selection

In this section we consider the local polynomial estimation of the regression function m(x). We propose a
plug-in estimator for the optimal global bandwidth and determine its convergence rate. Extensions of the plug-in
methodology to the estimation of derivatives m(ν), ν ≥ 1, are straightforward. For reasons of space, we do not
discuss them in this paper.

In case 1 of Corollary 3.7, the optimal global bandwidth is

hopt =
(

Iα

2μ2
2θ2,2

C1(K)
)1/3

n−1/3 (4.1)

with Iα =
∫ 1

0 α(x)dx, θr,s =
∫ 1

0 m(r)(x)m(s)(x)dx, and C1(K) =
∫

R2 |u − v|K(u)K(v)dudv. The plug-in band-
width is obtained by replacing Iα and θ2,2 with suitable estimators in this expression.

The integral Iα is well-estimated by averaging the quadratic variations of the sampled processes Yi, i =
1, . . . , n:

Îα =
1
n

n∑
i=1

N∑
j=2

(Yi(xj) − Yi(xj−1))
2 . (4.2)

Under the regularity condition (H5), Îα is asymptotically unbiased as N → ∞. Noting that E(Îα) does not
depend on n, it follows from the Strong Law of Large Numbers that Îα is strongly consistent as n, N → ∞. A
similar result for Gaussian processes can be found in [21].

Turning to the estimation of θ2,2, we first construct a local polynomial estimator m̂2,pθ
of m(2) with degree

pθ and bandwidth g, and then take its L2 norm to obtain the estimator

θ̂2,2(g) =
∫ 1

0

(m̂2,pθ
(x))2 dx. (4.3)
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The bandwidth g is selected using the cross-validation method of [24] which consists in minimizing the prediction
score

CV(g) =
1

nN

n∑
i=1

N∑
j=1

(
m̂

(−i)
0,p (xj) − Yi(xj)

)2

, (4.4)

where m̂
(−i)
0,p (x) is the estimator (2.4) having degree p = pθ and bandwidth g applied to the (n − 1) curves

Yk, k �= i, at the design points xj . Although this cross-validation method is designed for the estimation of m
and enjoys optimality properties only in this case (see e.g., [16]), it also gives reasonable bandwidths for the
estimation of m(ν), ν ≥ 1, as shown by our simulations.

We now establish the consistency of the plug-in global bandwidth for the estimation of the regression function
m(x). Similar results can be obtained for the general case m(ν)(x) at the cost of heavy computations. For
convenience, we assume that the design points are equidistant (f ≡ 1). We also require that the error process ε
is Gaussian so that, by Isserlis’ theorem, it satisfies E (ε(xi)ε(xj)ε(xk)) = 0 and

Cov (ε(xi)ε(xj), ε(xk)ε(xl)) = ρ(xi, xk)ρ(xj , xl) + ρ(xi, xl)ρ(xj , xk)

for all indexes i, j, k, l. The following result gives the rate of convergence of the plug-in bandwidth estimator
ĥopt to the optimal bandwidth hopt for the estimation of the regression function m(x).

Theorem 4.1. Assume (H1), (H3) and (H5). In addition, assume that ε is Gaussian and that n =
O(N (pθ+3)/(pθ+4)) for some pθ ∈ {3, 5} as n, N → ∞. Let g = Gn−1/(pθ+3) be a pilot bandwidth, with G > 0 a
constant. Then the plug-in bandwidth ĥopt based on (4.1)−(4.3) converges in probability to hopt at an optimal
rate as n, N → ∞ and its relative error satisfies

n(pθ−1)/(pθ+3)

(
ĥopt − hopt

hopt

)
−→ D,

with D = − 4
3θ−1

2,2

{
θ2,pθ+1

(pθ+1)!

(
e′2S

−1c
)
Gpθ−1 + (e′2S

−1S∗S−1e2)G−4
∫ 1

0 ρ(x, x)dx
}
.

5. Numerical study

In this section we compare the numerical performances of local polynomial estimators based on different orders
of fit p and bandwidths h. The three bandwidth choices under scrutiny are the bandwidth hex that minimises the
(exact, finite-sample) MISE (3.2); the plug-in bandwidth hplug of Section 4; and the cross-validation bandwidth
hcv that minimizes the prediction score (4.4). The bandwidth hex serves as a benchmark and cannot be computed
in practice.

The regression functions chosen for simulating model (2.1) are{
m1(x) = 16(x − 0.5)4,

m2(x) =
1

1 + e−10(x−0.5)
+ 0.03 sin(6πx).

(5.1)

The polynomial function m1 has unit range and has relatively high curvature away from its minimum at x = 0.5.
The function m2 is a linear combination of a logistic function and a rapidly varying sine function. The factor
0.03 is chosen so that the sine function has small influence on m2 but a much larger on m′

2. These functions
and their derivatives are displayed in Figure 1.

For the stochastic part of model (2.1) we use Gaussian processes with mean zero and covariance functions{
ρ1(x, y) = min(x, y),

ρ2(x, y) = e−15|x−y|.
(5.2)
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Figure 1. Left panel: regression functions m1 (solid line) and m2 (dashed ). Right panel: first
derivatives m′

1 (solid line) and m′
2 (dashed).

