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COMPACT CONVEX SETS OF THE PLANE
AND PROBABILITY THEORY ∗

Jean-François Marckert1 and David Renault1

Abstract. The Gauss−Minkowski correspondence in R
2 states the existence of a homeomorphism

between the probability measures μ on [0, 2π] such that
∫ 2π

0
eixdμ(x) = 0 and the compact convex

sets (CCS) of the plane with perimeter 1. In this article, we bring out explicit formulas relating the
border of a CCS to its probability measure. As a consequence, we show that some natural operations
on CCS – for example, the Minkowski sum – have natural translations in terms of probability measure
operations, and reciprocally, the convolution of measures translates into a new notion of convolution
of CCS. Additionally, we give a proof that a polygonal curve associated with a sample of n random
variables (satisfying

∫ 2π

0
eixdμ(x) = 0) converges to a CCS associated with μ at speed

√
n, a result much

similar to the convergence of the empirical process in statistics. Finally, we employ this correspondence
to present models of smooth random CCS and simulations.
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1. Introduction

Convex sets are central in mathematics: they appear everywhere ! Nice overviews of the topic have been
provided by Busemann [8], Pólya [21] and Pogorelov [20]. In probability theory, compact convex sets (CCS)
appear in 1865 with Sylvester’s question [25]: for n = 4 points chosen independently and at random in the unit
square K, what is the probability that these n points are in convex position? The question can be generalised
to various shapes K, different values of n, and other dimensions. It has been recently solved by Valtr [27, 28]
when K is a triangle or a parallelogram and by Marckert [17] when K is a circle (see also Bárány [1], Buchta [7]
and Bárány [2]). Random CCS also show up as the cells of the Voronöı diagram of a Poisson point process
(see Calka [9]), and in the problem of determining the distribution of convex polygonal lines subject to some
constraints. For example, when the vertices are constrained to belong to a lattice, the problem has been widely
investigated (Sinai [24], Bárány and Vershik [3], Vershik and Zeitouni [29], Bogachev and Zarbaliev [6]). Another
combinatorial model related to this question is based on the digitally convex polyominos (DCPs). The DCP
associated to a convex planar set C is the maximal convex polyomino with vertices in Z2 included in C. Let Dn

be the set of DCPs with perimeter 2n. In a recent paper, Bodini, Duchon and Jacquot [5] investigate the limit
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shape of uniform DCPs taken in Dn under the uniform distribution Un. Even if not convex, these polyominos
can be seen as discretisation of CCS.

All these models possess the same drawbacks: they are discrete models (polygonal, except for DCP) and their
limit when the size parameter goes to +∞ are deterministic shapes. To our knowledge, no model of random
non-polygonal CCS have been investigated yet. One of the goals of this article is to develop tools that allow one
to provide examples of such models, and this goal is attained in the following manner:

• First, we state a connection between the CCS of the plane and probability measures. Theorem 2.2 asserts that
the set of CCS of the plane having perimeter 1, considered up to translation, is in one-to-one correspondence
with the set M0

T of probability distributions μ on the circle R/(2πZ) satisfying
∫ 2π

0 exp(ix)dμ(x) = 0. This
famous theorem, revisited in Section 2.2, is sometimes called in the literature the Gauss−Minkowski Theorem
(cf. Vershik [29] and Busemann [8], Sect. 8), and the measure μ is called the surface area measure of the
CCS [18]. Moreover, the bijection is an homeomorphism when both sets are equipped with natural topologies.
In this article, we provide an explicit parametrisation of a CCS in terms of the distribution function of μ.
This perspective brings out a new and important relation between the CCS with perimeter 1 and probability
measures, differing in this from the more generic “arbitrary total mass” measures.

• This connection with probability theory appears therefore as a natural tool to define new operations on
CCS and revisit numerous known results that were proved using geometrical arguments. For instance, the set
M0

T is stable by convolution and mixture. This induces natural operations on CCS that one may also qualify
of convolution and mixture. As a matter of fact, the mixture of CCS defined in this way coincides with the
Minkowski addition (Sect. 3.1), and Minkowski symmetrisation simply maps a CCS associated to a measure μ
onto the CCS associated with 1

2 (μ+μ(2π− . ) (Prop. 3.4). The notions of convolution of CCS and symmetrisation
by convolution (Sects. 3.2 and 3.3) appear to be new and provide a new proof of the isoperimetric inequality
(Thm. 3.6). Roughly, the CCS obtained by convolution of two CCS has a radius of curvature function equal to
the convolution of the curvature functions of these two CCS.

• The probabilistic approach also allows one to prove stochastic convergence theorems for models that differ
radically from the ones mentioned earlier. Consider for instance μ ∈ M0

T , and take n random variables {Xj , j =
0, . . . , n − 1} i.i.d. according to μ. Let {X̂j, j = 0, . . . , n − 1} be the Xk’s reordered in [0, 2π). Let Bn be the
curve formed by the concatenation of the vectors eiX̂j . We show that the curve Bn rescaled by n converges when
n → ∞ to the boundary Bμ of a CCS associated with μ (Thm. 2.8 and Cor. 2.9). This convergence holds at
speed

√
n and has Gaussian fluctuations (Thm. 2.8). As a generalisation, every distribution on C with mean 0

can be sent on a CCS by a second correspondence (which is not bijective) (Sect. 4.2). Again, the appropriate
point of view consists in considering the boundary of the CCS as the limit of the curve associated with a sample
of n random variables (r.v.) sorted according to their argument.

• The last part of this paper (Sect. 5) is devoted to the investigation of models of random CCS that stem from the
aforesaid connection. Our first model is a model of random polygons defined as follows: take {zj, j = 0, . . . , n−1}
i.i.d. according to a distribution ν in C. Let {yi = zi+1 mod n − zi, i = 0, . . . , n − 1} and {ŷj, j = 0, . . . , n − 1}
the yi’s sorted according to their argument. The ŷ′

is are the consecutive vector sides of the polygonal CCS with
vertices {

∑d
j=0 ŷj , d = 0, . . . , n− 1}. When n→∞, a rescaled version of this CCS converges in distribution to

a deterministic CCS (Thms. 4.2 and 5.1). We discuss the finite case in Section 5.1.

• Another model results from the role that Fourier series play in the representation of the boundaries of
CCS. For a r.v. X with values in [0, 2π] and distribution μ, the Fourier coefficients of μ, namely an(μ) =
E(cos(nX)) and bn(μ) = E(sin(nX)), are well defined for any n ≥ 0. Our bijection between CCS and measures
in hand, the question of designing a model of random CCS is equivalent to that of designing a model of random
measure μ satisfying a.s.

∫ 2π

0
exp(ix)dμ(x) = 0 (equivalently a1(μ) = b1(μ) = 0 a.s.). Nevertheless to design a

model of random measures μ satisfying these constraints is not equivalent to design random Fourier coefficients
(an, bn, n ≥ 0) since these latter may not correspond to those of a probability measure. In Section 5, we explain
how this can be handled, and provide several models of random CCS that are not random polygons.
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Notations. “CCS” will always be used for “compact convex set of the plane R2”. We assume that all the
mentioned r.v. are defined on a common probability space (Ω,A, P), and denote by E the expectation. For
any probability distribution μ, Xμ designates a r.v. with distribution μ. We write X ∼ μ to say that X has

distribution μ. The notations
(d)−−→
n

,
(proba.)−−−−−→

n
,

(weak)−−−−→
n

stand for the convergence in distribution, in probability, and
the weak convergence.

2. Correspondence between CCS and distributions

We start this section by recalling some simple facts concerning CCS and measures on the circle R/(2πZ).
Thereafter we state the Gauss−Minkowski theorem (Thm. 2.2) which establishes a correspondence between
measures and CCS, and we provide a new proof based on probabilistic arguments. In Section 2.4 we express
the area of a CCS thanks to the Fourier coefficients of the associated measure. Finally in Section 2.5 we state
one of the main results of the paper (Thm. 2.8): under some mild hypotheses, it ensures the convergence of the
trajectory made of n i.i.d. increments sorted according to their arguments and rescaled by n to a limit CCS
boundary at speed

√
n.

2.1. CCS of the plane

A subset S of R2 is a convex set if for any z1, z2 ∈ S, the segment [z1, z2] ⊂ S. In this paper, we are interested
only in CCS of the Euclidean plane R

2. Let Seg be the set of bounded closed segments with different extremities,
and Nei be the set of CCS with non empty interiors. The set of CCS of R2 contains exactly Seg, Nei, the empty
set, and the CCS reduced to a single point. In the sequel we focus on Seg∪Nei only.

For S ∈ Nei, S◦ will designate the interior of S, and ∂S = S\S◦ the boundary of S. We call parametrisation of
∂S, a map γ : [a, b]→ ∂S for some interval [a, b] ⊂ R, such that γ(a) = γ(b) and such that γ is injective from [a, b)
to ∂S. The length of ∂S is well defined, finite and positive, and is called the perimeter of S and denoted Peri(S).
It may be used to provide a natural parametrisation of ∂S, that is to say a function γ : [0, |∂S|]→ ∂S, continuous
and injective on [0, |∂S|], such that γ(0) = γ(|∂S|) and such that the length of {γ(t), t ∈ [0, s]} is equal to s
for any s ∈ [0, |∂S|]. For S ∈ Seg, the notion of natural parametrisation also exists, but it is different. For
technical reasons, we choose the following one: the natural parametrisation of a segment [a, b] is defined to be
γ(t) = a(1 − t

|b−a|) + b t
|b−a| on [0, |b − a|] and γ(t) = a( t

|b−a| − 1) + b(2 − t
|b−a| ) on [|b − a|, 2|b − a|], as if the

segments were thick and two-sided. In this case, we define Peri(S) = 2|b− a|.
Definition 2.1. The boundary B of C ∈ Nei is defined as B = C \ C◦. The boundary of C = [a, b] ∈ Seg is
defined as C itself.

By definition, the boundary of a CCS is equal to the path induced by its natural parametrisation, and its
perimeter is the length of this path.

2.2. Measures on the circle

Let T be the circle R/(2πZ) equipped with the quotient topology, andMT be the set of probability distribu-

tions on T . The weak convergence onMT is defined as usual: (μn, n ≥ 0)
(weak)−−−−→

n
μ in MT if for any bounded

continuous function f : T → R,
∫
T fdμn →

∫
T fdμ. Let μ ∈MT , and consider

Fμ : T −→ [0, 1]
x 
−→ μ([0, x])

be the cumulative distribution function (CDF) of μ. Let Iμ be the set of points of continuity of Fμ, where by

convention, 0 ∈ Iμ if Fμ(0) = μ({0}) = 0. If μn
(weak)−−−−→

n
μ in MT , then it can not be deduced that Fμn → Fμ

pointwise on Iμ since δ2π = δ0 in MT . What is still true, is that

Fμn(y)− Fμn(x)→ Fμ(y)− Fμ(x), for any (x, y) ∈ Iμ.
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A function F : [0, 2π)→ R is a CDF of some distribution μ ∈ MT if it is right continuous, non decreasing on
[0, 2π], satisfies 0 ≤ F (0) ≤ 1, F (2π−) = 1 (see Wilms [30], p. 4–5 for additional information and references).

