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A GENERALIZED MEAN-REVERTING EQUATION AND APPLICATIONS

Nicolas MARIE1

Abstract. Consider a mean-reverting equation, generalized in the sense it is driven by a 1-dimensional
centered Gaussian process with Hölder continuous paths on [0, T ] (T > 0). Taking that equation in
rough paths sense only gives local existence of the solution because the non-explosion condition is not
satisfied in general. Under natural assumptions, by using specific methods, we show the global existence
and uniqueness of the solution, its integrability, the continuity and differentiability of the associated
Itô map, and we provide an Lp-converging approximation with a rate of convergence (p � 1). The
regularity of the Itô map ensures a large deviation principle, and the existence of a density with respect
to Lebesgue’s measure, for the solution of that generalized mean-reverting equation. Finally, we study
a generalized mean-reverting pharmacokinetic model.
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1. Introduction

Let W be a 1-dimensional centered Gaussian process with α-Hölder continuous paths on [0, T ] (T > 0 and
α ∈]0, 1]).

Consider the stochastic differential equation (SDE):

Xt = x0 +
∫ t

0

(a − bXu) du + σ

∫ t

0

Xβ
u dWu; t ∈ [0, T ] (1.1)

where, x0 > 0 is a deterministic initial condition, a, b, σ � 0 are deterministic constants and β satisfies the
following assumption:

Assumption 1.1. The exponent β satisfies: β ∈]1 − α, 1].

When the driving signal is a standard Brownian motion, equation (1.1) taken in the sense of Itô, is used in
many applications. For example, it is studied and applied in finance by Fouque et al. in [6] for β ∈ [1/2, 1[. The
cornerstone of their approach is the Markov property of diffusion processes. In particular, their proof of the
global existence and uniqueness of the solution at Appendix A involves Karlin and Taylor ([10], Lem. 6.1(ii)).
Still for β ∈ [1/2, 1[, the convergence of the Euler approximation is proved by Mao et al. in [17, 25]. For β � 1,
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equation (1.1) is studied by Wu et al. in [25]. Recently, in [21], Tien Dung got an expression and shown the
Malliavin’s differentiability of a class of fractional geometric mean-reverting processes.

Equation (1.1) is a generalization of the mean-reverting equation. In this paper, we study various properties
of (1.1) by taking it in the sense of rough paths (cf. Lyons and Qian [14]). Note that Doss-Sussman’s method
could also be used since (1.1) is a 1-dimensional equation (cf. Doss [5] and Sussman [24]). A priori, even in
these senses, equation (1.1) admits only a local solution because it does not satisfy the non-explosion condition
of Exercice 10.56 from [8].

At Section 2, we state useful results on rough differential equations (RDEs) and Gaussian rough paths coming
from Friz and Victoir [8]. Section 3 is devoted to study deterministic properties of (1.1). We show existence and
uniqueness of the solution for equation (1.1), provide an explicit upper-bound for that solution and study the
continuity and differentiability of the associated Itô map. We also provide a converging approximation with a
rate of convergence. Section 4 is devoted to study probabilistic properties of (1.1); properties of the solution’s
distribution, various integrability results, a large deviation principle and the existence of a density with respect
to Lebesgue’s measure on (R,B(R)) for the solution of (1.1). Finally, at Section 5, we study a pharmacokinetic
model based on a particular generalized mean-reverting (M-R) equation (inspired by Kalogeropoulos et al. [11]).

2. Rough differential equations and Gaussian rough paths

Essentially inspired by Friz and Victoir [8], this section provides useful definitions and results on RDEs and
Gaussian rough paths.

In a sake of completeness, results on rough differential equations are stated in the multidimensional case.
In the sequel, ‖.‖ denotes the euclidean norm on R

d and ‖.‖M the usual norm on Md(R) (d ∈ N
∗).

Consider DT the set of subdivisions for [0, T ] and

ΔT =
{
(s, t) ∈ R

2
+ : 0 � s < t � T

}
.

Let T N(Rd) be the step-N tensor algebra over R
d (N ∈ N

∗):

T N
(
R

d
)

=
N⊕

i=0

(
R

d
)⊗i

.

For i = 1, . . . , N , (Rd)⊗i is equipped with its euclidean norm ‖.‖i, (Rd)⊗0 = R and the canonical projection on
(Rd)⊗i for any Y ∈ T N(Rd) is denoted by Y i.

First, let us remind definitions of p-variation and α-Hölder norms (p � 1 and α ∈ [0, 1]):

Definition 2.1. Consider y : [0, T ] → R
d:

(1) The function y has finite p-variation if and only if,

‖y‖p-var;T = sup
D={rk}∈DT

⎛
⎝|D|−1∑

k=1

‖yrk+1 − yrk
‖p

⎞
⎠

1/p

< ∞.

(2) The function y is α-Hölder continuous if and only if,

‖y‖α-Höl;T = sup
(s,t)∈ΔT

‖yt − ys‖
|t − s|α < ∞.

In the sequel, the space of continuous functions with finite p-variation will be denoted by:

Cp-var
(
[0, T ]; Rd

)
.
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The space of α-Hölder continuous functions will be denoted by:

Cα-Höl
(
[0, T ]; Rd

)
.

If it is not specified, these spaces will always be equipped with norms ‖.‖p-var;T and ‖.‖α-Höl;T respectively.
Remark. Note that:

Cα-Höl
(
[0, T ]; Rd

) ⊂ C1/α-var
(
[0, T ]; Rd

)
.

Definition 2.2. Let y : [0, T ] → R
d be a continuous function of finite 1-variation. The step-N signature of y is

the functional SN (y) : ΔT → T N(Rd) such that for every (s, t) ∈ ΔT and i = 1, . . . , N ,

S0
N ;s,t(y) = 1 and Si

N ;s,t(y) =
∫

s<r1<r2<...<ri<t

dyr1 ⊗ . . . ⊗ dyri .

Moreover,
GN (Rd) =

{
SN ;0,T (y); y ∈ C1-var

(
[0, T ]; Rd

)}
is the step-N free nilpotent group over R

d.

Definition 2.3. A map Y : ΔT → GN (Rd) is of finite p-variation if and only if,

‖Y ‖p-var;T = sup
D={rk}∈DT

⎛
⎝|D|−1∑

k=1

‖Yrk,rk+1‖p
C

⎞
⎠

1/p

< ∞

where, ‖.‖C is the Carnot–Caratheodory’s norm such that for every g ∈ GN (Rd),

‖g‖C = inf
{
length(y); y ∈ C1-var([0, T ]; Rd) and SN ;0,T (y) = g

}
.

In the sequel, the space of continuous functions from ΔT into GN (Rd) with finite p-variation will be denoted
by:

Cp-var
(
[0, T ]; GN

(
R

d
))

.

If it is not specified, that space will always be equipped with ‖.‖p-var;T .
Let us define the Lipschitz regularity in the sense of Stein:

Definition 2.4. Consider γ > 0. A map V : R
d → R is γ-Lipschitz (in the sense of Stein) if and only if

V is C�γ� on R
d, bounded, with bounded derivatives and such that the �γ	-th derivative of V is {γ}-Hölder

continuous (�γ	 is the largest integer strictly smaller than γ and {γ} = γ − �γ	).
The least bound is denoted by ‖V ‖lipγ . The map ‖.‖lipγ is a norm on the vector space of collections of

γ-Lipschitz vector fields on R
d, denoted by Lipγ(Rd).

In the sequel, Lipγ(Rd) will always be equipped with ‖.‖lipγ .
Let w : [0, T ] → R

d be a continuous function of finite p-variation such that a geometric p-rough path W exists
over it. In other words, there exists an approximating sequence (wn, n ∈ N) of functions of finite 1-variation
such that:

lim
n→∞ dp-var;T

[
S[p] (wn) ; W

]
= 0.

When d = 1, a natural geometric p-rough path W over it is defined by:

∀(s, t) ∈ ΔT , Ws,t =
(

1, wt − ws, . . . ,
(wt − ws)[p]

[p]!

)
· (2.1)

We remind that if V = (V1, . . . , Vd) is a collection of Lipschitz continuous vector fields on R
d, the ordinary

differential equation dy = V (y)dwn, with initial condition y0 ∈ R
d, admits a unique solution.

That solution is denoted by πV (0, y0; wn).
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Rigorously, a RDE’s solution is defined as follow (cf. [8], Def. 10.17):

Definition 2.5. A continuous function y : [0, T ] → R
d is a solution of dy = V (y)dW with initial condition

y0 ∈ R
d if and only if,

lim
n→∞ ‖πV (0, y0; wn) − y‖∞;T = 0

where, ‖.‖∞;T is the uniform norm on [0, T ]. If there exists a unique solution, it is denoted by πV (0, y0; W).

Theorem 2.6. Let V = (V1, . . . , Vd) be a collection of locally γ-Lipschitz vector fields on R
d (γ > p) such that:

V and D[p]V are respectively globally Lipschitz continuous and (γ − [p])-Hölder continuous on R
d. With initial

condition y0 ∈ R
d, equation dy = V (y)dW admits a unique solution πV (0, y0; W).

For a proof, see Friz and Victoir [8], Exercice 10.56.
For Friz and Victoir, the rough integral for a collection of (γ − 1)-Lipschitz vector fields V = (V1, . . . , Vd)

along W is the projection of a particular full RDE’s solution (cf. [8], Def. 10.34 for full RDEs): dX = Φ(X)dW

where,
∀i = 1, . . . , d, ∀a, w ∈ R

d, Φi(w, a) = (ei, Vi(w))

and (e1, . . . , ed) is the canonical basis of R
d.

In particular, if y : [0, T ] → Md(R) and z : [0, T ] → R
d are two continuous functions, respectively of finite

p-variation and finite q-variation with 1/p + 1/q > 1, the Young integral of y with respect to z is denoted by
Y(y, z).

Remark. We are not developing the notion of full RDE in that paper because it is not useful in the sequel. As
mentioned above, the reader can refer to [8], Definition 10.34 for details.

