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LOCAL DEGENERACY OF MARKOV CHAIN MONTE CARLO METHODS ∗

Kengo Kamatani
1

Abstract. We study asymptotic behavior of Markov chain Monte Carlo (MCMC) procedures. Some-
times the performances of MCMC procedures are poor and there are great importance for the study
of such behavior. In this paper we call degeneracy for a particular type of poor performances. We
show some equivalent conditions for degeneracy. As an application, we consider the cumulative probit
model. It is well known that the natural data augmentation (DA) procedure does not work well for this
model and the so-called parameter-expanded data augmentation (PX-DA) procedure is considered to
be a remedy for it. In the sense of degeneracy, the PX-DA procedure is better than the DA procedure.
However, when the number of categories is large, both procedures are degenerate and so the PX-DA
procedure may not provide good estimate for the posterior distribution.
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1. Introduction

This paper investigates poor behavior of Markov chain Monte Carlo (MCMC) procedures which provides
good information for construction of efficient MCMC procedures. There have a vast literature related to suffi-
cient conditions for good property, ergodicity; see reviews [16,20]. The transition kernel of an MCMC procedure
is Harris recurrent and geometrically ergodic under fairly general assumptions. In practice, however, the per-
formance can be poor even with geometric ergodicity. Therefore another approach seems to be appropriate for
the study of poor behavior of MCMC procedures. This is the motivation for the present study.

Theoretical analysis for poor performance is rarely studied. However somewhat similar motivation, comparison
of different MCMC procedures have been studied in the past few decades. Suppose now that P (x, dy) is a
Markov transition kernel corresponding to an MCMC procedure. We also assume that P (x, dy) has the invariant
probability measure Π . As an operator f(x) �→ (Pf)(x) =

∫
y P (x, dy)f(y), the spectral radius of the transition

kernel P (x, dy) is of great interest, since it determines the rate of convergence of Pn to Π . Good estimate of the
spectral radius leads to good comparison of MCMC procedures. This so-called spectral approach was studied
in [1] for finite state space and [22] for more general state space.

Asymptotic properties of Pn can also be studied indirectly via the so-called drift function V (x). This approach
dates back to [3] and it can calculate the convergence rate of Pn by establishing an inequality of V (x) and
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PV (x) =
∫

P (x, dy)V (y). It is possible to compare Markov chains by their rates of convergence. See [17, 18]
for how to obtain these inequalities in practice.

These approaches are powerful, but usually it requires some technical difficulties to obtain a good comparison.
There is also a beautiful indirect comparison method initially studied by [15] and developed by [14,21]. This
approach requires virtually no calculation for comparison although the conclusion of the comparison is rather
weak. These approaches are summarized and further developed in [4].

In the present paper we consider degeneracy as a particular type of poor behavior. Our approach is not
a comparison technique, but identify poor MCMC procedure that requires improvement. The identification of
degeneracy is technically easy but the conclusion is rather strong. To describe degeneracy, consider the following
well-known example:

P (x = 1|θ) = Φ(θ), P (x = 0|θ) = 1− Φ(θ), (1.1)

where Φ is the cumulative distribution function of the standard normal distribution. Assume we have an obser-
vation xn = (x1, . . . , xn) with the prior N(0, 1) on θ. Define the so-called augmented data model:

x =
{

1 if y ≤ θ
0 if y > θ

(1.2)

where y ∼ N(0, 1). Then this model becomes (1.1) if we integrate out y. The data augmentation (DA) procedure
based on this augmented data model is the iteration of the following steps:⎧⎪⎪⎨

⎪⎪⎩
simulate yi|xi, θ ∼

{
N(0, 1,−∞, θ) if xi = 1

N(0, 1, θ,∞) if xi = 0
(i = 1, . . . , n)

simulate θ|xn, yn ∼ N(0, 1, maxi:xi=1 yi, mini:xi=0 yi)

(1.3)

where N(0, 1, a, b) is the normal distribution truncated to the interval (a, b), and yn = (yi)i=1,...,n. This procedure
generates a Markov chain having the posterior distribution as the invariant distribution.