Consider the continuous function

Zμ : [0, 1] −→ C

t 
−→ Zμ(t) =
∫ t

0

exp(iF−1
μ (u))du,

(2.1)

where F−1
μ is the standard generalised inverse of Fμ:

F−1
μ : [0, 1] −→ [0, 2π)

y 
−→ F−1
μ (y) := inf{x ≥ 0 : Fμ(x) ≥ y}.

The range Bμ of Zμ is the central object here:

Bμ := {Zμ(t), t ∈ [0, 1]} .

Since F−1
μ is non decreasing, it admits at most a countable set of discontinuity points. Therefore Zμ is differ-

entiable on the complement of a countable subset of [0, 1] and when it is the case, Z ′
μ(t) = eiθ represents the

direction of the unique tangent to the convex at point Zμ(t). Moreover, since the modulus of Z ′
μ is 1, Zμ is the

natural parametrisation of Bμ and Bμ has length 1.
Let Conv be the set of CCS of the plane containing the origin, lying above the x-axis, and whose intersection

with the x-axis is included in R+. Denote by Conv(1) the subset of Conv of CCS having perimeter 1, and by
BConv the set of their corresponding boundaries. Set

M0
T =

{
μ ∈M[0, 2π] ,

∫ 2π−

0

exp(iθ)dFμ(θ) = 0
}

the subset ofMT of measures having Fourier transform equal to 0 at time 1.

2.3. Probability measures and CCS

Probability distributions on R are characterised by their Fourier transform, and convergence of Fourier
transforms characterises weak convergence by the famous Lévy’s continuity Theorem. The following Theorem
gives a similar characterisation of measures inM0

T by their representation as CCS of the plane.

Theorem 2.2.

1) The map
B :M0

T −→ BConv(1)
μ 
−→ Bμ

is a bijection.

2) B is an homeomorphism from M0
T (equipped with the weak convergence topology) to BConv(1) (equipped

with the Hausdorff topology on compact sets).

3) The function Γ from Conv(1) to BConv(1) which sends a CCS to its boundary is an homeomorphism for the
Hausdorff topology, and then

C :M0
T −→ Conv(1)

μ 
−→ Cμ := Γ−1(Bμ)

is an homeomorphism.
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This theorem sometimes called “Gauss−Minkowski” in the literature can be found in a slightly different form
in Busemann ([8], Sect. 8). The integral formula (2.1) giving the parametrisation of the CCS in terms of F−1

μ ,
which is central here, seems to be new. We provide a proof of Theorem 2.2 in probabilistic terms at the end of
this section.

In Busemann, this theorem is stated more generally in Rn, where the measures range over the unit sphere of
Rn and verify a set of properties, which in R2 sum up to

∫ 2π

0
eixdμ(x) = 0. The measure μ is called the surface

area measure [18] of the CCS Cμ, and is defined for more general convex sets in any dimension.

Remark 2.3. The map B that one may see as a “curve” transform, may be extended to M[0, 2π], the set of
measures on [0, 2π]; in this case B(M[0, 2π]) is the set of continuous almost everywhere differentiable curves
of length 1, starting at the origin, having a positive argument in a neighbourhood of 0, and where along an
injective parametrisation, the argument of the tangent is non decreasing2.

There exists another formula for Zμ in terms of expectations of r.v., that we will use as a guideline throughout
the paper. Recall that if U ∼ uniform[0, 1] then F−1

μ (U) ∼ μ, and then

Zμ(t) = E
(
1U≤t exp(iF−1

μ (U))
)
. (2.2)

Since x ≤ Fμ(y) is equivalent to F−1
μ (x) ≤ y, we obtain that

Zμ(Fμ(t)) = E
(
1U≤Fμ(t) exp(iF−1

μ (U))
)

= E

(
1F−1

μ (U)≤t exp(iF−1
μ (U))

)
= E

(
1Xμ≤t exp(iXμ)

)
.

The function t 
→ Zμ(Fμ(t)) plays an important role since it encodes the extremal points of Bμ (see below). The
function Zμ is somehow less pleasant since it can not be written directly in term of Xμ on [0, 1]. To see this, let

Iμ =
{
t ∈ [0; 2π) such that

{
u, u < t} = {F−1

μ (u) < F−1
μ (t)

}}
.

This corresponds to the set of t where F−1
μ (t) > F−1

μ (t − h) for any h > 0 (or t = 0). It can be shown that
Iμ = {F (t), t ∈ [0, 2π]}. Noticing that one can replace 1U≤t by 1U<t in (2.2), we have

Zμ(t) = E

(
1Xμ<F−1

μ (t) exp(iXμ)
)

for t ∈ Iμ, (2.3)

Now we can characterise Ext(C) the set of extremal points of C.

Lemma 2.4. For any μ ∈ M0
T , Ext(Cμ) = {Zμ(Fμ(t)), t ∈ [0, 2π]}.

Proof. From (2.2), we see that Zμ is linear on every interval inside the complement of Iμ in [0, 1]: if (t1, t2) is
such an interval, for any t ∈ [t1, t2],

Zμ(t) = Zμ(t1) + (t2 − t)
Zμ(t2)− Zμ(t1)

t2 − t1
.

Therefore, the points in the complement of Iμ are not extremal, and reciprocally, every non-extremal point lies
on a segment inside Bμ and necessarily belongs to the complement of Iμ. Therefore Ext(Cμ) is equal to the closed
set {Zμ(Fμ(t), t ∈ [0, 2π]}. �

2The Fourier transform t �→ Ψμ(t) also defines a curve {Ψμ(t) : t ∈ A} in the plane, for any interval A. This curve is different
from Cμ, for any A.
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Figure 1. A CCS Cμ for some measure μ, t gives the length of the curve Bμ between 0 and
Zμ(t) (in the trigonometric order), F−1

μ (t) is then the direction of the tangent at time t.

The curvature kμ(t) of Cμ at time t, is given by 1
F ′

μ(F−1
μ (t))

when Fμ admits a derivative at F−1
μ (t); in particular,

this means that when μ admits a density fμ, then kμ(Fμ(θ)) = 1/fμ(F−1
μ (Fμ(θ))) = 1/fμ(θ), which corresponds

to the curvature at the point whose tangent has direction θ.
The real and imaginary parts xμ(t) = �(Zμ(t)) and yμ(t) = 
(Zμ(t)) of Zμ(t) satisfy⎧⎨⎩xμ(t) =

∫ t

0 cos
(
F−1

μ (u)
)
du =

∫ F−1
μ (t)

0 cos(v)dF (v)

yμ(t) =
∫ t

0
sin
(
F−1

μ (u)
)
du =

∫ F−1
μ (t)

0
sin(v)dFμ(v).

(2.4)

the second equality in each line being valid only for t ∈ Iμ.

Proof of Theorem 2.2.
1) The proof of 3) is immediate. We establish 1).

a) First, we prove that for any μ ∈ M0
T , Bμ is the boundary of a CCS Cμ ∈ Conv(1). A support half-plane

of Bμ is a half-plane H intersecting Bμ on its border and such that Bμ ⊂ H . The function Zμ is continuous,
and a simple analysis shows that yμ is such that yμ(0) = yμ(1) = 0, and is increasing then decreasing over
[0, 1]. Therefore, Bμ lies on the half plane above the x-axis, which is a support half-plane of Bμ. More generally,
for any θ ∈ [0, 2π), μθ(.) = μ(. − θ mod 2π) is still in M0

T , and Bμθ
lies on the half plane above the x-axis.

Therefore, for all t ∈ [0, 1), the line Dt passing through Zμ(t) making an angle F−1
μ (t) with the origin, is the

border of a support half-plane of Bμ. Since F−1
μ is right-continuous, Bμ is even tangent to Dt.

We now show that Bμ is a simple curve or a segment: let z be such that z = Zμ(t1) = Zμ(t2), for t1 < t2.
Then, by definition (2.1),

∫
[t1,t2]

exp(iF−1
μ (u))du =

∫
[0,t1]∪[t2,1] exp(iF−1

μ (u)) = 0. Each of these integrals is
the weighted barycentre of a portion of the circle, both portions being disjoint except at their extremities t1
and t2. Since both barycentres are equal (to 0), the support of μ must be included in {t1, t2}. This implies
that F−1

μ (t2) = π + F−1
μ (t1) and μ({t2}) = μ({t1}) = 1/2. In other words, the CCS is a segment of length 1/2.

Therefore, when Bμ is not a segment, it is a bounded Jordan curve that encloses a bounded connected subset Cμ.
In this last case, Bμ is the border of Cμ and every point of the border possesses a support half-plane, therefore
Cμ is convex (see for example 3.3.6 in [18]).

b) The injectivity of B is clear since if F−1
μ (t) = F−1

ν (t) for all t ∈ [0, 1], then μ = ν. Now, let B be a CCS
boundary in BConv(1) and consider the unique natural parametrisation Z of B in the counterclockwise direction
such that Z(0) = Z(1) = 0. The map Z is 1-Lipschitz on [0, 1] and therefore absolutely continuous. Therefore
Z is differentiable almost everywhere and satisfies Z(t) =

∫ t

0 g(s)ds, where g coincides with the derivative of Z
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on I, a subset of [0, 1) of measure 1 ([22], Thm. 7.18). Since Z is the natural parametrisation of B, |g(t)| is
equal to 1 almost everywhere. Since B is a CCS boundary, the argument of g(t) is the direction of the unique
supporting half-plane at Z(t) and then arg g is non-decreasing over I.