For a proof of the following change of variable formula for geometric rough paths, (cf. [2], Thm. 53):

Theorem 2.7. Let Φ be a collection of γ-Lipschitz vector fields on R
d (γ > p) and let W be a geometric p-rough

path. Then,

∀(s, t) ∈ ΔT , Φ (wt) − Φ (ws) =
[∫

DΦ(W)dW

]1

s,t

.

Now, let state some results on 1-dimensional Gaussian rough paths:
Consider a stochastic process W defined on [0, T ] and satisfying the following assumption:

Assumption 2.8. W is a 1-dimensional centered Gaussian process with α-Hölder continuous paths on [0, T ]
(α ∈]0, 1]).

In the sequel, we work on the probability space (Ω,A, P) where Ω = C0([0, T ]; R), A is the σ-algebra generated
by cylinder sets and P is the probability measure induced by W on (Ω,A).

Remark. Since W is a 1-dimensional Gaussian process, the natural geometric 1/α-rough path over it defined
by (2.1) is matching with the enhanced Gaussian process for W provided by Friz and Victoir at [8], Theorem
15.33 in the multidimensional case.

Finally, Cameron−Martin’s space of W is given by:

H1
W =

{
h ∈ C0([0, T ]; R) : ∃Z ∈ AW s.t. ∀t ∈ [0, T ], ht = E(WtZ)

}
with

AW = span {Wt; t ∈ [0, T ]}L2

.
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Let 〈., .〉H1
W

be the map defined on H1
W ×H1

W by:

〈
h, h̃

〉
H1

W

= E

(
ZZ̃

)

where,

∀t ∈ [0, T ], ht = E(WtZ) and h̃t = E

(
WtZ̃

)
with Z, Z̃ ∈ AW .

That map is a scalar product on H1
W and, equipped with it, H1

W is a Hilbert space.
The triplet (Ω,H1

W , P) is called an abstract Wiener space (cf. Ledoux [12]).

Proposition 2.9. For d = 1, consider a random variable F : Ω → R, continuously H1
W -differentiable (i.e.

h �→ F (ω + h) is continuously differentiable from H1
W into R, for almost every ω ∈ Ω).

If F satisfies Bouleau−Hirsch’s condition (i.e. |DhF | > 0 a.s. for at least one h ∈ H1
W such that h �= 0,

where:

(DηF )(ω) =
∂

∂ε
F (ω + εη)

∣∣∣∣
ε=0

, ∀η ∈ H1
W ),

then F admits a density with respect to Lebesgue’s measure on (R,B(R)).

Remark.

(1) Classically, Bouleau−Hirsch’s condition is not stated that way and involves Malliavin calculus framework.
Consider the Malliavin derivative operator D (cf. Nualart [20], Sect. 1.2), the reproducing kernel Hilbert
space HW of the Gaussian process W (cf. Neveu [19]), and the canonical isometry I from HW into H1

W

defined for example at Marie ([18], Sect. 3.1). Bouleau−Hirsch’s condition for d = 1 is ‖DF‖2
H > 0.

On one hand, by Cauchy–Schwarz’s inequality, it is sufficient to show that there exists h ∈ H1
W satisfying

h �= 0 and |〈DF, I−1(h)〉H| > 0. On the other hand, with Malliavin calculus methods, one can easily show
that 〈DF, I−1(h)〉H = DhF .

(2) About Bouleau−Hirsch’s criterion for d � 1, please refer to [20], Theorem 2.1.2.

3. Deterministic properties of the generalized mean-reverting equation

In this section, we show existence and uniqueness of the solution for equation (1.1), provide an explicit
upper-bound for that solution and, study the continuity and differentiability of the associated Itô map. We also
provide a converging approximation for equation (1.1).

Consider a function w : [0, T ] → R satisfying the following assumption:

Assumption 3.1. The function w is α-Hölder continuous (α ∈]0, 1]).

Let W be the natural geometric 1/α-rough path over w defined by (2.1). Then, we put W = S[1/α](Id[0,T ]⊕W),
which is a geometric 1/α-rough path over

t ∈ [0, T ] �−→ (t, wt)

by [8], Theorem 9.26.

Remark. For a rigorous construction of Young pairing, the reader can refer to Section 9.4 of [8].
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Then, consider the rough differential equation:

dx = V (x)dW with initial condition x0 ∈ R, (3.1)

where V is the map defined on R+ by:

∀x ∈ R+, ∀t, w ∈ R, V (x).(t, w) = (a − bx)t + σxβw.

For technical reasons, we introduce another equation:

yt = y0 + a(1 − β)
∫ t

0

y−γ
s ebsds + w̃t; t ∈ [0, T ], y0 > 0 (3.2)

where, γ = β
1−β and

w̃t =
∫ t

0

ϑsdws with ϑt = σ(1 − β)eb(1−β)t

for every t ∈ [0, T ]. The integral is taken in the sense of Young.
The map u ∈ [ε,∞[�→ u−γ belongs to C∞([ε,∞[; R) and is bounded with bounded derivatives on [ε,∞[ for

every ε > 0. Then, equation (3.2) admits a unique solution in the sense of Definition 2.5 by applying Theorem 2.6
up to the time

τ1
ε = inf {t ∈ [0, T ] : yt = ε} ; ε ∈]0, y0],

by assuming that inf(∅) = ∞.
Consider also the time τ1

0 > 0, such that τ1
ε ↑ τ1

0 when ε → 0.

3.1. Existence and uniqueness of the solution

As mentioned above, Section 2 ensures that equation (3.2) has, at least locally, a unique solution denoted y.
At Lemma 3.2, we prove it ensures that equation (3.1) admits also, at least locally, a unique solution (in the
sense of Definition 2.5) denoted x. In particular, we show that x = yγ+1e−b.. At Proposition 3.3, we prove the
global existence of y by using the fact it never hits 0 on [0, T ]. These results together ensures the existence and
uniqueness of x on [0, T ].

Lemma 3.2. Consider y0 > 0 and a, b � 0. Under Assumptions 1.1 and 3.1, up to the time τ1
ε (ε ∈]0, y0]), if

y is the solution of (3.2) with initial condition y0, then

x : t ∈ [0, τ1
ε

] �−→ xt = yγ+1
t e−bt

is the solution of (3.1) on [0, τ1
ε ], with initial condition x0 = yγ+1

0 .

Proof. Consider the solution y of (3.2) on [0, τ1
ε ], with initial condition y0 > 0.

The continuous function z = ye−b(1−β). takes its values in [mε, Mε] ⊂ R
∗
+ on [0, τ1

ε ].
Since γ > 0, the map Φ : u ∈ [mε, Mε] �→ uγ+1 is C∞, bounded and with bounded derivatives.
Then, by applying the change of variable formula (Thm. 2.7) to z and to the map Φ between 0 and t ∈ [0, τ1

ε ]:

xt = zγ+1
0 + (γ + 1)

∫ t

0

zγ
s dzs

= yγ+1
0 +

∫ t

0

(a − bxs) ds + σ

∫ t

0

yγ
s e−bβsdws.

Since γ = β(γ + 1), in the sense of Definition 2.5, x is the solution of (3.1) on [0, τ1
ε ] with initial condition

x0 = yγ+1
0 . �
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Proposition 3.3. Under Assumptions 1.1 and 3.1, for a > 0 and b � 0, with initial condition x0 > 0; τ1
0 > T

and then, equation (3.1) admits a unique solution π̃V (0, x0; w) on [0, T ], satisfying:

π̃V (0, x0; w) = πV (0, x0;W).

Moreover, since T > 0 is chosen arbitrarily, that notion of solution extends to R+.

Proof. Suppose that τ1
0 � T , put y0 = x1−β

0 and consider the solution y of (3.2) on [0, τ1
ε ] (ε ∈]0, y0]), with

initial condition y0.
On one hand, note that by definition of τ1

ε :

yτ1
ε
− yt = ε − yt and

yτ1
ε
− yt = a(1 − β)

∫ τ1
ε

t

y−γ
s ebsds + w̃τ1

ε
− w̃t

for every t ∈ [0, τ1
ε ]. Then, since τ1

ε ↑ τ1
0 when ε → 0:

yt + a(1 − β)
∫ τ1

0

t

y−γ
s ebsds = w̃t − w̃τ1

0
(3.3)

for every t ∈ [0, τ1
0 [.

Moreover, since w̃ is the Young integral of ϑ ∈ C∞([0, T ]; R+) against w, and w is α-Hölder continuous, w̃ is
also α-Hölder continuous (cf. [8], Thm. 6.8).

Together, equality (3.3) and the α-Hölder continuity of w̃ imply:

−‖w̃‖α-Höl;T (τ1
0 − t)α � yt + a(1 − β)

∫ τ1
0

t

y−γ
s ebsds � ‖w̃‖α-Höl;T (τ1

0 − t)α.

On the other hand, the two terms of that sum are positive. Then,

yt � ‖w̃‖α-Höl;T (τ1
0 − t)α and (3.4)

a(1 − β)
∫ τ1

0

t

y−γ
s ebsds � ‖w̃‖α-Höl;T (τ1

0 − t)α. (3.5)

Since t ∈ [0, τ1
0 [ has been chosen arbitrarily, inequality (3.4) is true for every s ∈ [t, τ1

0 [ and implies:

y−γ
s � ‖w̃‖−γ

α-Höl;T

(
τ1
0 − s

)−αγ
.

So

a(1 − β)
∫ τ1

0

t

y−γ
s ebsds � a(1 − β)‖w̃‖−γ

α-Höl;T

∫ τ1
0

t

(τ1
0 − s)−αγebsds

� a(1 − β)
1 − αγ

‖w̃‖−γ
α-Höl;T

[
(τ1

0 − t)1−αγ − lim
s→τ1

0

(τ1
0 − s)1−αγ

]
. (3.6)

By inequalities (3.5) and (3.6) together:

a(1 − β)
1 − αγ

[
(τ1

0 − t)1−αγ − lim
s→τ1

0

(τ1
0 − s)1−αγ

]
� ‖w̃‖γ+1

α-Höl;T (τ1
0 − t)α. (3.7)

If β � 1/(1 + α) > 1 − α, then 1 − αγ � 0 and

lim
s→τ1

0

− 1
1 − αγ

(
τ1
0 − s

)1−αγ
= ∞.
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If 1/(1 + α) > β > 1 − α, inequality (3.7) can be rewritten as

a(1 − β)
1 − αγ

(τ1
0 − t)1−α(γ+1) � ‖w̃‖γ+1

α-Höl;T ,

but 1 − α(γ + 1) < 0 and

lim
t→τ1

0

1
1 − αγ

(
τ1
0 − t

)1−α(γ+1)
= ∞.