The model (1.1) can also be constructed by introducing the following latent structure:

x =
{

1 if y ≤ 0
0 if y > 0 (1.4)

where y ∼ N(−θ, 1). The corresponding DA procedure is the iteration of the following:⎧⎪⎪⎨
⎪⎪⎩

simulate yi|xi, θ ∼
{

N(−θ, 1,−∞, 0) if xi = 1

N(−θ, 1, 0,∞) if xi = 0
(i = 1, . . . , n)

simulate θ|xn, yn ∼ N(−∑n
i=1 yi/(n + 1), 1/(n + 1)).

(1.5)

We obtain two DA procedures. The former has uniform ergodicity by Proposition 4 of [7], and the latter
has geometric ergodicity by Theorem 1 of [19]. Despite of their similarity, the performances are quite different.
Figure 1 shows trajectories of the DA procedures for m = 200 iterations and the sample sizes n = 100 (upper) and
n = 1000 (lower). For both simulations, the true value is 0.5 and the initial value is 0.35. The DA procedure (1.3)
has poor mixing property than (1.5) and it may require quite a large number of iteration until convergence.
The difference between procedures becomes even larger when the sample size is larger.

The key fact is that the interval for the simulation of θ in (1.3) is very short (cf. p. 64 of [9]). This update
produces almost the same value (write θ′) as the current value (write θ) so it does cause a performance bottleneck.
In [8], we define a good property, local consistency for MCMC procedures by letting the sample size n → ∞.
In a similar way, in the present study, we analyze such poor behavior through this limit. As a property of poor
behavior, we call that an MCMC procedure has the local degeneracy if

√
n|θ′ − θ| = oP(1) (1.6)
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Figure 1. Trajectories of the DA procedures for the sample sizes n = 100 (upper) and n = 1000
(lower). The solid line is for the model (1.2) and the dashed line is that for (1.4).

where P is a particular probability measure. For the above two DA procedures, the former has the local degen-
eracy but the latter has the local consistency.

The paper is organized as follows. Section 2 is devoted to the study of degeneracy of the MCMC procedure.
In the Bayesian context, we prove that degeneracy defined in (1.6) occurs only if the model has non-regularity.
Therefore the performance bottleneck due to local degeneracy can be avoided by checking its model regularity.
In Section 3 we apply this to the cumulative probit model. We will show that a natural MCMC procedure for
this model has the same non-regularity as (1.2) so it causes a performance bottleneck. We also show that a
remedy also suffers from the same bottleneck. Finally, some remarks are presented in Section 4.

We write X |Y for the law of X conditioned on Y . We also write X |Y ∼ P (dx|Y ) if the law of X conditioned
on Y is P (dx|Y ). We assume that P (dx|Y = y) is a probability measure for each y and y �→ P (A|Y = y) is
measurable.

2. Degeneracy

2.1. Definition of degeneracy

In this section, we review the (local) consistency and define degeneracy. Let Θ = R
d be a parameter space

and let (Ωn,Fn, Pn) (n = 1, 2, . . .) be a sequence of probability spaces. Fix n ∈ N. Suppose xn is an observation.
We are interested in the approximation of probability measure P (dθ|xn). Suppose that θ∞ = (θm)m∈N0 is an
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R
d-valued process such that θ∞|xn is (strictly) stationary2 and the invariant probability measure is P (dθ|xn).

For M ∈ N, let

In
M (f) =

1
M

M−1∑
m=0

f(θm), In(f) =
∫

f(θ)P (dθ|xn).

For fixed xn, if θ∞|xn is ergodic, then by Birkhoff’s pointwise convergence theorem,

lim
M→∞

In
M (f)(xn) = In(f)(xn) a.s. (2.1)

for any P (dθ|xn)-integrable function f . This, “observation wise convergence” is usually satisfied for MCMC
procedures (under positive Harris recurrence. See Thm. 17.1.7 of [13]). If this convergence still holds when n
and M →∞, we call the process consistent. See [8] for the details. The idea behind it is that by taking n→∞,
the structure of the Markov chain becomes simpler, and the analysis becomes easier.

