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EXACT SIMULATION FOR SOLUTIONS OF ONE-DIMENSIONAL
STOCHASTIC DIFFERENTIAL EQUATIONS WITH DISCONTINUOUS DRIFT

Pierre Étoré
1

and Miguel Martinez
2

Abstract. In this note we propose an exact simulation algorithm for the solution of

dXt = dWt + b̄(Xt)dt, X0 = x, (1)

where b̄ is a smooth real function except at point 0 where b̄(0+) �= b̄(0−). The main idea is to sample
an exact skeleton of X using an algorithm deduced from the convergence of the solutions of the skew
perturbed equation

dXβ
t = dWt + b̄(Xβ

t )dt + βdL0
t (X

β), X0 = x (2)

towards X solution of (1) as β �= 0 tends to 0. In this note, we show that this convergence induces the
convergence of exact simulation algorithms proposed by the authors in [Pierre Étoré and Miguel Mar-
tinez. Monte Carlo Methods Appl. 19 (2013) 41–71] for the solutions of (2) towards a limit algorithm.
Thanks to stability properties of the rejection procedures involved as β tends to 0, we prove that this
limit algorithm is an exact simulation algorithm for the solution of the limit equation (1). Numerical
examples are shown to illustrate the performance of this exact simulation algorithm.
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1. Introduction

1.1. Motivations and exposition of the problem

Exact simulation methods for trajectories of one-dimensional SDEs has been a subject of much interest in the
last years: see for example [3, 4, 6, 12, 14]. Unlike the classical simulation methods, which all involve some kind
of discretization error (see for example [1] for the Euler Scheme), the exact simulation methods are constructed
in such a way that they do not present any discretization error (under the strong hypothesis that the diffusion
coefficient is constant and equal to one). In the last years, the original method presented in the fundamental
article [3] has been extended to overcome various limitations of the initial algorithm; it has been generalized to
include the cases of unbounded drifts [4, 5] and extended to various ‘non classical’ type of SDE [7].
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In this paper, we present an attempt for the adaptation of the exact simulation methods of [3] to one-
dimensional SDEs that possess a discontinuous drift at point 0. Namely, our object of study is (Xt)t≥0 solution of

dXt = Wt + b̄(Xt)dt, X0 = x, (1.1)

where b̄ is a smooth real function except possibly at point 0 where b̄(0+) �= b̄(0−).
The simplest case of a process solution of an equation of type (1.1) is surely the so-called ‘Brownian motion

with two valued drift’ solution of

dXt = Wt + (θ0�Xt>0 + θ1�Xt<0) dt, X0 = x, (1.2)

where (θ0, θ1) ∈ R2. For a general reference concerning these types of motions, we refer to [10] or [9]. These
motions appear in stochastic control problems (see for example [2, 9]) and also theoretical studies concerning
representations of reflected Brownian motion with drift (see [8] in the case θ0 = −θ1). Even though there exist
explicit representation formulae for the densities of such Brownian motions with two valued drift in terms of
combination of convolution integrals (see [10], pp. 440–441), up to our knowledge there is no exact numerical
simulation algorithm for such motions available in the literature. The algorithm presented in this paper gives
an answer to this question.

1.2. Main ideas of the paper

In [7], the authors manage to adapt the exact simulation methods of [3] to the case of one-dimensional SDEs
that possess an additional term involving the local time of the unknown process at point 0. Namely, the exact
simulation methods of [3] are modified in [7] to include the case where (Xβ

t )t≥0 is the solution of

dXβ
t = Wt + b̄

(
Xβ

t

)
dt + βdL0

t

(
Xβ

)
, X0 = x. (1.3)

In this situation 0 �= |β| < 1, L0
t (X) denotes the symmetric local time of Xβ in zero at time t, and b̄ is still

allowed to be discontinuous at 0.
The main idea in [7] was to propose an exact rejection simulation algorithm for the solutions of (1.3) using as

sampling reference measure the law of some drifted skew Brownian motion with prescribed terminal distribution
and with drift of magnitude 1/β avoiding the case where β = 0, for which we propose a proper treatment here.
Our contribution in [7] deals mainly on the simulation of bridges of such drifted skew Brownian motions using
a classical rejection procedure and looking for tractable rejection functions.

Unfortunately, a direct exact simulation method along the same lines as [7] cannot be properly defined in
the case where β = 0. However, we know from Le Gall in [11] that Xβ solution of (1.3) tends strongly to X
the solution of (1.1) as β tends to 0 on each time interval [0, T ]. This leads us to examine what happens at the
level of the algorithms proposed in [7] as β tends to 0.

In fact, we check here by computations that there is indeed a convergence phenomenon at the level of rejection
functions and rejection sets involved in the exact simulation algorithms given in [7]. This convergence gives rise
naturally to a nice and implementable limiting algorithm.