Then g(s) = exp(iG(s)) for some non decreasing function G : I → [0, 2π). Let G∗ : [0, 1)→ [0, 2π) be defined
by G∗(x) = inf{G(y), y ≥ x, y ∈ I} (G∗ is the largest non-decreasing function smaller than G over I). For
all t, Z(t) =

∫ t

0
eiG∗(s)ds. Since G∗ is non-decreasing, it possesses a right-continuous modification G̃ which also

satisfies Z(t) =
∫ t

0 eiG̃(s)ds. The function G̃ is the inverse of a CDF Fν for some ν inM0
T . �

2) Consider first the continuity of B. For any t ∈ [0, 2π) and any pair of distributions (μ, ν), since x→ exp(ix)
is 1-Lipschitz,

|Zμ(t)− Zν(t)| =
∣∣∣∣∫ t

0

exp(iF−1
μ (u))− exp

(
iF−1

ν (u)
)
du

∣∣∣∣
≤
∫ t

0

dT
(
F−1

μ (u), F−1
ν (u)

)
du,

where dT is the distance in T , defined for 0 ≤ x ≤ y < 2π by dT (x, y) = min{y − x, 2π − y + x}. This last
quantity is then bounded above, uniformly in t ∈ [0, 1] by E(dT (Xμ, Xν)), for

Xμ := F−1
μ (U), Xν := F−1

ν (U),

where U ∼ uniform[0, 2π]. Now, E(dT (Xμ, Xν)) is a Wasserstein like distance W1(μ, ν) between the distribu-
tions μ and ν in T (the standard Wasserstein distance is rather defined between measures on an interval, not on
the circle). Now, it is classical that the convergence in distribution implies the convergence of the Wasserstein
distance to 0 (see Dudley [10], Sect. 11.8). This property can be easily extended to the present case, considering

that Xn
(d)−−→
n

X in MT iff there exists θ ∈ [0, 2π] (any point of continuity of X does the job) for which Xn − θ

mod 2π
(d)−−→
n

X − θ mod 2π in the standard sense.

Reciprocally, let (Bn, n ≥ 0) be a sequence of CCS boundaries Bn converging to Bμ for the Hausdorff
distance dH . By Theorem 2.2 1), there exists μn ∈M0

T such that Bμn = Bn. We now establish that (μn, n ≥ 0)

possesses exactly one accumulation point, equal to μ. Consider a subsequence Fμnk
such that Fμnk

D1−→ G, where
G is the CDF of a measure ν. Such a subsequence exists sinceM0

T is compact (and then sequentially compact,
since it is a metric space). Now, for D1 denoting the Skorokhod distance (see e.g. Billingsley [4], Chap. 3),
Fμnk

D1−→ G ⇒ F−1
μnk

D1−→ G−1. According to the first part of this proof, the limit CCS boundary Bν must

be equal to Bμ. Since by Theorem 2.2 1), the CCS characterise the measure, ν
(d)
= μ. �

2.4. Fourier decomposition of the CCS curve

Fourier coefficients provide powerful tools to analyse the geometrical properties of the CCS curves.
Let f be a function from [0, 2π] with values in R. The quantity 1

2a0+
∑

k≥1 ak cos(ku)+bk sin(ku) is the standard
Fourier series of f , where

ak = π−1

∫ 2π

0

cos(ku)f(u)du, bk = π−1

∫ 2π

0

sin(ku)f(u)du.

For μ in MT (or in M[0, 2π]), the Fourier coefficients of μ are defined, for any k ≥ 0 by

a0(μ) =
1
π

, ak(μ) =
1
π

E(cos(kXμ)), bk(μ) =
1
π

E(sin(kXμ)). (2.5)
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In this setting, the condition
∫ 2π

0 eiudFμ(u) = 0 coincides with

a1(μ) = E(cos(Xμ)) = 0, b1(μ) = E(sin(Xμ)) = 0. (2.6)

The following proposition, whose proof can be found in Wilms ([30], Thms. 1.6 and 1.7), states that probability
measures are characterised by their Fourier coefficients, and establishes a continuity theorem.

Proposition 2.5.

1) The function
Coeffs :MT −→ RN × RN

μ 
−→ ((ak(μ), k ≥ 0), (bk(μ), k ≥ 1))

is injective.

2) Let μ, μ1, μ2, . . . be a sequence of measures inMT . The two following statements are equivalent: μn
(weak)−−−−→

n
μ

and Coeffs(μn) converges pointwise to Coeffs(μ) (meaning that for any k, ak(μn) → ak(μ) and bk(μn) →
bk(μ)).

Example 2.6. – If μ ∼ uniform[0, 2π] then ak(μ) = bk(μ) = 0 for any k ≥ 1.
– If μ =

∑m−1
k=0

1
mδ2πk/m is the uniform distribution on the vertices of a regular m-gon (with a vertex at position

(0, 0)), then all the bk are null, a0(μ) = 1/π, and ak(μ) = π−11k∈mN� .

Of course, deciding whether a given pair ((ak, k ≥ 0), (bk, k ≥ 1)) corresponds to a pair ((ak(ν), k ≥
0), (bk(ν), k ≥ 1)) for some ν ∈ MT is a difficult task: there does not exist in the literature any character-
isation of Fourier series of non negative measures. The case of measures having a density with respect to the
Lebesgue measure is discussed in Section 5.3.

The area of a CCS Cμ has an expression in terms of Coeffs(μ). In this section, we consider a CCS with a
smooth C1 boundary that is equal to its Fourier expansion. The following formula can be deduced from Hurwitz
([13], pp. 372–373), where it is given using a parametrisation of the boundary of the CCS. In our settings, writing
A(μ) for the area of Cμ, it translates into:

A(μ) =
1
4π
− π

2

∑
k≥2

a2
k(μ) + b2

k(μ)
k2 − 1

· (2.7)

As did Hurwitz, this equation can be proved from Green’s theorem stating that:

A(μ) =
∫ 1

0

xμ(t)
dyμ(t)

dt
dt = −

∫ 1

0

yμ(t)
dxμ(t)

dt
dt. (2.8)

As a matter of fact, this formula remains valid for every CCS in Conv(1) (cf. Cor. 3.7). Rewriting (2.8) and
using (2.4) gives

A(μ) =
∫ 1

0

∫ t

0

cos(F−1
μ (u))du sin(F−1

μ (t))dt

= E (cos(X) sin(X ′)1X≤X′) . (2.9)

where X and X ′ are two independent copies of Xμ.

Remark 2.7. One can show that (2.7) implies (2.9) by noticing that E(cos(kX))2+E(sin(kX))2 = E(cos(k(X−
X ′)) and using the general equality

∑
k≥2

cos(kx)
k2−1 = cos(x)

4 − (π−(x mod 2π))
2 sin(x) + 1

2 . Notice that Hurwitz [12]
deduced the isoperimetric inequality from (2.9) with a proof which only requires an equivalent of Wirtinger’s
inequality.
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2.5. Convergence of discrete CCS and an application to statistics

Consider X1, . . . , Xn i.i.d. having distribution μ with support in [0, 2π). The empirical CDF associated with
this sample is defined by Fn(x) = n−1#{i : Xi ≤ x}. The law of large number ensures that Fn → Fμ pointwise
in probability, and (n1/2|Fn(x) − Fμ(x)|, x ∈ [0, 2π]) converges in distribution in D[0, 2π], the set of cÃ dlÃ g
function equipped with the Skorokhod topology, to (b(Fμ(x)), x ∈ [0, 2π]) where b is a standard Brownian bridge
(see Billingsley [4], Thm. 14.3).

Now assume that the Xi take their values in T , and let X̂1, . . . , X̂n be the sequence X1, . . . , Xn sorted in
increasing order (with the natural order on [0, 2π)). Consider the function Zn : [0, 1]→ C defined by Zn(0) = 0,

Zn(k/n) =
1
n

k∑
j=1

exp(iX̂j), for k ∈ {1, . . . , n},

and extended by linear interpolation between the points (k/n, k ∈ {0, . . . , n}). Also define the empirical curve
Bn associated with the distribution μ, as Bn := {Zn(t), t ∈ [0, 1]}. The curve Bn belongs to BConv(1) if and
only if

∑n
j=1 eiXj = 0; otherwise, since the steps are sorted, Bn is either simple or may contain at most 1 self-

intersection point, that is a pair t1 < t2 such that Zn(t1) = Zn(t2). For θ ∈ [0, 2π), let Nn(θ) = #{i, Xi ≤ θ}
be the number of variables smaller than θ. The set of extremal points of Bn is

Ext(Bn) = {Zn(Nn(θ)/n), θ ∈ [0, 2π]} . (2.10)

Set for any θ ∈ [0, 2π),
Wn(θ) :=

√
n [Zn(Nn(θ)/n)− Zμ(Fμ(θ))] .

This process measures the difference between Zn and its limit.
Denote by π1(z) = �(z), π2(z) = 
(z) and π(z) = (π1(z), π2(z)).

Theorem 2.8.

1) The following convergence

π (Wn(θ), θ ∈ [0, 2π])
(d)−−→
n

(Gθ , θ ∈ [0, 2π]) (2.11)

holds in (D[0, 2π], R2), where G is a centred Gaussian process whose finite dimensional distributions are
given in Section A.1, in formula (A.5).

2) For any n ≥ 1, dH(Bn,Bμ) = maxθ |Zn(Nn(θ)/n) − Zμ(Fμ(θ))|, and then
√

ndH(Bn,Bμ) converges in
distribution to maxθ |Gθ|.

See illustration in Figure 2. The following Corollary – which gives the asymptotic shape for our random poly-
gons – is a direct consequence of Theorem 2.8.

Corollary 2.9. If μ ∈ M0
T then:

1) The following convergence holds in distribution in D[0, 2π]:

(Zn(Nn(θ)/n), θ ∈ [0, 2π])
(d)−−→
n

(Zμ(Fμ(θ)), θ ∈ [0, 2π]). (2.12)

2) dH(Bn,Bμ)→ 0 in probability.

Remark 2.10. A direct proof of Corollary 2.9 that ignores Theorem 2.8 is as follows: first, the convergence
of the finite dimensional distributions (FDD) corresponding to 1) holds as a consequence of the law of large
numbers. Then, for an ε > 0, choose k and the points (θ1, . . . , θk) such that the union of the segments Bε :=
∪i=0..k−1[Zμ(Fμ(θi)), Zμ(Fμ(θi+1))] has a length larger than 1 − ε. From there, 2) follows since for n large
enough, |Zn(Nn(θi)/n)− Zμ(Fμ(θi))| goes to 0 in probability for any i ≤ k. This implies that the union of the
segments B′

n = ∪i[Zn(Nn(θi)/n), Zn(Nn(θi+1)/n)] has total length larger than 1− 2ε for n large enough, with
probability going to 1. Since Bn has length 1, for those same n, dH(Bn, B′

n) ≤ 2ε.

The proof of Theorem 2.8 is postponed to the appendix.
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Figure 2. Convergence towards the half-circle. The first row of figures describes the discrete
CCS of size n (in black) compared to the limit CCS (in grey). The second row displays the
distance between the discrete CCS and its limit (θ → |Wn(θ)|).

3. Operations on measures and on CCS

Mixture and convolution are natural operations onM0
T :

1) Mixture: if μ, ν ∈M0
T then for any λ ∈ [0, 1], λμ + (1 − λ)ν ∈M0

T .
2) Convolution: if μ, ν ∈ M0

T then μ�
T
ν ∈ M0

T , where (�
T
) denotes the convolution in MT . This conclusion

holds even if only μ is in M0
T .

Then the maps B and C transport these operations on Conv(1):

Definition 3.1. Let Cμ and Cν be two CCS in Conv(1) and λ ∈ [0, 1].