Therefore, if β > 1 − α, τ1
0 �∈ [0, T ].

An immediate consequence is that: ⋃
ε∈]0,y0]

[0, τ1
ε ] ∩ [0, T ] = [0, T ].

Then, (3.2) admits a unique solution on [0, T ] by putting:

y = yε on [0, τ1
ε ] ∩ [0, T ]

where, yε denotes the solution of (3.2) on [0, τ1
ε ] ∩ [0, T ] for every ε ∈]0, y0].

By Lemma 3.2, equation (3.1) admits a unique solution π̃V (0, x0; w) on [0, T ], matching with yγ+1e−b..
Finally, since T > 0 is chosen arbitrarily, for w : R+ → R locally α-Hölder continuous, equation (3.1) admits

a unique solution π̃V (0, x0; w) on R+ by putting:

π̃V (0, x0; w) = π̃V (0, x0; w|[0,T ] ) on [0, T ]

for every T > 0. �

Remarks and partial extensions.

(1) Note that the statement of Lemma 3.2 holds true when a = 0, and up to the time τ1
0 , equation (3.1) has a

unique explicit solution:

∀t ∈ [0, τ1
0 ], xt =

(
x1−β

0 + w̃t

)γ+1

e−bt.

However, in that case, τ1
0 can belong to [0, T ]. Then, x is matching with the solution of equation (3.1) only

locally. It is sufficient for the application in pharmacokinetic provided at Section 5.
(2) For every α ∈]0, 1[, equation (3.2) admits a unique solution y on [0, T ] when:

inf
s∈[0,T ]

w̃s > −y0. (3.8)

Indeed, for every t ∈ [0, τ1
0 ],

yt − a(1 − β)
∫ t

0

y−γ
s ebsds = y0 + w̃t.

Then,

inf
s∈[0,τ1

0 ]
ys − a(1 − β) sup

s∈[0,τ1
0 ]

∫ s

0

y−γ
u ebudu � y0 + inf

s∈[0,T ]
w̃s.

Since y is continuous from [0, τ1
0 ] into R with y0 > 0:

sup
s∈[0,τ1

0 ]

∫ s

0

y−γ
u ebudu > 0.



A GENERALIZED MEAN-REVERTING EQUATION AND APPLICATIONS 807

Therefore,

yt � inf
s∈[0,τ1

0 ]
ys

� y0 + inf
s∈[0,T ]

w̃s > 0 (3.9)

by inequality (3.8). Since the right-hand side of inequality (3.9) is not depending on τ1
0 , that hitting time

is not belonging to [0, T ].
By Lemma 3.2, equation (3.1) admits also a unique solution on [0, T ] when (3.8) is true.

(3) If τ1
0 ∈ [0, T ], necessarily:

a(1 − β)‖w̃‖−γ
α-Höl;T

∫ τ1
0

t

(τ1
0 − s)−αγds � ‖w̃‖α-Höl;T (τ1

0 − t)α

for every t ∈ [0, τ1
0 [.

Then, when β = 1 − α, 1 − αγ = α and by [8], Theorem 6.8:

a � ‖w̃‖α-Höl;T

� C(σ, α, b)‖w‖1/α
α-Höl;T

with C(σ, α, b) = (σbα2)1/αebT .
Therefore, π̃V (0, x0; w) is defined on [0, T ] when a > C(σ, α, b)‖w‖1/α

α-Höl;T .

3.2. Upper-bound for the solution and regularity of the Itô map

Under Assumptions 1.1 and 3.1, we provide an explicit upper-bound for ‖π̃V (0, x0; w)‖∞;T and, show conti-
nuity and differentiability results for the Itô map:

Proposition 3.4. Under Assumptions 1.1 and 3.1, for a > 0 and b � 0, with any initial condition x0 > 0,

‖π̃V (0, x0; w)‖∞;T �
[
x1−β

0 + a(1 − β)ebT x−β
0 T + σ(b ∨ 2)(1 − β)(1 + T )eb(1−β)T‖w‖∞;T

]γ+1

.

Proof. Consider y0 = x1−β
0 , y the solution of (3.2) with initial condition y0 and

τ2
y0

= sup {t ∈ [0, T ] : yt � y0} .

On one hand, we consider the two following cases:

(1) If t < τ2
y0

:

yτ2
y0

− yt = a(1 − β)
∫ τ2

y0

t

y−γ
s ebsds + w̃τ2

y0
− w̃t.

Then, by definition of τ2
y0

:

yt + a(1 − β)
∫ τ2

y0

t

y−γ
s ebsds = y0 + w̃t − w̃τ2

y0
. (3.10)

Therefore, since each term of the sum in the left-hand side of equality (3.10) are positive from Proposition 3.3:

0 < yt � y0 + |w̃t − w̃τ2
y0
|.
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(2) If t � τ2
y0

; by definition of τ2
y0

, yt � y0 and then, y−γ
t � y−γ

0 . Therefore,

y0 � yt � y0 + a(1 − β)ebT y−γ
0 T + |w̃t − w̃τ2

y0
|.

On the other hand, by using the integration by parts formula, for every t ∈ [0, T ],

|w̃t − w̃τ2
y0
| = σ(1 − β)

∣∣∣∣∣
∫ t

τ2
y0

eb(1−β)sdws

∣∣∣∣∣
= σ(1 − β)

∣∣∣∣∣eb(1−β)twt − eb(1−β)τ2
y0wτ2

y0
− b(1 − β)

∫ t

τ2
y0

eb(1−β)swsds

∣∣∣∣∣
� σ(1 − β) [2 + b(1 − β)T ] eb(1−β)T ‖w‖∞;T

� σ(b ∨ 2)(1 − β)(1 + T )eb(1−β)T‖w‖∞;T ,

because (1 − β)2 � 1 − β � 1.
Therefore, by putting cases 1 and 2 together; for every t ∈ [0, T ],

0 < yt � y0 + a(1 − β)ebT y−γ
0 T + σ(b ∨ 2)(1 − β)(1 + T )eb(1−β)T‖w‖∞;T . (3.11)

That achieves the proof because, π̃V (0, x0; w) = yγ+1e−b. and the right hand side of inequality (3.11) is not
depending on t. �

Remark. In particular, by Proposition 3.4, ‖π̃V (0, x0; w)‖∞;T does not explode when a → 0 or/and b → 0.

Notation. In the sequel, for every R > 0,

Bα(0, R) :=
{

w ∈ Cα-Höl([0, T ]; R) : ‖w‖α-Höl;T � R
}

.

Proposition 3.5. Under Assumption 1.1, for a > 0 and b � 0, π̃V (0, .) is a continuous map from R
∗
+ ×

Cα-Höl([0, T ]; R) into C0([0, T ]; R). Moreover, π̃V (0, .) is Lipschitz continuous from [r, R1] × Bα(0, R2) into
C0([0, T ]; R) for every R1 > r > 0 and R2 > 0.

Proof. Consider (x1
0, w

1) and (x2
0, w

2) belonging to R
∗
+ × Cα-Höl([0, T ]; R).

For i = 1, 2, we put yi
0 = (xi

0)1−β and yi = I(yi
0, w̃

i) where,

∀t ∈ [0, T ], w̃i
t =

∫ t

0

ϑsdwi
s

and, with notations of equation (3.2), I is the map defined by:

I(y0, w̃) = y0 + a(1 − β)
∫ .

0

I−γ
s (y0, w̃)ebsds + w̃.

We also put:
τ3 = inf

{
s ∈ [0, T ] : y1

s = y2
s

}
.

On one hand, we consider the two following cases:

(1) Consider t ∈ [0, τ3] and suppose that y1
0 � y2

0 .
Since y1 and y2 are continuous on [0, T ] by construction, for every s ∈ [0, τ3], y1

s � y2
s and then,

(
y1

s

)−γ − (y2
s

)−γ � 0.
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Therefore, ∣∣y1
t − y2

t

∣∣ = y1
t − y2

t

= y1
0 − y2

0 + a(1 − β)
∫ t

0

ebs[
(
y1

s

)−γ − (y2
s

)−γ
]ds + w̃1

t − w̃2
t

� |y1
0 − y2

0 | + ‖w̃1 − w̃2‖∞;T .

Symmetrically, one can show that this inequality is still true when y1
0 � y2

0 .
(2) Consider t ∈ [τ3, T ],

τ3(t) = sup
{
s ∈ [τ3, t

]
: y1

s = y2
s

}
and suppose that y1

t � y2
t .

Since y1 and y2 are continuous on [0, T ] by construction, for every s ∈ [τ3(t), t], y1
s � y2

s and then,(
y1

s

)−γ − (y2
s

)−γ � 0.

Therefore, ∣∣y1
t − y2

t

∣∣ = y1
t − y2

t

= a(1 − β)
∫ t

τ3(t)

ebs
[(

y1
s

)−γ − (y2
s

)−γ
]
ds + w̃1

t − w̃2
t −

[
w̃1

τ3(t) − w̃2
τ3(t)

]
� 2‖w̃1 − w̃2‖∞;T .

Symmetrically, one can show that this inequality is still true when y1
t � y2

t .

By putting these cases together and since the obtained upper-bounds are not depending on t:

‖y1 − y2‖∞;T � |y1
0 − y2

0 | + 2T α‖w̃1 − w̃2‖α-Höl;T . (3.12)

Then, I is continuous from R
∗
+ × Cα-Höl([0, T ]; R) into C0([0, T ]; R).

For any α-Hölder continuous function w : [0, T ] → R, from Lemma 3.2 and Proposition 3.3:

π̃V (0, x0; w) = e−b.Iγ+1
[
x1−β

0 ,Y(ϑ, w)
]
.

Moreover, by Proposition 6.12 from [8], Y(ϑ, .) is continuous from Cα-Höl([0, T ]; R) into itself. Therefore, π̃V (0, .)
is continuous from R

∗
+ × Cα-Höl([0, T ]; R) into C0([0, T ]; R) by composition.