The main problem becomes then to prove rigorously that this limiting algorithm is indeed an exact simulation
algorithm for the solution of (1.1). In particular, as far as we see, the direct interpretation of this limiting
algorithm is not clear ; for the time being, we have to confess that we really understand the construction
of the limiting algorithm exposed in this paper only via the convergence procedure explained above. Let us
also emphasize that this new algorithm is still a rejection algorithm, and one may naturally ask for a direct
interpretation of its corresponding reference measure. In Remark 3.1 we give an interpretation of the reference
measure (corresponding to the limit rejection algorithm) in terms of a standard Brownian motion conditioned
on prescribed laws for its final position and its local time at 0 at time horizon T .
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1.3. Outline of the paper

The paper is organized as follows. In the preliminary Section 2, we explain the convergence of rejection
sampling algorithms in a general framework. The result exposed in this section will be used to justify that our
limiting algorithm is indeed an exact simulation algorithm for the solution of (1.1). The exact simulation problem
treated here is presented in Section 3, where we explain the manner in which we adapt the exact simulation
methods of [3] to our situation. Yet, the resulting algorithm adapted from [3] is not directly implementable in
our context because we have to sample from a complicated reference probability measure Ẑ. The Sections 4
and 5 are devoted to the interpretation of Ẑ as a limit of some sequence (Ẑn) of better known probability
measures. Finally in Section 6, we apply the results of the preliminary Section 2 to the sequence (Ẑn). This
gives rise to a directly implementable limit algorithm for the exact simulation of a skeleton along the reference
probability Ẑ. We end up the article with numerical results and illustrative examples shown in Section 7.

2. Preliminary: convergence of abstract rejection sampling algorithms

Proposition 2.1. i) Assume that we have a sequence (ξn) of probability measures on a measurable space (S,S),
and ξdom a probability measure on (S,S), satisfying for any n ∈ N

dξn

dξdom
=

1
εn

fn,

with εn > 0 and 0 ≤ fn ≤ 1.
Assume that fn → f as n → ∞ point-wise on S.
Then, (ξn) converges towards a probability measure ξ satisfying

dξ

dξdom
=

1
ε
f, (2.1)

with ε = limn→∞ εn.
ii) Moreover, let (Yk, Ik)k≥1 be a sequence of i.i.d. random elements taking values in S × {0, 1} such that Y1 ∼
ξdom and P[I1 = 1|Y1 = y] = f(y) for all y ∈ S. Define τ := min(k ≥ 1 = Ik = 1). Then, P(Yτ ∈ dy) = ξ(dy).

Proof. For any A ∈ S we have ξn(A) = 1
εn

∫
A fn(z)ξdom(dz). By dominated convergence we have∫

A

fn(z)ξdom(dz) −−−−→
n→∞

∫
A

f(z)ξdom(dz).

Taking A = S, and as ξn(S) = 1 for any n ∈ N, we have

εn =
1∫

S
fn(z)ξdom(dz)

−−−−→
n→∞

1∫
S

f(z)ξdom(dz)
=: ε.

Setting now for any A ∈ S, ξ(A) := 1
ε

∫
A

f(z)ξdom(dz), it is clear that

∀A ∈ S, ξn(A) −−−−→
n→∞ ξ(A).

Then ξ is a probability measure on (S,S). It satisfies (2.1) by construction. This proves point i). For the proof
of point ii), see Proposition 1 in [6]. �
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3. Exact sampling algorithm for a SDE with discontinuous drift

(inspired by [3])

3.1. Assumptions

The function b̄ : R → R is bounded with bounded first derivative on R∗,+ and R∗,− with a possible disconti-
nuity at point {0}. We set M a constant such that

sup
z∈R

|b̄(z)| ≤ M. (3.1)

We suppose that both limits limz→0+ b̄(z) = b̄(0+) and limz→0− b̄(z) = b̄(0−) exist and are finite. The value
b̄(0) of the function b̄ at 0 is of no importance and can be fixed arbitrarily to some constant (possibly different
from either b̄(0+) or b̄(0−)).

We introduce the notation

θ :=
b̄(0+) − b̄(0−)

2
· (3.2)

3.2. Change of probability

Let 0 < T < ∞. Denote C = C([0, T ], R) the set of continuous mappings from [0, T ] to R and C the Borel
σ-field on C induced by the supreme norm.

Let P be a probability measure on (C, C) and W a Brownian motion under P together with its completed
natural filtration (Ft)t≥0. We will denote Px = P (· |W0 = x). When necessary we will denote by ω = (ωt)0≤t≤T

the coordinate process.
We consider the following SDE

dXt = dWt + b̄(Xt)dt, X0 = x. (3.3)

Our objective is to sample along XT .
Let us define on (C, C) the probability measure W by

dW

dP
= exp

{
−

∫ T

0

b̄(Xt)dWt − 1
2

∫ T

0

b̄2(Xt)dt

}
.

(Note that the assumptions in Sect. 3.1 ensure that W is well defined).
Under W the process X is a Brownian motion and we have,

dP

dW
= exp

{∫ T

0

b̄(Xt)dXt − 1
2

∫ T

0

b̄2(Xt)dt

}
.

