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Abstract. In [A. Genadot and M. Thieullen, Averaging for a fully coupled piecewise-deterministic
markov process in infinite dimensions. Adv. Appl. Probab. 44 (2012) 749–773], the authors addressed
the question of averaging for a slow-fast Piecewise Deterministic Markov Process (PDMP) in infinite
dimensions. In the present paper, we carry on and complete this work by the mathematical analysis of
the fluctuations of the slow-fast system around the averaged limit. A central limit theorem is derived
and the associated Langevin approximation is considered. The motivation for this work is the study
of stochastic conductance based neuron models which describe the propagation of an action potential
along a nerve fiber.
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1. Introduction

In [17], the authors addressed the question of averaging for a class of multiscale spatially extended stochastic
conductance based neuron models, also known as spatially extended stochastic generalized Hodgkin–Huxley
models. These models describe the evolution of an action potential or nerve impulse along the axon of a neuron
at the scale of ionic channels. More generally, in electro-physiology, these equations describe the evolution of
an action potential in excitable membranes. Mathematically, these spatially extended stochastic conductance
based models belong to the class of Hilbert-valued Piecewise Deterministic Markov Processes (PDMP) with
multiple time scales. In [17], we obtained averaging results for this class of models. The averaged models are
still Hilbert-valued PDMPs but of lower dimensions in the sense that the dynamic of the jump components of the
slow-fast PDMP is simplified. In the present paper, we study the fluctuations of the original slow-fast systems
around their averaged limit. A central limit theorem is derived and the associated Langevin approximation is
considered. A numerical example based on a spatially extended stochastic Morris–Lecar model is provided at
the end of the paper.
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The mathematical analysis of PDMPs, and more generally of hybrid systems, constitutes a very active area
of research since a few years. A hybrid system can be defined as a dynamical system describing the interactions
between a continuous macroscopic dynamic and a discrete microscopic one. For PDMPs, between the jumps,
the motion of the macroscopic component is given by a deterministic flow. This deterministic flow is in its turn
given by solutions of a partial differential equation (PDE) in the infinite dimensional case and an ordinary
differential equations (ODE) in the finite dimensional one. If the macroscopic component were held fixed, then
the microscopic component would follow the dynamic of a continuous time Markov chain. It is essentially these
two properties, a deterministic flow punctuated by markovian jumps, which give to PDMPs their most important
characteristic as hybrid systems: they enjoy the Markov property.

Markovian hybrid systems such as PDMPs are the object of a great attention because they offer an accurate
description of a large class of phenomena arising in various domains such as physics or biology. Moreover, their
Markovian structure allows to use the very well developed theory of Markov processes to their study. In mathe-
matical neurosciences, a domain the authors are more particularly interested in, PDMP models arise naturally
in the description of the propagation of a nerve impulse. Point models of generation (but not propagation) of
action potentials have been studied in [26,33] in the framework of finite dimensional PDMPs. Similarly, a wide
class of conductance based neuron models describing the generation and propagation of an action potential may
be described as infinite dimensional PDMPs, cf. [8]. In these models, the macroscopic components is continuous
and describes the evolutions of the action potential on the neuronal membrane. It follows a PDE with param-
eters which are randomly updated. These switches corresponds to jumps of the microscopic components: the
ionic channels, present all over the neuronal membrane, open and close stochastically. The stochastic neural field
equations have also been considered as limits of underlying hybrid mechanisms, cf. [30]. These mathematical
descriptions of neuron models are consistent with classical deterministic models such as the Hodgkin–Huxley
model and the compartment type models, see [1, 30, 31].

PDMPs have been introduced by Davis in [12,13] in the finite dimensional setting and generalized in [8] to the
infinite dimensional case and more particularly to Hilbert-valued PDMPs. Recently, the asymptotic behavior of
finite dimensional PDMPs has been investigated in [3,4,32] through the research of existence and uniqueness of
invariant measures for PDMPs. Let us mention that also for finite dimensional PDMPs, control problems have
been studied in [10,18], numerical methods in [6,29], time reversal in [23] and to end up this list with no claim
of completeness, estimation of the jump rates for PDMPs in [2, 14].