Definition 2.1 (Consistency). The process θ∞ = (θm)m∈N0 is said to have the consistency if In
Mn

(f)− In(f) =
oPn(1) for any continuous, bounded function f for any Mn →∞.

Consistency property is usually satisfied by many Markov chains generated by Markov chain Monte Carlo
procedure (see Thm. 1 of [8]). However this is not always the case. This corresponds to the non-ergodic case
of Birkhoff’s pointwise convergence theorem. In the following, we consider a particular poor behavior; In

M (f) is
no more helpful than In

1 (f) as an approximation of In(f). Note that the observation wise convergence (2.1) is
usually satisfied even for this case.

Definition 2.2 (Degeneracy). The process θ∞ = (θm)m∈N0 is said to have the degeneracy if In
M (f)− In

1 (f) =
oPn(1) for any continuous, bounded function f and for any M ∈ N.

We will see that essentially, the good behavior, consistency, and the bad behavior, degeneracy are exclusive. To
apply consistency and degeneracy for Bayesian statistics, we need a slight modification of the above definitions.
We assume Bernestein von-Mises’s theorem, that is, for some R

d-valued random variable un(xn), we have
√

n(θ − un) = OPn(1) (2.2)

where θ|xn ∼ P (dθ|xn). For this case, it is natural to consider asymptotic properties of (
√

n(θm − un))m∈N0

rather than (θm)m∈N0 . Moreover, we will see that even if the trajectories of (θm)m∈N0 looks fine, some projection
ϕ : R

d → R
k (k ≤ d) reveals its poor performance for estimation of In(f). Thus we will study asymptotic

properties of (
√

n(ϕ(θm)− un))m∈N0 for some R
k-valued un(xn). We introduce ϕ-local properties.

Definition 2.3 (Local properties). The process θ∞ = (θm)m∈N0 is said to have the ϕ-local consistency (resp.
ϕ-local degeneracy) if θ̃∞ = {√n(ϕ(θm)−un)}m∈N0 satisfies consistency (resp. degeneracy). If ϕ is the identity
map, then we call the property local consistency (resp. local degeneracy).

2.2. Properties of degeneracy

In this section, some properties of consistency and degeneracy will be studied. First we note a representation
of degeneracy.

Proposition 2.4. Assume En[P (dθ|xn)] =: Pn(dθ) is tight. Then degeneracy is equivalent to

θ1 − θ0 = oPn(1). (2.3)

2Stationary assumption is impractical for Markov chain generated by MCMC. However it can be weakened. See Lemma 4 of [8]
and Section B of [6].
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Proof. First we show that degeneracy is equivalent to

f(θ1)− f(θ0) = oPn(1). (2.4)

for any bounded continuous function f . To see this, necessity follows by oPn(1) = In
2 (f) − In

1 (f) = −(f(θ1) −
f(θ0))/2. Sufficiency is clear by stationarity since In

M (f) − In
1 (f) is a finite sum of the elements of {f(θm) −

f(θm−1)}m∈N. Hence the equivalence of degeneracy and (2.4) follows, and now we check the equivalence of (2.3)
and (2.4). However, by tightness condition, the joint law of (θ0, θ1 − θ0) is tight and hence sufficiency of (2.3)
comes from continuity of (x1, x2) �→ f(x1) − f(x1 + x2). For the necessity of (2.3), consider f(x) = exp(iutx)
where ut is the transpose of the vector u ∈ R

d. Then En[|f(θ1)− f(θ0)|] = En[| exp(iut(θ1 − θ0))− 1|]→ 0 and
hence En[exp(iut(θ1 − θ0))]→ 1 for any u ∈ R

d, that implies (2.3). Thus the claim follows. �

For local properties, we apply the above to
√

n(ϕ(θ)−un) in place of θ. Then the tightness condition becomes√
n(ϕ(θ) − un) = OPn(1) and (2.3) becomes

√
n(ϕ(θ1)− ϕ(θ0)) = oPn(1).