Thus for any bounded continuous functional F : (C, C) → R we have,

E
x
P[F (X)] = E

x
W

[
F (X) exp

{∫ T

0

b̄(Xt)dXt − 1
2

∫ T

0

b̄2(Xt)dt

}]
. (3.4)

We set B(x) =
∫ x

0
b̄(y)dy. Using the symmetric Itô-Tanaka formula (see Exercise VI-1-25 in [13]), and the

Occupation times formula [13] we get

B(XT ) − B(X0) =
∫ T

0

b̄(Xt)dXt +
1
2

∫ T

0

b̄′(Xt)dt +
b̄(0+) − b̄(0−)

2
L0

T (X),
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Thus (3.4) becomes,

E
x
P
[F (X)] = E

x
W

[
F (X) exp

{
B(XT ) − B(x) − θL0

T (X) −
∫ T

0

φ(Xt)dt

}]
,

where we have set

φ(x) :=
b̄2(x) + b̄′(x)

2
·

Setting now
φ̃(x) = φ(x) − inf

x∈R

φ(x),

we finally get that for any bounded and continuous functional F : (C, C) → R we have,

E
x
P
[F (X)] ∝ E

x
W

[
F (X) exp

{
B(XT ) − B(x) − θL0

T (X)
}

exp

{
−

∫ T

0

φ̃(Xt)dt

}]
.

Let us now introduce the probability measure Z on (C, C) defined in the following way

dZ

dW
(ω) ∝ exp

{
B(XT (ω)) − B(x) − θL0

T (X)(ω)
}

.

Under the assumptions of Section 3.1, Z is well defined.
In the sequel we note Ẑ the probability measure induced on (C, C) by the law of X under Z. We have

E
x
P
[F (X)] = c E

x
Ẑ

[
F (ω) exp

{
−

∫ T

0

φ̃(ωt)dt

}]
, (3.5)

where c is a normalizing constant (we make it explicit in the expression above for the purpose of proving
Proposition 5.3 below).

Remark 3.1 (interpretation of the probability Ẑ). Recall that under W the process X is a Brownian motion
and that, by definition,

dZ

dW
(ω) ∝ exp

{
B(XT (ω)) − B(x) − θL0

T (X)(ω)
}

.

In particular, under the probability Z, X is a Brownian motion conditioned on (XT , L0
T ) ∼ h(y, 
)dyd
 with

h(y, 
)dyd
 ∝ exp (B(y) − B(x) − θ
) W
x

(
XT ∈ dy, L0

T ∈ d

)
.

This makes it difficult to sample exactly Xt under Z for t ∈ (0, T ).

3.3. Exact simulation algorithm for the solution of (3.3) starting from x

Let us denote by K an upper bound for φ̃(x). Following the spirit of [3] we can thus sample from XT using
the following algorithm.

EXACT SIMULATION ALGORITHM FOR THE SOLUTION OF (3.3) starting from x.

1. Simulate a Poisson Point Process with unit density on [0, T ]× [0, K]. The result is a random

number N of points of coordinates (t1, z1), . . . , (tN , zN ).
2. Simulate a skeleton (ωt1 , . . . , ωtN , ωT ) where ω ∼ Ẑ.

3. If ∀i ∈ {1, . . . , N} φ̃(ωti) ≤ zi accept the skeleton. Else return to step 1.
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This algorithm produces an exact sampling of XT under P: it is the final instance ωT of an accepted skeleton.
The main issue in the above algorithm is to sample a skeleton of the canonical process under Ẑ (Step 2).

Remark 3.2 (other exact simulation algorithms). Other probability changes might be performed in order to
try to tackle the exact simulation problem presented in the introduction. For example (though we will not prove
it here) it is possible to swap to a probability measure S under which X has the law of some Brownian motion
with a symmetric two valued drift (solution of Eq. (1.2) in the case where θ0 = −θ1) with some prescribed
terminal law. Even though the density probability distribution of such bridges may be explicitly computed, it
seems difficult to find tractable general rejection bounds for these laws.

4. Recalls on the skew Brownian motion with drift

In this section, we recall some basic facts concerning the skew Brownian motion with constant drift. Although
these facts seem at first quite far away from our purpose, they will be used in the sequel in order to justify
that the limit rejection algorithm presented in Section 6 returns an exact sampling under Ẑ. At the end of this
section, we give an algorithm for the simulation of bridges of SBM with constant drift that will be used as a
basic building block in the sequel.

4.1. The transition function of the skew Brownian motion with drift

Let us recall that the Skew Brownian Motion (SBM) with constant drift component μ ∈ R, denoted by Bβ,μ,
solves

dBβ,μ
t = dWt + μdt + βdL0

t

(
Bβ,μ

)
.

This SDE with local time has a unique strong solution as soon as |β| < 1 (see [11]). The process Bβ,μ enjoys
the homogeneous Markov property. We shall denote by pβ,μ(t, x, y) its transition function.

Let us introduce the function vβ,μ(t, x, y) defined by

vβ,μ(t, x, y) =
(

1 − exp
(
−2xy

t

))
1xy>0

+ (1+Sgn(y)β) exp
(
−2xy

t
1xy>0

)[
1 − βμ

√
2πt exp

{
(|x| + |y| + tβμ)2

2t

}
N c

(
βμt + |x| + |y|√

t

)]
,

(4.1)

where N c(y) = 1√
2π

∫ ∞
y e−z2/2dz.