Limit theorems for infinite dimensional PDMPs have been derived in [1, 31]: a Law of Large Numbers and
a Central Limit Theorem for sequences of Hilbert-valued PDMPs are obtained. In this way, the authors show
the consistency of spatially extended stochastic conductance based neuron models with deterministic models.
Indeed, in [1, 31], the authors show that when the number of ionic channels increases, stochastic conductance
based neuron models converge to their corresponding deterministic version. In the present paper, as in [17],
we work with a fixed number of ionic channels but with neuron models exhibiting intrinsically two different
timescales: the microscopic jump component is accelerated and thus considered as fast with respect to the
macroscopic continuous one. With a number of ionic channels held fixed, we obtain limit theorems when the
speed of acceleration of the fast dynamic goes to infinity. The studied models correspond to the one studied
in [1, 17] and considered as application in [8, 31]. Averaging is of first importance for these models because it
allows to simplify the dynamic of the system. Moreover, the averaged limit preserves the qualitative behavior of
the original dynamical system such as the excitable properties of the model, see [27,36]. In the finite dimensional
case, these questions have been addressed in [16] and [26]. In particular, we extend the results of [26] to spatially
extended conductance based neuron models. A question remains, namely, how to treat simultaneously the
phenomena of acceleration of the speed of the fast component (ε → 0) and increase of the number of ionic
channels (N → ∞)? For example, do we obtain the same models in permuting the order of these two different
limits?

To prove that the renormalized difference between the non-averaged and averaged models converges in law,
we use a tightness argument based on the Prohorov procedure developed in the Hilbert space setting in [24].
For this purpose, we use technical estimates of the same kind as in [17], but more involved. To characterize
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the limit, we extend the arguments of [33] Chapter 6 to the infinite dimensional setting. Then, the Langevin
approximation is shown to be a good approximation of the averaged process by arguments coming from SPDE
theory. To the best of the authors’s knowledge, these methods have never been applied to study the fluctuations
of a two timescales infinite dimensional PDMP around its averaged limit.

We notice at this point that the study of slow-fast systems of Stochastic Partial Differential Equations
(SPDEs), a framework different from ours but very instructive, is an area of very active research. Averaging
results have been derived in [7, 9, 35] and fluctuations around the limit and large deviations have been studied
in [34]. The results of these papers are of the same flavor than the results obtained in the present paper: a
Hilbert-valued slow motion is averaged against the invariant measure of a fast dynamic.

The paper is organized as follows. In Section 2 and 3 we recall as briefly as possible the model and the
main results of [17] and in particular the different properties of the averaged process. Section 4 introduces the
main results of the present paper: the Central Limit Theorem and the attached Langevin approximation are
stated. The description of the general class of PDMP which can be included in our framework is described
in Section 2.3. In Section 5, we begin by proving the Central Limit Theorem in the so-called all-fast case of
Section 4.1. In the all fast case, we divide the proof in two parts: tightness in Section 5.1 and identification
of the limit in Section 5.2. Properties of the diffusion operator related to the fluctuations are investigated in
Section 5.3. In Section 5.4, the Langevin approximation associated to the averaged model and its fluctuations
is considered. In Section 6, as an example, we consider a spatially extended stochastic Morris–Lecar model and
provide numerical experiments.

2. The models

2.1. Stochastic Hodgkin–Huxley models

In this section, we introduce the stochastic generalized Hodgkin–Huxley model also known in the literature
as stochastic conductance based neuron models. This model was first considered in [1], and later in [8, 17, 31].
Although we are interested in multiscale stochastic conductance based neuron models, we start by describing the
model without different time scales, for the sake of clarity. We begin by stating all our mathematical definitions
and assumptions before providing the biological interpretation of our model.