1) We call mixture of Cμ and of Cν with weights (λ, 1 − λ), the CCS Cλμ+(1−λ)ν .
2) We call convolution of Cμ and Cν , the CCS Cμ � Cν := Cμ�

T
ν .

In this section we provide some facts which seem to be unknown: a mixture is sent by C on a Minkowski sum
(Prop. 3.2) and the Minkowski symmetrisation can also be expressed in terms of mixtures (Thm. 3.5). The
convolution of CCS acts somehow on the radius of curvature and seems to be a new operation, leading to a
notion of symmetrisation by convolution that we introduce in Section 3.2.

3.1. Mixtures of CCS/Minkowski sum

Let A and B be two subsets of R2. The Minkowski sum of A and B is the set A+B = {a+ b : a ∈ A, b ∈ B}.
Further, for any λ, write λA = {λa : a ∈ A}. We have:

Proposition 3.2. Let ν, μ ∈ M0
T , λ ∈ [0, 1]. Then Cλμ+(1−λ)ν coincides with λCμ + (1−λ)Cν. This means that

the mixture of CCS and the Minkowski sum are the same, and that the CCS of a mixture corresponds to the
mixture of the CCS (up to a translation).

This property is already known, see e.g. Schneider [23], (4.3.1). This proposition (see Fig. 3) implies that the
boundaries Bλμ+(1−λ)ν and ∂(convex hull(λBμ + (1 − λ)Bν)) coincide.
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(a) (b)

Figure 3. Construction of the (a) mixture and (b) convolution of two half-circles. Notice that
every point of the mixture is the barycentre of two points of the original half-circles, and that
the CCS obtained by convolution possesses a linear segment whose angle corresponds to the
sum of the angles of the segments in the original half-circles.

Proof. We first give a proof when μ and ν have densities. Recall the characterisation given in Lemma 2.4. Write

Zλμ+(1−λ)ν(Fλμ+(1−λ)ν(t)) = λ

∫ t

0

exp(it)dμ(t) + (1− λ)
∫ t

0

exp(it)dν(t)

= λZμ(Fμ(t)) + (1− λ)Zν(Fν(t)). (3.1)

The extremal points of Cλμ+(1−λ)ν are then obtained as particular barycentres of extremal points of Cμ
and Cν . When both μ and ν have a density, this implies that the point in Bλμ+(1−λ)ν where the tangent
has direction θ is obtained as the barycentre of the corresponding points in Bμ and Bν . This implies that
Cλμ+(1−λ)ν ⊂ λCμ + (1 − λ)Cν .

We establish the other inclusion by using the fact that CCS are characterised by their supporting half-planes:
for every t ∈ [0, 2π], let Dμ(t) be the line passing through Zμ(Fμ(t)) making an angle t with the x-axis. The
line Dμ(t) defines a supporting half-plane Hμ(t) for Cμ. Since Cμ is a CCS, this half-plane is minimal for the
inclusion with regard to the property of making an angle t with the x-axis. Considering that the points in (3.1)
all belong to their associated half-plane, these half-planes verify:

Hλμ+(1−λ)ν(t) = λHμ(t) + (1− λ)Hν(t).

Now, the left-hand side represents a supporting half-plane for Cλμ+(1−λ)ν and the right-hand side another
supporting half-plane for λCμ + (1− λ)Cν . We deduce that the CCS they enclose are equal.

When μ or ν have no densities, take a sequence (μn, νn) of measures having densities and which converges
weakly to (μ, ν); we then obtain Cλμn+(1−λ)νn

= λCμn + (1− λ)Cνn and conclude by Theorem 2.2. �

Hence the CCS Cλμ+(1−λ)ν has a perimeter equal to 1, as all CCS of Conv(1). This implies that the perimeter
of the Minkowski sum λCμ + (1− λ)Cν is 1 (well known fact, obtained here without geometric arguments).

Remark 3.3. For μ and ν in M0
T and λ ∈ [0, 1], we have

A(λμ + (1− λ)ν)1/2 ≥ λA(μ)1/2 + (1− λ)A(ν)1/2
. (3.2)
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This is the so-called Brunn−Minkowski inequality; it implies that A(λμ + (1− λ)ν) ≥ min{A(μ),A(ν)}. It can
be proved using Hurwitz formula (2.7) and the Cauchy–Schwarz inequality.

3.1.1. Minkowski symmetrisation and measure symmetrisation

Let K be a CCS of R2 and u ∈ R2, |u| = 1. We denote by πu ∈ O(2) the reflection with respect to the straight
line passing through the origin and orthogonal to u, i.e. πu(x) = x − 2〈x, u〉u. The Minkowski (or Blaschke)
symmetrisation of K is the CCS Su(K) = 1

2 (πuK + K). The same operation can be defined over C: for u = eiθ,
the Minkowski symmetrisation of K with respect to direction θ is the map (K, θ) 
→ eiθ

2 (e−iθK +e−iθK), where
z̄ is the complex conjugate of z.

Now, let θ ∈ [0, 2π], μ ∈M0
T , and set μ(θ) be the distribution of Xμ + θ mod 2π. Since E(exp(i(Xμ + θ))) =

eiθE(exp(iXμ)), μ(θ) is in M0
T . The CCS Cμ(θ) can be obtained from Cμ by a rotation (of angle −θ) followed

by a translation.
For any ν ∈ M0

T , set ←−ν = ν(2π − .). The symmetrisation of ν with respect to direction θ is the measure
S(ν(θ)) defined by

S(ν(θ)) =
1
2
(ν(θ) +

←−−
ν(θ)). (3.3)

Further the symmetrisation by mixture of Cν with respect to direction θ is defined to be CS(ν(θ)).
A direct consequence of Proposition 3.2 is the following:

Proposition 3.4. The symmetrisation by mixture with respect to direction θ coincides with the Minkowski
symmetrisation with respect to u = eiθ, up to a translation.

Again Theorem 2.8 provides a new point of view on this symmetrisation. Starting from a set of angles
θ1, . . . , θk and an initial measure ν ∈ M0

T , construct the sequence of measures νk defined by ν0 = ν and
νk+1 = S(νk(θk)). This sequence consists in alternating rotations and symmetrisations of the initial measure ν.

Theorem 3.5. For any θ ∈ [0, 2π], any ν ∈M0
T , the following properties hold:

1) the CCS CS(ν(θ)) has the same perimeter as Cν (that is 1);
2) the area does not decrease: A(S(ν(θ))) ≥ A(ν);
3) for any k ≥ 0, there exists θ1, . . . , θk ∈ [0, 2π] such that

dH(Cνk
, Circle(i/(2π), 1/(2π))) ≤ 2−kπ,

where Circle(z, r) is the circle with centre z and radius r;
4) among all CCS with perimeter 1, the circle has the largest area.

Properties 1), 2), 4) are classical; we provide direct probabilistic proofs below. Statement 3) which gives a
bound on the speed of convergence to the ball for well chosen directions of symmetrisation, is known in Rn (see
Klartag [14], Thm. 1.3), but the proof we provide here in R2 is much simpler.

Proof. First, 4) is clearly a consequence of the three first points (to be honest, our proof uses (3.2), which
implies directly the isoperimetric inequality). The first item follows from the fact that if S(ν(θ)) ∈ M0

T , then
BS(ν(θ)) ∈ BConv(1). And (3.2) implies 2) since A(ν) = A(ν(θ)) = A(

←−−
ν(θ)).

Let us prove 3). If L = [X1, . . . , Xl] for some l ≥ 1, a list of r.v. with distribution ν1, . . . , νl, we say that ν is
the equi-mixture of L if ν = 1

l (ν1 + . . . + νl).
Take X ∼ ν. ν1 := S(ν(θ1)) is the equi-mixture of [X+θ1 mod 2π,−X−θ1 mod 2π]. Therefore using that (a

mod 2π)+b mod 2π = (a+b) mod 2π, Sν2 is the equi-mixture of [X+θ1±θ2 mod 2π,−X−θ1±θ2 mod 2π].
Iterating this, one observes that Sνk

is the equi-mixture of [X +θ1±θ2± . . .±θk mod 2π,−X−θ1±θ2± . . .±θk

mod 2π]. If θk = (2π)/2k−1 then Sνk
is the equi-mixture of μ1 and μ2, where μ1 and μ2 are the respective equi-

mixture of [X + θ1 ± θ2 ± . . .± θk mod 2π] and of [−X − θ1 ± θ2 ± . . .± θk mod 2π].
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Now, both μ1 and μ2 converge to uniform[0, 2π]: to check this, consider the sequence of intervals In =
[2πn2−k−1, 2π(n + 1)2−k−1), for 0 ≤ n ≤ 2k−1 − 1. For j ∈ {1, 2}, μj(In) = 1/2k−1 for any n. Indeed, μ1 (resp.
μ2) is the equi-mixture of all measures obtained from the distribution of X (resp. −X) by dyadic translation of
depth k, then since all intervals In have depth k, they have the same weight. Hence Fμ1(2πn2−k+1) = n2−k+1

for any n. Therefore, since Fμ1 is increasing, we have that ‖Fμj − F‖∞ ≤ 2−k+1, for Fυ(x) = x/(2π), the CDF
of uniform[0, 2π], which gives ‖Fνk

− Fυ‖∞ ≤ 2−k+1. Further, the right inverses F−1
νk

and F−1
υ are close:

‖F−1
νk
− F−1

υ ‖∞ ≤ 2−k+12π.

Thanks to (2.1),

|Zνk
(t)− Zυ(t)| ≤

∫ t

0

∣∣exp(iF−1
νk

(u))− exp(iF−1
υ (u))

∣∣ du

≤
∫ t

0

∣∣F−1
νk

(u)− F−1
υ (u))

∣∣ du

and therefore ‖Zνk
(t)− Zυ(t)‖∞ ≤ 2−kπ. �

3.2. Convolution of measures/convolution of CCS

In fact, Bμ�
T

ν is obtained as a kind of convolution of Bμ and Bν. As seen earlier if μ has a density fμ then

fμ(θ) represents the radius of curvature of Bμ at time Fμ(θ). Therefore the radius of curvature Rθ of Bμ�
T

ν at

time Fμ�
T

ν(θ) is the convolution of the radii of curvature of Bμ and Bν as follows:

Rθ =
∫ 2π

0

fμ(x)fν((θ − x) mod 2π)dx.

Theorem 3.6. Let μ and ν in M0
T . The convolution does not decrease the area

A
(
μ�
T
ν
)
≥ max{A(μ),A(ν)}.

Since uniform[0, 2π] is an absorbing point for �
T
, and Cu is the circle of perimeter 1, this implies the isoperimetric

inequality: A(uniform[0, 2π]) ≥ A(ν), ∀ν ∈M0
T .