With this notation we can rewrite the expression of pβ,μ(t, x, y) given in [7].

Proposition 4.1. We have for all t > 0, all x, y ∈ R,

pβ,μ(t, x, y) = p0,μ(t, x, y)vβ,μ(t, x, y). (4.2)

Proof. See [7] (Prop. 4.7). �

4.2. Bounds for the transition function of the SBM with drift

In this paragraph, we give bounds on the transition function of the SBM with drift. These bounds will be
used in the sequel to find tractable rejection bounds for our algorithm.

Let us set α = max(1+β
2 , 1−β

2 ) and

γβ,μ(t, z) = 1 − βμ
√

2πt exp
(

(z + tβμ)2

2t

)
N c

(
βμt + z√

t

)
· (4.3)
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We also set

cβ,μ
t,x =

{
2α if βμ ≥ 0

2αγβ,μ(t, |x|) if βμ < 0.
(4.4)

We have the following result.

Lemma 4.2. Let (β, μ) ∈ (−1, 1)× R. We have

vβ,μ(t, x, y) ≤ cβ,μ
t,x , ∀x, y ∈ R. (4.5)

Proof. Equation (4.5) comes from (4.2) and the fact that, if βμ ≥ 0, we have pβ,μ(t, x, y) ≤ 2ᾱp0,μ(t, x, y) for
all x, y ∈ R, and if βμ < 0, we have pβ,μ(t, x, y) ≤ 2ᾱγβ,μ(t, |x|)p0,μ(t, x, y) for all x, y ∈ R (see, in [7], Lem. 5.3
and its proof). �

We also have the following lemma.

Lemma 4.3. Let (β, μ) ∈ (−1, 1)× R. We have

vβ,μ(t, x, y) ≤ cβ,μ
t,y , ∀x, y ∈ R. (4.6)

Proof. This comes again from (4.2), together with the fact that pβ,μ(t, x, y) ≤ cβ,μ
t,y p0,μ(t, x, y), for all x, y ∈ R

(see again, in [7], Lem. 5.3, especially the proof of Eq. (5.7)). �
Remark 4.4. Note that vβ,μ(t, x, y) > 0 and γβ,μ(t, z) > 0 for any t ∈ R∗,+, x, y, z ∈ R, even for large values
of μ (see Rem. 4.8 in [7]).

4.3. Sampling bridges of the SBM with drift

We denote by qβ,μ(t, T, a, b, y) the density defined (for t < T ) by

P

[
Bβ,μ

t ∈ dy | Bβ,μ
0 = a, Bβ,μ

T = b
]

= qβ,μ(t, T, a, b, y)dy.

The function (t, y) �→ qβ,μ(t, T, a, b, y) is the transition density function of a bridge of a SBM with drift relating
points a and b in T unit time.

As q0,μ(t, T, a, b, y) = q0,0(t, T, a, b, y), by Proposition 4.1 we get,

qβ,μ(t, T, a, b, y) = q0,0(t, T, a, b, y)
vβ,μ(t, a, y)vβ,μ(T − t, y, b)

vβ,μ(T, a, b)
· (4.7)

Let us set

Cβ,μ
t,T,a,b =

{
4α2 if βμ ≥ 0

4α2γβ,μ(t, |a|)γβ,μ(T − t, |b|) if βμ < 0.
(4.8)

We have
qβ,μ(t, T, a, b, y)
q0,0(t, T, a, b, y)

=
Cβ,μ

t,T,a,b

vβ,μ(T, a, b)
fB,β,μ

a,b (y),

with

fB,β,μ
a,b (y) :=

vβ,μ(t, a, y)vβ,μ(T − t, y, b)

Cβ,μ
t,T,a,b

, (4.9)

where the superscript B appears for the word “Bridge”.
Considering (4.4), (4.5), (4.6) and (4.8) it is clear that

fB,β,μ
a,b (y) ≤ 1, ∀y ∈ R.

We thus propose the following rejection algorithm in order to sample along qβ,μ(t, T, a, b, y)dy.
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Auxiliary Algorithm 1: Sampling along qβ,μ(t, T, a, b, y)dy

1. Sample a Brownian bridge Y along q0,0(t, T, a, b, y).
2. Evaluate

fB,β,μ
a,b (Y ) ≤ 1.

3. Draw U ∼ U([0, 1]). If U ≤ fB,β,μ
a,b (Y ) accept the proposed value Y . Else return to Step 1.

Remark 4.5. Note that the quantities vβ,μ, γβ,μ, cβ,μ
t,x , Cβ,μ

t,T,a,b, and fB,β,μ
a,b defined respectively in (4.1), (4.3),

(4.4) (4.8), and (4.9) involved in the above algorithm depend only on μ through the product βμ. This compu-
tational fact gives the key ensuring the construction of the limit algorithm by convergence performed at the
beginning of Section 6.