On the other hand, consider R1 > r > 0 and R2 > 0. By Proposition 3.4, there exists C > 0 such that:

∀(x0, w) ∈ [r, R1] × Bα(0, R2), ‖I[x1−β
0 ,Y(ϑ, w)]‖∞;T � C(r−γ + R1 + R2).

Then, for every (x1
0, w

1), (x2
0, w

2) ∈ [r, R1] × Bα(0, R2),

‖π̃V (0, x0; w1) − π̃V (0, x0; w2)‖∞;T � (γ + 1)Cγ(r−γ + R1 + R2)γ ×[
(1 − β)r−β |x1

0 − x2
0| +

2T α‖Y(ϑ, w1) − Y(ϑ, w2)‖α-Höl;T

]
by inequality (3.12). Since Y(ϑ, .) is Lipschitz continuous from bounded sets of Cα-Höl([0, T ]; R) into
Cα-Höl([0, T ]; R) (cf. [8], Prop. 6.11), that achieves the proof. �

In order to study the regularity of the solution of equation (3.1) with respect to parameters a, b � 0 charac-
terizing the vector field V , let us denote by x(a, b) (resp. y(a, b)) the solution of equation (3.1) (resp. (3.2)) up
to τ1

0 ∧ T .
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Proposition 3.6. Under Assumptions 1.1 and 3.1, for every a, b � 0, x(0, b) � x(a, b) � x(a, 0).

Proof. On one hand, consider a � 0, b > 0 and t ∈ [0, τ1
0 ∧ T ]:

yt(a, b) − yt(0, b) = a(1 − β)
∫ t

0

y−γ
s (a, b)ebsds � 0,

because ys(a, b) � 0 for every s ∈ [0, T ] by Proposition 3.3.
Then, by Lemma 3.2:

x(0, b) � x(a, b).

On the other hand, consider a > 0, b � 0, z(a, b) = x1−β(a, b) and t1, t2 ∈ [0, τ1
0 ∧ T ] such that: t1 < t2,

xt1 (a, 0) = xt1(a, b) and xs(a, 0) < xs(a, b) for every s ∈ [t1, t2]. As at Lemma 3.2, by the change of variable
formula (Thm. 2.7), for every t ∈ [t1, t2],

zt(a, 0) − zt(a, b) = zt(a, 0) − zt1(a, 0) − [zt(a, b) − zt1(a, b)]

= a(1 − β)
∫ t

t1

[x−β
s (a, 0) − x−β

s (a, b)]ds

+ b(1 − β)
∫ t

t1

x−β
s (a, b)ds

� a(1 − β)
∫ t

t1

[x−β
s (a, 0) − x−β

s (a, b)]ds,

because xs(a, b) � 0 for every s ∈ [t1, t] by Proposition 3.3.

Since xs(a, 0) < xs(a, b) for every s ∈ [t1, t2] by assumption, necessarily:

zt(a, 0) − zt(a, b) < 0

and ∫ t

t1

[
x−β

s (a, 0) − x−β
s (a, b)

]
ds � 0.

Therefore, it is impossible, and for every t ∈ [0, τ1
0 ∧ T ], xt(a, 0) � xt(a, b). �

Proposition 3.7. Under Assumptions 1.1 and 3.1, (a, b) �→ x(a, b) is a continuous map from (R∗
+)2 into

C0([0, T ]; R).

Proof. Consider a0, a, b0, b > 0 and w̃0, w̃ : [0, T ] → R two functions defined by:

∀t ∈ [0, T ], w̃0
t = σ(1 − β)

∫ t

0

eb0(1−β)sdws and w̃t = σ(1 − β)
∫ t

0

eb(1−β)sdws.

For every t ∈ [0, T ],

yt(a, b) − yt(a0, b0) = a(1 − β)
∫ t

0

y−γ
s (a, b)ebsds

− a0(1 − β)
∫ t

0

y−γ
s (a0, b0)eb0sds + w̃t − w̃0

t

= a(1 − β)
∫ t

0

[
y−γ

s (a, b) − y−γ
s (a0, b0)

]
ebsds

+ (1 − β)
∫ t

0

(aebs − a0eb0s)y−γ
s (a0, b0)ds + w̃t − w̃0

t .
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As at Proposition 3.5, by using the monotonicity of u ∈ R
∗
+ �→ u−γ together with appropriate crossing times:

‖y(a, b) − y(a0, b0)‖∞;T � (1 − β)T ‖aeb. − a0eb0.‖∞;T‖y−γ(a0, b0)‖∞;T

+ 2T α‖w̃ − w̃0‖α-Höl;T

� (1 − β)T
[
|a − a0|ebT + a0e(b∨b0)T T |b − b0|

]
×‖y−γ(a0, b0)‖∞;T + 2T α‖w̃ − w̃0‖α-Höl;T .

Moreover, by [8], Theorem 6.8:

‖w̃ − w̃0‖α-Höl;T � σ(1 − β)‖w‖α-Höl;T ‖eb0(1−β). − eb(1−β).‖1-Höl;T

� σ(1 − β)2|b − b0|
× ‖w‖α-Höl;T

[
eb0(1−β)T + b(1 − β)e(b∨b0)(1−β)T T

]
.

These inequalities imply that:
lim

(a,b)→(a0,b0)

∥∥y(a, b) − y(a0, b0)
∥∥
∞;T

= 0.

Therefore, (a, b) �→ x(a, b) = e−b.yγ+1(a, b) is a continuous map from (R∗
+)2 into C0([0, T ]; R). �

Let us now show the continuous differentiability of the Itô map with respect to the initial condition and the
driving signal:

Proposition 3.8. Under Assumption 1.1, for a > 0 and b � 0, π̃V (0, .) is continuously differentiable from
R

∗
+ × Cα-Höl([0, T ]; R) into C0([0, T ]; R).

Proof. In a sake of readability, the space R
∗
+ × Cα-Höl([0, T ]; R) is denoted by E.

Consider (x0
0, w

0) ∈ E, x0 := π̃V (0, x0
0; w

0),

m0 ∈
]
0, min

t∈[0,T ]
x0

t

[
and ε0 := −m0 + min

t∈[0,T ]
x0

t .

Since π̃V (0, .) is continuous from E into C0([0, T ]; R) by Proposition 3.5:

∀ε ∈]0, ε0], ∃η > 0 : ∀(x0, w) ∈ E,

(x0, w) ∈ BE((x0
0, w

0); η) =⇒ ‖π̃V (0, x0; w) − x0‖∞;T < ε � ε0. (3.13)

In particular, for every (x0, w) ∈ BE((x0
0, w

0); η), the function π̃V (0, x0; w) is [m0, M0]-valued with [m0, M0] ⊂
R

∗
+ and

M0 := −m0 + min
t∈[0,T ]

x0
t + max

t∈[0,T ]
x0

t .

In [8], the continuous differentiability of the Itô map with respect to the initial condition and the driving signal
is established at Theorems 11.3 and 11.6. In order to derive the Itô map with respect to the driving signal at
point w0 in the direction h ∈ Cκ-Höl([0, T ]; Rd), κ ∈]0, 1[ has to satisfy the condition α + κ > 1 to ensure the
existence of the geometric 1/α-rough path over w0 + εh (ε > 0) provided at [8], Theorem 9.34 when d > 1.
When d = 1, that condition can be dropped by (2.1). Therefore, since the vector field V is C∞ on [m0, M0],
π̃V (0, .) is continuously differentiable from BE((x0

0, w
0); η) into C0([0, T ]; R).

In conclusion, since (x0
0, w

0) has been arbitrarily chosen, π̃V (0, .) is continuously differentiable from R
∗
+ ×

Cα-Höl([0, T ]; R) into C0([0, T ]; R). �
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3.3. A converging approximation

In order to provide a converging approximation for equation (3.1), we first prove the convergence of the
implicit Euler approximation (yn, n ∈ N

∗) for equation (3.2):

{
yn
0 = y0 > 0

yn
k+1 = yn

k +
a(1 − β)T

n
(yn

k+1)
−γebtn

k+1 + w̃tn
k+1

− w̃tn
k

(3.14)

where, for n ∈ N
∗, tnk = kT/n and k � n while yn

k+1 > 0.

Remark. On the implicit Euler approximation in stochastic analysis, cf. Malrieu [15] and, Malrieu and Talay [16]
for example.

The following proposition shows that the implicit step-n Euler approximation yn is defined on {1, . . . , n}:

Proposition 3.9. Under Assumption 3.1, for a > 0 and b � 0, equation (3.14) admits a unique solution
(yn, n ∈ N

∗). Moreover,
∀n ∈ N

∗, ∀k = 0, . . . , n, yn
k > 0.

Proof. Let f be the function defined on R
∗
+ × R × R

∗
+ by:

∀A ∈ R, ∀x, B > 0, f (x, A, B) = x − Bx−γ − A.

On one hand, for every A ∈ R and B > 0, f(., A, B) ∈ C∞(R∗
+; R) and for every x > 0,

∂xf (x, A, B) = 1 + Bγx−(γ+1) > 0.

Then, f(., A, B) increase on R
∗
+. Moreover,

lim
x→0+

f (x, A, B) = −∞ and lim
x→∞ f (x, A, B) = ∞.

Therefore, since f is continuous on R
∗
+ × R × R

∗
+:

∀A ∈ R, ∀B > 0, ∃!x > 0 : f (x, A, B) = 0. (3.15)

On the other hand, for every n ∈ N
∗, equation (3.14) can be rewritten as follow:

f

[
yn

k+1, y
n
k + w̃tn

k+1
− w̃tn

k
,
a(1 − β)T

n
ebtn

k+1

]
= 0. (3.16)

In conclusion, by recurrence, equation (3.16) admits a unique strictly positive solution yn
k+1.

Necessarily, yn
k > 0 for k = 0, . . . , n.