Another important property is that consistency and degeneracy are essentially, mutually exclusive; if the
both hold, then P (dθ|xn) should converge to a Dirac measure δun for some random variable un(xn). In other
words, the dispersion of P (dθ|xn) tends to 0 in probability (see [5] for the definition of the dispersion).

Proposition 2.5. Assume the same condition as Lemma 2.4. If both consistency and degeneracy hold, then
there exists R

d-valued random variable un(xn) such that∫
min{|θ − un|, 1}P (dθ|xn) = oPn(1).

Proof. By degeneracy, we can find Mn →∞ such that In
Mn

(f)−In
1 (f) = oPn(1). Thus together with consistency,

we have
In
1 (f)− In(f) = f(θ0)− In(f) = oPn(1). (2.5)

Note that In(f) only depends on xn. Suppose now that we have two independent draws θ and θ′ from P (dθ|xn)
for a fixed xn. Then by (2.5), we have f(θ)− f(θ′) = (f(θ)− In(f))− (f(θ′)− In(f)) = oPn(1) for any bounded
continuous function f . Hence θ − θ′ = oPn(1) as in the previous proposition. We can choose un(xn) to be
measurable such that∫

min{|θ − un|, 1}P (dθ|xn) ≤
∫

min{|θ − θ′|, 1}P (dθ′|xn)P (dθ|xn) = oPn(1). (2.6)

Thus the claim follows. �

2.3. Degeneracy for DA procedure

For data augmentation (DA) procedure, there is another simpler equivalent condition for degeneracy. Now
we consider a probability measure P (dθ, dxn, dyn) = P (dθ, dyn|xn)P (dxn) such that

P (dθ, dyn|xn) = P (dθ|xn, yn)P (dyn|xn) = P (dyn|θ, xn)P (dθ|xn) (2.7)

in P (dxn)-a.e. We define data augmentation (DA) procedure. For an observation xn ∼ P (dxn), it generate
Markov chain θ∞ = (θm)m∈N0 by iteration of

yn,m|θm, xn ∼ P (dyn|θm, xn), θm+1|xn, yn,m ∼ P (dθ|xn, yn,m)

where yn,m is a working variable. This Markov chain is invariant with respect to P (dθ|xn) and we also assume
stationarity of θ∞|xn, that is, θ0|xn ∼ P (dθ|xn).
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Proposition 2.6. Assume the same condition as Proposition 2.4. Then for the DA procedure, degeneracy is
equivalent to the existence of R

d-valued variable vn(xn, yn) such that∫
min{|vn − θ|, 1}P (dθ, dxn, dyn) = o(1). (2.8)

Proof. By (2.7), the DA procedure has reversibility in the following sense;

P (dθ1|xn, yn,0)P (dyn,0|θ0, xn)P (dθ0|xn) = P (dθ0|xn, yn,0)P (dyn,0|θ1, xn)P (dθ1|xn).

Therefore, the law of θ1− vn(xn, yn,0)|xn and θ0− vn(xn, yn,0)|xn are the same. Hence (2.8) implies degeneracy
by θ1 − θ0 = (θ1 − vn)− (θ0 − vn) = oPn(1). Now we show the necessity of (2.8). By (2.7) again, we have

P (dθ1|xn, yn)P (dyn|θ0, xn)P (dθ0|xn) = P (dθ1|xn, yn)P (dθ0|xn, yn)P (dyn|xn)

Therefore if we denote P (dyn|xn)P (dxn) by P (dxn, dyn), degeneracy implies∫
min{|θ1 − θ0|, 1}P (dθ1|xn, yn)P (dθ0|xn, yn)P (dxn, dyn) = o(1).