5. Convergence of a sequence of probability measures towards Ẑ

In this section, for any n ∈ N we denote by Xn the solution of

dXn
t = dWt + b̄(Xn

t )dt +
1
n

dL0
t (X

n), Xn
0 = x. (5.1)

For the existence and uniqueness of solutions to (5.1) see [11].
The starting point of our ideas is that, not surprisingly, we have the following strong convergence result, due

to the consistency properties of SDEs with local time (see [11]).

Theorem 5.1 (Le Gall [11], 1984). Let X be the solution of (3.3) and (Xn) the sequence of solutions of (5.1).
We have for all 0 < t < T ,

E

[
sup

0≤s≤t
|Xs − Xn

s |
]
−−−−→
n→∞ 0.

Proof. See the Appendix. �

In particular (Xn) converges in law to X under P. This fact will allow us to construct a suitable sequence
(

Ẑn

)
of probability measures converging towards Ẑ.

Recall Definition (3.2) of θ. Let us set

μn =
1 + 1/n

2/n
b̄(0+) − 1 − 1/n

2/n
b̄(0−) =

b̄(0+) + b̄(0−)
2

+ θn, (5.2)

and bn(x) = b̄(x) − μn.
From (5.1) we have,

Xn
T = x + WSD,n

T + μnT +
1
n

L0
T (Xn),

where the process WSD,n given by
dWSD,n

t = dWt + bn(Xn
t )dt

is a Brownian motion under the probability measure WSD,n defined by

dWSD,n

dP
= exp

{
−

∫ T

0

bn (Xn
t ) dWt − 1

2

∫ T

0

b2
n (Xn

t ) dt

}
. (5.3)
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Note that the assumptions in Section 3.1 ensure that WSD,n is well defined for all fixed n ∈ N and that the law
of Xn under WSD,n is the one of a SBM with drift.

Let us now set Bn(x) =
∫ x

0
bn(z)dz. As shown in [7] pp. 47–48, using a symmetric Itô-Tanaka formula we

can prove that for any bounded measurable functional F : (C, C) → R,

E
x
P [F (Xn)] = E

x
WSD,n

[
F (Xn) exp

{
Bn (Xn

T ) − Bn(x) −
∫ T

0

φn (Xn
t ) dt

}]
, (5.4)

where φn(x) =
b2
n(x) + b′n(x) + 2μnbn(x)

2
·

Remark 5.2. Note that, because of the definition of bn, there is no local time appearing in equality (5.4)
after the application of the symmetric Itô-Tanaka formula. This ensures that there is no local time involved in
the exponential martingale of the probability change, which makes it tractable (from the point of view of our
numerical perspective). Retrospectively, this explains why we defined bn depending on n as b̄−μn (and not just
kept the initial function b̄ to perform our computations).

We see that

φn(x) =
b̄2(x) + b̄′(x)

2
− μ2

n

2
= φ(x) − μ2

n

2
,

and

φn(x) − inf
x∈R

φn(x) = φ(x) − μ2
n

2
− inf

x∈R

(φ(x) − μ2
n

2
) = φ̃(x),

so that φn − inf φn does not depend on n!
Consequently, we have that

E
x
P

[F (Xn)] ∝ E
x
WSD,n

[
F (Xn) exp

{
Bn (Xn

T ) − Bn(x) −
∫ T

0

φ̃ (Xn
t ) dt

}]
.

Let us now define the probability measure Zn on (C, C) by:

dZn

dWSD,n
(ω) ∝ exp {Bn (Xn

T (ω)) − Bn(x)} , (5.5)

and Ẑn the probability measure induced on (C, C) by the law of Xn under Zn. Under the assumptions in
Section 3.1 the probability measures Zn and Ẑn are well defined for all fixed n ∈ N. We have

E
x
P
[F (Xn)] = cnE

x
Ẑn

[
F (ω) exp

{
−

∫ T

0

φ̃(ωt)dt

}]
, (5.6)

with cn a finite normalizing constant.
The law Ẑn can be well described: it is the law of a SBM with drift whose terminal position is distributed

along a density hn depending on the function Bn (see Sect. 5.2).
In [7] we managed to sample exactly along (5.1) using skeletons under Ẑn as proposals and the function

exp
{ − ∫ T

0
φ̃(ωt)dt

}
for a rejection rule.

Remember that (Xn) converges in law to X under P. Hence, comparing (3.5) and (5.6) indicates that
the sequence of probability measures (Ẑn) converges weakly to Ẑ. This is shown rigorously in the following
subsection. Combining then the results of Section 5.2 and Proposition 2.1 will enable us to sample along Ẑ (see
Sect. 6).
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5.1. The probability measure Ẑ as a limit of the sequence (Ẑn)

Proposition 5.3. We have
Ẑn

w−−−−→
n→∞ Ẑ.

Proof. Let P̂ (resp. P̂n) denote the probability measure induced on (C, C) by the law of X (resp. of Xn) under P.
It is clear from Theorem 5.1 that P̂n

w−−−−→
n→∞ P̂.

Let us define Φ : (C, C) → R by

Φ(ω) := exp

{
−

∫ T

0

φ̃(ωt)dt

}
, ∀ω ∈ C.