The first error process is a standard Wiener process on [0, 1]; the second is a stationary Ornstein−Uhlenbeck
process. The parameter λ = 15 in ρ2 yields correlation levels between two consecutive measurements ranging
from 0.22 for N = 10 to 0.86 for N = 100. Similarly, the variance of these processes is such that when estimating
mi, i ∈ {1, 2}, the signal-to-noise ratio is fairly low for n small and high for n large.

The simulations are conducted in the R environment [22] using the package SCBmeanfd contributed by the
second author. This package is available on the CRAN website http://www.cran.r-project.org. We consider
all combinations of m1, m2 and ρ1, ρ2 with the sample size n and grid size N varying in {10, 20, 50, 100}. We
examine different targets m

(ν)
i and estimators m̂ν,p (p = 0, 1 for ν = 0, i.e. local constant and linear fits, and

p = 1, 2 for ν = 1, i.e. local linear and quadratic fits). In each case model (2.1) is simulated 1000 times. The
kernel used for the estimation is a truncated Gaussian density and the bandwidths under study are hex, hplug,
and hcv.

Some of the extensive simulations are presented in Tables 1, 2 and 3. The Columns 1–4 of each table contain
n, N, hex, the median hplug, and the median hcv over the 1000 simulations. The Columns 6-7-8 show the median
integrated squared error

∫ 1

0
(m̂ν,p(x) − m(ν)(x))2dx over the 1000 simulations for hex, hplug, and hcv, with the

interquartile range shown in brackets.
We first comment the estimation of m. Looking at Table 1 (local linear estimation of m1 with covariance

ρ1) it appears that the bandwidths hex, hplug, hcv are very close and yield similar performances for almost
all n, N . Similar observations hold for the local linear estimation of m1 with covariance ρ2. However, note in
Table 1 that hplug yields smaller performances when n ∈ {50, 100} and N = 10, which can be expected since
this bandwidth is only optimal for large N . Local constant estimation of m1 and m2 (not displayed here) yields
very similar results.

The results for the estimation of m′ are summarized in Tables 2 and 3 and Figure 2. Over all combinations
of n, N, mi, and ρi, the median efficiency of the plug-in method (resp. of the cross-validation method) relative
to the optimal bandwidth hex is 80% (resp. 85%) for both the local linear and local quadratic estimators.
Considering only local quadratic estimation with N ≥ 20 (resp. n, N ≥ 50) the median efficiency of the plug-in
method increases to 86% (resp. 89%) while that of cross-validation decreases to 80% (resp. 76%). Tables 2 and 3
seem to indicate that cross-validation yields better results than plug-in under local linear estimation and worse
results under local quadratic estimation. In fact this is not longer true in simulations with m2 or ρ2. Overall,
the plug-in method yields comparable or better performances than cross-validation for large n, N but should
not be used for small n, N . Cross-validation gives reasonable results in all cases.

In comparison to local linear estimation, local quadratic estimation has an extra fitting parameter, which
reduces the bias at the expense of increasing the variance. Which order of local polynomial fit achieves better

http://www.cran.r-project.org
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Table 1. Local linear estimation of m1 with Wiener process noise.

n N hex hplug hcv ISEex ISEplug ISEcv

10 10 0.07 0.08 0.08 0.031 (0.051) 0.031 (0.050) 0.032 (0.051)
10 20 0.06 0.06 0.06 0.028 (0.048) 0.028 (0.047) 0.028 (0.048)
10 50 0.07 0.06 0.07 0.026 (0.049) 0.026 (0.050) 0.027 (0.050)
10 100 0.07 0.06 0.07 0.027 (0.047) 0.027 (0.047) 0.027 (0.048)
20 10 0.06 0.06 0.06 0.019 (0.026) 0.020 (0.026) 0.020 (0.025)
20 20 0.05 0.05 0.05 0.014 (0.025) 0.014 (0.025) 0.014 (0.025)
20 50 0.05 0.04 0.05 0.014 (0.024) 0.014 (0.024) 0.014 (0.024)
20 100 0.05 0.04 0.05 0.014 (0.026) 0.014 (0.027) 0.014 (0.027)
50 10 0.06 0.05 0.06 0.010 (0.011) 0.015 (0.012) 0.010 (0.011)
50 20 0.04 0.03 0.04 0.006 (0.011) 0.006 (0.011) 0.006 (0.011)
50 50 0.03 0.03 0.03 0.006 (0.011) 0.006 (0.010) 0.006 (0.011)
50 100 0.03 0.03 0.03 0.005 (0.010) 0.005 (0.010) 0.005 (0.010)
100 10 0.06 0.05 0.06 0.007 (0.006) 0.012 (0.006) 0.007 (0.006)
100 20 0.03 0.03 0.03 0.003 (0.005) 0.003 (0.005) 0.003 (0.005)
100 50 0.03 0.03 0.03 0.003 (0.005) 0.003 (0.005) 0.003 (0.005)
100 100 0.03 0.02 0.03 0.003 (0.005) 0.003 (0.005) 0.003 (0.005)