Proof. Consider X and Y two independent r.v. such that X ∼ μ, Y ∼ ν. Let η = μ�
T
ν. By expansion of

cos(n(X + Y )) and sin(n(X + Y )) we get

an(η) = an(μ)an(ν)− bn(μ)bn(ν)
bn(η) = bn(μ)an(ν) + an(μ)bn(ν).

Since cos(kX) and sin(kX) have non-negative variances,

a2
n(μ) + b2

n(μ) = E(cos(nX))2 + E(sin(nX))2 ≤ E(cos2(nX) + sin2(nX)) = 1.

Hence,

a2
n(η) + b2

n(η) = (a2
n(μ) + b2

n(μ))(a2
n(ν) + b2

n(ν))
≤ min{a2

n(μ) + b2
n(μ), a2

n(ν) + b2
n(ν)},

The conclusion follows from (2.7). �
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Corollary 3.7. Let μ ∈M0
T . Then the formula (2.7) for A(μ) holds.

Proof. Formula (2.7) is valid when μ admits a C1 density. Just assume that E(eiXμ ) = 0. Let N be a Gaussian
centred r.v. with variance 1, and let Nk = N/

√
k mod 2π for k ≥ 1, and μk = μ ∗Nk. Clearly μk ∈ M0

T , and

μk
(weak)−−−−→

n
μ which implies A(μk)→ A(μ). Now,

∀n ∈ Z, E(einNk) = E(ein(N/
√

k mod 2π)) = E(einN/
√

k) = e−
n2
2k .

Then the Fourier coefficients of Nk verify an = e−
n2
2k and bn = 0. Since μk admits a C∞ density function, and

as a corollary of the proof of Theorem 3.6:

A(μk) =
1
4π
− π

2

∑
n≥2

(a2
n

(
μ) + bn(μ)2

)
e−

1
2k n2

n2 − 1
·

As a consequence of Lebesgue’s dominated convergence theorem, A(μk) converges to the right hand side
of (2.7). �

Definition 3.8. A measure ν inMT is said to be c-stable (for some c > 0) if for Xν and X ′
ν two independent

r.v. under ν,

Xν + X ′
ν mod 2π

(d)
= cXν mod 2π. (3.4)

This qualification of “stable” comes from the standard notion of probability theory where the same question is
studied without the mod 2π operation (see Feller [11], Sect. VI). The following Proposition due to Lévy ([16],
p. 11) identifies the set of 1-stable distributions.

Proposition 3.9. The only 1-stable measures are uniform[0, 2π], the Dirac measure at 0, and the family, indexed
by m ≥ 1, of uniform measures on {k2π/m, k = 0, . . . , m− 1}.

We say that a distribution ν is in the 2π-domain of attraction of a distribution μ, and write ν ∈ DA(μ), if
for a family (Xi, i ≥ 1) of i.i.d. r.v. under ν, there exists θ ∈ [0, 2π] such that

n∑
i=1

(Xi − θ) mod 2π
(d)−−→
n

Xμ.

We let DA = {μ : DA(μ) �= ∅} be the set of measures μ whose domains of attraction are not empty.

Proposition 3.10.

1) The set DA coincides with the set of 1-stable distributions.
2) For any ν ∈M0

T , there exists θ ∈ [0, 2π] and a unique 1-stable measure μ s.t. ν ∈ DA(μ).

Proof.
(1) If ν is a 1-stable distribution, and if (Xi, i ≥ 1) are i.i.d. and taken under ν, then it is easily seen that

X1 + . . . + Xn mod 2π
(d)
= X1. Therefore, every 1-stable distribution is in DA.

Conversely, assume that (Xi, i ≥ 1) are i.i.d., distributed according to ν, and that
∑n

i=1(Xi−θ) mod 2π
(d)−−→
n

μ.
Splitting the sum on the left-hand side into two parts, μ appears to be solution of μ = μ�

T
μ, and then μ is

1-stable.
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(2) Take (Xi, i ≥ 1) i.i.d. r.v. under ν, θ ∈ [0, 2π], and compute the limit of the kth Fourier coefficient, for k ≥ 1,
of
∑n

j=1(Xj − θ),
E(eik

∑n
j=1(Xj−θ)) = E(eik(X1−θ))n.

This coefficient either converges to 0 or is of modulus 1 (which implies X = θ/k[2π/k] a.s.). In either case,
the limit is a 1-stable distribution. More precisely, let k be the smallest Fourier coefficient of the limit of
modulus 1. If k = +∞, the limit is the uniform distribution on [0, 2π], otherwise it is the uniform distribution
on { 2jπ

k , j ∈ [0, k − 1]}. (see also Wilms [30], Thms. 2.1 and 2.4). �

3.3. Symmetrisation of CCS by convolution

Let ν ∈M0
T and ←−ν = ν(2π − .). The distribution

SC(ν) := ν�
T
←−ν (3.5)

is clearly symmetric. We call it the symmetrisation by convolution of ν3.
Denote by ν1 = SC(ν), ν2 = SC(ν1), ... Let Xn be a r.v. under νn.

Proposition 3.11. Let ν ∈ M0
T , and let μ be the unique measure such that SC(ν) belongs to DA(μ). For θ = π

or θ = 0 we have
Xn − nθ mod 2π

(d)−−→
n

μ.

Proof. First, νn is the distribution of
∑n

i=1(Xi −X ′
i) mod 2π for some i.i.d. copies X ′

is and X ′
i’s of Xν . The

Fourier coefficients of νn can then be computed, and they converge to those of a 1-stable distribution as in
Proposition 3.10, for θ ∈ {0, π} since Xi −X ′

i is symmetric. �

4. Extensions

In this section are discussed two natural extensions of our model. In Section 4.1 we discuss CCS with an
unconstrained perimeter. In Section 4.2 is investigated the convergence of a trajectory made by i.i.d. increments
with values in C sorted according to their arguments. If ν is a centred distribution on C, these trajectories
converge to a CCS CK(ν) for an operator K defined below.

4.1. CCS with an unconstrained perimeter

The perimeter of the CCS in the construction we gave is 1 because the total mass of all measures in M0
T

is 1. Denote byMT
0

the set of positive measures ν with support T and such that ν(T ) < +∞. Formula (2.1),
which defines the CCS associated with a probability measure extends to these measures, and the CCS perimeter
Peri(ν) = ν(T ). A lot of statements given before extend naturally toMT

0
. Most notably

Proposition 4.1. For any measures ν1, ν2 ∈MT
0
, any positive numbers λ1, λ2 we have:

Peri

(
n∑

i=1

λiνi

)
=

n∑
i=1

λi Peri(νi) (4.1)

Peri (ν1 � ν2) = Peri(ν1)Peri(ν2). (4.2)

The area of C∑n
i=1 λiνi

and of Cν1�ν2 are still given by the Fourier coefficients of the measures
∑n

i=1 λiνi and
ν1 � ν2, as can be easily checked.

As said before, (4.1) is a well known result.

3Notice that replacing 2π by some other θ in the definition of ←−ν only affects SC(ν) by a simple rotation in T .
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4.2. Reordering of random vectors in C

The Gauss−Minkowski correspondence can be seen thanks to Corollary 2.9 as a consequence of the conver-
gence of polygonal lines corresponding to some reordered random segments. This reordering can be done even if
the lengths are not all the same; nevertheless the condition E(eiXμ ) = 0 is needed to get a closed convex curve
at the limit. In this section we investigate a generalisation of this construction where the sides of the polygons
are r.v. in C.

Let μ be a distribution with support included in C with mean 0, but different from δ0. Take a sequence
W := (W1, . . . , Wn) of i.i.d. r.v. with common distribution μ, and let Ŵ := (Ŵ1, . . . , Ŵn) the list W sorted
according to the arguments of the Wi’s (if several of them have the same argument but different modulus, then
take a uniform random order among them). For θ ∈ [0, 2π), define Nn(θ) := #{i, Wi ≤ θ}. Let S := (S(k), k =
0, . . . , n) be the sequence of partial sums

S(k) :=
k∑

j=1

Ŵj , (4.3)

piecewise linearly interpolated between integer points, and let Bn = {S(t), t ∈ [0, n]} be the polygonal line
corresponding to the graph of S extended to [0, n].

The distribution μ induces a law P|W |,arg(W ) for the pair (|W |, arg(W )), and a law Parg(W ) for arg(W ); let
P|W |,x be a version of the distribution of |W | conditioned on arg(W ) = x (this is defined up to a null set under
Parg(W ); for the sake of completeness, take P|W |,x = δ0 on the complementary set). We denote by mx the mean
of |W | under P|W |,x.

Let ν be the measure having density m/E(|W |) with respect to Parg(W ), that is

dν(x) =
mx

E(|W |)dParg(W )(x). (4.4)

The map which sends μ onto ν will be denoted K:

K(μ) = ν. (4.5)

Denote by F arg the CDF of arg(W ), and by Fν that of the measure ν. From now on, let Wθ denote a r.v. W
under the condition {arg(W ) ≤ θ}.

We here present a theorem stating the aforementioned convergence; we think that it provides an agreeable
way to see the phenomenons into play.

Theorem 4.2. Consider the model described in the present section. Assume that μ is centred ( �= δ0), and let
ν = K(μ). We have:

1) dH(Bn/(nE(|W |)),Bν)
(a.s.)−−−→

n
0.

2) For any θ,
S(Nn(θ))
nE(|W |)

(a.s.)−−−→
n

∫ θ

0

eitdν(t) = Zν(Fν(θ)). (4.6)

Remark 4.3.

(a) Prosaically, the previous Theorem says that if μ is a centred distribution on C the CCS associated with μ
is CK(μ).

(b) According to (4.4) and Theorem 4.2, BK(ν) is the circle (with radius 1/(2π)) if and only if Parg admits a
density fν(·) with respect to the Lebesgue measure, and θ 
→ fν(θ)mν(θ) is constant.
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(c) The ellipse of equation x2/c2 + y2 = R2 with perimeter 2πRc = 1, is obtained in the case where

mν(θ) =
1
2π

c

cos(θ)2 + c2 sin(θ)2
·

This can be shown using the following parametrisation: x(t) = sin(t), y(t) = c(1− cos(t)).