Note that 0 < Φ(ω) ≤ 1. Thanks to (3.5) and (5.6) we have

dP̂

dẐ
(ω) = c Φ(ω) and

dP̂n

dẐn

(ω) = cn Φ(ω)

and thus,
dẐ

dP̂
(ω) =

1
c

1
Φ(ω)

and
dẐn

dP̂n

(ω) =
1
cn

1
Φ(ω)

· (5.7)

Under the assumptions of Section 3.1, the functional ω �→ 1/Φ(ω) is easily seen to be bounded and continuous
from (C, C) to R for the topology of the supreme norm. Using that P̂n

w−−−−→
n→∞ P̂ we see that

∫
C

P̂n(dω)
Φ(ω)

−−−−→
n→∞

∫
C

P̂(dω)
Φ(ω)

· (5.8)

Since Ẑn is a probability measure on (C, C), we also have 1 = Ẑn(C) = Ẑ(C). In view of (5.7) and (5.8) this
implies that necessarily (1/cn)n is a convergent sequence and that

lim
n

1
cn

=
1
c
· (5.9)

Therefore, for any bounded and continuous funcional ω �→ F (ω) from (C, C) to R,∫
C

F (ω)dẐn =
1
cn

∫
C

F (ω)
P̂n(dω)
Φ(ω)

−−−−→
n→∞

1
c

∫
C

F (ω)
P̂(dω)
Φ(ω)

=
∫

C

F (ω)dẐ

and the result follows. �

5.2. Sampling a skeleton under Ẑn

We have the following proposition.

Proposition 5.4. For any n ∈ N the law Ẑn is the one of a SBM B
1
n ,μn with drift μn conditionally on

B
1
n ,μn

T ∼ hn with
hn(y) = Cn exp (Bn(y) − Bn(x)) p

1
n ,μn(T, x, y),

where Cn is the normalizing constant such that
∫

hn(y)dy = 1.

Proof. See [3]. �
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Let n0 be fixed and 0 = t0 < t1 < . . . < tn0 < T . Set y0 = x to simplify the notations, the law of
(ωt1 , . . . , ωtn0

, ωT ) under Ẑn is given by

hn(y)
n0−1∏
i=0

q
1
n ,μn (ti+1 − ti, T − ti, yi, y, yi+1) dy1 . . .dyn0dy. (5.10)

Once ωT has been sampled along hn(y)dy, we can sample ωt1 along q
1
n ,μn(t1, T, x, ωT , y1)dy1 and each ωti+1

along q
1
n ,μn(ti+1 − ti, T − ti, ωti , ωT , yi+1)dyi+1, using the Auxiliary Algorithm 1.

In order to sample along hn(y)dy we make use of the following considerations. We have

hn(y) =Cn exp (Bn(y) − Bn(x)) p0,μn(T, x, y)v
1
n ,μn(T, x, y)

=Cn exp
(
−μn(y − x) +

∫ y

x

b̄(z)dz

)
× exp

(
+μn(y − x) − μ2

n

2
T

)
p0,0(T, x, y)v

1
n ,μn(T, x, y)

=Cne−
µ2

n
2 T exp (B(y) − B(x)) v

1
n ,μn(T, x, y)p0,0(T, x, y).

Recall that M denotes an upper bound for the function z �→ |b̄|(z) (see (3.1) of our assumptions in Sect. 3.1).
Then, using the result of Lemma 4.2 and performing easy computations, we easily see that for any 0 < δ < 1:

hn(y)
p0,0(T/(1 − δ), x, y)

= Cn
eT 2M2/δ

√
1 − δ

e−
µ2

n
2 T c

1
n ,μn

T,x f
h, 1

n ,μn

δ (y),

with

f
h, 1

n ,μn

δ (y) =
√

1 − δ exp
(

B(y) − B(x) − T 2M2

δ

)
p0,0(T, x, y)

p0,0(T/(1 − δ), x, y)
v

1
n ,μn(T, x, y)

c
1
n ,μn

T,x

·

Using (4.5) one may easily check that f
h, 1

n ,μn

δ (y) ≤ 1 for any y ∈ R. One might then optimize w.r.t. δ ∈ (0, 1)

in order to find f
h, 1

n ,μn

δ closest to 1.

Let us set for simplicity, fh, 1
n ,μn = f

h, 1
n ,μn

1/2 . We deduce therefore the following procedure in order to sample
along hn(y)dy.

Auxiliary Algorithm 2: Sampling along hn(y)dy

1. Sample Y ∼ N (x, 2T ).
2. Evaluate

fh, 1
n ,μn(Y ) ≤ 1.

3. Draw U ∼ U([0, 1]). If U ≤ fh, 1
n ,μn(Y ) accept the proposed value Y . Else return to Step 1.

6. Direct exact sampling of a skeleton under Ẑ (Step 2 of the Exact

Simulation Algorithm)

Proposition 2.1 will now play a crucial role.
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Recall the definition (3.2) of θ. Let us denote

vθ(t, x, y) = (1 − e−2xy/t)1xy>0 + e−2xy/t

[
1 − θ

√
2πt exp

{
(|x| + |y| + tθ)2

2t

}
N c

(
θt + |x| + |y|√

t

)]
,

γθ(t, z) = 1 − θ
√

2πt exp
(

(z + tθ)2

2t

)
N c

(
θt + z√

t

)
,

cθ
t,x =

{
1 if θ ≥ 0

γθ(t, |x|) if θ < 0,
and Cθ

t,T,a,b =

{
1 if θ ≥ 0

γθ(t, |a|)γθ(T − t, |b|) if θ < 0.