Let T be a fixed finite time horizon, I = [0, 1] and E a finite set. We fix an integer N ≥ 1 and consider the
subset N = {zi, i = 1, 2, . . . , N} of I̊ = (0, 1). We write R for the finite set EN and H = H1

0 (I) for the space
of functions in L2(I) with first distributional derivative also belonging to L2(I). We recall some basic facts on
the Hilbert spaces H and L2(I), the Laplacian operator Δ and the Dirac delta function on H in Appendix A.
Let us simply recall that H and L2(I) are both Hilbert spaces with respective scalar products denoted by (·, ·)
and (·, ·)L2(I).

For (u, r) ∈ H ×R we define the generalized function Gr(u) (or reaction term) in H∗ by

Gr(u) =
1
N

N∑
i=1

cr(i)(vr(i) − u(zi))δzi , (2.1)

where H∗ = H−1(I) is the dual space of H . We denote by 〈·, ·〉 the duality pairing between H and H∗. For
ξ ∈ E, cξ and vξ are two real constants, the first being positive. We omit N in the notation of Gr(u) because,
in contrary to [1, 31], N is held fixed all along the paper. Notice that, in contrary to the model developed in
Section 2.2, Gr(u) does not belong to H , thus, the model of the present section does not enter in the general
framework of Section 2.3. However, we prefer to present in a first part the model given by (2.1) with the Dirac
delta functions because it corresponds exactly to the model studied in [1, 17].

For two states ξ, ζ ∈ E, we define by αξ,ζ the jump intensity or transition rate function from the state ξ
to the state ζ. The function αξ,ζ is a real valued function of a real variable supposed to be, as its derivative,
Lipschitz-continuous. We assume moreover that 0 ≤ αξ,ζ ≤ α+ for any ξ, ζ ∈ E and either αξ,ζ is constant
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equal to zero or is positive bounded below by a positive constant α−. That is, the non-zero rate functions are
bounded below and above by positive constants.

Then, for u ∈ H and (r, r̃) two different states of R, we define by qrr̃ the jump intensity or transition rate
function from the state r to the state r̃. This is a real valued function defined on H by

qrr̃(u) =

⎧⎪⎨
⎪⎩

0 if r and r̃ differ from more than one component,

αr(i)r̃(i)(u(zi))
αr(i)(u(z(i)))

if r(i) 	= r̃(i) and all the other components are equal.
(2.2)

The quantity αr(i)(u(zi)) =
∑

ξ∈E\{r(i)} αr(i)ξ(u(zi)) represents the total rate of leaving the state r(i) ∈ E.
The stochastic conductance based model for excitable cells we consider consists in the following evolution

problem on I {
∂tut = Δut +Grt(ut),

P(rt+h = r̃|rt = r) = qrr̃(ut)h+ o(h)
(2.3)

for t ∈ [0, T ] and zero Dirichlet boundary conditions. That is ut(0) = ut(1) = 0 for all t ∈ [0, T ]. We are
interested in the stochastic process (ut, rt)t∈[0,T ].

The spatially extended stochastic Hodgkin–Huxley model (2.3) describes the propagation of an action poten-
tial along an axon at the scale of ionic channels. The axon, or nerve fiber, is the component of a neuron which
allows the propagation of an incoming signal from the soma to another neuron on long distances. The length of
the axon is large relative to its radius, thus, for mathematical convenience, we consider the axon as a segment
I. All along the axon are the ion channels which allow and amplify the propagation of the incoming impulse.
We assume that there are N ion channels along the axon located in the subset N = {zi, i = 1, 2, . . . , N} of
I̊ = (0, 1). In [1, 17] for instance, N = { i

N , i = 1, . . . , N − 1} which means that the ion channels are regularly
spaced. Each ion channel can be in several states ξ ∈ E, for instance, in the Hodgkin–Huxley model, a state can
be: “receptive to sodium ions and open”. When a ion channel is open, it allows some ionic species to enter or
leave the cell, generating in this way a current. For a greater insight into the underlying biological phenomena
governing the model, the authors refer to [21], Chapter 2.

The ion channels switch between states according to a continuous time Markov chain whose jump intensities
depend on the local potential of the axon membrane. For a given channel, the rate function describes the rate
at which it switches from one state to another.