Proof of Theorem 4.2.
2) The cardinality of Nn(θ) has the binomial (n, F arg(θ)) distribution. It satisfies for any θ,

Nn(θ)/n
(a.s.)−−−→

n
Fν(θ). (4.7)

Conditionally on Nn(θ) = m the (multi)set {Ŵ1, . . . , Ŵm} is distributed as a set of m i.i.d. copies of Wθ.
Therefore by the law of large number,

S(Nn(θ))
nE(|W |)

(a.s.)−−−→
n

F arg(θ)E(Wθ)
E(|W |) =

E(W1arg(W )≤θ)
E(|W |) (4.8)

=
E(|W |ei arg(W )1arg(W )≤θ)

E(|W |) (4.9)

=
∫ θ

0

eit mt

E(|W |)dParg(W )(t) = Zν(Fν(θ)). (4.10)

This ends the proof of 2) and shows the a.s. simple convergence of the extremal points of the random curve to
those of the deterministic limit. �

1) Similarly, the length Ln(θ) of the curve composed by the segments between the points (S(i), 0 ≤ i ≤ Nn(θ))
satisfies

Ln(θ)
(a.s.)−−−→

n
L(θ) :=

E(|W |1arg(W )≤θ)
E(|W |) , (4.11)

where L(θ) is the length of the curve t 
→ Zμ(t) between times 0 and Fμ(θ). Fix a small ε > 0. There exists
θ1 < . . . < θk such that the convex hull of the points Zν(Fν(θi)) is at distance at most ε of Bν . Notice that such
a property implies that the successive segments lengths li = |Zν(Fν(θi))− Zν(Fν(θi−1))| satisfies

L(θi)− L(θi−1)− 2ε ≤ li ≤ L(θi)− L(θi−1)

since Bν is convex and the graph of Zν must stay at distance at most ε of [Zν(Fν(θi)), Zν(Fν(θi−1))] between
times Fν(θi) and Fν(θi−1). But for n large enough, up to an additional ε, the discrete curve has the same
properties with high probability. By (4.8)

sup
1≤j≤n

∣∣∣∣S(Nn(θj))
nE(|W |) − Zν(Fν(θj))

∣∣∣∣ (a.s.)−−−→
n

0.

The length Ln(θi)−Ln(θi−1) of the curve between θi−1 and θi converges a.s. to L(θi)−L(θi−1) by (4.11). This
implies that the Hausdorff distance between Bn/(nE(|W |)) and the convex hull of the points S(Nn(θj))

nE(|W |) ’s goes
to zero a.s. �

We now consider convolution and mixture of CCS.

Proposition 4.4. Let X and Y be independent r.v. in C with mean 0 (but not equal to 0 a.s.), and λ ∈ [0, 1].
Let μX , μY and μX.Y be the laws of X, Y and X.Y . We have

CK(μX.Y ) = CK(μX) � CK(μY ) and CK(λμX+(1−λ)μY ) = λCK(μX ) + (1− λ)CK(μY ).
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Proof. The statement concerning the mixture is quite easy and follows Theorem 4.2 for example. For the other
one, following (3.1), it suffices to see that K(μX.Y ) = K(μX)�

T
K(μY ). Observe that for any measure μ on C (such

that 0 < |Xμ| < +∞),
E(eix arg(Xμ)|Xμ|)

E(|Xμ|)
=
∫ 2π

0

eixθ mXμ(θ)
E(|Xμ|)

dParg(Xμ)(θ).

Indeed, according to (4.4), the Fourier transform of K(μ) at position x is given by E(eix arg(Xμ)|Xμ|)
E(|Xμ|) . Hence, the

Fourier transform of K(μX.Y ), for X and Y independent, is

E(eix arg(XY )|XY |)
E(|XY |) =

E(eix arg(X)|X |)
E(|X |)

E(eix arg(Y )|Y |)
E(|Y |) ,

which implies that the Fourier transform of K(μX.Y ) and of K(μX)�
T
K(μY ) are the same. CK(μX.Y ) and CK(μX) �

CK(μY ) are equal by Definition 3.1. �

Remark 4.5. The CCS CK(μ) characterises K(μ) but not μ. For example the two following measures μ1 =
1
3

(
δ(1) + δ(e2iπ/3) + δ(e4iπ/3)

)
and μ2 = 1

3

(
1
2δ(1

2 ) + 1
2δ(3

2 ) + δ(e2iπ/3) + δ(e4iπ/3)
)

satisfy K(μ1) = K(μ2) and
CK(μi) is an equilateral triangle. Every CCS Cν can therefore be seen as an equivalence class of measures over C.

However, K
(
μ1�

T
μ1

)
represents a polygon with 6 sides, whereas K

(
μ1�

T
μ2

)
a polygon with 7 sides, even though

K(μ1) = K(μ2). Hence K(μ1 � μ2) is not a function of K(μ1) and K(μ2), and then the convolution of measures
in C can not be turned into a nice operation on CCS.

5. Some models of random CCS

In this part, we consider the problem of finding natural distributions on the set of CCS. We first recall some
classical considerations on simple models of random convex polygons. In a second part we take advantage of
the representation of CCS by measures in M0

T to present models for the generation of smooth CCS based on
random Fourier coefficients.

5.1. Reordering of closed polygons

Consider the problem of generating a convex polygon by specifying a finite set of vectors representing its edges.
Let μ be a distribution on C whose support is not reduced to a point, and for some n ≥ 2, let (Xi, i = 1, . . . , n)
be n i.i.d. r.v. distributed according to μ, and set

Wi = X(i mod n)+1 −Xi, 1 ≤ i ≤ n.

Naturally,
∑n

i=1 Wi = 0. Let (Ŵi, 1 ≤ i ≤ n) be the sequence (Wi, 1 ≤ i ≤ n) sorted according to their
arguments. Let now S be defined as in (4.3), and Bn defined as in Section 4.2. Further, let μ be the distribution
of W1 = X2 −X1, and ν = K(μ).
The following result analogous with Theorem 4.2 shows that Bn converges in distribution to Bν :

Theorem 5.1. Assume that μ is centred (different from δ0). Then

dH (Bn/(nE(|W |)),Bν)
(a.s.)−−−→

n
0.

Moreover (4.6) holds.

Proof. We have S(Nn(θ)) =
∑n

i=1(X(i mod n)+1 − Xi)1arg(X(i mod n)+1−Xi)≤θ; the difference with the proof of
Theorem 4.2 is the dependence between the r.v. in the sum. But these r.v. are only weakly dependent (each
r.v. depends on the previous and following one); then strong law of large number applies to this case (since the
sum can be split into two sums with i.i.d. r.v.), and the rest of the proof follows that of Theorem 4.2. �
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5.2. Convex polygon by conditioning/convex polygon by chance

Another natural way to sample a convex polygon is to take some i.i.d. points W0, . . . , Wn−1 in the plane
according to a distribution μ with support not included in a line, and to condition (W0, . . . , Wn−1) to be a
convex polygon. Define the set of all possible convex polygons as

Bn = {w := (w0, . . . , wn−1) : arg(wi+1 mod n − wi) forms an increasing sequence in [0, 2π)}.

Hence, w represents the list of vertices of a convex polygons encountered when following its boundary in the
counter-clockwise direction (with some conditions for w0).

The value of μ⊗n(Bn) is known only for μ equal to the uniform distribution in a triangle or in a parallel-
ogram [27, 28] and in a circle [17]; when μ is the uniform distribution in a CCS, the limit behaviour for w
under the condition w ∈ Bn is described in Bárány [1]. We open here a parenthesis to explain the underlying
difficulty. Consider Sn := (w0, . . . , wn) a n-tuple of points in R2, not three of them being on the same line (this
happens almost surely if μ admits a density on an open set in R

2). When wi = (xi, yi) for any i, the algebraic
area of the triangle (wi, wj , wk) is

Ai,j,k =
1
2
(xiyj + xjyk + xkyi − yixj − yjxk − ykxi). (5.1)

The set (si,j,k := sign(Ai,j,k), 0 ≤ i < j < k ≤ n−1) is called the chirotope of Sn. An equivalence class for the
chirotope, is called an order type. The sequence Sn forms a convex polygon iff all si,j,k have the same sign. It is
known that some order types are empty, and also that deciding if an order type is not empty, is a NP -complete
problem (cf. Knuth [15], Sect. 6).

When (Wj = (Xj , Yj), j = 0, . . . , n − 1) is a family of i.i.d. r.v., such that the Xi and Yi are independent
Gaussian centred r.v. with variance 1, it turns out that the Laplace transform of the joint law of the Ai,j,k’s
(the areas of the triangles (Wi, Wj , Wk)) that is

Φ(λi,j,k, 0 ≤ i < j < k ≤ n− 1) := E

⎛⎝exp

⎛⎝ ∑
0≤i<j<k≤n−1

λi,j,kAi,j,k

⎞⎠⎞⎠
is equal to | det(Λ)|−1/2, where Λ = (�i,j) and �i,j =

∑
a λi,j,a + λa,i,j − λi,a,j (in a neighbourhood of the origin

of R(n
3)). To get this result, the method is the same as the one for the computation of the Fourier transform of

a Gaussian vector in Rd.

Remark 5.2. As remarked by Andrea Sportiello in a private communication, | det(Λ)| is always a square of a

polynomial in the coefficients λ̄i,j . Indeed, for Λ′ =
[
−Idn 0

0 Idn

]
Λ, Λ and Λ′ have the same determinant (up

to factor (−1)n). But it can be shown that Λ′ is a skew matrix, and then its determinant is the square of its
Pfaffian, which is indeed a polynomial on its coefficients.

The Gaussian distribution is probably the simplest non trivial measure for which this computation is possible.
The question of the emptiness of an order type S = (si,j,k, i < j < k) can be translated in term of the support
of the measure, but Knuth’s result implies that it is a difficult task. If n = 3, only one triangle is present; the
Laplace transform is 1/(1 − 3λ2

0,1,2/4), the transform of a Gamma r.v. with a random sign; when n = 4, the
Laplace transform is much more complex.

5.3. Generation of smooth random CCS

This part is mainly prospective. By Theorem 2.2, to conceive a model of random CCS in Conv(1) and to
conceive a model of random measures with values in M0

T is the same problem. Since the condition “to be
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in M0
T ” has a simple expression in term of Fourier coefficients, and since the Fourier coefficients determine

the measure (Prop. 2.5), a simple idea consists in describing random measures in M0
T using random Fourier

coefficients.
This leads us to Szegö’s Theorem [26]: if a trigonometric polynomial P : T → R+ admits only non-negative

values, then there exists a polynomial D such that:

∀t ∈ T , P (t) = |D(eit)|2

Moreover D is unique up to multiplication by a complex of modulus 1. If we consider the Fourier expansion
D(eit) =

∑
n≥0 ρneiθneint, for some finite sequences of real numbers (ρn), (θn), the modulus of D is equal to:

|D(eit)|2 = A0 +
∑
n≥1

An cos(nt) + Bn sin(nt)

with

⎧⎪⎪⎨⎪⎪⎩
A0 =

∑
k≥0 ρ2

k

An = 2
∑

k≥0 ρk+nρk cos(θk − θk+n) for n ≥ 1,

Bn = 2
∑

k≥0 ρk+nρk sin(θk − θk+n) for n ≥ 1.