Remember our definitions (4.1), (4.3), (4.4) and (4.8) and Remark 4.5. It is clear from (5.2) that 1
nμn → θ (as

n tends to +∞), so that we have,

v
1
n ,μn(t, x, y) −−−−→

n→∞ vθ(t, x, y) ∀(t, x, y) ∈ R
+ × R × R,

γ
1
n ,μn(t, z) −−−−→

n→∞ γθ(t, z) ∀(t, z) ∈ R
+ × R,

c
1
n ,μn

t,x −−−−→
n→∞ cθ

t,x ∀(t, x) ∈ R
+ × R,

C
1
n ,μn

t,T,a,b −−−−→n→∞ Cθ
t,T,a,b ∀(t, T, a, b) ∈ R

+ × R
+ × R × R.

Let us now examine the sequence (fh, 1
n ,μn

δ ) of the rejection functions used in the Auxiliary Algorithm 2. From

the same reasons as above, it is clear that (fh, 1
n ,μn

δ ) converges towards

fh,θ
δ (y) =

√
1 − δ exp

(
B(y) − B(x) − T 2M2

δ

)
p0,0(T, x, y)

p0,0(T/(1 − δ), x, y)
vθ(T, x, y)

cθ
T,x

≤ 1,

this convergence being dominated. Thus, applying the result of Proposition 2.1, the sequence of laws (hn(y)dy)
converges to some limit law hθ(y)dy.

In the same manner, for any fixed a, b ∈ R, the sequence (fB, 1
n ,μn

a,b ) of rejection functions used in Auxiliary
Algorithm 1 converges towards

fB,θ
a,b (y) :=

vθ(t, a, y)vθ(T − t, y, b)
Cθ

t,T,a,b

≤ 1,

this convergence being dominated.
Consequently, the law q

1
n ,μn(t, T, a, b, y)dy converges towards a limit law qθ(t, T, a, b, y)dy.

Let again n0 be fixed and 0 < t1 < . . . < tn0 < T . Passing to the limit in (5.10) we get that the law of
(ωt1 , . . . , ωtn0

, ωT ) under Ẑn converges (with y0 = x) towards

hθ(y)

n0−1∏
i=0

qθ(ti+1 − ti, T − ti, yi, y, yi+1)dy1 . . . dyn0dy. (6.1)

Consequently, from Proposition 5.3, we conclude that the law given by (6.1) is nothing else than the law of
(ωt1 , . . . , ωtn0

, ωT ) under Ẑ.
Using again Proposition 2.1 and the above considerations we can propose the expected algorithm in order to

sample skeletons under Ẑ. It will use the two following Limit Auxiliary Algorithms.
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Limit Auxiliary Algorithm 1: Sampling along hθ(y)dy

1. Sample Y ∼ N (x, 2T ).
2. Evaluate

fh,θ(Y ) ≤ 1.

3. Draw U ∼ U([0, 1]). If U ≤ fh,θ(Y ) accept the proposed value Y . Else return to Step 1.

Limit Auxiliary Algorithm 2: Sampling along qθ(t, T, a, b, y)dy

1. Sample a Brownian bridge Y along q0,0(t, T, a, b, y).
2. Evaluate

fB,θ
a,b (Y ) ≤ 1.

3. Draw U ∼ U([0, 1]). If U ≤ fB,θ
a,b (Y ) accept the proposed value Y . Else return to Step 1.

Performing Step 2 of the Exact Simulation Algorithm.

Sampling (ωt1 , . . . , ωtn0
, ωT ) under Ẑ (starting from x)

1. Sample ωT along hθ(y)dy using the Limit Auxiliary Algorithm 1.

2. Sample ωt1 along qθ(t1, T, x, ωT , y)dy using the Limit Auxiliary Algorithm 2.

3. For i = 2, . . . , n0, sample ωti+1 along qθ(ti+1 − ti, T − ti, ωti , ωT , y)dy using the Limit Auxiliary

Algorithm 2.

7. Numerical experiments

7.1. Exact simulation of a Brownian motion with two-valued (or alternate) drift

In this paragraph, we choose to exhibit numerical results obtained with the exact limit algorithm for the
simplest non-trivial cases

dXt = dWt ± sgn(Xt)dt, X0 = 0,

corresponding to either θ0 = −θ1 = ±1 in (1.2) (b̄(y) = ±sgn(y) in (1)). Indeed, in this symmetric case a
benchmark is provided by the explicit and computable density of XT given in [10].

