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SEGMENTATION OF THE POISSON AND NEGATIVE BINOMIAL RATE
MODELS: A PENALIZED ESTIMATOR
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Abstract. We consider the segmentation problem of Poisson and negative binomial (i.e. overdispersed
Poisson) rate distributions. In segmentation, an important issue remains the choice of the number of
segments. To this end, we propose a penalized log-likelihood estimator where the penalty function is
constructed in a non-asymptotic context following the works of L. Birgé and P. Massart. The resulting
estimator is proved to satisfy an oracle inequality. The performances of our criterion is assessed using
simulated and real datasets in the RNA-seq data analysis context.
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1. Introduction

We consider a multiple change-point detection setting for count datasets, which can be written as follows: we
observe a finite sequence {yt}t∈{1,...,n} realisation of independent variables Yt. These variables are supposed to
be drawn from a probability distribution G which depends on a set of parameters. Here two types of parameters
are distinguished:

Yt ∼ G(θt, φ) = s(t), 1 ≤ t ≤ n,

where φ is a constant parameter while the θs are point-specific. In many contexts, we might want to consider that
the θs are piece-wise constant and so subject to an unknown number K −1 of abrupt changes (for instance with
climatic or financial data). Thus, we want to assume the existence of partition of {1, . . . , n} into K segments
within which the observations follow the same distribution and between which observations have different
distributions, i.e. θ is constant within a segment and differ from a segment to another. A motivating example
is sequencing data analysis. For instance, the output of RNA-seq experiments is the number of reads (i.e. short
portions of the genome) which first position maps to each location of a genome of reference. Supposing that we
dispose of such a sequence, we expect to observe a stationarity in the amount of reads falling in different areas
of the genome: expressed genes, intronic regions, etc. We wish to localize those regions that are biologically
significant. In our context, we consider for G the Poisson and negative binomial distributions, adapted to
RNA-seq experiment analysis [24].
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distributions, model selection.
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Change-point detection problems are not new and many methods have been proposed in the literature. For
count data-sets, [12] provide a detailed bibliography of methods in the particular case of the segmentation of the
DNA sequences that includes Bayesian approaches, scan statistics, likelihood-ratio tests, binary segmentation
and numerous other methods such as penalized contrast estimation procedures. In a Bayesian framework, [6]
proposes to use an exact “ICL” criterion for the choice of K, while its approximation is computed in the
constrained HMM approach of [19]. In this paper, we consider a penalized contrast estimation method which
consists first, for every fixed K, in finding the best segmentation in K segments by minimizing the contrast over
all the partitions with K segments, and then in selecting a convenient number of segments K by penalizing the
contrast. Choosing the number of segments, i.e. choosing a “good” penalty, is a crucial issue and not so easy.
The most basic examples of penalty are the Akaike Information Criterion (AIC [1]) and the Bayes Information
Criterion (BIC [25]) but these criteria are not well adapted in the segmentation context and tend to overestimate
the number of change-points (see [10,26] for theoretical explanations). In this particular context, some modified
versions of these criteria have been proposed. For instance, [11,26] have proposed modified versions of the BIC
criterion (shown to be consistent) in the segmentation of Gaussian processes and DNA sequences respectively.
However, these criteria are based on asymptotic considerations. In the last years there has been an extensive
literature influenced by [5,8] introducing non-asymptotic model selection procedures, in the sense that the size of
the models as well as the size of the list of models are allowed to be large when n is large. This penalized contrast
procedure consists in selecting a model amongst a collection such that its performance is as close as possible
to that of the best but unreachable model in terms of risk. This approach has been now considered in various
function estimation contexts. In particular, [2] proposed a penalty for estimating the density of independent
categorical variables in a least-squares framework, while [7, 21], or [4], focused on the estimation of the density
of a Poisson process.

When the number of models is large, as in the case of an exhaustive search in segmentation problem, it can
be shown that penalties which only depend on the number of parameters of each model, as for the classical
criteria, are theoretically (and also practically) not adapted. This was suggested by [10, 18] who show that
the penalty term needs to be well defined, and in particular needs to depend on the complexity of the list
of models, i.e. the number of models having the same dimension. For this reason, following the work of [8]
and in particular [14] in the density estimation framework, we consider a penalized log-likelihood procedure to
estimate the true distribution s of a Poisson or negative binomial-distributed sequence y. We prove that, up to
a log n factor, the resulting estimator satisfies an oracle inequality. In our framework, instead of considering n
independent identically distributed variables drawn from a distribution s (to be estimated) as in the histogram
density estimation context [14], we have only one observation with size n, the key point being the piece-wise
constant nature of this distribution which allows repetitions on each piece. Still, in this case, s depends on n,
(to be more precise the support of the function s depends on n), meaning that when n increases, the support
of our function to be estimated also increases.

The paper is organized as follows. The general framework is described in Section 2. More precisely, we present
our proposed penalized maximum-likelihood estimator, the form of the penalty and give some non-asymptotic
risk bounds for the resulting estimator. The studies of the two considered models (Poisson and negative binomial)
are done in parallel along the paper. Some exponential bounds are derived in Section 3. A simulation study is
performed to compare our proposed criterion with others and an application to the segmentation of RNA-seq
data illustrates the procedure in Section 4. The proof of the main result is given in Section 5 for which the
proofs of some intermediate results are given in the Appendix A.

2. Model selection procedure

2.1. Penalized maximum-likelihood estimator

Let us denote by m a partition of [[1, n]], m = {[[1, τ1[[, [[τ1, τ2[[, . . . , [[τk, n]]} and by Mn a set of partitions of
[[1, n]]. In our framework we want to estimate the distribution s defined by s(t) = G(θt, φ), 1 ≤ t ≤ n, and we
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consider the two following models:

G(θt, φ) = P(λt) (P)
G(θt, φ) = NB(pt, φ) (NB).

In the (NB) case, we suppose that the over-dispersion parameter φ is known. We define the collection of
models:

Definition 2.1. The collection of models associated to partition m is Sm the set of distribution of sequences
of length n such that for each element sm of Sm, for each segment J of m, and for each t in J , sm(t) = G(θJ , φ):

Sm = {sm | ∀J ∈ m, ∀t ∈ J, sm(t) = G(θJ , φ)} .

We shall denote by |m| the number of segments in partition m, and by |J | the length of segment J .
We consider the log-likelihood contrast γ(u) =

∑n
t=1 − logPu(Yt), namely respectively for u(t) = P(μt) and

u(t) = NB(qt, φ),

γ(u) =
∑n

t=1 μt − Yt log(μt) + log(Yt!), (P)
γ(u) =

∑n
t=1 −φ log qt − Yt log(1 − qt) − log

(
Γ (φ+Yt)
Γ (φ)Yt!