(5.2)

Hence, the trigonometric polynomial P is the density of a measure μ ∈ M0
T iff the sequences (An) and (Bn)

satisfy (i) the perimeter condition (A0 = 1
2π , ensuring that μ is a probability measure) and (ii) the closed path

condition (A1 = B1 = 0, ensuring that
∫ 2π

0 eixdμ(x) = 0).

5.3.1. Generation of CCS via their Fourier coefficients

In order to generate a random pair P := ((ρk, k ≥ 0), (θk, k ≥ 0)) satisfying both conditions, two possibilities
are open, depending on which condition should be satisfied first (but the question of finding natural distributions
for CCS will remain open).

To satisfy A1 = B1 = 0 first, it suffices to generate ρj and θj for j ≥ 1 at random then take ρ0 and θ0 such
that:

ρ0ρ1ei(θ0−θ1) = −
∑
k≥1

ρk+1ρkei(θk−θk+1).

This is always possible if the sum converges and if ρ1 is not 0. To satisfy A0 = 1/2π from here, a normalisation
step can be applied: divide each ρn by

√∑
k≥0 ρ2

k.

Szegö’s theorem ensures that the set of measures induced by this method has full support overM0
T : indeed,

each measures in M0
T can be weakly approached by a sequence of distributions with strictly positive density;

these ones can be in turn approached by a sequence of positive trigonometric polynomials, and Szegö’s theorem
gives a representation of these polynomials. The results of such a generation can be seen on Figure 4.

Another solution consists in ensuring first A0 = 1/2π, which comes down to producing (ρk, k ≥ 0) such that∑
k≥0 ρ2

k = 1
2π . This can be done by choosing (generating) random reals rj in [0, 1], and setting:

ρ2
k =

1
2π

rk

k−1∏
j=0

(1− rj).

This is well defined if
∏

k(1 − rk) converges to 0 when k goes to infinity (for example, taking i.i.d. rj ’s under
uniform[0, 1] does the job). From here, satisfying A1 = 0 and B1 = 0 by a right choice of θ’s can become more
difficult, and even impossible, for example if ρ0 = ρ1 > 0 and all other ρi’s are 0. Nevertheless, it is possible
to generate P satisfying all the constraints at once. Choose (at random or not) a subset F of N such that if
i ∈ F , then i + 1 /∈ F , and a sequence xk such that

∑
k≥0 x2

k = 1
2π as above. Now, let nj be the j + 1th smallest

element in F , with the convention that the smallest is n0. Define the sequence (ρk) by:

ρnj = rj , ρk = 0 otherwise
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Figure 4. Examples of random CCS generated from trigonometric polynomials containing 25
non-zero coefficients (with ρj ∼ uniform[0; 1], and θj ∼ uniform[0; 2π], all these r.v. being taken
independently).

Figure 5. Examples of random CCS generated from polynomials containing 12 non-zero coef-
ficients with sparse coefficients (the indices of the non-null Fourier coefficients of F are selected
with probability 0 if the previous coefficient was selected, and with probability 1

2 otherwise;
ρj ∼ uniform[0; 1]; θj ∼ uniform[0; 2π], all these r.v. are taken independently).

Thanks to (5.2), A1 = B1 = 0 (since for all k, ρkρk+1 = 0), and this for any choice of (θk). Examples of CCS
generated this way appear on Figure 5.

5.3.2. Generation of CCS with a given area

Consider the problem of generating a CCS in Conv(1) with a given area α = 1
4π −

π
2 β ∈ [0, 1

2π2 ]. Such a CCS
corresponds to Fourier coefficients that satisfies:

∑
k≥2

a2
k + b2

k

k2 − 1
= β.

As in the previous section, we consider a sequence of numbers (rj) in [0, 1) for j ≥ 2, such that
∏

j≥2(1−rj) = 0,
and define positive reals (ck) such that:

c2
k

k2 − 1
= β rk

k−1∏
j=2

(1− rj).
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Figure 6. Examples of random CCS of perimeter 1 generated such that their area is equal
to 1

4π −
π
2 × 0.01 (the polynomials possess 20 non-null coefficients, ρj ∼ uniform[0; 1], and

θj ∼ uniform[0; 2π], all these r.v. being taken independently).

Let (θk, k ≥ 2) be a sequence of real numbers in [0, 2π). Then the Fourier coefficients of the associated measure
can be computed as follows:

ak = cos(θk)ck, bk = sin(θk)ck.

It is still possible to take a1 = b1 = 0 and a0 = 1/(2π), but since we didn’t use Szegö’s theorem, the standard
Fourier series associated to the ai’s and bi’s is unlikely to be a positive function. From here, it suffices to reject
all series with a negative minimum. The results of such a generation appear on Figure 6. Experiments show
that the rejection rate is very high, and that it is very difficult to generate CCS with β > 0.01 (the theoretical
maximum being 1

2π2 ≈ 0.05).

Appendix A.

A.1. Proof of Theorem 2.8

Convergence of the FDD of Wn.

Let θ0 := 0 ≤ θ1 < θ2 < . . . < θκ = 2π for some κ ≥ 1 be fixed. In the sequel, for any function (random or not)
L indexed by θ, ΔL(θj) will stand for L(θj)− L(θj−1). For any � ≤ κ

Wn(θ
) =
√

n


∑
j=0

Δ [Zn(Nn(θj))− Zμ(Fμ(θj))] (A.1)

where by convention Zn(Nn(θ−1)) = Zμ(Fμ(θ−1)) = 0. The convergence of the FDD of Wn follows from those
of (
√

nΔ [Zn(Nn(θj))− Zμ(Fμ(θj))] , 0 ≤ i ≤ κ). Notice that

ΔZμ(Fμ(θj)) = E
(
exp(iX)1θj−1<X≤θj

)
. (A.2)

If for some j, θj−1 and θj are chosen in such a way that ΔFμ(θj) = 0 then the jth increment in (A.1) is 0
almost surely (this is the case for the 0th increment if μ({0}) = 0). We now discuss the asymptotic behaviour
of the other increments : let J = {j ∈ {0, . . . , κ} : ΔFμ(θj) �= 0}.

Let (nj , j ∈ J) be some fixed integers such that n =
∑

nj . Denote by μθj−1,θj the law of Xμ conditioned on
{θj−1 < Xμ ≤ θj}, and by Xθj−1,θj a r.v. under this distribution. Conditionally on (Nn(θj) = nj , j ∈ J), the
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r.v. ΔZn(Nn(θj)), j ∈ J are independent. The law of ΔZn(Nn(θj)) is that of a sum of nj − nj−1 i.i.d. copies of
r.v. under μθj−1,θj , denoted from now on (Xθj−1,θj (k), k ≥ 1)):

E
(
ΔZn(Nn(θj))

∣∣Nn(θl) = nl, l ∈ J
)

= n−1
E

(nj−nj−1∑
m=1

eiXθj−1 ,θj
(m)

)

=
(nj − nj−1)

n

ΔZμ(Fμ(θj))
ΔFμ(θj)

·

Since (ΔNn(θj), j ∈ J) ∼ Multinomial (n, (ΔFμ(θj), j ∈ J)),(
ΔNn(θj)− nΔFμ(θj)√

n
, j ∈ J

)
(d)−−→
n

(Nj , j ∈ J) (A.3)

where (Nj, j ∈ J) is a centred Gaussian vector with covariance function

cov(Nk, Nl) = −ΔFμ(θk) . ΔFμ(θl),

formula valid for any 0 ≤ k, l ≤ κ. Putting together the previous considerations, we have, conditioning first on
the Nn(θj)’s, and then integrating on the distribution of these r.v.,

ΔWn(θj) =
ΔNn(θj)∑

l=1

eiXθj−1 ,θj
(l) − E(eiXθj−1 ,θj )√

n
+
(

ΔNn(θj)− nΔFμ(θj)√
n

)
E(eiXθj−1 ,θj ). (A.4)

Using (A.3) and the central limit theorem, we then get that

(πΔWn(θj), 0 ≤ j ≤ κ)
(d)−−→
n

√
ΔFμ(θj)Ñj + Nj

[
E(cos(Xθj−1,θj))
E(sin(Xθj−1,θj)

]
, (A.5)

where the r.v. Nj , Ñj, j ≤ κ are independent, and the r.v. Ñj are centred Gaussian r.v. with covariance matrix,

the covariance matrix of
[
cos(Xθj−1,θj )
sin(Xθj−1,θj)

]
.

Tightness of {Wn, n ≥ 0} in D[0, 2π].

A criterion for tightness in D[0, 2π] can be found in Billingsley ([4], Thm. 13.2) a sequence of processes (Wn, n ≥
1) with values in D[0, 2π] is tight if, for any ε ∈ (0, 1), there exists δ > 0, N > 0 such that

lim
δ→0

lim sup
n

P(ω′(Wn, δ) ≥ ε) = 0

where ω′(f, δ) = inf(ti) maxi sups,t∈[ti−1,ti) |f(s) − f(t)|, and the partitions (ti) range over all partitions of the
form 0 = t0 < t1 < . . . < tn ≤ 2π with min{ti − ti−1, 1 ≤ i ≤ n} ≥ δ.

Since only the tightness in D[0, 2π] interests us, we will focus on �(W ) (since the imaginary part can be
treated likewise, and since the tightnesses of both �(W ) and 
(W ) implies that of W ). For the sake of brevity,
in the sequel, we will use W instead of �(W ).

The first step in our proof consists in comparing the distribution Pn of a set {X1, . . . , Xn} of n i.i.d. copies
of Xμ with a Poisson point process Pn on [0, 2π] with intensity nμ, denoted by PPn . Conditionally on #Pn = k,
the k points Pn := {Y1, . . . , Yk} are i.i.d. and have distribution μ, and then PPn( · |#P = n) = Pn. The Poisson
point process is naturally equipped with a filtration σ := {σt = σ({P ∩ [0, t]}), t ∈ [0, 2π]}.

We are here working under PPn , and we let N(θ) = #Pn ∩ [0, θ]; notice that under Pn, N and Nn coincide.
We will show the tightness of W under PPn first. Before doing this, let us see why it implies the same result

under Pn: Let m be a point in [0, 2π] such that Fμ(x) > 1/4, 1− Fμ(x) > 1/4 (it is a kind of median of μ). We
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need in the sequel 1−Fμ(m) > 0; for measures inM0
T this is always the case, since if not, an atom with weight

> 1/2 would exist. We will see that the tightness under PPn implies that the sequence of processes W under
Pn is tight in D[0, m] (the same proof works on D[m, 2π] by a time reversing argument). We claim that for any
event σm measurable,

Pn(A) = PPn(A |#P = n) ≤ c PPn(A) (A.6)

for a constant c independent on n and of A (but which depends on μ). This in hand, the tightness under PPn

of W on D[0, m] implies that under Pn. Let us prove (A.6). We have

PPn(A |#P = n) =
∑

k

PPn(A, #(P ∩ [0, m]) = k)P(#P ∩ [m, 2π] = n− k)
P(#P = n)

≤
∑

k

PPn(A, #(P ∩ [0, m]) = k) sup
k′

P(#P ∩ [m, 2π] = n− k′)
P(#P = n)

≤ c PPn(A)

where c = supn≥1 supk′
P(#P∩[m,2π]=n−k′)

P(#P=n) , which is indeed finite since:

• first #P ∩ [m, 2π] ∼ Poisson(n(1 − Fμ(m))), and then supk′ P(#P ∩ [m, 2π] = n − k′) is the mode of a
Poisson distribution. When the parameter is λ, the mode is equivalent to 1/

√
2πλ when λ → +∞, so here

it is equivalent to 1/
√

2πn(1− Fμ(m)),
• and by Stirling P(#P = n) ∼ (2πn)−1/2.