That achieves the proof. �

For every n ∈ N
∗, consider the function yn : [0, T ] → R

∗
+ such that:

yn
t =

n−1∑
k=0

[
yn

k +
yn

k+1 − yn
k

tnk+1 − tnk
(t − tnk )

]
1[tn

k ,tn
k+1[

(t)

for every t ∈ [0, T ].
The following lemma provides an explicit upper-bound for (n, t) ∈ N

∗ × [0, T ] �→ yn
t . It is crucial in order to

prove probabilistic convergence results at Section 4.
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Lemma 3.10. Under Assumption 3.1, for a > 0 and b � 0:

sup
n∈N∗

‖yn‖∞;T � y0 + a(1 − β)ebT y−γ
0 T +

σ(b ∨ 2)(1 − β)(1 + T )eb(1−β)T‖w‖∞;T .

Proof. Similar to the proof of Proposition 3.4.
First of all, by applying (3.14) recursively between integers 0 � l < k � n and a change of variable:

yn
k − yn

l =
a(1 − β)T

n

k∑
i=l+1

(yn
i )−γ ebtn

i + w̃tn
k
− w̃tn

l
. (3.17)

Consider n ∈ N
∗ and

ky0 = max {k = 0, . . . , n : yn
k � y0} .

For each k = 1, . . . , n, we consider the two following cases:

(1) If k < ky0 , from equality (3.17):

yn
ky0

− yn
k =

a(1 − β)T
n

ky0∑
i=k+1

(yn
i )−γ ebtn

i + w̃tn
ky0

− w̃tn
k
.

Then,

yn
k +

a(1 − β)T
n

ky0∑
i=k+1

(yn
i )−γ ebtn

i = yn
ky0

+ w̃tn
k
− w̃tn

ky0
. (3.18)

Therefore, since each term of the sum in the left-hand side of equality (3.18) are positive from Proposition 3.9:

0 < yn
k � yn

k +
a(1 − β)T

n

ky0∑
i=k+1

(yn
i )−γ ebtn

i

� y0 + |w̃tn
k
− w̃tn

ky0
|

because yn
ky0
� y0.

(2) If k > ky0 ; by definition of ky0 , for i = ky0 + 1, . . . , k, yn
i > y0 and then, (yn

i )−γ � y−γ
0 . Therefore, from

equality (3.17):

y0 � yn
k = yn

ky0
+

a(1 − β)T
n

k∑
i=ky0+1

(yn
i )−γ ebtn

i + w̃tn
k
− w̃tn

ky0

� y0 + a(1 − β)ebT y−γ
0 T +

∣∣∣w̃tn
k
− w̃tn

ky0

∣∣∣ .
As at Proposition 3.4:

sup
t∈[0,T ]

yn
t � max

k=0,...,n
yn

k

� y0 + a(1 − β)ebT y−γ
0 T + σ(b ∨ 2)(1 − β)(1 + T )eb(1−β)T‖w‖∞;T . (3.19)

That achieves the proof because the right hand side of inequality (3.19) is not depending on n. �
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With ideas of Lejay ([13], Prop. 5), we show that (yn, n ∈ N
∗) converges and provide a rate of convergence:

Theorem 3.11. Under Assumptions 1.1 and 3.1, for a > 0 and b � 0; (yn, n ∈ N
∗) is uniformly converging

on [0, T ] to y, the solution of equation (3.2) with initial condition y0, with rate n−α min(1,γ).

Proof. It follows the same pattern that Proof of Proposition 5 from [13].
Consider n ∈ N

∗, t ∈ [0, T ] and y the solution of equation (3.2) with initial condition y0 > 0. Since (tnk ; k =
0, . . . , n) is a subdivision of [0, T ], there exists an integer 0 � k � n − 1 such that t ∈ [tnk , tnk+1[.

First of all, note that:
|yn

t − yt| � |yn
t − yn

k | + |yn
k − zn

k | + |zn
k − yt| (3.20)

where, zn
i = ytn

i
for i = 0, . . . , n. Since y is the solution of equation (3.2), zn

k and zn
k+1 satisfy:

zn
k+1 = zn

k +
a(1 − β)T

n
(zn

k+1)
−γebtn

k+1 + w̃tn
k+1

− w̃tn
k

+ εn
k

where,

εn
k = a(1 − β)

∫ tn
k+1

tn
k

(y−γ
s ebs − y−γ

tn
k+1

ebtn
k+1)ds.

In order to conclude, we have to show that |yn
k −zn

k | is bounded by a quantity not depending on k and converging
to 0 when n goes to infinity:

On one hand, for every (u, v) ∈ ΔT ,

∣∣ebvy−γ
v − ebuy−γ

u

∣∣ =
∣∣∣∣ebvyγ

u − ebuyγ
v

yγ
v yγ

u

∣∣∣∣
� 1

|yuyv|γ
(
ebv|yγ

u − yγ
v | + |yv|γ |ebu − ebv|)

� ebT ‖y−γ‖2
∞;T

(
‖y‖min(1,γ)

α-Höl;T |v − u|α min(1,γ) + b‖y‖γ
∞;T |v − u|

)
because s ∈ R+ �→ sγ is γ-Hölder continuous with constant 1 if γ ∈]0, 1] and locally Lipschitz continuous
otherwise, y is α-Hölder continuous and admits a strictly positive minimum on [0, T ], and s ∈ [0, T ] �→ ebs is
Lipschitz continuous with constant bebT . In particular, if |v − u| � 1,

∣∣ebvy−γ
v − ebuy−γ

u

∣∣ � ebT ‖y−γ‖2
∞;T

(
‖y‖μ

α-Höl;T + b‖y‖γ
∞;T

)
|v − u|αμ

where μ = min(1, γ).
Then, for i = 0, . . . , k,

|εn
i | � a(1 − β)

∫ tn
i+1

tn
i

|y−γ
s ebs − y−γ

tn
i+1

ebtn
i+1 |ds

� a(1 − β)
∥∥eb.y−γ

∥∥
αμ-Höl;T

∫ tn
i+1

tn
i

(tni+1 − s)αμds

� a(1 − β)
αμ + 1

T αμ+1
∥∥eb.y−γ

∥∥
αμ-Höl;T

1
nαμ+1

· (3.21)

On the other hand, for each integer i between 0 and k−1, we consider the two following cases (which are almost
symmetric):
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(1) Suppose that yn
i+1 � zn

i+1. Then, (
yn

i+1

)−γ − (zn
i+1

)−γ � 0.

Therefore,

|yn
i+1 − zn

i+1| = yn
i+1 − zn

i+1

= yn
i − zn

i +
a(1 − β)T

n
ebtn

i+1
[
(yn

i+1)
−γ − (zn

i+1)
−γ
]− εn

i

� |yn
i − zn

i | + |εn
i |.

(2) Suppose that zn
i+1 > yn

i+1. Then, (
zn

i+1

)−γ − (yn
i+1

)−γ
< 0.

Therefore,

|zn
i+1 − yn

i+1| = zn
i+1 − yn

i+1

= zn
i − yn

i +
a(1 − β)T

n
ebtn

i+1
[
(zn

i+1)
−γ − (yn

i+1)
−γ
]
+ εn

i

� |yn
i − zn

i | + |εn
i |.

By putting these cases together:

∀i = 0, . . . , k − 1, |zn
i+1 − yn

i+1| � |zn
i − yn

i | + |εn
i |. (3.22)

By applying (3.22) recursively from k − 1 down to 0:

|yn
k − zn

k | � |y0 − z0| +
k−1∑
i=0

|εn
i |

� a(1 − β)
αμ + 1

T αμ+1
∥∥eb.y−γ

∥∥
αμ-Höl;T

1
nαμ

−−−−→
n→∞ 0 (3.23)

because y0 = z0 and by inequality (3.21).
Moreover, from inequality (3.23), there exists N ∈ N

∗ such that for every integer n > N ,

|yn
k+1 − zn

k+1| � max
i=1,...,n

|yn
i − zn

i | � my

where,

my =
1
2

min
s∈[0,T ]

ys.

In particular,
yn

k+1 � zn
k+1 − my � my.

Then (yn
k+1)

−γ � m−γ
y , and

|yn
t − yn

k | = |yn
k+1 − yn

k |
t − tnk

tnk+1 − tnk

�
[
a(1 − β)T ebT m−γ

y + T α‖w̃‖α-Höl;T

] 1
nα

−−−−→
n→∞ 0.



816 N. MARIE

In conclusion, from inequality (3.20):

|yn
t − yt| �

[
a(1 − β)T ebT m−γ

y + T α‖w̃‖α-Höl;T + ‖y‖α-Höl;T

] 1
nα

(3.24)

+
a(1 − β)
αμ + 1

T αμ+1
∥∥eb.y−γ

∥∥
αμ-Höl;T

1
nαμ

−−−−→
n→∞ 0.

That achieves the proof because the right hand side of inequality (3.24) is not depending on k and t. �

Finally, for every n ∈ N
∗ and t ∈ [0, T ], consider xn

t = e−bt(yn
t )γ+1.

The following corollary shows that (xn, n ∈ N
∗) is a converging approximation for x = π̃(0, x0; w) with

x0 > 0. Moreover, as the Euler approximation, it is just necessary to know x0, w and, parameters a, b, σ and
β > 1 − α to approximate the whole path x by xn:

Corollary 3.12. Under Assumptions 1.1 and 3.1, for a > 0 and b � 0, (xn, n ∈ N
∗) is uniformly converging

on [0, T ] to x with rate n−α min(1,γ).

Proof. For a given initial condition x0 > 0, it has been shown that x = e−b.yγ+1 is the solution of equation (3.1)
by putting y0 = x1−β

0 , where y is the solution of equation (3.2) with initial condition y0.
From Theorem 3.11:

‖x − xn‖∞;T � C‖y − yn‖∞;T

� C
[
a(1 − β)T ebT m−γ

y + T α‖w̃‖α-Höl;T + ‖y‖α-Höl;T

] 1
nα

+ C
a(1 − β)
αμ + 1

T αμ+1
∥∥eb.y−γ

∥∥
αμ-Höl;T

1
nαμ

−−−−→
n→∞ 0

where, C is the Lipschitz constant of s �→ sγ+1 on[
0, ‖y‖∞;T + sup

n∈N∗
‖yn‖∞;T

]
.