However, as in (2.6) we can choose vn(xn, yn) which is measurable and satisfies∫
min{|vn(xn, yn)− θ0|, 1}P (dθ0|xn, yn) ≤

∫
min{|θ1 − θ0|, 1}P (dθ1|xn, yn)P (dθ0|xn, yn) = oPn(1).

Hence the claim follows. �

By this proposition, if we consider local properties under θ �→ √n(θ − un), local degeneracy of the DA
procedure is equivalent to the existence of an estimator vn(xn, yn) such that

√
n(θ− vn) = oPn(1). In statistical

point of view, it means that we can construct a good estimator vn that has the convergence rate better than
the usual

√
n-rate if we observe yn. This implies non-regularity of the model xn, yn|θ. Note that it is already

well-known that the large amount of information of the working variable yn speed down the convergence of the
DA procedure (see for example [12]).

2.4. The first application

We defined two DA procedures in Section 1. Write Θ and P (dθ) for the parameter space and the prior
distribution with respectively, and assume

P (dxn) =
∫

Θ

n∏
i=1

P (dxi|θ)P (dθ). (2.9)

Other conditional distributions, such as the posterior distribution P (dθ|xn) are defined in the usual way from
the model settings in Section 1. It is not difficult to show the existence of un such that

√
n(θ − un) = OPn(1)

(see Sect. 4 for the detail). For example, we can take un = Φ(n1/n) where n1 is the number of observation of
xi = 1.

Example 2.7. Examine asymptotic properties of two DA procedures in Section 1. First we consider the DA
procedure defined in (1.3). We check

n(θ − vn) = OPn(1)

for vn = maxi;xi=1 yi. If this holds, then it has the local degeneracy by Proposition 2.6. By Taylor’s expansion,
it is sufficient to check

n(θ̃ − ṽn) = OPn(1)
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for ṽn = Φ(vn) and θ̃ = Φ(θ). Since ṽn/θ̃|θ ∼ Beta(n1, 1) we have

En

[
{n(θ̃ − ṽn)}2

∣∣∣∣∣θ, xn

]
= n2θ̃2

Vn

[
ṽn

θ̃

∣∣∣∣∣θ, xn

]
+ n2θ̃2

(
n1

n1 + 1
− 1

)2

= n2θ̃2 n1

(n1 + 1)2(n1 + 2)
+ n2θ̃2

(
n1

n1 + 1
− 1

)2

·

This value is tight since θ̃ ∈ [0, 1] and n1|θ follows the binomial distribution and hence n(θ̃ − ṽn) = OPn(1).
Therefore the DA procedure defined in (1.3) has the local degeneracy by Proposition 2.6.

Second, we consider the DA procedure defined in (1.5). Suppose that θ and θ′ are two independent draws
from θ|xn, yn. Then

√
n(θ − θ′) =

√
n(θ − vn)−√n(θ′ − vn) ∼ N

(
0,

2n

n + 1

)
(2.10)

by (1.5) where vn = −∑n
i=1 yi/(n + 1). However, by Propositon 2.4, if the DA procedure has local degeneracy,

then
√

n(θ − θ′) = oPn(1) that contradicts (2.10). Thus the DA procedure defined in (1.5) does not have the
local degeneracy.

In fact, the model P (dx, dy|θ) in (1.4) is regular, so the DA procedure for this model has the local consistency
by Theorem 1 of [8]. Hence the conclusion for (1.5) also follows from Proposition 2.5. On the other hand, the
model (1.2) has the parameter-dependent support that introduces non-regularity. Thus as stated in the end of
Section 2.3, local degeneracy of (1.3) is a natural consequence of this observation.