)
· (NB)

Then the minimal contrast estimator ŝm of s on the collection Sm is

ŝm = arg min
u∈Sm

γ(u), (2.1)

so that, noting ȲJ =
∑

t∈J Yt

|J | , for all J ∈ m and t ∈ J

ŝm(t) = P(ȲJ ) for (P) and ŝm(t) = NB
(

φ

φ + ȲJ
, φ

)
for (NB). (2.2)

Therefore, for each partition m of Mn we can obtain the best estimator ŝm as in equation (2.2), and thus
define a collection of estimators {(ŝm)m∈Mn}. Ideally, we would wish to select the estimator ŝm(s) amongst
this collection with the minimum given risk. In the log-likelihood framework, it is natural to consider the
Kullback−Leibler risk, with K(s, u) = E [γ(u) − γ(s)]. In the following we note E and P the expectation and
the probability under the true distribution s respectively (otherwise the underlying distribution is mentioned).
In our models, the Kullback−Leibler between distributions s and u can be developed into

K(s, u) =
∑n

t=1

(
μt − λt − λt log

μt

λt

)
, (P)

K(s, u) = φ
∑n

t=1 log
(

pt

qt

)
+

1 − pt

pt
log

(
1 − pt

1 − qt

)
· (NB)

Unfortunately, minimizing this risk requires the knowledge of the true distribution s, and is unreachable. We
will therefore want to consider the estimator ŝm̂ where m̂ minimizes γ(ŝm) + pen(m) for a well-chosen function
pen (depending on the data). By doing so, we hope to select an estimator ŝm̂ whose risk is as close as possible
to the risk of ŝm(s) = arg minm∈Mn Es[K(s, ŝm)] in the sense that

E[K(s, ŝm̂)] ≤ C E
[
K

(
s, ŝm(s)

)]
,
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where C is a nonnegative constant hopefully close to 1. We therefore introduce the following definition:

Definition 2.2. Let Mn be a collection of partitions of [[1, n]] constructed on a partition mf (i.e. mf is a
refinement of every m in Mn). Given a nonnegative, increasing in the size of m penalty function pen: Mn → R+,
and choosing

m̂ = arg min
m∈Mn

{γ(ŝm) + pen(m)} ,

we define the penalized maximum-likelihood estimator as ŝm̂.

In the following Section we provide a choice of penalty function, and show that the resulting estimator satisfies
an oracle inequality.

2.2. Choice of the penalty function

Main result

The following result shows that for an appropriate choice of the penalty function, we have a non-asymptotic
risk bound for the penalized maximum-likelihood estimator.

Theorem 2.3. Let Mn be a collection of partitions constructed on a partition mf such that there exist absolute
positive constants ρmin, ρmax and Γ satisfying:
• ∀t, ρmin ≤ θt ≤ ρmax and
• ∀J ∈ mf , |J | ≥ Γ (log(n))2.

Let (Lm)m∈Mn be some family of positive weights satisfying

Σ =
∑

m∈Mn

exp(−Lm|m|) < +∞. (2.3)

Let β > 1/2 in the Poisson case, β > 1/2ρmin in the negative binomial case. If for every m ∈ Mn

pen(m) ≥ β|m|
(
1 + 4

√
Lm

)2

, (2.4)

then

E
[
h2(s, ŝm̂)

] ≤ Cβ inf
m∈Mn

{K(s, s̄m) + pen(m)} + C(φ, Γ, ρmin, ρmax, β, Σ), (2.5)

with Cβ =
(16β)1/3

(2β)1/3 − 1
in model (P) and Cβ =

(2ρminβ)1/3

(2ρminβ)1/3 − 1
in model (NB).

We note h2(s, u) the squared Hellinger distance between distribution s and u and s̄m is the projection of s onto
the collection Sm according to the Kullback−Leibler distance. The proof of this Theorem is given in Section 5.

Denoting s̄m = arg minu∈Sm K(s, u), we have for J ∈ m and t ∈ J ,

s̄m(t) = P(λ̄J) where λ̄J =
∑

t∈J λt

|J | (P)

s̄m(t) = NB(pJ , φ) where pJ =
|J |∑

t∈J 1/pt
· (NB)

(2.6)

Remark 2.4. Before proving the theorem, we make a few remarks:
• The risk of the penalized estimator ŝm̂ is treated in terms of Hellinger distance instead of the

Kullback−Leibler information. This is due to the fact that the Kullback−Leibler is possibly infinite, and so
difficult to control. It is possible to obtain a risk bound in term of Kullback−Leibler if we have a uniform
control of || log(s/s̄m)||∞ (see [20] for more explanation).

• The constraints on the θts are imposed to derive the exponential bounds which will be necessary in the proof
of the theorem. We would like to recall that whith this parametrization large θs increase both the intensity
and the variance of the signal in the Poisson case while it is the contrary in the negative binomial case.
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Choice of the weights {Lm, m ∈ Mn}.
The penalty function depends on the family Mn through the choice of the weights Lm which satisfy (2.3). We
consider for Mn the set of all possible partitions of [[1, n]] constructed on a partition mf which satisfies, for all
segment J in mf , |J | ≥ Γ (log n)2. Classically (see [9]) the weights are chosen as a function of the dimension of
the model s, which is here |m|. The number of partitions of Mn having dimension D being bounded by

(
n
D

)
,

we have

Σ =
∑

m∈Mn

eLm|m| =
n∑

D=1

e−LDDCard{m ∈ Mn, |m| = D}

≤
n∑

D=1

(
n

D

)
e−LDD ≤

n∑
D=1

(en

D

)D

e−LDD

≤
n∑

D=1

e
−D

(
LD−1−log

( n

D

))
.

So with the choice LD = 1 + κ + log
( n

D

)
with κ > 0, condition (2.3) is satisfied. Choosing, say κ = 0.1, the

penalty function can be chosen of the form

pen(m) = β|m|
(

1 + 4

√
1.1 + log

(
n

|m|
))2

, (2.7)

where β is a constant to be calibrated.
Integrating this penalty in Theorem 2.3 leads to the following control:

E
[
h2(s, ŝm̂)

] ≤ Cβ inf
m∈Mn

⎧⎨
⎩K(s, s̄m) + β|m|

(
1 + 4

√
1.1 + log

(
n

|m|
))2

⎫⎬
⎭ + C(φ, Γ, ρmin, ρmax, β, Σ) (2.8)

The following proposition gives a bound on the Kullback−Leibler risk associated to ŝm:

Proposition 2.5. Let m be a partition of Mn, ŝm be the minimum contrast estimator and s̄m be the projection
of s given by equations (2.2) and (2.6) respectively. Assume that there exists some positive absolute constants
ρmin, ρmax and Γ such that ∀t, ρmin ≤ θt ≤ ρmax and |J | ≥ Γ (log n)2. Then ∀ε > 0, ∀a > 2

K(s, s̄m) − C1(φ, Γ, ρmin, ρmax, ε, a)
na/2−α

+ C2(ε)|m| ≤ E[K(s, ŝm)],

where α < 1 is a constant that can be expressed according to n, C2(ε) =
1
2

1 − ε

(1 + ε)2
in the Poisson model (P)

and C2(ε) = ρ2
min

(1 − ε)2

(1 + ε)4
in the negative binomial model (NB).