Then, (xn, n ∈ N
∗) is uniformly converging to x with rate n−α min(1,γ). �

Remark. When α > 1/2; β > 1 − α > 1/2 and then γ > 1. Therefore, (xn, n ∈ N
∗) is uniformly converging

with rate n−α < n1−2α. In other words, the approximation of Corollary 3.12 converges faster than the classic
Euler approximation for equations satisfying assumptions of Propositions 5 from [13]. It is related to the specific
form of the vector field V .

4. Probabilistic properties of the generalized mean-reverting equation

Consider the Gaussian process W and the probability space (Ω,A, P) introduced at Section 2. Under
Assumption 2.8, almost every paths of W are satisfying Assumption 3.1. Then, under Assumptions 1.1 and 2.8,
results of Section 3 hold true for π̃V (0, x0; W ), with deterministic initial condition x0 > 0.

This section is essentially devoted to complete them on probabilistic side. In particular, we prove that
π̃V (0, x0; W ) belongs to Lp(Ω) for every p � 1. We also show that the approximation introduced at Section 3
for π̃V (0, x0; W ) is converging in Lp(Ω) for every p � 1.

Remark. Since W is a 1-dimensional process, as mentioned at Section 2, there exists an explicit geometric
1/α-rough path W over it, matching with the enhanced Gaussian process provided by Friz and Victoir at [8],
Theorem 15.33. That explains why Assumption 2.8 is sufficient to extend deterministic results of Section 3 to
π̃V (0, x0; W ).
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4.1. Extension of existence results and properties of the solution’s distribution

On one hand, when β �∈]1 − α, 1], Proposition 4.1 extend Remark (2) of Proposition 3.3 on probabilistic
side. On the other hand, we study properties of the distribution of X = π̃V (0, x0; W ) defined on R+, when
W = (Wt, t ∈ R+) is a 1-dimensional Gaussian process with locally α-Hölder continuous paths, stationary
increments and satisfies a self-similar property.

Proposition 4.1. Consider a > 0, b � 0, α ∈]0, 1[, a process W satisfying Assumption 2.8, x0 > 0, y0 = x1−β
0 ,

σ2 = sup
t∈[0,T ]

E

(
W̃ 2

t

)

and
A = {π̃V (0, x0; W ) is defined on [0, T ]} .

If 2σ2 ln(2) < y2
0, then P(A) > 0.

Proof. On one hand, by Remark (2) of Proposition 3.3:

A ⊃
{

inf
t∈[0,T ]

W̃t > −y0

}

=

{
sup

t∈[0,T ]

−W̃t < y0

}
.

On the other hand, since −W̃ is a 1-dimensional centered Gaussian process with continuous paths by construc-
tion, by Borell’s inequality (cf. [1], Thm. 2.1):

P

(
sup

t∈[0,T ]

−W̃t > y0

)
� 2 exp

(
− y2

0

2σ2

)

with σ2 < ∞. Therefore,

P(A) � 1 − P

(
sup

t∈[0,T ]

−W̃t > y0

)

� 1 − 2 exp
(
− y2

0

2σ2

)
> 0. �

Proposition 4.2. Assume that W = (Wt, t ∈ R+) is a 1-dimensional centered Gaussian process with locally
α-Hölder continuous paths, and there exists h > 0 such that:

W.+h − Wh
D= W.

Under Assumption 1.1, for a > 0 and b � 0, with any deterministic initial condition x0 > 0:

π̃V ;0,t+h(0, x0; W ) D= π̃V ;0,t(0, Xh; W )

for every t ∈ R+.

Proof. By Proposition 3.3, X has almost surely continuous and strictly positive paths on R+. Then, by
Theorem 2.7 applied to almost every paths of X and to the map u �→ u1−β between 0 and t ∈ R+:

X1−β
t = x1−β

0 + (1 − β)
∫ t

0

X−β
u (a − bXu)du + σ(1 − β)Wt.
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Therefore, X1−β
.+h

D= Z(h) where,

Zt(h) = X1−β
h + (1 − β)

∫ t

0

Z−γ
u (h)

[
a − bZγ+1

u (h)
]
du + σ(1 − β)Wt; t ∈ R+

because W.+h − Wh
D= W .

In conclusion, by applying Theorem 2.7 to almost every paths of Z(h) and to the map u �→ uγ+1:

Xt+h − Xh
D=
∫ t

0

(a − bXu+h) du + σ

∫ t

0

Xβ
u+hdWu

for every t ∈ R+. �

Proposition 4.3. Assume that W = (Wt, t ∈ R+) is a 1-dimensional centered Gaussian process with locally
α-Hölder continuous paths, and there exists h > 0 such that:

∀ε > 0, Wε.
D= εhW.

Under Assumption 1.1, for a > 0 and b � 0, with any deterministic initial condition x0 > 0:

π̃V ;0,εt (0, x0; W ) D= π̃Vε,h;0,t (0, x0; W )

for every t ∈ R+ and ε > 0, with:

∀x ∈ R+, ∀t, w ∈ R, Vε,h(x).(t, w) = ε(a − bx)t + σεhxβw.

Proof. By Proposition 3.3, X has almost surely continuous and strictly positive paths on R+. Then, by
Theorem 2.7 applied to almost every paths of X and to the map u �→ u1−β between 0 and t ∈ R+:

X1−β
t = x1−β

0 + (1 − β)
∫ t

0

X−β
u (a − bXu)du + σ(1 − β)Wt.

Therefore, for every ε > 0, X1−β
ε.

D= Z(ε) where,

Zt(ε) = x1−β
0 + ε(1 − β)

∫ t

0

Z−γ
u (ε)

[
a − bZγ+1

u (ε)
]
du + εhσ(1 − β)Wt; t ∈ R+

because Wε.
D= εhW .

In conclusion, by applying Theorem 2.7 to almost every paths of Z(ε) and to the map u �→ uγ+1:

Xεt
D= x0 + ε

∫ t

0

(a − bXεu) du + σεh

∫ t

0

Xβ
εudWu

for every t ∈ R+ and ε > 0. �

Remark. Typically, mean-reverting equations driven by a fractional Brownian motion are concerned by Propo-
sitions 4.2 and 4.3.

Proposition 4.4. Consider a > 0, b � 0 and a 1-dimensional fractional Brownian motion (BH
t , t ∈ R+) with

Hurst parameter H ∈]0, 1[. Under Assumption 1.1, for every ε > 0 (x0 > 0):

τ4
ε = inf

{
t � 0 : π̃V (0, x0; BH)t = ε

}
< ∞ P-p.s.
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Proof. Consider ε > 0 and
τ5
ε = inf {t � 0 : Zt = ε}

where, Z = π̃1−β
V (0, x0; BH).

Case 1. (ε � x1−β
0 ). On one hand, since τ5

ε = ∞ if and only if Zt > ε for every t ∈ R+, and

Zt = Z0 + (1 − β)
∫ t

0

(aZ−γ
s − bZs)ds + σ(1 − β)BH

t ,

then τ5
ε = ∞ implies that:

∀t ∈ R+, BH
t �

(1 − β)(bε − ε−γa)t + ε − Z0

σ(1 − β)
·

Therefore,

P(τ5
ε = ∞) � P

[
∀t ∈ R+, BH

t �
(1 − β)(bε − ε−γa)t + ε − Z0

σ(1 − β)

]

� P

[
BH

t �
(1 − β)(bε − ε−γa)t + ε − Z0

σ(1 − β)

]

for every t ∈ R+.
On the other hand, since BH

t � N (0, t2H):

P

[
BH

t �
(1 − β)(bε − ε−γa)t + ε − Z0

σ2(1 − β)2

]
=

1
tH

√
2π

∫ ∞

0

ϕ(ξ, t)dξ

with

ϕ(ξ, t) = exp

[
− [ξ + (1 − β)(bε − ε−γa)t + ε − Z0]

2

σ2(1 − β)2t2H

]
·

For every ξ ∈ R and every ε > 0,

lim
t→∞ϕ(ξ, t) = lim

t→∞ exp

[
− [ξ + (1 − β)(bε − ε−γa)]2

σ2(1 − β)2
t2(1−H)

]
= 0,

and t ∈ R
∗
+ �→ ϕ(ξ, t) is a continuous, decreasing map. Then, for every t � 1,

|ϕ(ξ, t)| � |ϕ(ξ, 1)| ∼ξ→∞ exp
[
− ξ2

σ2(1 − β)2

]
∈ L1(R; dξ).

Therefore, by Lebesgue’s theorem:

lim
t→∞ P

[
BH

t �
(1 − β)(bε − ε−γa)t + ε − Z0

σ(1 − β)

]
= 0,

and for every ε ∈]0, x1−β
0 ], τ5

ε < ∞ almost surely.
Case 2. (ε > x1−β

0 ). In that case, τ5
ε = ∞ if and only if, 0 < Zt < ε for every t ∈ R+. Then, with ideas of the

first case:

P(τ5
ε = ∞) � P

[
BH

t �
(1 − β)(bε − ε−γa)t + ε − Z0

σ(1 − β)

]

� 1
tH

√
2π

∫ 0

−∞
ϕ(ξ, t)dξ
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for every t ∈ R+.
Moreover, results on ϕ have been established for every ξ ∈ R and every ε > 0 at Case 1 then, by Lebesgue’s

theorem:

lim
t→∞ P

[
BH

t �
(1 − β)(bε − ε−γa)t + ε − Z0

σ(1 − β)

]
= 0,

and for every ε > x1−β
0 , τ5

ε < ∞ almost surely.
In conclusion, since τ4

ε = τ5
ε1−β by Lemma 3.2, for every ε > 0, τ4

ε < ∞ almost surely. �

4.2. Integrability and convergence results

Consider the implicit Euler approximation (Y n, n ∈ N
∗) for the following SDE:

Yt = y0 + a(1 − β)
∫ t

0

Y −γ
s ebsds + W̃t; t ∈ [0, T ], y0 > 0

where,

W̃t =
∫ t

0

ϑsdWs and ϑt = σ(1 − β)eb(1−β)t

for every t ∈ [0, T ].