A possible configuration of all the N ion channels is denoted by r = (r(i), i ∈ N ), a point in the space of all
configurations R = EN : r(i) is the state of the channel located at zi, for i ∈ N . The channels, or stochastic
processes r(i), are supposed to evolve independently over infinitesimal time-scales. Denoting by ut(zi) the local
potential at point zi at time t, we have

P(rt+h(i) = ζ|rt(i) = ξ) = αξ,ζ (ut (zi))h+ o(h). (2.4)

For any ξ ∈ E, cξ represents the maximal conductance and vξ the steady state potentials, or driven potentials,
of a channel in state ξ.

The transmembrane potential ut(x), that is the difference of electrical potential between the outside and the
inside of the axon, evolves according to the following hybrid reaction-diffusion PDE

∂tut = Δut +
1
N

N∑
i=1

crt(i)(vrt(i) − ut(zi))δzi . (2.5)

The zero Dirichlet boundary conditions for this PDE corresponds to the case of a clamped axon [21].
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2.2. Stochastic Hodgkin–Huxley model with mollifiers

For technical reasons, in the present paper, we will work with a slightly different model where the Dirac
distributions δzi in (2.5) are replaced by approximations φzi in the sense of distributions, in the same way as in
so called compartment models (see Sect. 4 for more details). In such a model the reaction term is given by

Gr(u) =
1
N

N∑
i=1

cr(i)(vr(i) − ūi)φzi (2.6)

for (r, u) ∈ R× L2(I) where for any h ∈ L2(I), h̄i = (h, φzi)L2(I). For i ∈ N , the function φzi which belongs to
L2(I) approximates the Dirac distribution δzi . For i ∈ {1, . . . , N} the functions φzi are defined on I by

φzi(x) =
1
κ
M

(
x− zi
κ

)

with κ small enough such that φzi is compactly supported in I. The mollifier M is defined on R by

M(x) = e−
1

1−x2 1[−1,1](x).

Replacing δzi by φzi corresponds to consider that when the channel located at zi is open and allows a current
to pass, not only the voltage at the point zi is affected, but also the voltage on a small area around zi, see [8],
Section 3.1. The family of functions φzi is indexed by a parameter κ related to the considered membrane area:
the smaller κ is, the smaller is the area. When u is held fixed, the dynamic of the ion channel at location zi is
given by

P(rt+h(i) = ζ|rt(i) = ξ) = αξ,ζ (ūt,i)h+ o(h) (2.7)

for ξ, ζ ∈ E and t, h ≥ 0. The present paper is thus concerned with the following evolution problem, for t ∈ [0, T ]{
∂tut = Δut +Grt(ut),

P(rt+h(i) = ζ|rt(i) = ξ) = αξζ(ūt,i)h+ o(h).
(2.8)

2.3. A general framework

The previous stochastic Hodgkin–Huxley model with mollifiers actually belong to a more general framework
that we now describe.

Let A be a self-adjoint linear operator on a separable Hilbert space H such that there exists a Hilbert basis
{ek, k ≥ 1} of H made up with eigenvectors of A

Aek = −lkek (2.9)

for k ≥ 1 and such that
sup
k≥1

sup
y∈I

|ek(y)| <∞. (2.10)

The eigenvalues {lk, k ≥ 1} are assumed to form an increasing sequence of positive numbers enjoying the
following property ∑ 1

lk
<∞. (2.11)

Let R be a finite set. For any r ∈ R, the reaction term Gr : H 
→ H is globally Lipschitz on H uniformly on
r ∈ R. That is to say, there exists a constant LG > 0 such that for any (r, u, ũ) ∈ R×H ×H we have