The proof is given in Appendix A.1.



SEGMENTATION OF THE POISSON AND NEGATIVE BINOMIAL RATE MODELS: A PENALIZED ESTIMATOR 755

Combining roposition 2.5 and equation (2.8), we obtain the following oracle-type inequality:

Corollary 2.6. Let Mn be a collection of partitions constructed on a partition mf such that there exist absolute
positive constants ρmin, ρmax and Γ verifying:

• ∀t, ρmin ≤ θt ≤ ρmax; and
• ∀J ∈ mf , |J | ≥ Γ (log n)2.

There exists some constant C such that

E
[
h2(s, ŝm̂)

] ≤ C log(n) inf
m∈Mn

{E[K(s, ŝm)]} + C(φ, Γ, ρmin, ρmax, β, Σ). (2.9)

Remark 2.7. The Hellinger risk of our estimator and the Kullback−Leibler distance between the true model
and the best projection are both of order of n. On the contrary, the constant C(φ, Γ, ρmin, ρmax, β, Σ) depends
on the constraints used in the assumptions of Theorem 2.3 and is in O(1). Specifically, in the case of the Poisson
distribution, denoting W1 the constant C(φ, Γ, ρmin, ρmax, β, Σ) in (2.5), we have

W1 = 4Σ

[
20β − 1 + 7(2β)2/3

(2β)2/3 − 1

]
+

2

na−1
+ Cβ

√
2ρmax log

(
ρmax

ρmin

)
1

n(a−1)/2
·

The constant C(φ, Γ, ρmin, ρmax, β, Σ) in (2.9) can then be expressed as

C(φ, Γ, ρmin, ρmax, β, Σ) = W1 + A
ρmax

Γρmin

log (n)
na/2−α

,

where A is a positive constant (independent of the constraints). Consequently, C(φ, Γ, ρmin, ρmax, β, Σ) is neg-
ligible compared to E[K(s, ŝm)] when n is large meaning that our estimator satisfies an oracle inequality up to
a log n factor. It is now well known that this logarithm term is necessary when considering a large collection of
models as is the case here (see [10]). This inequality remains valid as soon as ρmin is larger than ρ/ log (n).

3. Exponential bounds

In order to prove Theorem 2.3, the general procedure in this model selection framework (see for example [9])
is the following: by definitions of m̂ and ŝm (see Def. 2.2 and Eq. (2.1)), we have, ∀m ∈ Mn

γ(ŝm̂) + pen(m̂) ≤ γ(ŝm) + pen(m) ≤ γ(s̄m) + pen(m).

Then, with γ̄(u) = γ(u) − E[γ(u)],

K(s, ŝm̂) ≤ K(s, s̄m) + γ̄(s̄m) − γ̄(ŝm̂) − pen(m̂) + pen(m).

The idea is therefore to control γ̄(s̄m)− γ̄(ŝm′) uniformly over m′ ∈ Mn. This is more complicated when dealing
with different models m and m′. Thus, following the work of [14] (see proof of Thm. 3.2, also recalled in [20]),
we propose the following decomposition

γ̄(s̄m) − γ̄(ŝm′) = (γ̄(s̄m′) − γ̄(ŝm′)) + (γ̄(s) − γ̄(s̄m′)) + (γ̄(s̄m) − γ̄(s)) , (3.1)

and control each term separately. The first term is the most delicate to handle, and requires the introduction
and the control of a chi-square statistic. The main difficulty here is the non-bounded characteristic of the
objects we are dealing with. Indeed, in the classic density estimation context such as that of [14], the objects
are probabilities which are bounded and so facilitate the direct use of concentration inequalities.
In our case, the chi-square statistic we introduce is denoted χ2

m and defined by

χ2
m = χ2(s̄m, ŝm) =

∑
J∈m

|J | (ȲJ − ĒJ )2

ĒJ
, (3.2)
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where we recall that ȲJ =
∑

t∈J Yt

|J | and use the notation ĒJ = EJ

|J| with EJ =
∑

t∈J Et. Respectively for (P)

and (NB), we have Et = λt and Et = φ1−pt

pt
. The purpose is thus to control χ2

m uniformly over Mn. To this
effect, we need to obtain an exponential bound of YJ =

∑
t∈J Yt around its expectation. In Section 3.1, we recall

a result of [4] that we use to derive an exponential bound for χ2
m (Sect. 3.2).

3.1. Control of YJ

First we recall a large deviation results established by [4] (Lem. 3) that we apply in the Poisson and negative
binomial frameworks.

Lemma 3.1. Let Y1, . . . , Yn be n independent centered random variables.

If log(E[ezYi ]) ≤ κ
z2θi

2(1 − zτ)
for all z ∈ [0, 1/τ [, and 1 ≤ i ≤ n, then

P

⎡
⎣ n∑

i=1

Yi ≥
(

2κx
n∑

i=1

θi

)1/2

+ τx

⎤
⎦ ≤ e−x for all x > 0.

If for 1 ≤ i ≤ n and all z > 0 log(E[e−zYi ]) ≤ κz2θi/2, then

P

⎡
⎣ n∑

i=1

Yi ≤ −
(

2κx

n∑
i=1

θi

)1/2
⎤
⎦ ≤ e−x for all x > 0.

To apply this lemma we therefore need a majoration of logE
[
ez(Yt−Et)

]
and logE

[
e−z(Yt−Et)

]
for z > 0.

Poisson case.

With Et = λt, we have:

logE
[
ez(Yt−λt)

]
= −zλt + logE

[
ezYJ

]
= −zλt + log e(λt(e

z−1)) = λt(ez − z − 1).