Table 2. Local linear estimation of m′
1 with Wiener process noise.

n N hex hplug hcv ISEex ISEplug ISEcv

10 10 0.07 0.08 0.08 1.96 (1.09) 2.06 (1.12) 2.02 (1.09)
10 20 0.05 0.08 0.06 1.01 (0.62) 1.29 (0.79) 1.14 (0.73)
10 50 0.05 0.08 0.07 0.84 (0.52) 1.12 (0.66) 1.06 (0.73)
10 100 0.05 0.07 0.07 0.83 (0.50) 1.08 (0.64) 1.13 (0.78)
20 10 0.06 0.07 0.06 1.75 (0.72) 1.82 (0.73) 1.78 (0.72)
20 20 0.04 0.07 0.05 0.70 (0.43) 0.96 (0.53) 0.73 (0.43)
20 50 0.04 0.07 0.05 0.52 (0.31) 0.77 (0.43) 0.60 (0.38)
20 100 0.04 0.06 0.05 0.52 (0.30) 0.76 (0.44) 0.60 (0.39)
50 10 0.06 0.06 0.06 1.65 (0.46) 1.67 (0.46) 1.66 (0.45)
50 20 0.04 0.06 0.04 0.47 (0.25) 0.65 (0.27) 0.48 (0.25)
50 50 0.03 0.06 0.03 0.29 (0.15) 0.49 (0.23) 0.30 (0.15)
50 100 0.03 0.06 0.04 0.27 (0.13) 0.45 (0.21) 0.29 (0.14)
100 10 0.06 0.05 0.06 1.60 (0.31) 1.88 (0.38) 1.61 (0.30)
100 20 0.03 0.05 0.03 0.38 (0.15) 0.49 (0.19) 0.39 (0.15)
100 50 0.02 0.05 0.03 0.18 (0.08) 0.33 (0.13) 0.18 (0.08)
100 100 0.02 0.05 0.03 0.17 (0.08) 0.31 (0.13) 0.17 (0.08)

performances in a given scenario depends on the balance between bias and variance. In Tables 2 and 3 it can be
seen that with the optimal bandwidth hex, the local quadratic estimator yields sensibly better results than the
local linear when the target is m′

1 (due to the high curvature of m′
1 which makes the bias large in comparison

to the variance). The situation is however reversed when the target is m′
2 (with relatively low curvature). As

shown in Figure 2, the local quadratic estimator has a slightly smaller squared bias than the local linear for
small h (see the left panel) but a much larger variance (see the middle panel). As a result the optimal MISE is
smaller for the local linear estimator and the optimal bandwidths are quite different: hex = 0.13 for the linear
fit and hex = 0.30 for the quadratic fit (see the right panel of Fig. 2).

6. Discussion

Considering independent realizations of a continuous-time stochastic process observed on a regular grid,
we have derived asymptotic expansions for the bias and variance of local polynomial estimators of the mean
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Table 3. Local quadratic estimation of m′
1 with Wiener process noise.

n N hex hplug hcv ISEex ISEplug ISEcv

10 10 0.11 0.08 0.16 0.99 (1.12) 2.74 (3.57) 1.10 (1.12)
10 20 0.10 0.08 0.14 0.61 (0.51) 0.71 (0.55) 0.71 (0.66)
10 50 0.09 0.08 0.15 0.53 (0.41) 0.60 (0.45) 0.76 (0.72)
10 100 0.09 0.07 0.15 0.52 (0.41) 0.58 (0.44) 0.76 (0.79)
20 10 0.10 0.07 0.11 0.70 (0.78) 5.08 (3.19) 0.76 (0.79)
20 20 0.08 0.07 0.11 0.37 (0.31) 0.41 (0.35) 0.40 (0.34)
20 50 0.08 0.07 0.12 0.30 (0.23) 0.33 (0.24) 0.38 (0.34)
20 100 0.08 0.06 0.12 0.30 (0.22) 0.32 (0.23) 0.42 (0.34)
50 10 0.09 0.06 0.11 0.52 (0.47) 7.55 (1.34) 0.57 (0.52)
50 20 0.06 0.06 0.09 0.19 (0.16) 0.20 (0.17) 0.20 (0.15)
50 50 0.06 0.06 0.10 0.15 (0.10) 0.16 (0.10) 0.20 (0.15)
50 100 0.06 0.06 0.10 0.14 (0.10) 0.15 (0.10) 0.20 (0.15)
100 10 0.09 0.05 0.10 0.48 (0.35) 8.27 (1.40) 0.50 (0.39)
100 20 0.05 0.05 0.08 0.12 (0.10) 0.12 (0.10) 0.13 (0.10)
100 50 0.05 0.05 0.08 0.08 (0.06) 0.09 (0.06) 0.12 (0.08)
100 100 0.05 0.05 0.09 0.08 (0.05) 0.08 (0.06) 0.12 (0.08)
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Figure 2. Comparison of local linear (solid line) and local quadratic fitting (dashed line) for
the estimation of derivatives. The estimation target is m′