3. Application

3.1. Cumulative probit model

Cumulative probit model has a categorical variable y ∈ {1, . . . , c} and an explanatory variable x ∈ R
p with the

parameter θ = (α, β) such that β ∈ R
p and α ∈ Θα := {(α2, . . . , αc−1); 0 =: α1 < α2 < . . . < αc−1 < αc := +∞}

such that
Pθ(y ≤ j|x) = Φ(αj + βtx) (j = 1, . . . , c) (3.1)

where βt is the transpose of the vector β. Consider the standard normal distribution as the prior distribution
for α and β truncated to Θα × R

p.
The posterior distribution is complicated, but there is a natural DA procedure; For observations xn =

(xi)i=1,...,n and yn = (yi)i=1,...,n, an iteration is defined by

⎧⎪⎨
⎪⎩

simulate zi|xn, yn, θ ∼ N(−βtxi, 1, αyi−1, αyi) (i = 1, . . . , n),

simulate αj |xn, yn, zn ∼ N(0, 1, maxi:yi=j−1 zi, mini:yi=j zi) (j = 2, . . . , c− 1),

simulate β|xn, yn, zn ∼ N(−(1 +
∑n

i=1 xi(xi)t)−1
∑n

i=1 xizi, (1 +
∑n

i=1 xi(xi)t)−1)
(3.2)

where zn = (zi)i=1,...,n is a working variable. This DA procedure implicitly uses the following latent structure:

z|x, y, θ ∼ N(−βtx, 1) and y = j if z ∈ (αj−1, αj ]. (3.3)

Later we will see that this DA procedure work quite poorly. It is a natural consequence since the model has the
parameter-dependent support.

Surprisingly, in some cases, the DA procedure can be drastically improved by adding a single working param-
eter. Strategies that do this include the parameter-expanded data augmentation (PX-DA) procedure proposed
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by [10] and the marginal augmentation procedure proposed by [11]. In the present case, we add the following
step after each iteration of (3.2):{

simulate γ2|θ, xn, yn, zn ∼ Gamma
(

n+p+c
2 − 1, 1

2

(∑n
i=1(z

i + βtxi)2 + |β|2 +
∑c−1

j=2 α2
j

))
set θ ← γθ

(3.4)

where Gamma(ν, α) is the Gamma distribution with the shape parameter ν and rate parameter α. The procedure
θ′ ← γθ does not break stationarity, that is, if θ|xn ∼ P (dθ|xn) and if γ2|θ, xn, yn, zn is generated by the above,
then θ′ = γθ|xn ∼ P (dθ|xn) (see Thm. 1 of [9]).

3.2. Degeneracy results

Assume that xn = (xi)i=1,...,n is an i.i.d. sample from the probability distribution G(dx), which has the

compact support. We also assume that the expectation of (1, xt)
(

1
x

)
for x ∼ G(dx) is a non-degenerate

matrix. This non-degeneracy assumption is for the existence of non-degenerate Fisher information matrix (see
condition Rc of [2]). Tightness condition

√
n(ϕ(θ) − un) for some un for ϕ defined in Propositions 3.1 and 3.2

is satisfied (see Sect. 4 for the detail).

Proposition 3.1. The DA procedure has ϕ-local degeneracy for ϕ(θ) = (αj)j=2,...,c−1 if c > 2.

Proof. We prove the claim by Proposition 2.6. Set vn = (maxi:yi=2 zi, . . . , maxi:yi=c−1 zi). We only show
n(maxi;yi=j zi − αj) = OPn(1) for j = 2 since the proof is the same for j = 3, . . . , c− 1.

For ε > 0, choose a compact set K ⊂ Θα×R
d so that

∫
θ∈Kc P (dθ) < ε/2 where P (dθ) is the prior distribution.

Since the support of G is compact, we have the following bound; For any H > 0, for some C, c > 0

Φ(α2 + βtx)− Φ(α2 + βtx− h)
Φ(α2 + βtx)− Φ(α1 + βtx)

≥ Ch, Φ(α2 + βtx)− Φ(α1 + βtx) ≥ c (θ ∈ K, x ∈ supp G, h ∈ [0, H ]).