Using ez − z − 1 ≤ z2

2(1−z) for 0 < z < 1 and ez − z − 1 ≤ z2

2 for z < 0, we have

logE
[
ez(Yt−Et)

]
≤ Et

z2

2(1 − z)
and logE

[
e−z(Yt−Et)

]
≤ Et

z2

2
·

Negative binomial case. In this case Et = φ1−pt

pt
and we have

logE
(
ez(Yt−φ

1−pt
pt

)
)

=
z2

2

∑
k≥0

2κk+2

(k + 2)!
zk for z ≤ − log(1 − pt)

≤ Et
z2

2
2
pt

∑
k≥0

(
z

pt

)k

k

where the κk are the cumulants of the negative binomial distribution.
Then

logE
(
ez(Yt−φ

1−pt
pt

)
)
≤ Et

z2

2
2

ρmin

1
1 − z

ρmin

for z ≤ ρmin

≤ Et
z2

2
2

ρmin
for − 1 ≤ 0 ≤ z
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Finally, with κ = 1 in the Poisson case and κ = 2/ρmin in the negative binomial case, we get

P
[
YJ − EJ ≥

√
2κxEJ + κx

]
≤ e−x,

leading to

P [YJ − EJ ≥ x] ≤ e−
x2

2κ(EJ +x) and P [|YJ − EJ | ≥ x] ≤ 2e−
x2

2κ(EJ +x) · (3.3)

3.2. Exponential bound for χ2
m

We first introduce the following set Ωm defined by:

Ωm(ε) =
⋂

J∈m

{∣∣∣∣ YJ

EJ
− 1

∣∣∣∣ ≤ ε

}
, (3.4)

for all ε ∈]0, 1[ and all segmentations m such that each segment J verifies |J | ≥ Γ (log(n))2. This set has a large
probability since we obtain

P(Ωm(ε)C) ≤
∑
J∈m

P (|YJ − EJ | > εEJ ) ≤ 2
∑
J∈m

e−
ε2EJ

2κ(1+ε)

≤
{

2
∑

J∈m e−|J|ε′ρmin ≤ 2|m| exp(−ε′Γρmin(log n)2) (P)
2

∑
J∈m e−|J|ε′φ(1−ρmax)ρmin/2 ≤ 2|m| exp

(−ε′Γφ(1 − ρmax)ρmin/2(log n)2
)

(NB)

by applying equation (3.3) with x = εEJ and where ε′ = ε2/(2(1 + ε)). Thus

P(Ωm(ε)C) ≤ 2
na

, (3.5)

with a > 2 as soon as n > exp
(

4(1 + ε)
ε2Γρmin

(1 ∨ 1/(φ(1 − ρmax)))
)

.

The reason for introducing this set is double: in addition to enable the control of χ2
m given by equation (3.2)

on this restricted set, it allows us to link K(ŝm, s̄m) to V 2
m (see (A.2) for the control of the first term in the

decomposition) and so to χ2
m, relation that we use to evaluate the risk of one model (see (A.4)).

Let mf be a partition of Mn such that ∀J ∈ mf , |J | ≥ Γ (log(n))2 and assume that all considered partitions
in Mn are constructed on this grid mf . The following proposition gives an exponential bound for χ2

m on the
restricted event Ωmf

(ε).

Proposition 3.2. Let Y1, . . . , Yn be independent random variables with distribution G (Poisson or negative
binomial distribution). Let m be a partition of Mn with |m| segments and χ2

m the statistic given by (3.2). For
any positive x, we have

P
[
χ2

m1Ωmf
(ε) ≥ C(ρmin)

(
|m| + 8(1 + ε)

√
x|m| + 4(1 + ε)x

)]
≤ e−x.

with C(ρmin) = 1 in the Poisson case and 2/ρmin in the negative binomial case.

Proof. As in the density estimation framework, this quantity can be controlled using the Bernstein inequality.
In our context, noting χ2

m =
∑

J∈m ZJ where

ZJ =
(YJ − EJ )2

EJ
,
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we need

• the calculation (or bounds) of the expectation of χ2
m:

Poisson case.

YJ is distributed according to a Poisson distribution with parameter λJ so that

E
[
χ2

m

]
= |m|. (3.6)

Negative binomial case.

We have

E
[
χ2

m

]
=

∑
J∈m

1
|J |

∑
t∈J V ar(Yt)

φ1−pJ

pJ

=
∑
J∈m

1
|J |

∑
t∈J φ1−pt

p2
t

φ1−pJ

pJ

,

and thus

|m| ≤ E
[
χ2

m

] ≤ 1
ρmin

|m|. (3.7)

• an upper bound of
∑

J∈m E[Zp
J ]. For every p ≥ 2 we have,

E
[
Zp

J1Ωmf
(ε)

]
=

1
Ep

J

∫ +∞

0

2p x2p−1P
[{|YJ − EJ | ≥ x} ∩ Ωmf

(ε)
]
dx

≤ 1
Ep

J

∫ εEJ

0

2p x2p−1P [|YJ − EJ | ≥ x] dx.

Using equation (3.3) and since x ≤ εEJ , we obtain the exponential bound P [|YJ − EJ | ≥ x] ≤ 2e−
x2

2κEJ (1+ε) .
Therefore

E
[
Zp

J1Ωmf
(ε)

]
≤ 1

Ep
J

∫ εEJ

0

4p x2p−1e−
x2

2κEJ (1+ε) dx

≤ 4pκp (1 + ε)p
∫ +∞

0

u2p−1e−
u2
2 du

≤ 4pκp (1 + ε)p
∫ +∞

0

(2t)p−1 e−tdt

≤ 2p+1pκp (1 + ε)p
p!,

and ∑
J∈m

E
[
Zp

J1Ωmf
(ε)

]
≤ 2p+1pκp (1 + ε)p p!|m|.

Since p ≤ 2p−1,

∑
J∈m

E
[
Zp

J1Ωmf
(ε)

]
≤ p!

2
×

[
25 (κ(1 + ε))2 |m|

]
× [4 (κ(1 + ε))]p−2 .

We conclude by taking v = 25 (κ(1 + ε))2 |m| and c = 4 (κ(1 + ε)) (see Prop. 2.9 of [20] for the definition of the
Bernstein’s inequality). �
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Table 1. Properties of segmentation algorithms. The first column indicates the name of the
algorithm and the criterion used for the choice of K. In the second column, NB stands for the
negative binomial distribution and P for Poisson. The time of each algorithm is given (column
“Complexity”) and column “Exact” precises if the exact solution is reached.

Algorithm Dist Complexity Inference Pen Exact Reference
Penalized PDPA NB n log n frequentist external exact [15]

PDPA with BIC NB n log n frequentist external exact [15]

Penalized PDPA P n log n frequentist external exact [15]

PDPA with BIC P n log n frequentist external exact [15]

PELT with BIC P n frequentist internal exact [17]

CART with BIC P n log n frequentist external heuristic [13]

postCP with ICL NB n frequentist external exact [19]

EBS with ICL NB n2 Bayesian external exact [23]

4. Simulations and application

In the context of RNA-seq experiments, an important question is the (re)-annotation of the genome, that is,
the precise localisation of the transcribed regions on the chromosomes. In an ideal situation, when considering
the number of reads starting at each position, one would expect to observe a uniform coverage over each gene
(proportional to its expression level), separated by regions of null signal (corresponding to non-transcribed
regions of the genome). In practice however, those experiments tend to return very noisy signals that are best
modelled by the negative binomial distribution.