2 and the covariance function is ρ2,
with n = N = 50 in (2.1).

function and its derivatives. Using the same arguments as in the present paper, these results can be extended
to noisy observations of continuous processes defined on multivariate domains. Based on these results, we have
deduced optimal sampling densities and bandwidths and devised a plug-in bandwidth selection method. In
simulations, this plug-in method appears as a valid alternative to cross-validation when the observation grid is
moderate to large (this is typically the case for functional data). Given that cross-validation produces nearly
optimal results in our simulation setup, any improvement brought by another bandwidth selection method is
bound to be small. In this light, the fact that the proposed plug-in method yields comparable performances
to cross-validation is a positive finding. Furthermore, the computation of the plug-in bandwidth is much faster
than the cross-validation procedure, especially for large data sets. Another salient result of the numerical study
is that although cross-validation is primarily intended for estimating the mean function, it also gives satisfactory
results in derivative estimation.
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Appendix A. Proofs

A.1. Proof of Theorem 3.1

Bias term.

Write mN = (m(x1), . . . , m(xN ))′ and define the (p+1)×(p+1) matrix SN = X′
NWNXN with (k, l)th element

(0 ≤ k, l ≤ p) given by

sk+l,N =
1

Nh

N∑
j=1

(xj − x)k+lK

(
xj − x

h

)
·

It follows from (2.4) that
E(β̂N (x)) = S−1

N X′
NWNmN . (A.1)

In view of (H3), the Taylor expansion of m(xj) at the order (p + 2) is

m(xj) =
p+2∑
k=0

(xj − x)kβk(x) + o
(
(xj − x)p+2

)
and thus

mN = XNβ(x) + βp+1(x)

⎛⎜⎝ (x1 − x)p+1

...
(xN − x)p+1

⎞⎟⎠+ (βp+2(x) + o(1))

⎛⎜⎝ (x1 − x)p+2

...
(xN − x)p+2

⎞⎟⎠ .

As a result the bias in the estimation of β(x) is

E(β̂N (x)) − β(x) = βp+1S−1
N cN + (βp+2 + o(1))S−1

N c̃N , (A.2)

where cN = (sp+1,N , . . . , s2p+1,N )′ and c̃N = (sp+2,N , . . . , s2p+2,N )′.
Using (H1)−(H4), straightforward calculations yield the following approximation to the elements of the

matrix SN :

sk+l,N = hk+l

(∫ ∞

−∞
uk+lK(u)f(x + hu)du + O

(
(Nh)−1

))
, (A.3)

the O((Nh)−1) being the error in the integral approximation of a Riemann sum.
Based on (H4), a Taylor expansion of f(x + hu) at order 1 yields

sk+l,N = hk+l
(
μk+lf(x) + hμk+l+1f

′(x) + o(h)
)

(A.4)

under the condition Nh2 → ∞ in (H2). The last relation stands in matrix form as

SN = H
(
f(x)S + hf ′(x)S̃ + o(h)

)
H , (A.5)

where H = diag(1, h, . . . , hp). In particular, it holds that{
cN = hp+1H

(
f(x)c + (hf ′(x) + o(h)) c̃

)
,

c̃N = hp+2H (f(x) + o(1)) c̃.
(A.6)

With the relation (A + hB)−1 = A−1 − hA−1BA−1 + o(h) holding for any invertible matrices A,B of
compatible dimensions, we have

S−1
N = H−1

(
1

f(x)
S−1 − h

f ′(x)
f2(x)

S−1S̃S−1 + o(h)
)

H−1. (A.7)

Plugging (A.6) and (A.7) in (A.2) and truncating the expansion to the second order, the bias expression of
Theorem 3.1 follows.
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Variance term.

Define the N ×N matrix VN = (ρ(xi, xj)) and the (p + 1)× (p + 1) matrix S∗
N = X′

NWNVNWNXN . Noting
that Var(YN ) = n−1VN and considering (2.4), it can be seen that

Var
(
β̂N (x)

)
= n−1S−1

N S∗
NS−1

N . (A.8)

The asymptotic behavior of S∗
N is characterized in the following lemma.

Lemma A.1. Assume (H1) and (H5). Then as n, N → ∞,

S∗
N = H

{
φ(x, x)S∗ + h(φ(0,1)(x, x+) − φ(0,1)(x, x−))A

+h(φ(0,1)(x, x+) + φ(0,1)(x, x−))B + o(h)
}

H

with the matrices A, S∗ as in Section 3, B =
(

1
2 (μk+1μl + μkμl+1)

)
, and φ(y, z) = ρ(y, z)f(y)f(z).