We draw the renormalized histogram of 106 samples of XT and compare it to the explicit density of XT

(Fig. 1 for the outgoing case θ0 = 1 and Fig. 2 for the incoming case θ0 = −1).
In the non-symmetric case we can still use our limit algorithm but the density of XT becomes less explicit (see

formula (6.5.12) in [10]). Thus we will use as a benchmark the renormalized histogram of 106 samples of XΔ
T ,

where (XΔ) denotes an Euler Scheme with time step Δ = T × 10−5. We chose θ0 = 2, θ1 = −1, T = 1 and
x = 0.0. We plot the corresponding renormalized histograms on Figure 3.

In Table 1 we report the CPU times needed to get the 106 samples, with the exact limit algorithm and the
Euler scheme. Programs were written in C-language and executed on a personal computer equipped with an
Intel Core 2 duo processor, running at 2.23 Ghz. We report in Table 2 the acceptance ratios.

On this example the acceptance ratios are good and the exact method is nearly four times faster than the
Euler scheme with time step Δ = T × 10−5.
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Table 1. CPU times for 106 simulations of a Brownian motion with two-valued drift with
θ0 = 2 and θ1 = −1 (x = 0.0 and T = 1).

Exact Euler
CPU times 2111s 9521s

Table 2. Acceptance ratios for the case of a Brownian motion with two-valued drift with
θ0 = 2 and θ1 = −1 (x = 0.0 and T = 1).

Exact algorithm Bridges
Acceptance ratio 20.4% 58,6%

Figure 1. Brownian motion with two-valued drift, case θ0 = −θ1 = 1 (T = 1).

7.2. Exact simulation of an SDE with a discontinuous drift coefficient

We consider now the SDE (1) with

b̄(x) =

⎧⎨⎩−π
2 cos

(
π
5 x

)
if x ≥ 0

3π
2 − π

2 cos
(

π
5 x

)
if x < 0.

(7.1)

Let 0 < T < ∞. We wish to sample along XT .
We have θ = −3π/4 and

φ̃(x) =
b̄2(x) + b̄′(x)

2
+

π2

20
·

We take K = 2π2 + π2

10 as an upper bound for φ̃. This allows to use the limit Algorithm.
Figure 3 shows a comparison between a renormalized histogram of 106 samples of XT obtained with the exact

limit algorithm, and a renormalized histogram of 106 samples of XΔ
T , where (XΔ) denotes an Euler Scheme

with time step Δ. We chose x = 0.0, T = 1 and time-steps Δ = T × 10−2 and Δ = T × 10−5.
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Figure 2. Brownian motion with two-valued drift, case θ0 = −θ1 = −1 (T = 1).

Figure 3. Limit algorithm vs. Euler Scheme for Brownian motion with two-valued drift with
θ0 = 2 and θ1 = −1 (x = 0.0 and T = 1).

In Table 3 we report the CPU times needed to get the 106 samples, with the exact limit algorithm and the
Euler scheme (and, for the later one, with the different time steps we have used). We report in Table 4 the
acceptance ratios.

On this example the exact simulation is competitive, compared to schemes with very fine grids.
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Figure 4. Limit algorithm vs. Euler Scheme for the case where b̄ is given by (7.1) (x = 0.0
and T = 1).

Table 3. CPU times for 106 simulations of XT for the case where b̄ is given by (7.1) (x = 0.0
and T = 1).

Exact
Euler

(Δt = 10−n, n = 2, 5)
CPU times 11 813 s 20 s

12 952 s

Table 4. Acceptance ratios for the case where b̄ is given by (7.1) (x = 0.0 and T = 1).

Exact algorithm Bridges
Acceptance ratio 3.6% 50.7%

Appendix

Proof of Theorem 5.1. We use the notations of [11]. Using the Occupation times formula we can rewrite equa-
tion (5.1) as:

dXn
t = dWt +

∫
R

νn(dy) dLy
t (Xn), Xn

0 = x,

with νn(dy) = b̄(y)dy + 1
nδ0(dy). Lemma 2.1 in [11] asserts that there is for each n ∈ N a function fνn , unique

up to a multiplicative constant, satisfying f ′
νn

(dy)+(fνn(y)+fνn(y−))νn(dy), where the notation f ′
νn

(dy) is for
the derivative of fνn in the generalized sense. Lemma 2.1 in [11] also asserts that if we require that fνn(x) → 1
as x → −∞ then,

fνn(y) = exp
(
−2

∫ y

−∞
b̄(z)dz

)
× 1y≥0

1 − 1/n

1 + 1/n
·
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The sequence of functions (fνn)n clearly converges point-wise to f(y) = exp
( − 2

∫ y

−∞ b̄(z)dz
)
. By dominated

convergence we have for all K > 0 that
∫ K

−K |fνn −f |(y)dy → 0 as n → ∞. Thus Theorem 3.1 in [11] asserts that

E

[
sup

0≤s≤t
|Xs − Xn

s |
]
−−−−→
n→∞ 0,

with X the solution of
dXt = dWt +

∫
R

ν(dy) dLy
t (X), X0 = x,

where ν(dy) = − f ′(dy)
f(y)+f(y−) = − 1

2
f ′(y)
f(y) dy = b̄(y)dy. That is to say X is the solution of (3.3). �
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