In this Section, we first study the performance of the proposed penalized criterion by comparing it with
others model selection criteria on a resampling dataset (Sect. 4.1). Then we provide an application on real data
(Sect. 4.2). Since the penalty depends on the partition only through its size, the segmentation procedure is
two-steps: first we estimate, for all number of segments K between 1 and Kmax, the optimal partition with K
segments (i.e. construct the collection of estimators {ŝK}1≤K≤Kmax where ŝK = arg minŝm,m∈MK{γ(ŝm)}). The
optimal solution is obtained using a fast segmentation algorithm such as the Pruned Dynamic Programming
Algorithm (PDPA, [22]) implemented for the Poisson and negative binomial losses or contrasts in the R package
Segmentor3IsBack [15]. Then, we choose K using our penalty function which requires the calibration of the
constant β that can be tuned according to the data by using the slope heuristic (see [3,10]). Using the negative
binomial distribution requires the knowledge of parameter φ. We propose to estimate it using a modified version
of the Jonhson and Kotz’s estimator [16].

4.1. Simulation study

We have assessed the performances of the proposed method (called Penalized PDPA) on a simulation scenario
by comparing to five other procedures both its choice in the number of segments and the quality of the obtained
segmentation using the Rand-Index I. This index is defined as follows: let Ct be the true index of the segment
to which base t belongs and let Ĉt be the corresponding estimated index, then

I =
2

∑
t>s

[
1Ct=Cs1Ĉt=Ĉs

+ 1Ct �=Cs1Ĉt �=Ĉs

]
n(n − 1)

·

The characteristics of the different algorithms are described in Table 1.
The data we considered comes from a resampling procedure using real RNA-seq data. The original data, from

an RNA-Seq experiment on the yeast organism by the Sherlock Genomics laboratory at Stanford University,
is publicly available on the NCBIs Sequence Read Archive (SRA, url:http://www.ncbi.nlm.nih.gov/sra)
with the accession number SRA048710. After pooling the original data into four categories according to the
biological annotation, we created an artificial gene, inspired from the Drosophila inr-a gene, resulting in a

url:http://www.ncbi.nlm.nih.gov/sra
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Figure 1. Estimation of K on resampled datasets. Left: boxplot of the estimation of K on data-
sets simulated by resampling on artificial gene Inr-a. PELT’s estimates average at 427 segments
and are not shown. The pink horizontal line indicates the true value of K. Right: boxplot of
the Rand-Index values for the proposed estimators.

14-segment signal with unregular intensities mimicking a differentially transcribed gene. 100 datasets are thus
created. Because the profile is sampled from a true experiment, its true segmentation is given by the artificial
gene boundaries while the distribution of the data is unavailable. The Rand-Index criterion is therefore most
appropriate to assess the quality of the proposed segmentation. Results are presented using boxplots in Figure 1.
Because PELT’s estimate of K averaged around 427 segments, we did not show its corresponding boxplot.

We can see that with the negative binomial distribution, not only do we perfectly recover the true number
of segments, but our procedure outperforms all other approaches. Moreover, the impressive results in terms
of Rand-Index prove that our choice of number of segments also leads to the almost perfect recovery of the
true segmentation. However, the use of the Poisson loss leads to a constant underestimation of the number of
segments, which is reflected on the Rand-Index values. This is due to the inappropriate choice of distribution
(confirmed by the other algorithms implemented for the Poisson loss which perform worse than the others). It
however underlines the need for the development of methods for the negative binomial distribution. Moreover,
in terms of computational time, the fast algorithm [15] is in O(n log n), allowing its use on long signals (such
as a whole-genome analysis), even though it is not as fast as CART or PELT.

4.2. Segmentation of RNA-Seq data

We apply our proposed procedure for segmenting chromosome 1 of the S. Cerevisiae (yeast) using RNA-Seq
data from the Sherlock Laboratory at Stanford University [24] and publicly available from the NCBI’s Sequence
Read Archive (SRA, url:http://www.ncbi.nlm.nih.gov/sra, accession number SRA048710). An existing

url:http://www.ncbi.nlm.nih.gov/sra
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Figure 2. Segmentation of the yeast chromosome 1 using Poisson loss. Read-count are repre-
sented on a root-squared scale. The model selection procedure chooses K = 106 segments.

annotation is available on the Saccharomyces Genome Database (SGD) at url:http://www.yeastgenome.org,
which allows us to validate our results. The two distributions (Poisson and negative binomial) are considered
here to show the difference.

In the Poisson distribution case, we select 106 segments of which only 19 are related to the SGD annotation.
Indeed, as illustrated by Figure 2, 36 of the segments have a length smaller than 10: the Poisson loss is note
adapted to this kind of data with high variability and it tends to select outliers as segment. On the contrary,
we select 103 segments in the negative binomial case most of which (all but 3) surround known genes from
the SGD. Figure 3 illustrates the result. However, almost none of those change-points correspond exactly to
annotated boundaries. Discussion with biologists has increased our belief in the need for genome (re-)annotation
using RNA-seq data, and in the validity of our approach.

5. Proof of Theorem 2.3

Recall that we want to control the three terms in the decomposition given by (3.1). All the proofs of the
different propositions are given in Section 5.

• The control of the term γ̄(ŝm′) − γ̄(s̄m′) is obtained with the following proposition where the set Ω1(ξ) is
defined by

Ω1(ξ) =
⋂

m′∈Mn

{
χ2

m′1Ωmf
(ε) ≤ C(ρmin)

[
|m′| + 8(1 + ε)

√
(Lm′ |m′| + ξ)|m′| + 4(1 + ε)(Lm′ |m′| + ξ)

]}
.

url:http://www.yeastgenome.org
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Figure 3. Segmentation of the yeast chromosome 1 using the negative binomial loss. The model
selection procedure chooses K = 103 segments, most of which surround genes given by the SGD
annotation.

Proposition 5.1. Let m′ be a partition of Mn. Then

(γ̄(ŝm′) − γ̄(s̄m′)) 1Ωmf
(ε)∩Ω1(ξ) ≤ C(ε)

[
|m′| + 8(1 + ε)

√
(Lm′ |m′| + ξ)|m′|

+ 4(1 + ε)(Lm′ |m′| + ξ)
]

+
1

1 + ε
K(s̄m′ , ŝm′),

with C(ε) = 1
2

(
1+ε
1−ε

)
in the Poisson case and C(ε) = 1+ε

2ρmin
in the negative binomial case.