Plugging Lemma A.1 and (A.7) in (A.8), we have

nf(x)2 HVar(β̂N (x))H = φ(x, x)S−1S∗S−1 + o(h)

− hφ(x, x)
f ′(x)
f(x)

(
S−1S̃S−1S∗S−1 + S−1S∗S−1S̃S−1

)
+ h

(
φ(0,1)(x, x+) − φ(0,1)(x, x−)

)
S−1AS−1

+ h
(
φ(0,1)(x, x+) + φ(0,1)(x, x−)

)
S−1BS−1. (A.9)

Note that the o(h) above stands for a matrix whose coefficients are negligible compared to h as h → 0.
Expressing φ(0,1)(x, x±) in terms of ρ(0,1)(x, x±), we get

φ(0,1)(x, x±) = f(x)f ′(x)ρ(x, x) + f2(x)ρ(0,1)(x, x±) (A.10)

and

nHVar
(
β̂N (x)

)
H = ρ(x, x)S−1S∗S−1 + o(h)

− hρ(x, x)
f ′(x)
f(x)

(
S−1S̃S−1S∗S−1 + S−1S∗S−1S̃S−1

)
+ h (ρ(0,1)(x, x+) − ρ(0,1)(x, x−))S−1AS−1

+ h

(
2
f ′(x)
f(x)

ρ(x, x) +
(
ρ(0,1)(x, x+) + ρ(0,1)(x, x−)

))
S−1BS−1. (A.11)

This variance expression can be simplified further due to the fact that{
e′νS

−1S̃S−1S∗S−1eν = 0

e′νS
−1BS−1eν = 0

(A.12)

for all ν = 0, . . . , p. Indeed, by the symmetry of K, S = (μk+l) has its (k, l)th entry equal to zero if k, l are of
different parity. The same property can be established for S−1 by cofactor arguments. For S̃ = (μk+l+1), the
(k, l)th entry is zero if k, l are of the same parity. For S∗ = (μkμl), the sparsity is even stronger: all rows and
columns of odd order (recall that the indexing starts at 0) have their entries equal to zero. Basic matrix algebra
then shows that the matrices S−1S̃S−1 and S∗S−1 have the same sparsity structures as S̃ and S∗, respectively.
As a result S−1S̃S−1S∗S−1 has its diagonal coefficients equal to zero and the first part of (A.12) follows. The
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second part is derived along the same lines. It suffices to notice that Bkl = μkμl+1 + μk+1μl = 0 if k and l are
the same parity, so that S−1BS−1 has all its diagonal coefficients equal to zero.

Finally, we deduce from (A.11) and (A.12) that

nVar(m̂ν(x)) = n(ν!)2 e′ν Var(β̂N (x)) eν

= (ν!)2h−2ν ρ(x, x) e′νS
−1S∗S−1eν + o(h−2ν+1)

+ (ν!)2h−2ν+1 (ρ(0,1)(x, x+) − ρ(0,1)(x, x−)) e′νS
−1AS−1eν ,

which completes the Proof of Theorem 3.1.

A.2. Proof of Lemma A.1.

The arguments used to approximate SN in (A.3) can be applied again to show that, under (H1) and (H2)
and (H4) and (H5),

s∗kl,N =
1

(Nh)2

N∑
i=1

N∑
j=1

(xi − x)k(xj − x)lK

(
xi − x

h

)
K

(
xj − x

h

)
ρ (xi, xj)

=
1
h2

∫∫
[−1,1]2

(u − x)k(v − x)lK

(
u − x

h

)
K

(
v − x

h

)
ρ(u, v)f(u)f(v)dudv + O

(
hk+l

Nh

)
= hk+l

∫∫
[−1,1]2

ukvlφ(x + hu, x + hv)K(u)K(v)dudv + o
(
hk+l+1

)
. (A.13)

Performing Taylor expansions and using (H4) and (H5), one can show that

φ(x + hu, x + hv) = φ(x, x) + huφ(0,1)(x, x−) + hvφ(0,1)(x, x+) + o(h)

for all −1 ≤ u ≤ v ≤ 1. This result is obtained by introducing a pivotal point (x + hu, x) or (x, x + hv)
such that the lines connecting this point to (x + hu, x + hv) and (x, x) do not cross the main diagonal of
[0, 1]2. Since φ is differentiable on each side of the diagonal, one can then perform Taylor expansions along the
connecting lines. The above result also relies on the identities φ(1,0)(x+, x) = φ(0,1)(x, x+) = φ(0,1)(x−, x) and
φ(1,0)(x−, x) = φ(0,1)(x, x−) = φ(0,1)(x+, x) (thanks to the symmetry of φ and the continuity of the first partial
derivatives of φ on either side of the diagonal). By symmetry considerations, it holds for all u, v ∈ [−1, 1] that