‖Gr(u) −Gr(ũ)‖H ≤ LG‖u− ũ‖H . (2.12)
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For fixed u ∈ H let Q(u) := (qrr̃(u))(r,r̃)∈R×R be the generator of a continuous time Markov chain (rt, t ≥ 0)
on R. We assume that for r 	= r̃, the intensity rate functions qrr̃ : H 
→ R+ are uniformly bounded and Lipschitz
continuous. There exist two constants Bq, Lq such that for any (r, r̃, u, ũ) ∈ R×R×H ×H we have

sup
(r,r̃)∈R×R

sup
u∈H

qrr̃(u) ≤ Bq, |qrr̃(u) − qrr̃(ũ)| ≤ Lq‖u− ũ‖H . (2.13)

Moreover, we assume that there exists a positive constant q− such that

inf
u∈H

λ(u) ≥ q−, (2.14)

where λ(u) is the first non-zero eigenvalue of Q(u). We also assume that there exists a unique pseudo-invariant
measure μ(u) associated to the generator Q(u) which is bounded and Lipschitz continuous with respect to u.

The present paper is concerned with the following evolution problem, for t ∈ [0, T ]{
∂tut = Aut +Grt(ut),

P(rt+h = r̃|rt = r) = qrr̃(ut)h+ o(h).
(2.15)

Let us mention that in this framework, the model with mollifiers corresponds to H = L2(I) and R = EN .
With A = Δ, the Hilbert space basis {fk, k ≥ 1} of L2(I) defined in Appendix A and lk = (kπ)2 for k ≥ 1,
assumptions (2.9)–(2.14) are satisfied.

2.4. Basic properties of stochastic Hodgkin–Huxley models

The following result states that there exists a stochastic process satisfying system (2.8). Let u0 be in D(Δ)
such that minξ∈E vξ ≤ u0 ≤ maxξ∈E vξ, the initial potential of the axon. Let q0 ∈ R be the initial configuration
of the ion channels.

Proposition 2.1 ([8]). Fix N ≥ 1. There exists a probability space (Ω,F , (Ft)0≤t≤T ,P) on which a pair
(ut, rt)0≤t≤T of càdlàg adapted stochastic processes satisfies that each sample path of u is in C([0, T ], L2(I)), rt
is in R for all t ∈ [0, T ] and (ut, rt)0≤t≤T is solution of (2.8). Moreover (ut, rt)0≤t≤T is a so called Piecewise
Deterministic Markov Process.

The existence of a stochastic process solution of (2.3) has been first proved in [1]. The proof in [1] is in two
parts. First, the Schaeffer fixed point theorem implies that when the jump process r jumps at rate 1, there
exists a solution to (2.3). Then the original dynamic of r is recovered using the Girsanov theorem for càdlàg
processes with finite state space. Another approach has been developed in [8]. There, the process (u, r) is
constructed explicitly as a piecewise deterministic Markov process generalizing in this way the theory developed
by Davis [12,13] from the finite to the infinite dimensional setting. In [8], the authors prove that their process is
markovian and moreover characterize its generator. Still, another approach based on the marked point process
theory is also possible, see for instance [22], Chapter 7 and the extension to our framework in [28].

We proceed now by recalling the form of the generator of the process (ut, rt)0≤t≤T solution of (2.8). For
(u0, r) ∈ L2(I) ×R, we denote by (ψr(t, u0), t ∈ [0, T ]) the unique solution starting from u0 of the PDE

∂tut = Δut +
1
N

N∑
i=1

cr(i)(vr(i) − ūt,i)φzi (2.16)

with zero Dirichlet boundary conditions.

Proposition 2.2. Let f be a locally bounded measurable function on L2(I) × R such that the map t 
→
f(ψr(t, u0), r) is continuous for all (u0, r) ∈ L2(I)×R. Then f is in the domain D(A) of the extended generator
of the process (u, r). The extended generator is given for almost all t by

Af(ut, rt) =
df
dt

(u·, rt)(t) + B(ut)f(ut, ·)(rt), (2.17)
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where

B(ut)f(ut, ·)(rt) =
N∑
i=1

∑
ζ∈E

[f(ut, rt(rt(i) → ζ)) − f(ut, rt)]αrt(i),ζ(ūt,i).