• The control of the term γ̄(s̄m)− γ̄(s), or more precisely its expectation, is given by the following proposition:

Proposition 5.2.

|E[(γ̄(s̄m) − γ̄(s))1Ωmf
(ε)]| ≤ C(φ, Γ, ρmin, ρmax, ε, a)

n(a−1)/2
· (5.1)

• To control γ̄(s)− γ̄(s̄m′), we use the following proposition which gives an exponential bound for γ̄(s)− γ̄(u).

Proposition 5.3. Let s and u be two distributions of a sequence Y . Let γ be the log-likelihood contrast,
γ̄(u) = γ(u)−E[γ(u)], and K(s, u) and h2(s, u) be respectively the Kullback−Leibler and the squared Hellinger
distances between distributions s and u. Then ∀x > 0,

P
[
γ̄(s) − γ̄(u) ≥ K(s, u) − 2h2(s, u) + 2x

] ≤ e−x.
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Applying it to u = s̄m′ yields:

P
[
γ̄(s) − γ̄(s̄m′) ≥ K(s, s̄m′) − 2h2(s, s̄m′) + 2x

] ≤ e−x. (5.2)

We then define

Ω2(ξ) =
⋂

m′∈Mn

{
γ̄(s) − γ̄(s̄m′) ≤ K(s, s̄m′) − 2h2(s, s̄m′) + 2(Lm′|m′| + ξ)

}
.

Let Ω(ε, ξ) = Ωmf
(ε)∩Ω1(ξ)∩Ω2(ξ). Then, combining equation (5.2) and Proposition 5.1, we get for m′ = m̂,

(γ̄(s̄m) − γ̄(ŝm̂))1Ω(ε,ξ) = (γ̄(s) − γ̄(s̄m̂))1Ω(ε,ξ) + (γ̄(s̄m) − γ̄(s))1Ω(ε,ξ) + (γ̄(s̄m̂) − γ̄(ŝm̂))1Ω(ε,ξ)

≤ [
K(s, s̄m̂) − 2h2(s, s̄m̂)

]
1Ω(ε,ξ) + R1Ω(ε,ξ) +

1
1 + ε

K(s̄m̂, ŝm̂)1Ω(ε,ξ)

+C(ε)
[
|m̂| + 8(1 + ε)

√
(Lm̂|m̂| + ξ)|m̂| + 4(1 + ε)(Lm̂|m̂| + ξ)

]
+2Lm̂|m̂| + 2ξ,

with R = γ̄(s̄m) − γ̄(s). So that

K(s, ŝm̂)1Ω(ε,ξ) ≤
[
K(s, s̄m̂) − 2h2(s, s̄m̂)

]
1Ω(ε,ξ) +

1
1 + ε

K(s̄m̂, ŝm̂)1Ω(ε,ξ)

+C(ε)
[
|m̂| + 8(1 + ε)

√
(Lm̂|m̂| + ξ)|m̂| + 4(1 + ε)(Lm̂|m̂| + ξ)

]
+K(s, s̄m)1Ω(ε,ξ) + 2Lm̂|m̂| + 2ξ + R1Ω(ε,ξ) − pen(m̂) + pen(m).

And since

• K(s, ŝm̂) = K(s, s̄m̂) + K(s̄m̂, ŝm̂) (see Eq. (A.1));
• K(s, u) ≥ 2h2(s, u) (see Lem. 7.23 in [20]);
• h2(s, ŝm̂) ≤ 2

(
h2(s, s̄m̂) + h2(s̄m̂, ŝm̂)

)
(using inequality 2ab ≤ κa2 + κ−1b2 with κ = 1).

ε

1 + ε
h2(s, ŝm̂)1Ω(ε,ξ) ≤ K(s, s̄m)1Ω(ε,ξ) + R1Ω(ε,ξ) − pen(m̂) + pen(m)

+|m̂|C(ε)
[
1 + (1 + ε)

(
8
√

Lm̂ + ε + 4Lm̂

)]
+ 2Lm̂|m̂|

+2ξ

[
1 + C(ε)

(
8(1 + ε)

2
ε

+ 4(1 + ε)
)]

.

But

C(ε)
[
1 + (1 + ε)

(
8
√

Lm̂ + ε + 4Lm̂

)]
+ 2Lm̂ ≤ C(ε)

[
1 + (1 + ε)

(
ε + 8

√
Lm̂ + 8Lm̂

)]
≤ C2(ε)

[
1 + 8

√
Lm̂ + 8Lm̂

]
.

with C2(ε) =
1
2

(
1 + ε

1 − ε

)3

for (P) and C2(ε) =
1

2ρmin
(1 + ε)3 for (NB). So we have

ε

1 + ε
h2(s, ŝm̂)1Ω(ε,ξ) ≤ K(s, s̄m)1Ω(ε,ξ) + R1Ω(ε,ξ) − pen(m̂) + pen(m)

+|m̂|C2(ε)
(
1 + 4

√
Lm̂

)2

+ 2ξ

[
1 + (1 + ε)C(ε)

(
8
ε

+ 2
)]

·
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By assumption, pen(m̂) ≥ β|m̂| (1 + 4
√

Lm̂

)2. Choosing β = C2(ε) yields

h2(s, ŝm̂)1Ω(ε,ξ) ≤ Cβ

[
K(s, s̄m)1Ω(ε,ξ) + R1Ω(ε,ξ) + pen(m)

]
+ ξC(β).

Then, using Propositions 5.2 and 5.1, we have P
(
Ω1(ξ)C

) ≤ ∑
m′∈Mn

e−Lm′ |m′|+ξ and P
(
Ω2(ξ)C

) ≤∑
m′∈Mn

e−Lm′ |m′|+ξ. So that using hypothesis (2.3),

P
(
Ω1(ξ)C ∪ Ω2(ξ)C

) ≤ 2
∑

m′∈Mn

e−Lm′ |m′|+ξ ≤ 2Σe−ξ,

and thus P (Ω1(ξ) ∩ Ω2(ξ)) ≥ 1 − 2Σe−ξ. We now integrate over ξ, and using equation (5.1), we obtain:

E
[
h2(s, ŝm̂)1Ωmf

(ε)

]
≤ Cβ

[
K(s, s̄m) +

C (φ, Γ, ρmin, ρmax, β, a)
n(a−1)/2

+ pen(m)
]

+ 2ΣC(β).

And since E
[
h2(s, ŝm̂)1Ωmf

(ε)C

]
≤ C(φ, Γ, ρmin, ρmax, β, a)

na−1
, we have

E
[
h2(s, ŝm̂)

] ≤ Cβ [K(s, s̄m) + pen(m)] + C′ (φ, Γ, ρmin, ρmax, β, Σ) .