Then for θ ∈ K,

Pn

(
n

(
max
i;yi=2

zi − α2

)
≤ −h|θ, xn, yn

)
=

∏
i;yi=2

Pn(n(zi − α2) ≤ −h|θ, xn, yn)

=
∏

i;yi=2

{
1− Φ(α2 + βtx)− Φ(α2 + βtx− h/n)

Φ(α2 + βtx)− Φ(α1 + βtx)

}

≤ (1− Ch/n)n2 ≤ exp(−Chn2/n)

where n2 is the number of elements of yi = 2. Since Pn(yi = 2|θ) ≥ c (θ ∈ K), by the Lebesgue–Fatou lemma,

lim sup
n→∞

En[exp(−Chn2/n)|θ] ≤ exp(−Cch).

Therefore if we choose h > 0 so that exp(−Cch) < ε/2, we have

lim sup
n→∞

Pn

(
n

(
max
i;yi=2

zi − α2

)
≤ −h

)
≤

∫
θ∈Kc

P (dθ) + exp(−Cch) < ε.

Note here that maxi;yi=2 zi − α2 is always negative. Thus n(maxi;yi=j zi − αj) = OPn(1) for j = 2. In the same
way, we can show it for j ≥ 3. Hence ϕ-local degeneracy follows for c > 2 by Proposition 2.6. �

Another results may be counter intuitive; Although the simulation results may look fine, the PX-DA procedure
still has the local degeneracy.
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Proposition 3.2. The PX-DA procedure has the ϕ-local degeneracy with respect to ϕ(θ) = (αj/α2)j=3,...,c−1 if
c > 3.

Proof. We apply Proposition 2.4. The function ϕ satisfies ϕ(γθ) = ϕ(θ). Therefore, ϕ(θ1) − ϕ(θ0)|xn has the
same law under the PX-DA procedure and the DA procedure defined in (3.2). Thus, ϕ-local degeneracy of the
PX-DA procedure is equivalent to ϕ-local degeneracy of the DA procedure. Let

vn =
(

maxi:yi=j zi

maxi:yi=2 zi

)
j=3,...,c−1

·

In the previous proposition, we already observed that n(maxi:yi=j zi − αj) is tight. Therefore it is not difficult
to conclude that n(ϕ(θ) − vn) is tight. Then the DA procedure has local degeneracy by Proposition 2.6 and
hence the PX-DA procedure has the ϕ-local degeneracy. �

3.3. Simulation

We perform simulation for the cumulative probit model for c = 5 and p = 2 for the DA and PX-DA procedures
with the sample size n = 100, iteration m = 105 but the first m/2 = 0.5 ∗ 105 values are eliminated as burn-in.
Observations xn and yn are generated from (3.1) for a fixed true parameter θ∗. Trajectory of α = (α2, α3, α4)
and β = (β1, β2) are displayed in Figure 2. It shows the poor mixing property of α for the DA procedure (left
side of Fig. 2). The PX-DA procedure looks better.

These results are not surprising since the poor performance of the DA procedure and the efficiency of the
PX-DA procedure are well known. However the difference between the PX-DA and DA procedures can be
small. In the present case, by the projection ϕ(θ) = α3/α2 or α4/α2, we can observe that the DA and PX-DA
procedures have similar poor results (Fig. 3). For further illustration of this degeneracy, consider the sample
size n = 1000 (Figs. 4 and 5). As for the sample size n = 100, without the above projection, simulation results
of the trajectories and its auto correlation function (acf) look much better for the PX-DA procedure. However
with the projection, we can observe that the benefit of the use of the PX-DA procedure is small (Fig. 5). Thus
the PX-DA is still have poor convergence property as proved in Proposition 3.2.

4. Final remark

We proposed a notion for poor performance of the MCMC procedures. This property is easy to check and
efficient as studied in Section 3. In particular, the poor performance of this PX-DA procedure was not reported in
elsewhere. Some theoretical properties are investigated in Section 2 and it reveals that these poor performances
have close connection to non-regularity of the model.