Proposition 4.5. Under Assumptions 1.1 and 2.8, for a > 0 and b � 0, with any deterministic initial condition
x0 > 0:

(1) ‖π̃V (0, x0; W )‖∞;T belongs to Lp(Ω) for every p � 1.
(2) For every p � 1,

sup
n∈N∗

‖Xn‖∞;T ∈ Lp(Ω)

where, for every n ∈ N
∗, Xn = e−b.(Y n)γ+1 with y0 = x1−β

0 .

Proof. On one hand, by Proposition 3.4 and Fernique’s theorem:

‖π̃V (0, x0; W )‖∞;T �
[
x1−β

0 + a(1 − β)ebT x−β
0 T+

σ(b ∨ 2)(1 − β)(1 + T )eb(1−β)T‖W‖∞;T

]γ+1

∈ Lp(Ω)

for every p � 1.
On the other hand, by Lemma 3.10 and Fernique’s theorem:

sup
n∈N∗

‖Y n‖∞;T � y0 + a(1 − β)ebT y−γ
0 T +

σ(b ∨ 2)(1 − β)(1 + T )eb(1−β)T‖W‖∞;T ∈ Lq(Ω)

for every q � 1. Then, by putting q = (γ + 1)p for every p � 1,

sup
n∈N∗

‖Xn‖∞;T ∈ Lp(Ω). �

Corollary 4.6. Under Assumptions 1.1 and 2.8, for a > 0 and b � 0, with any deterministic initial condition
x0 > 0, (Xn, n ∈ N

∗) is uniformly converging on [0, T ] to π̃V (0, x0; w) in Lp(Ω) for every p � 1.
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Proof. By Corollary 3.12:
‖Xn − π̃V (0, x0; W )‖∞;T

P-a.s.−−−−→
n→∞ 0.

Then, by Proposition 4.5 and Vitali’s convergence theorem, (Xn, n ∈ N
∗) is uniformly converging to π̃V (0, x0; W )

in Lp(Ω) for every p � 1. �

Remark. Note that Proposition 4.5 is crucial to ensure this convergence in Lp(Ω) for every p � 1. Indeed,
inequality (3.24) doesn’t allow to conclude because it is not sure that ‖eb.Y −γ‖αμ-Höl;T ∈ L1(Ω).

4.3. A large deviation principle for the generalized M-R equation

We establish a large deviation principle for the generalized mean-reverting equation (as Friz and Victoir
at [8], Sect. 19.4).
First of all, let’s remind basics on large deviations (for details, the reader can refer to [3]).
Throughout this subsection, assume that inf(∅) = ∞.

Definition 4.7. Let E be a topological space and let I : E → [0,∞] be a good rate function (i.e. a lower
semicontinuous map such that {x ∈ E : I(x) � λ} is a compact subset of E for every λ � 0).

A family (με, ε > 0) of probability measures on (E,B(E)) satisfies a large deviation principle with good rate
function I if and only if, for every A ∈ B(E),

−I(A◦) � limε→0ε log [με(A)] � limε→0ε log [με(A)] � −I(Ā)

where,
∀A ∈ B(E), I(A) = inf

x∈A
I(x).

Proposition 4.8. Consider E and F two Hausdorff topological spaces, a continuous map f : E → F and a
family (με, ε > 0) of probability measures on (E,B(E)).

If (με, ε > 0) satisfies a large deviation principle with good rate function I : E → [0,∞], then (με ◦f−1, ε > 0)
satisfies a large deviation principle on (F,B(F )) with good rate function J : F → [0,∞] such that:

J(y) = inf {I(x); x ∈ E and f(x) = y}
for every y ∈ F .

That result is called contraction principle. The reader can refer to [3], Lemma 4.1.6 for a proof.
Consider the space C0,α([0, T ]; R) of functions ϕ ∈ Cα-Höl([0, T ]; R) such that:

lim
δ→0+

ωϕ(δ) = 0 with ωϕ(δ) = sup
(s, t) ∈ ΔT|t − s| � δ

|ϕ(t) − ϕ(s)|
|t − s|α

for every δ > 0.
In the sequel, C0,α([0, T ]; R) is equipped with ‖.‖α-Höl;T and the Borel σ-field generated by open sets of the

α-Hölder topology. The same way, C0([0, T ]; R) is equipped with ‖.‖∞;T and the Borel σ-field generated by open
sets of the uniform topology.

Now, suppose that W satisfies:

Assumption 4.9. There exists h > 0 such that:

∀ε > 0, Wε.
D= εhW.

Moreover, H1
W ⊂ C0,α([0, T ]; R) and (C0,α([0, T ]; R),H1

W , P) is an abstract Wiener space.
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Remark.
(1) The notion of abstract Wiener space is defined and detailed in Ledoux [12].
(2) Typically, the fractional Brownian motion with Hurst parameter H > 1/4 satisfies Assumption 4.9 (cf. [22],

Prop. 4.1).

Consider the stochastic differential equation:

Xt = x0 +
1
δ

∫ t

0

(a − bXs) ds +
σ

δh−1

∫ t

0

Xβ
s dWs; t ∈ [0, T ] (4.1)

where, x0 > 0 is a deterministic initial condition, a, b, σ, δ > 0 and β ∈]0, 1] satisfies Assumption 1.1.
Under Assumptions 1.1 and 2.8, by Propositions 3.3 and 4.5, equation (4.1) admits a unique solution belonging

to Lp(Ω) for every p � 1.
Moreover, under Assumption 4.9, by Proposition 4.3:

Xεt = x0 +
ε

δ

∫ t

0

(a − bXεs) ds +
σεh

δh−1

∫ t

0

Xβ
εsdWs (4.2)

for every t ∈ [0, T ] and ε > 0.
In the sequel, assume that δ = ε. Then, Xε. satisfies:

Xε. = π̃V (0, x0; εW )

where, V is the map defined on R+ by:

∀x ∈ R+, ∀t, w ∈ R, V (x).(t, w) = (a − bx)t + σxβw.

Let show that (Xε., ε > 0) satisfies a large deviation principle:

Proposition 4.10. Consider x0 > 0. Under Assumptions 1.1, 2.8 and 4.9, for a > 0 and b � 0, (Xε., ε > 0)
satisfies a large deviation principle on C0([0, T ]; R) with good rate function J : C0([0, T ]; R) → [0,∞] defined
by:

∀y ∈ C0([0, T ]; R), J(y) = inf
{
I(w); w ∈ C0,α([0, T ]; R) and y = π̃V (0, x0; w)

}
where,

I(w) =
{

1
2‖w‖H1

W
if w ∈ H1

W

∞ if w �∈ H1
W

for every w ∈ C0,α([0, T ]; R).

Proof. Since C0,α([0, T ]; R) ⊂ Cα-Höl([0, T ]; R) by construction, Proposition 3.5 implies that π̃V (0, x0; .) is con-
tinuous from

C0,α([0, T ]; R) into C0([0, T ]; R).

On the other hand, under Assumption 4.9, by Ledoux ([12], Thm. 4.5); (εW, ε > 0) satisfies a large deviation
principle on C0,α([0, T ]; R) with good rate function I.

Therefore, since Xε. = π̃V (0, x0; εW ) for every ε > 0, by the contraction principle (Prop. 4.8), (Xε., ε > 0)
satisfies a large deviation principle on C0([0, T ]; R) with good rate function J . �
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4.4. Density with respect to Lebesgue’s measure for the solution

Via Bouleau−Hirsch’s method, this subsection is devoted to show that π̃V (0, x0; W )t admits a density with
respect to Lebesgue’s measure on (R,B(R)) for every t ∈]0, T ] and every x0 > 0.

Notation. For two normed vector spaces E and F , the embedment of E in F is denoted by E ↪→ F .

Throughout this subsection, assume that W satisfies:

Assumption 4.11. Cameron−Martin’s space of W satisfies:

C∞
0 ([0, T ]; R) ⊂ H1

W ↪→ Cα-Höl([0, T ]; R).

Example. A fractional Brownian motion with Hurst parameter H > 1/4 satisfies Assumption 4.11.

Proposition 4.12. Under Assumptions 1.1, 2.8 and 4.11, for a > 0, b � 0 and any t ∈]0, T ], π̃V (0, x0; W )t

admits a density with respect to Lebesgue’s measure on (R,B(R)).

Proof. With notations of Proposition 3.8, by Proposition 2.9 and the transfer theorem, it is sufficient to show
that ω ∈ Ω �→ zt[z0, W (ω)] satisfies Bouleau−Hirsch’s condition for any t ∈]0, T ].

On one hand, by Proposition 3.8 (cf. Proof), z(z0, .) is continuously differentiable from Cα-Höl([0, T ]; R) into
C0([0, T ]; R). Then, z(z0, .) is continuously differentiable on

H1
W ↪→ Cα-Höl([0, T ]; R) ⊂ C0([0, T ]; R).

By Friz and Victoir ([8], Lem. 15.58), for almost every ω ∈ Ω,

∀h ∈ H1
W , W (ω + h) = W (ω) + h.

Therefore, almost surely:
z [x0; W (. + h)] = z [x0; W (.) + h] ,

and z(x0, W ) is continuously H1
W -differentiable.

On the other hand, by Proposition 3.8, for every h ∈ H1
W ,

Dhzt(z0, W ) = σ(1 − β)ht +
∫ t

0

Ḟ [zs(z0, W )] Dhzs(z0, W )ds

= σ(1 − β)
∫ t

0

hs exp
[∫ t

s

Ḟ [zu(z0, W )] du

]
ds.

In particular, Dhzt(z0, W ) > 0 for h := Id[0,T ] ∈ H1
W .

In conclusion, by Proposition 2.9, for every t ∈]0, T ], zt(z0, W ) and then π̃V (0, x0; W )t, admit a density with
respect to Lebesgue’s measure on (R,B(R)) respectively. �

5. A generalized mean-reverting pharmacokinetic model

We study a pharmacokinetic model based on a particular generalized mean-reverting equation (inspired by
K. Kalogeropoulos et al. [11]).