Finally, by minimizing over m ∈ Mn, we get

E
[
h2(s, ŝm̂)

] ≤ Cβ inf
m∈Mn

{K(s, s̄m) + pen(m)} + C′ (φ, Γ, ρmin, ρmax, β, Σ) .

Appendices A.

A.1. Proof of Proposition 2.5

Using Pythagore-type identity, we obtain the following decomposition (see for example [14]):

K(s, ŝm) = K(s, s̄m) + K(s̄m, ŝm). (A.1)

The objective is then to obtain a lower bound of E[K(s̄m, ŝm)] in the two considered distribution cases.

Poisson case.

We have

K(s̄m, ŝm) =
∑
J∈m

|J |
(

ȲJ − λ̄J − λ̄J log
ȲJ

λ̄J

)
=

∑
J∈m

|J |λ̄JΦ

(
log

ȲJ

λ̄J

)
·

where Φ(x) = ex − 1 − x. Since
1
2
x2(1 ∧ ex) ≤ Φ(x) ≤ 1

2
x2(1 ∨ ex), then on Ωmf

(ε), we have

1
2

log2 ȲJ

λ̄J

(
1 ∧ ȲJ

λ̄J

)
≤ Φ

(
log

ȲJ

λ̄J

)
≤ 1

2
log2 ȲJ

λ̄J

(
1 ∨ ȲJ

λ̄J

)
,

1 − ε

2
log2 ȲJ

λ̄J
≤ Φ

(
log

ȲJ

λ̄J

)
≤ 1 + ε

2
log2 ȲJ

λ̄J
·

So

1 − ε

2
V 2

m ≤ K(s̄m, ŝm) ≤ 1 + ε

2
V 2

m, (A.2)
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where

V 2
m = V 2(s̄m, ŝm) =

∑
J∈m

|J |λ̄J log2 ȲJ

λ̄J
=

∑
J∈m

|J | (ȲJ − λ̄J )2

λ̄J

(
log ȲJ

λ̄J

ȲJ

λ̄J
− 1

)2

· (A.3)

And using, for x > 0,
1

1 ∨ x
≤ log x

x − 1
≤ 1

1 ∧ x
, we get, on Ωmf

(ε)

1
(1 + ε)2

χ2
m ≤ V 2

m ≤ 1
(1 − ε)2

χ2
m. (A.4)

So

1 − ε

2(1 + ε)2
χ2

m1Ωmf
(ε) ≤ K(s̄m, ŝm)1Ωmf

(ε) ≤ 1 + ε

2(1 − ε)2
χ2

m1Ωmf
(ε).

On one hand, E
[
χ2

m

]
= |m|, and

1 − ε

2(1 + ε)2
|m| − E

[
χ2

m1Ωmf
(ε)C

]
≤ E

[
K(s̄m, ŝm)1Ωmf

(ε)

]
≤ 1 + ε

2(1 − ε)2
|m|.

Since χ2
m ≤ 1

Γ (log (n))2ρmin

∑
J∈m(YJ − λJ )2 ≤ 1

Γ (log (n))2ρmin
(
∑

t Yt −
∑

t λt)
2, using Cauchy−Schwarz

Inequality, we get

E
[
χ2

m1Ωmf
(ε)C

]
≤ 1

Γ (log (n))2ρmin

⎡
⎣3

(∑
t

λt

)2

+
∑

t

λt

⎤
⎦

1/2

P (Ωmf
(ε)C)1/2

≤ C (Γ, ρmin, ρmax)
n

(log (n))2
P (Ωmf

(ε)C)1/2

≤ C (Γ, ρmin, ρmax)nαP (Ωmf
(ε)C)1/2

≤ C (φ, Γ, ρmin, ρmax, ε, a)
na/2−α

,

where α = 1 − 2 log (log (n))
log (n) , n ≥ 2. For example, α = 0.62 for n = 106.

On the other hand, using log 1/x ≥ 1 − x for all x > 0, E
[
K(s̄m, ŝm)1Ωmf

(ε)C

]
≥ 0. Finally, we have

K(s, s̄m) +
1 − ε

2(1 + ε)2
|m| − C1(Γ, ρmin, ρmax, ε, a)

na/2−α
≤ E[K(s, ŝm)],

Negative binomial case.

We have K(s̄m, ŝm) = φ
∑

J∈m

|J |
pJ

h φ
φ+ȲJ

(pJ) , and ∀0 < a < 1, ha(x) ≥ 1 − x

1 − a
log2

(
1 − x

1 − a

)
·

Then on Ωmf
(ε)

K(s̄m, ŝm) ≥ φ
∑
J∈m

|J |
pJ

1 − pJ

ȲJ

φ+ȲJ

log2

(
ȲJ

φ+ȲJ

1 − pJ

)
·
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Introducing

V 2
m =

∑
J∈m

φ|J |1 − pJ

pJ
log2

(
ȲJ

φ+ȲJ

1 − pJ

)
, (A.5)

we get

K(s̄m, ŝm) ≥ V 2
m, (A.6)

and since ȲJ − φ1−pJ

pJ
= φ+ȲJ

pJ

(
ȲJ

φ+ȲJ
− (1 − pJ)

)
, we have

V 2
m =

∑
J∈m

|J |
(

φ

φ + ȲJ

)2

(
ȲJ − φ1−pJ

pJ

)2

φ1−pJ

pJ

⎡
⎢⎢⎢⎢⎢⎣

log

(
ȲJ

φ+ȲJ

1 − pJ

)

ȲJ

φ+ȲJ

1 − pJ
− 1

⎤
⎥⎥⎥⎥⎥⎦

2

·

And finally,

K(s̄m, ŝm)1Ωmf
(ε) ≥ ρ2

min

(1 − ε)2

(1 + ε)4
χ2

m1Ωmf
(ε).

Moreover, on one hand we have |m| ≤ E
[
χ2

m

] ≤ 1
ρmin

|m|. On the other hand, since χ2
m ≤

1
Γ (log (n))2φ(1−ρmax) (

∑
t Yt −

∑
t Et)

2, using Cauchy−Schwarz Inequality, we get

E
[
χ2

m1Ωmf
(ε)C

]
≤

[∑
t E (Yt − Et)

4 + 6φ2
∑

(t,l),l �=t
1−pt

p2
t

1−pl

p2
l

]1/2

Γ (log (n))2φ(1 − ρmax)
P (Ωmf

(ε)C)1/2,

≤ C(φ, Γ, ρmin, ρmax)nαP (Ωmf
(ε)C)1/2,

≤ C(φ, Γ, ρmin, ρmax, ε, a)
na/2−α

,

where α = 1 − 2 log (log (n))
log (n) , n ≥ 2. Finally, we have

K(s, s̄m) + ρ2
min

(1 − ε)2

(1 + ε)4
|m| − C(φ, Γ, ρmin, ρmax, ε, a)

na/2−α
≤ E[K(s, ŝm)].