φ(x + hu, x + hv) =φ(x, x) + h (u ∧ v)φ(0,1)(x, x−)

+ h (u ∨ v)φ(0,1)(x, x+) + o(h). (A.14)

Using the fact that (u ∧ v) + (u ∨ v) = u + v and (u ∨ v) − (u ∧ v) = |u − v| and writing φ(0,1)(x, x±) =
1
2 (φ(0,1)(x, x+)+φ(0,1)(x, x−))± 1

2 (φ(0,1)(x, x+)−φ(0,1)(x, x−)), one concludes with the dominated convergence
theorem that

s∗kl,N = hk+l

∫∫
[−1,1]2

ukvlK(u)K(v)φ(x + hu, x + hv)dudv + o(hk+l+1)

= hk+l
{
φ(x, x)μkμl +

h

2

(
φ(0,1)(x, x+) + φ(0,1)(x, x−)

)
(μk+1μl + μkμl+1)

+
h

2

(
φ(0,1)(x, x+) − φ(0,1)(x, x−)

) ∫∫
[−1,1]2

|u − v|ukvlK(u)K(v)dudv
}

+ o(hk+l+1). �
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A.3. Proof of Theorem 3.4.

This result is obtained along the same lines as Theorem 3.1. More precisely, it suffices to push the matrix
expansions of S−1

N in (A.7) and S∗
N in Lemma A.1 to a higher order d. First, since f ≡ 1, it is easily seen that SN =

{1+o(hd)}HSH provided that Nhd+1 → ∞. Therefore, (A.7) simply extends in S−1
N = {1+o(hd)}H−1S−1H−1.

Second, if the covariance ρ is d times differentiable at (x, x), then a Taylor expansion of order d can be performed
for ρ(x + hu, x + hv), followed by an application of the dominated convergence theorem over [−1, 1]2 as h → 0.
For d = 4, we get for instance (see the Proof of Lem. A.1):

s∗kl,N = hk+l

∫∫
[−1,1]2

ukvlK(u)K(v)ρ(x + hu, x + hv)dudv + o(hk+l+4)

= hk+l
{
ρ(x, x)μkμl + hρ(0,1)(x, x) (μk+1μl + μkμl+1)

+ h2

(
ρ(0,2)(x, x)

μk+2μl + μkμl+2

2!
+ ρ(1,1)(x, x)μk+1μl+1

)
+ h3

(
ρ(0,3)(x, x)

μk+3μl + μkμl+3

3!
+ ρ(1,2)(x, x)

μk+2μl+1 + μk+1μl+2

2!

)
+ h4

(
ρ(0,4)(x, x)

μk+4μl + μkμl+4

4!
+ ρ(1,3)(x, x)

μk+3μl+1 + μk+1μl+3

3!
+ ρ(2,2)(x, x)

μk+2μl+2

2! 2!

)
+ o

(
h4
)}

.

(A.15)

The arguments used in Theorem 3.1 relative to the sparsity structure of S−1 and the limit matrix of S∗
N still

apply here. In a nutshell, the matrices of the form (μk+aμl+b) in (A.15) that do contribute to the limit variance
of m̂ν,p(x) are those for which both ν + a and ν + b are even (nonzero moments of the kernel K). Therefore, the
terms of order h and h3 inside the brackets of (A.15) do not contribute to the limit variance of m̂ν,p(x). For ν
even, the terms μk+1μl+1 in (A.15) do not contribute either but the terms μkμl and h2(μk+2μl +μkμl+2) do. An
expansion to order d = 2 is thus sufficient. For ν odd, only the terms h2μk+1μl+1 and h4(μk+3μl+1 + μk+1μl+3)
contribute to the limit variance of m̂ν,p(x) up to order 4. In this case the expansion to order d = 4 is necessary, as
an expansion to order 2 only results in a variance term of order 1/n (independent of h) when ν = 1. Theorem 3.4
immediately follows from these arguments. �

A.4. Proof of Lemma 3.6.

Starting from the Taylor expansion (A.14) and the subsequent argument in the Proof of Lemma A.1, it can
be shown that for all u, v ∈ [−1, 1]2,

ρ(x + hu, x + hv) = ρ(x, x) +
h

2

(
ρ(0,1)(x, x+) + ρ(0,1)(x, x−)

)
(u + v)

+
h

2

(
ρ(0,1)(x, x+) − ρ(0,1)(x, x−)

)
|u − v| + o(h) . (A.16)

Let us write a =
(
ρ(0,1)(x, x+) + ρ(0,1)(x, x−)

)
/2 and b =

(
ρ(0,1)(x, x+) − ρ(0,1)(x, x−)

)
/2 for brevity. The

dominated convergence theorem and (H5) imply that for any bounded, measurable function g on [−1, 1],∫∫
[−1,1]2