In order to study the absorption/elimination processes of a given drug, the following deterministic mono-
compartment model is classically used:

Ct =
∫ t

0

(
A0Ka

v
e−Kas − KeCs

)
ds; t ∈ [0, T ] (5.1)
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where:

• A0 > 0 is the dose administered to the patient at initial time.
• v > 0 is the volume of the elimination compartment E (extra-vascular tissues).
• Ka � 0 is the rate of absorption in compartment A. If the drug is administered by rapid injection, an IV

bolus injection, it is natural to take Ka = 0.
• Ke > 0 is the rate of elimination in compartment E, describing removal of the drug by all elimination

processes including excretion and metabolism.
• Ct is the concentration of the drug in compartment E at time t ∈ [0, T ].

Remark. About deterministic pharmacokinetic models, the reader can refer to Jacomet [9] and Simon [23].
Recently, in order to modelize perturbations during the elimination processes, stochastic generalizations

of (5.1) has been studied:

Ct =
∫ t

0

(
A0Ka

v
e−Kas − KeCs

)
ds +

∫ t

0

σ (s, Cs) dBs; t ∈ [0, T ]

where, B is a standard Brownian motion and the stochastic integral is taken in the sense of Itô. For example,
in Kalogeropoulos et al. [11]:

Ct =
∫ t

0

(
A0Ka

v
e−Kas − KeCs

)
ds + σ

∫ t

0

Cβ
s dBs; t ∈ [0, T ]

with σ > 0 and β ∈ [0, 1].
However, these models are not realistic (cf. Delattre and Lavielle [4]), because the obtained process C is too

rough.
Since probabilistic properties of Itô’s integral aren’t particularly interesting in that situation, if the drug is

administered by rapid injection, C could be the solution of equation (1.1) with C0 = A0/v, a = 0 and b = Ke.
In order to bypass the difficulty of the standard Brownian motion’s paths roughness, one can take a Gaussian

process W satisfying Assumption 2.8 with α close to 1. Typically, a fractional Brownian motion BH with a high
Hurst parameter H (cf. simulations below).

Precisely:

Ct =
A0

v
− Ke

∫ t

0

Csds + σ

∫ t

0

Cβ
s dWs (5.2)

where the stochastic integral is taken pathwise, in the sense of Young. Moreover, since a = 0, we shown at
Section 3 that until it hits zero, the solution of equation (5.2) is matching with the process X defined by:

∀t ∈ R+, Xt =

∣∣∣∣∣
(

A0

v

)1−β

+ W̃t

∣∣∣∣∣
γ+1

e−Ket with W̃t = σ(1 − β)
∫ t

0

eKe(1−β)sdWs.

It is natural to assume that when the concentration hits 0, the elimination process stops. Then, we put C =
X1[0,τ1

0∧T [ where T > 0 is a deterministic fixed time.
For example, let simulate that model with A0 = v, Ke = 4, σ = 1, β = 0.8 and a fractional Brownian motion

BH with Hurst parameter H ∈ {0.6, 0.9}:
On one hand, remark that the stochastic model (black) keeps the trend of the deterministic model (red).

On the other hand, remark that when the Hurst parameter is relatively close to 1 (H = 0.9), perturbations in
biological processes are taken in account by C, but more realistically than for H = 0.6.

In the sequel, we also consider the process Z = X1−β. Its covariance function is denoted by cZ .
For clinical applications, parameters Ke, σ and β have to be estimated. Consider a dissection (t0, . . . , tn)

of [0, T ] for n ∈ N
∗. We also put xi = Xti and zi = Zti for i = 0, . . . , n. The following proposition provides

the likelihood function of (x1, . . . , xn) which can be approximatively maximized with respect to the parameter
θ = (Ke, σ, β) by various numerical methods (not studied in this paper).



A GENERALIZED MEAN-REVERTING EQUATION AND APPLICATIONS 825

M- R model
Determinist ic model

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

M- R model v.s. determinist ic model, H =  0.9

M- R model
Determinist ic model

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

M- R model v.s. determinist ic model, H =  0.6

Figure 1. GM-R model vs. deterministic model currently used.

Proposition 5.1. Under Assumptions 1.1 and 2.8, the likelihood function of (x1, . . . , xn) is given by:

L(θ; x1, . . . , xn) =
2n(1 − β)n1x1>0,...,xn>0

(2π)n/2
√|det [Γ (θ)]| exp

[
−1

2
〈Γ−1(θ)Ux

n , Ux
n〉
] n∏

i=1

x−β
i

where, σ2(θ) = Var(z1, . . . , zn),

Γ (θ) =

⎡
⎢⎣

σ2
1(θ) . . . cZ(t1, tn)
...

. . .
...

cZ(tn, t1) . . . σ2
n(θ)

⎤
⎥⎦ and Ux

n =

⎛
⎜⎝

x1−β
1 − C1−β

0 e−Ke(1−β)t1

...
x1−β

n − C1−β
0 e−Ke(1−β)tn

⎞
⎟⎠ .

Proof. Since W̃ is a centered Gaussian process as a Wiener integral against W ; (z1, . . . , zn) is a centered Gaussian
vector with covariance matrix Γ (θ). We denote by f1,...,n(θ; .) the natural density of (z1, . . . , zn) with respect
to Lebesgue’s measure on (Rn,B(Rn)).

Consider an arbitrary Borel bounded map ϕ : R
n → R. By the transfer theorem:

E [ϕ(x1, . . . , xn)] = E
[
ϕ(|z1|γ+1, . . . , |zγ+1

n |)]
= 2n

∫
Rn

+

ϕ(aγ+1
1 , . . . , aγ+1

n )f1,...,n(θ; a1, . . . , an)da1 . . . dan

by reduction to canonical form of quadratic forms.
Put ui = aγ+1

i for ai ∈ R
∗
+ and i = 1, . . . , n. Then,

(a1, . . . , an) =
(

u
1

γ+1
1 , . . . , u

1
γ+1
n

)
and |J(u1, . . . , un)| =

1
(γ + 1)n

n∏
i=1

u
− γ

γ+1
i
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where, J(u1, . . . , un) denotes the Jacobian of:

(u1, . . . , un) ∈ (R∗
+)n �−→

(
u

1
γ+1
1 , . . . , u

1
γ+1
n

)
.

By applying that change of variable:

E[ϕ(x1, . . . , xn)] =
2n

(γ + 1)n

∫
Rn

+

du1 . . . dunϕ(u1, . . . , un)

×f1,...,n

(
θ; u

1
γ+1
1 , . . . , u

1
γ+1
n

) n∏
i=1

u
− γ

γ+1
i .

Therefore, P(x1,...,xn)(θ; du1, . . . , dun) = L(θ; u1, . . . , un)du1 . . . dun with:

L(θ; u1, . . . , un) =
2n

(γ + 1)n
f1,...,n

(
θ; u

1
γ+1
1 , . . . , u

1
γ+1
n

) n∏
i=1

u
− γ

γ+1
i 1u1>0,...,un>0

=
2n(1 − β)n1u1>0,...,un>0

(2π)n/2
√|det [Γ (θ)]| exp

[
−1

2
〈Γ−1(θ)Uu

n , Uu
n 〉
] n∏

i=1

u−β
i . �

Finally, consider a random time τ ∈ [0, τ1
0 ∧ T ] and a deterministic function F : R+ → R satisfying the

following assumption:

Assumption 5.2. The function F belongs to C1(R+; R) and there exists (K, N) ∈ R
∗
+ × N

∗ such that:

∀r ∈ R+, |F (r)| � K(1 + r)N and |Ḟ (r)| � K(1 + r)N .

Let show the existence and compute the sensitivity of fτ (x) = E[F (Cx
τ )] to variations of the initial concen-

tration x > 0 in compartment E.

Proposition 5.3. Under Assumptions 1.1, 2.8 and 5.2, the function fτ is differentiable on R
∗
+ and,

∀x > 0, ḟτ (x) = x−β
E

[
e−Keτ Ḟ (Cx

τ )(x1−β + W̃τ )γ
]
.

Proof. First of all, the function x ∈ R
∗
+ �→ Cx

τ is almost surely C1 on R
∗
+ and,

∀x > 0, ∂xCx
τ = x−β

(
x1−β + W̃τ

)γ

e−Keτ .

Consider x > 0 and ε ∈]0, 1].
On one hand, since F belongs to C1(R+; R), from Taylor’s formula:∣∣∣∣F (Cx+ε

τ ) − F (Cx
τ )

ε

∣∣∣∣ =
∣∣∣∣
∫ 1

0

Ḟ (Cx+θε
τ )∂xCx+θε

τ dθ

∣∣∣∣
� sup

θ∈[0,1]

K(1 + ‖Cx+θε‖∞;T )N |∂xCx+θε
τ |

by Assumption 5.2.
On the other hand, since θ, ε ∈ [0, 1]:

‖Cx+θε‖∞;T �
[
(x + 1)1−β + ‖W̃‖∞;T

]γ+1

(5.3)
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and
|∂xCx+θε

τ | � x−β
[
(x + 1)1−β + ‖W̃‖∞;T

]γ
. (5.4)

By Fernique’s theorem, the right hand sides of inequalities (5.3) and (5.4) belong to Lp(Ω) for every p > 0.
Moreover, these upper-bounds are not depending on θ and ε.

Therefore, by Lebesgue’s theorem, fτ is derivable at point x and,

ḟτ (x) = x−β
E

[
e−Keτ Ḟ (Cx

τ )(x1−β + W̃τ )γ
]
. �

There is probably many ways to use that result in medical treatments. For example, assume that fτ (x)
modelize a part of patient’s therapeutic response to the administered drug. Proposition 5.3 provides a way to
minimize the initial dose for an optimal response.

Remarks.

(1) By the strong law of large numbers, there exists an almost surely converging estimator for that sensitivity.
(2) For any x > 0, one can show the existence of a stochastic process hx defined on [0, T ] such that ḟτ (x) =
E[F (Cx

τ )δ(hx)] where, δ denotes the divergence operator associated to the Gaussian process W . Then, F has
not to be derivable anymore by assuming that F ∈ L2(R∗

+). It is particularly useful if F is not continuous at
some points.

We don’t develop it in that paper because the Malliavin calculus framework has to be introduced before. To
understand that idea, please refer to Fournié et al. [7] in Brownian motion’s case and Marie [18].

Acknowledgements. Many thanks to my Ph.D. supervisor Laure Coutin for her precious help and advices. This work was
supported by A.N.R. Masterie.
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