A.2. Proof of Proposition 5.1

Poisson case.

The term to be controlled is γ̄(s̄m′)− γ̄(ŝm′) =
∑

J∈m′ |J |
(
ȲJ − λ̄J

)
log

ȲJ

λ̄J
. Using Cauchy−Schwarz inequal-

ity, we have

γ̄(s̄m′) − γ̄(ŝm′) ≤
√

χ2
m′

√
V 2

m′ ,

with χ2
m′ and V 2

m′ defined as in equations (3.2) and (A.3). Then, using equation (A.2)

(γ̄(s̄m′) − γ̄(ŝm′))1Ωmf
(ε) ≤

√
χ2

m′

√
2

1 − ε
K(s̄m′ , ŝm′),
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and using 2ab ≤ κa2 + κ−1b2 for all κ > 0, we get

(γ̄(s̄m′) − γ̄(ŝm′))1Ωmf
(ε) ≤ κ

2
χ2

m′ +
κ−1

1 − ε
K(s̄m′ , ŝm′). (A.7)

And with Proposition 3.2, we get, for κ =
1 + ε

1 − ε
= 2C(ε),

(γ̄(s̄m′) − γ̄(ŝm′))1Ωmf
(ε)∩Ω1(ξ)

≤ 1 + ε

2(1 − ε)

[
|m′| + 8(1 + ε)

√
(Lm′ |m′| + ξ)|m′| + 4(1 + ε)(Lm′ |m′| + ξ)

]
+

1
1 + ε

K(s̄m′ , ŝm′).

Negative binomial case.

In this case we can write γ̄(s̄m′) − γ̄(ŝm′) =
∑

J∈m′ |J |
(
ȲJ − ĒJ

)
log

ȲJ

φ+ȲJ

1 − pJ
. Again, using Cauchy−Schwarz

inequality, and with χ2
m and V 2

m defined by equations (3.2) and (A.5), we get

γ̄(s̄m′) − γ̄(ŝm′) ≤
√

χ2
m′

√
V 2

m′ ,

so that with equation (A.6) and 2ab ≤ κa2 + κ−1b2 for all κ > 0

(γ̄(s̄m′) − γ̄(ŝm′))1Ωmf
(ε) ≤ κ

2
χ2

m′ +
κ−1

2
K (s̄m′ , ŝm′) . (A.8)

Finally, with Proposition 3.2 and κ =
1 + ε

2
= 2C(ε),

(γ̄(s̄m′) − γ̄(ŝm′))1Ωmf
(ε)∩Ω1(ξ)

≤ C (ρmin)
1 + ε

4

[
|m′| + 8(1 + ε)

√
(Lm′ |m′| + ξ)|m′| + 4(1 + ε)(Lm′ |m′| + ξ)

]
+

1
1 + ε

K (s̄m′ , ŝm′) .

A.3. Proof of Proposition 5.2

Poisson case.

Noting that E[(γ̄(s̄m) − γ̄(s))1Ωmf
(ε)] = −E[(γ̄(s̄m) − γ̄(s))1Ωmf

(ε)C ], we have

∣∣∣E [
(γ̄(s̄m) − γ̄(s))1Ωmf

(ε)

]∣∣∣ ≤ ∣∣∣E [
(γ̄(s̄m) − γ̄(s))1Ωmf

(ε)C

]∣∣∣ ≤ E
[
|(γ̄(s̄m) − γ̄(s))|1Ωmf

(ε)C

]

≤ E

[∣∣∣∣∣
(∑

J

∑
t

(Yt − Et) log (ρmax/ρmin)

)∣∣∣∣∣ 1Ωmf
(ε)C

]

≤ log (ρmax/ρmin) × E

[∣∣∣∣∣
∑

t

(Yt − Et)

∣∣∣∣∣ 1Ωmf
(ε)C

]

≤ log (ρmax/ρmin) ×

⎛
⎜⎝

⎡
⎣E

(∑
t

(Yt − Et)

)2
⎤
⎦

1/2

× (
P (Ωmf

(ε)C
)1/2

⎞
⎟⎠

≤ (nρmax)
1/2 × log (ρmax/ρmin) × (P

(
Ωmf

(ε)C
)1/2

,

which concludes the proof.
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Negative binomial case.

Once again, E[(γ̄(s̄m) − γ̄(s))1Ωmf
(ε)] = −E[(γ̄(s̄m) − γ̄(s))1Ωmf

(ε)C ], and

|E[(γ̄(s̄m) − γ̄(s))1Ωmf
(ε)]| ≤ |E[(γ̄(s̄m) − γ̄(s))1Ωmf

(ε)C ]| ≤ E[|(γ̄(s̄m) − γ̄(s))|1Ωmf
(ε)C ]

≤ E

[∣∣∣∣∣
(∑

J

∑
t

(
Yt − φ

1 − pt

pt

)
log (1/(1 − ρmin))

)∣∣∣∣∣ 1Ωmf
(ε)C

]

≤ log (1/(1 − ρmin)) × E

[∣∣∣∣∣
∑

t

(Yt − Et)

∣∣∣∣∣ 1Ωmf
(ε)C

]

≤
(

nφ
1

ρ2
min

)1/2

× log
1

1 − ρmin
× (P

(
Ωmf

(ε)C
)1/2

which concludes the proof.

A.4. Proof of Proposition 5.3

Using the Markov inequality P [γ̄(s) − γ̄(u) ≥ b] ≤ infa

[
e−abE

(
ea(γ̄(s)−γ̄(u))

)]
with a = 1

2 , we get

P [γ̄(s) − γ̄(u) ≥ b] ≤ exp
[
− b

2
+ logE

[
exp

(
1
2

(γ(s) − γ(u)) +
1
2
E [γ(u) − γ(s)]

)]]

≤ exp

[
− b

2
+

1
2
K(s, u) + logE

[
exp

(
−1

2

∑
t

logPs(Xt = Yt) + logPu(Xt = Yt)

)]]

≤ exp

[
− b

2
+

1
2
K(s, u) +

∑
t

logE

√
Pu(Xt = Yt)
Ps(Xt = Yt)

]

≤ exp

[
− b

2
+

1
2
K(s, u) +

∑
t

E

√
Pu(Xt = Yt)
Ps(Xt = Yt)

− n

]

≤ exp
[
− b

2
+

1
2
K(s, u) − h2(s, u)

]

where Ps = P denote the probability under the distribution s. Thus

P
[
γ̄(s) − γ̄(u) ≥ K(s, u) − 2h2(s, u) + 2x

] ≤ e−x.
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[9] L. Birgé and P. Massart, Gaussian model selection. J. Eur. Math. Soc. 3 (2001) 203–268.
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