ρ(x + hu, x + hv)g(u)g(v)dudv = ρ(x, x)
(∫ 1

−1

g(u)du

)2

+ 2ah

∫ 1

−1

g(u)du

∫ 1

−1

vg(v)dv

+ bh

∫∫
[−1,1]2

g(u)g(v)|u − v|dudv + o(h). (A.17)

The left-hand side of (A.17) is non-negative since the covariance ρ is a non-negative definite function. By
taking g = Id[−1,1], we have

∫ 1

−1
g(u)du = 0 so that the remaining term bh

∫∫
[−1,1]2

g(u)g(v)|u − v|dudv in the
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right-hand side of (A.17) is also non-negative. Since
∫∫

[−1,1]2 uv|u− v|dudv = −8/15 < 0, this means that b ≤ 0
and hence α(x) = ρ(0,1)(x, x−) − ρ(0,1)(x, x+) ≥ 0. �

A.5. Proof of Theorem 4.1.

Applying Theorem 3.1 with ν = 2 and skipping the details, we obtain the bias expression

E
(
θ̂2,2(g)

)− θ2,2 ≈ 4
(pθ + 1)!

(
e′2S

−1c
)
θ2,pθ+1 gpθ−1

+ 4
(
e′2S

−1S∗S−1e2

)
n−1g−4

∫ 1

0

ρ(x, x)dx. (A.18)

The variance of θ̂2,2 can be studied along the same lines as [26] and [12] which respectively handle the case
of independent errors and the case of correlated stationary errors. It is approximately decomposed as

Var
(
θ̂2,2(g)

) ≈ 7∑
l=1

Al

where the Al are defined in equation (44) of [12]. It can be shown that

A1 = O(1/nN3g10), A2 = O(1/nN2g9), A3 = O(1/nN2g10),
A4 = O(1/nN2g8) + O(1/nN3g10) + o(1/n2N2g9),
A5 = O(1/nNg5) + O(1/nN2g10) + o(1/n2Ng8),
A6 = O(1/nNg7) + O(1/nN2g9), A7 = O(1/nNg9) + O(1/n) + o(1/n2g7).

Given that 1/N = O(g) (otherwise the estimator m̂2,pθ
is not well-defined), it follows that leading rates for the

variance are
Var
(
θ̂2,2(g)

)
= O(1/nNg9) + o(1/n2g7) + O (1/n) . (A.19)

For instance, the covariance term in A7 decomposes as

Cov
(
Ȳk Ȳu , Ȳl Ȳv

)
= m(xk)m(xl)Cov(ε̄(xu), ε̄(xv)) + m(xk)m(xv)Cov(ε̄(xu), ε̄(xl))

+ m(xu)m(xl)Cov(ε̄(xk), ε̄(xv)) + m(xu)m(xv)Cov(ε̄(xk), ε̄(xl))
+ Cov(ε̄(xk), ε̄(xl))Cov(ε̄u, ε̄v) + Cov(ε̄(xk), ε̄(xv))Cov(ε̄(xl), ε̄(xu)).

Noticing the symmetries of the problem, we obtain A7 ≈ A7,1 + A7,2 with

A7,1 =
4

N6g12

∑
i,j

∑
k

∑
l �=k

∑
u�=k

∑
v �=k

K2,pθ

(
xi − xk

g

)
K2,pθ

(
xi − xu

g

)
K2,pθ

(
xj − xl

g

)
K2,pθ

(
xj − xv

g

)
× m(xk)m(xl)Cov

(
ε̄(xu), ε̄(xv)

)
and

A7,2 =
2

N6g12

∑
i,j

∑
k

∑
l �=k

∑
u�=k

∑
v �=k

K2,pθ

(
xi − xk

g

)
K2,pθ

(
xi − xu

g

)
K2,pθ

(
xj − xl

g

)
K2,pθ

(
xj − xv

g

)
× Cov

(
ε̄(xk), ε̄(xl)

)
Cov

(
ε̄(xu), ε̄(xv)

)
.

The kernel K2,pθ
of order (2, pθ) is defined e.g., in equation (16) of [12]. Given that pθ ∈ {3, 5} is odd, this

kernel satisfies ∫
urK2,pθ

(u)du =

⎧⎨⎩ 0, 0 ≤ r ≤ pθ, r �= 2,
2!, r = 2,

c2,pθ
, r = pθ + 1,
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where c2,pθ
is a non-zero constant.