Working with a Poisson point process instead of working with n r.v. provides some independence between
the number of r.v. Xi in disjoint intervals, and then on the fluctuations of Wn in disjoint intervals.

Before starting, recall that if N ∼ Poisson(a), for any positive λ,

P(N ≥ x) = P
(
eλN ≥ eλx

)
≤ E(eλN−λx) = e−a+aeλ−λx (A.7)

P(N ≤ x) = P
(
e−λN ≥ e−λx

)
≤ E(e−λN+λx) = e−a+ae−λ+λx. (A.8)

Let Aμ = {x ∈ [0, 2π], μ({x}) > 0} be the set of positions of the atoms of μ. We now decompose μ = μ|Aμ +μ|�Aμ
;

under Pn as well as under PPn , the process W can be also decomposed under the form W |Aμ + W |�Aμ
using

N |Aμ(θ) = #P ∩ [0, θ] ∩Aμ, Z|Aμ(N |Aμ(θ)) =
∑N

j=1 eiX̂j 1X̂j∈Aμ
, etc. The fluctuations of W = W |Aμ + W |�Aμ

are then bounded by the sum of the fluctuations of both processes W |Aμ and W |�Aμ
. It is then sufficient to

show the tightness for a purely atomic measure μ, and for a measure having no atom μ.

Case where μ is purely atomic.

Take some (small) η ∈ (0, 1), ε > 0; we will show that one can find a finite partition (ti, i ∈ I) of [0, 2π] and a
δ ∈ (0, 1) such that

lim sup
n

Pn(ω′(Wn, δ) ≥ ε) ≤ η, (A.9)

which is sufficient for our purpose. In fact we will establish (A.9) under PPn instead, on [0, m] and then on
[m, 2π], since we saw that this was sufficient (replacing η by cη in (A.9), suffices too).

Now, let A≥a
μ := {x ∈ Aμ : μ({x}) ≥ a}. Clearly #A≥a

μ ≤ 1/a and [0, 2π] \A≥a
μ forms a finite union of open

connected intervals (Ox, x ∈ G), with extremities (t′i, i ∈ I). The intervals (Ox, x ∈ G) can be further cut as
follows:

• do nothing to those such that μ(Ox) < 2a;
• those such that μ(Ox) > 2a are further split. Since they contain no atom with mass > a, they can be split

into smaller intervals having all their weights in [a, 2a] except for at most one (in each interval Ox which
may have a weight smaller than a).
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Once all these splittings have been done, a list of at most 3/a intervals are obtained, all of them having a
weight smaller than 2a. Name Ga = (Ox, x ∈ Ia) the collection of obtained open intervals, index by Ia, and by
(tai , i ≥ 0) the partitions obtained. Clearly

Ma := max
i∈Ia

E(cos(Xμ)21Xμ∈Oi) ≤M ′
a := 2a.

Control of the fluctuations of Wn on an interval Ox.

In the sequel we take a = ε3 and consider a unique interval Ox = (θj−1, θj) ∈ Ga, in which case we have
Mε3 ≤ 2ε3. We control first the last position of the random walk Wn. Under PPn , P(nμ{θ}) := #Pn ∩ {θ} has
distribution Poisson(nμ({θ})), the r.v. corresponding to different points being independent. Following (A.4),
under PPn , we get

ΔWn(θj) =
√

n
∑

θ∈Aμ
θj−1≤θ<θj

(
P(nμ{θ})

n
− μ({θ})

)
cos(θ). (A.10)

These centred r.v. can be controlled as usual Poisson r.v. as recalled above. On the first hand,

P(ΔWn(θj) ≥ ε) = P

(∑
θ

P(nμ{θ}) cos(θ) ≥ y

)
(A.11)

where
y = ε

√
n + nE(cos(X)1X∈Aμ,θj−1<X≤θj) (A.12)

and where the set of summation is the same as before (from now on, it will be omitted).
Writing P (

∑
θ P(nμ{θ}) cos(θ) ≥ y) ≤ infλ>0 e−λy

∏
θ E(e(λ cos(θ))P(nμ{θ})) one has

P(ΔWn(θj) ≥ ε) ≤ inf
λ>0

exp

(
−
∑

θ

nμ{θ}+
∑

θ

nμ{θ}eλ cos(θ) − λy

)
.

To get a bound we will take λ = ε/(2
√

nM ′
ε3). This allows one to bound eλ cos(θ) by 1 + λ cos(θ) + λ2 cos(θ)2

which is valid uniformly for any θ provided that n is large enough. Hence for n large enough replacing y by its
value,

P(ΔWn(θj) ≥ ε) ≤ inf
λ>0

exp
(
λ2nE(cos2(θ)1θ∈Ix)− λε

√
n
)

≤ inf
λ>0

exp
(
λ2nM ′

ε3 − λε
√

n
)

≤ exp(−1/(4ε))

this last equality being obtained for λ = ε/(2M ′
ε3

√
n).

The proof for the control of P(ΔWn(θj) ≤ −ε) ≤ infλ>0 E
(
e−λΔWn(θj)−λδ

)
for δ > 0 gives rise to the same

estimates, except that the bound eλ cos(θ) by 1−λ cos(θ)+ λ2 cos(θ)2/4 is taken to replace the other one, giving
a bound exp(−1/(2ε)) at the end.

Now we have to control the fluctuations, and not only the terminal value of the random walk. Theorem 12
page 50 in Petrov [19] allows one to control the first ones using the second ones.

Control of the fluctuations of Wn on all intervals.

The control of all intervals all together can be achieved using the union bound: since they are at most 3/ε3 such
intervals by the union bound

PPn(sup
j

ΔWn(θj) ≥ ε) ≤ 3ε−3e−1/(4ε).

This indeed goes to 0 when ε→ 0.
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Case where μ has no atom.

We now show the tightness of W under PPn when μ has no atom and use the same method as before: we work
under PPn , cut [0, 2π] under sub-intervals [tj−1, tj ]′s, control the differences between starting and ending values
on these intervals, since we saw that it was sufficient.

First we cut [0, 2π] into n (tiny) equal parts ([2π(j − 1)/n, 2πj/n], j = 1, . . . , n). From (A.4)

W (2πj/n)−W (2πj′/n) =
j∑

l=j′+1

Γl + Θl (A.13)

where, under PPn , denoting further θj = 2πj/n,

Γl =
P(nΔ(Fμ(θl)))∑

m=1

cos(Xθj−1,θj (m))− E(cos(Xθj−1,θj))√
n

Θl =
P(nΔ(Fμ(θl)))− nΔFμ(θl)√

n
E(cos(Xθl−1,θl

))

and P(λ) ∼ Poisson(λ) and the different Poisson r.v. appearing in the Γl and Θl are independent. Let ε > 0 be
given and Nε3 = �1/ε3�. Since μ has no atom there exists some times t0 = 0 < t1, . . . < tNε = 2π such that
μ([ti−1, ti]) ≤ ε3. We now control the fluctuations of W on these intervals.

Write Dj := W ( �2πtjn�
n )−W ( �2πtj−1n�

n ) as a sum of r.v. Γl and Θl as in (A.13):

Dj = Sj + S′
j

where

Sj =
�2πtjn�∑

l=�2πtj−1n�+1

Γl, S′
j =

�2πtjn�∑
l=�2πtj−1n�+1

Θl.

Each Γl is itself a sum which involves a Poisson number of terms: the total number of terms in Sj is Ntj −Ntj−1 ,
a Poisson r.v. with parameter smaller than ε3n under PPn . From (A.7), PPn(N(tj)−N(tj−1) ≥ 3ε3n) ≤ e−cε3n

for some positive c, this meaning that with high probability, Sj is a sum of less than 3ε3n centred and bounded

r.v. of the form
cos(Xθj−1 ,θj

(m))−E(cos(Xθj−1,θj
))

√
n

. By Hoeffding’s inequality

P(|Sj | ≥ ε|N(tj)−N(tj−1) ≤ 3ε3n) ≤ c′ exp(−c/ε)

for some c, c′ > 0.
The sum S′

j is controlled as above, in the atomic case (see (A.10) and below).

We now show 2); since f 
→ maxθ |f(θ)| is continuous on D[0, 2π], we only need to prove dH(Bn,Bμ) =
maxθ |Zn(Nn(θ)/n)− Zμ(Fμ(θ))|.

Since Bn and Bμ are compact, there exists (xn, x) in Bn ×Bμ realising this distance: |xn − x| = d(xn,Bμ) =
d(Bn, x) = dH(Bn,Bμ). Consider now the set of directions Θn and Θ of the tangents at xn on Bn and that at
x on Bμ (we call here a tangent at a on A a line l that passes by a and such that A is contained in one of the
close half plane defined by l. The set of directions of these tangents is an interval). We claim that there exists
in Θn ∩Θ the direction θ� orthogonal to (xn, x). If not, this means that at xn (or at x) the line passing at xn

(or x) and orthogonal to (xn, x) crosses Bn (or Bμ). This would imply that in a neighbourhood of x (or xn)
there exists a point x′ (or x′

n) closer to xn (resp. x) than x (resp. xn), a contradiction.
To end the proof, we need to show that (x, x′) corresponds to some (Sn(Nn(θ)/n), Zμ(Fμ(θ))). In other words,

they are extremal points on their respective curves, and owns some parallel tangents. The second statement is
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clear. For the first one, we have to deal with the fact that Bn (and so do Bμ for certain measures μ) have linear
portions. But the distance between Bn and Bμ is not reached inside the linear intervals since the Hausdorff
distance between a segment [a, b] and a CCS C is given by max{d(a, C), d(b, C)}. �
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[16] P. Lévy, L’addition des variables aléatoires définies sur un circonférence. Bull. Soc. Math. France 67 (1939) 1–41.
Available at http://archive.numdam.org/article/BSMF_1939__67__1_0.pdf.

[17] J.-F. Marckert, Probability that n random points in a disk are in convex position. Available at http://arxiv.org/abs/1402.
3512 (2014).
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