The study of poor performance of MCMC procedures are still being developed and we hope that this paper
works as a good step toward that direction. For further analysis, we are working in two directions:

(1) The study of the rate of Mn →∞ to hold In
Mn

(f)− In(f) = oPn(1), which corresponds to the analysis for
the sufficient number of iteration of MCMC procedures. For the local consistency case, we can take any
Mn → ∞ but it is not possible for the local degeneracy case. For the latter case, we can not take “any”
Mn →∞ but sometimes it is possible to find the explicit rate to hold the convergence. This direction, the
analysis of weak consistency will be studied in [6].

(2) Even if degeneracy holds, usually it is possible to find the rate rn →∞ such that

rn (In
M (f)− In

1 (f)) 
= oPn(1).

Compared to the above, it is technically easier to calculate the rate rn. This direction, the order of degeneracy
provides good information for the performance bottleneck of the MCMC procedures.

Both of which defines the rate of convergence, so we can compare MCMC procedures by those rates. Also the
application to the cumulative probit model is of interest. This topic will further be studied in elsewhere.
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Figure 2. Trajectory for the sample size n = 100 for α2 to α4 (upper figures) and β1, β2 (lower
figures) for the DA (left figures) and PX-DA (right figures) procedures. Horizontal lines are
the true parameters θ∗ including α1 = 0. The DA procedure has the ϕ-local degeneracy for
ϕ(θ) = (α2, . . . , α4).
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Figure 3. The trajectories of projected sequence α3/α2 and α4/α2 for the DA procedure (left)
and the PX-DA procedure (right). Horizontal lines are corresponding to the true parameter.
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Figure 4. Trajectories (upper figures) and auto correlation functions (lower figures) of ϕ(θ) =
α2, α3, α4 for the sample size n = 1000. The PX-DA procedure (right figures) looks much better
than the DA procedure (left figures).

Appendix A. Tightness condition

Usually, tightness condition as in Proposition 2.4 for some un is not difficult to show. Consider a model
x|θ ∼ P (dx|θ) with prior P (dθ). Let un(xn) be the maximum likelihood estimator for observation xn ∼ P (dxn)
where P (dxn) is as in (2.9). Then we may assume that under regularity conditions,

√
nI(θ)1/2(θ − un)⇒ N(0, I), (A.1)

where I(θ) is the Fisher information matrix, and I is the identity matrix. Therefore, if

I(θ)−1/2 is tight for θ ∼ P (dθ) (A.2)

then
√

n(θ − un) is tight. For example, if I(θ) is continuous with respect to θ and I(θ) is strictly positive,
then (A.2) is satisfied.

We show this tightness condition for the model (3.1). In this case, both xn and yn are observed. We check
the tightness of

√
n(ϕ(θ) − un) for some un(xn, yn) for ϕ defined in Propositions 3.1 and 3.2. By continuity

of (αj)j=2,...,c−1 �→ (αj/α2)j=3,...,c−1, tightness for the latter comes from that for the former. So we only show
that for the former.
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Figure 5. Trajectories (upper figures) and auto correlation functions (lower figures) of ϕ(θ) =
α3/α2 and α4/α2. The improvements by the PX-DA procedure (right figures) over the DA
procedure (left figures) are small.

Fix j ∈ {2, . . . , c−1}. Suppose that we only have a partial observation of yn. More precisely, we only observe
the event {yi ≤ j} or {yi > j} with xi for i = 1, . . . , n. Then this partially observed model becomes a probit
model with parameter θj = (αj , β), since

Pθ(y ≤ j|x) = Φ(αj + βtx) = Φ

(
θt

j

(
1
x

))
.

Then we can apply Corollary 1 of [2] for this model, and hence asymptotic normality for the maximum likelihood
estimator holds. Thus we obtain (A.1) and (A.2) and hence

√
n(αj−un,j(xn, un)) = OPn(1) for some unj(xn, yn).

By showing it for each j ∈ {2, . . . , c− 1}, we have the claim.
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