Denoting by (L1 ∗ L2)(x) =
∫

L1(u)L2(x − u)du the convolution of two real-valued functions L1 and L2, we
first derive

A7,1 ≈ 4
ng10

∫∫ (∫ (
K2,pθ

∗ K2,pθ

)(w − x

g

)
m(x)dx

)(∫ (
K2,pθ

∗ K2,pθ

)(z − y

g

)
m(y)dy

)
ρ(w, z)dwdz

=
4

ng8

∫∫ (∫ (
K2,pθ

∗ K2,pθ

)
(s)m(w − gs)ds

)(∫ (
K2,pθ

∗ K2,pθ

)
(t)m(z − gt)dt

)
ρ(w, z)dwdz

≈ 4
ng8

∫∫ ( 4∑
k=1

(−g)km(k)(w)
∫

s

sk
(
K2,pθ

∗ K2,pθ

)
(s)ds

)

×
( 4∑

k=1

(−g)km(k)(z)dz

∫
t

tk
(
K2,pθ

∗ K2,pθ

)
(t)dt

)
ρ(w, z)dwdz

=
4 (4!)2

n

∫ ∫
m(4)(w)m(4)(z) ρ(w, z)dwdz

= O

(
1
n

)
+ O

(
1

nNg9

)
·

In the above calculation, we have used the fact that K2,pθ
is symmetric, that the convolution

(
K2,pθ

∗ K2,pθ

)
has null moments up to order 3 and fourth moment equal to 4! (see e.g., [12, 26]), and that m is at least four
times continuously differentiable by (H3). The term O(1/nNg9), which is specified only in the last line, is due
to the cost of approximating the sum A7,1 by its Riemann integral.

By the regularity assumption (H5) on ρ, we have

A7,2 ≈ 2
n2g10

∫ ∫ ∫ ∫ (
K2,pθ

∗ K2,pθ

)(x − w

g

)(
K2,pθ

∗ K2,pθ

)(y − z

g

)
ρ(x, y) ρ(u, v) dxdydwdz

=
1

n2g8

∫ ∫ ∫ ∫ (
K2,pθ

∗ K2,pθ

)
(s)
(
K2,pθ

∗ K2,pθ

)
(t) ρ(x − gs, y − gt) ρ(x, y) dxdydsdt

= o

(
1

n2g7

)
+ O

(
1

nNg9

)
·

The last equality derives from the Taylor expansion ρ(x−gs, y−gt) ≈ ρ(x, y)−gsρ(1,0)(x, y)−gtρ(0,1)(x, y) and
from the nullity of the first moments of (K2,pθ

∗K2,pθ
). After integrating out s and t, the remaining function of

(x, y) to integrate is thus of order o(g). Note that the Taylor expansion is well defined only if x �= y. However,
the diagonal {x = y} has Lebesgue measure 0 and can be ignored in the integration. The term O(1/nNg9) in
the last line arises from the integral approximation of the sum A7,2.

Combining the rates (A.18)−(A.19) for the bias and variance of θ̂2,2(g), we obtain a MSE of order O
(
g2pθ−2

)
+

O
(
1/n2g8

)
+ O(1/n) + O(1/nNg9). If we assume that 1/n2g8 = o(1/nNg9), then the optimization of the MSE

yields a bandwidth g of order (1/nN)1/(2pθ+7). In this case 1/n2g8 = o(1/nNg9) for the optimal g implies
that N = O(n(pθ+4)/(pθ+3)), which violates the theorem assumption n = O(N (pθ+3)/(pθ+4)). On the hand,
by assuming that 1/nNg9 = O(1/n2g8), the optimal bandwidth is of order n−1/(pθ+3), a rate that satisfies
1/n2g8 = o(1/nNg9). The corresponding MSE is of order O(n−(2pθ−2)/(pθ+3)) + O(n−1) = O(n−(2pθ−2)/(pθ+3))
for pθ ≤ 5.

For the estimation of Iα, it follows directly from Lemmas 4.2-4.3 of [21] that the bias and variance of Îα

are respectively of order O(1/N) and O(1/nN). Since n = O(N (pθ+3)/(pθ+4)) = o(N) by assumption, the
corresponding MSE converges at the rate O(1/nN), which is faster than the rate O(n−(2pθ−2)/(pθ+3)) of the
MSE of θ̂2,2 for pθ ≤ 5.
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Now, from the Taylor approximation, we write

ĥopt ≈ hopt +
∂hopt

∂Iα

(
Îα − Iα

)
+

∂hopt

∂θ2,2

(
θ̂2,2(g) − θ2,2

)
so that

ĥopt − hopt

hopt
≈ 1

hopt

∂hopt

∂Iα

(
Îα − Iα

)
+

1
hopt

∂hopt

∂θ2,2

(
θ̂2,2(g) − θ2,2

)
. (A.20)

The partial derivatives of hopt = (C1(K)Iα)1/3 (2μ2
2θ2,2n

)−1/3 with respect to Iα and θ2,2 are

∂hopt

∂Iα
=

1
3

I−2/3
α θ

−1/3
2,2

(
C1(K)
2μ2

2 n

)1/3

,
∂hopt

∂θ2,2
= −1

3
I1/3
α θ

−4/3
2,2

(
C1(K)
2μ2

2 n

)1/3

·

Given the convergence rates of the estimators θ̂2,2 and Îα, we conclude that

ĥopt − hopt

hopt
≈ −1

3
θ−1
2,2

(
θ̂2,2 − θ2,2

)
≈ D

n(pθ−1)/(pθ+3)
· �
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