The element rt(rt(i) → ζ) of R is equal to rt(j) if j 	= i and to ζ if j = i. The notation d
dtf(u·, rt)(t) means that

the function s 
→ f(u′s, r) is differentiated at s = t, where u′ is the solution of the PDE (2.16) with the channel
state rt held fixed equal to r. When f is continuously Fréchet differentiable with respect to its first argument
and such that the Riesz representation fu ∈ H of the Fréchet derivative satisfies fu(u, r) ∈ H for u ∈ H and is
a locally bounded composition operator in L2((0, T ), H) then

df
dt

(u·, rt)(t) = 〈fu(ut, rt), Δut +Grt(ut)〉 .

See Appendix A for the definition and main properties of Fréchet differentiable functions.

3. Multiscale models, singular perturbation and averaging

In this section, we introduce a slow-fast dynamic in the stochastic Hodgkin–Huxley model described in Sec-
tion 2.2: some states of the ion channels communicate faster between each other than others. This is biologically
relevant as remarked for example in [21], Chapter 18. Mathematically, this leads to the introduction of an addi-
tional small parameter ε > 0 in our previously described model: the states which communicate at a faster rate
communicate at the previous rate αξ,ζ divided by ε. For an introduction on slow-fast systems, we refer to [27],
for a general theory of slow-fast continuous time Markov chain, see [36] and for the case of slow-fast systems
with diffusion, see [5].

In the context of Section 2.1, we make a partition of the state space E according to the different orders in ε
of the rate functions

E = E1 � · · · � El,
where l ∈ {1, 2, · · · } is the number of classes. Inside a class Ej , the states communicate faster at jump rates
of order 1

ε . States in different classes communicate at the usual rate of order 1. For ε > 0 fixed, we denote by
(uε, rε) the modification of the PDMP introduced in the previous section with now two time scales. Its generator
is, for f ∈ D(Aε)

Aεf (uεt , r
ε
t ) =

df
dt

(uε· , r
ε
t ) (t) + Bε (uεt ) f (uεt , ·) (rεt ) . (3.1)

The term Bε is the component of the generator related to the continuous time Markov chain rε. According
to (2.17) and our slow-fast description, we have the two time scales decomposition of this generator

Bε =
1
ε
B + B̂, (3.2)

where the “fast” generator B is given by

B (uεt ) f (uεt , r
ε
t ) =

N∑
i=1

l∑
j=1

1Ej (rεt (i))
∑
ζ∈Ej

[f (uεt , r
ε
t (rεt (i) → ζ)) − f (uεt , r

ε
t )]αrε

t (i),ζ

(
ūεt,i
)

and the “slow” generator B̂ is given by

B̂ (uεt ) f (uεt , r
ε
t ) =

N∑
i=1

l∑
j=1

1Ej (rεt (i))
∑
ζ /∈Ej

[f (uεt , r
ε
t (rεt (i) → ζ)) − f (uεt , r

ε
t )]αrε

t (i),ζ

(
ūεt,i
)
.
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For y ∈ R fixed and g : R × E → R, we denote by Bj(y), j ∈ {1, · · · , l} the following generator

Bj(y)g(ξ) = 1Ej(ξ)
∑
ζ∈Ej

[g(y, ζ) − g(y, ξ)]αξ,ζ(y).

For any y ∈ R fixed, and any j ∈ {1, · · · , l}, we assume that the fast generator Bj(y) is weakly irreducible
on Ej , i.e. has a unique quasi-stationary distribution denoted by μj(y). This quasi-stationary distribution is
supposed to be Lipschitz-continuous in y, as well as its derivative.

Following [36], the states in Ej can be considered as equivalent. For any i = 1, . . . , N we define a new
stochastic process (r̄εt )t≥0 by r̄εt (i) = j when rεt (i) ∈ Ej and abbreviate Ej by j. We then obtain an aggregate
process r̄ε(i) with values in {1, · · · , l}. This process is also often called the coarse-grained process. It is not a
Markov process for ε > 0 but a Markovian structure is recovered at the limit when ε goes to 0. More precisely,
we have the following proposition.

Proposition 3.1 ([36], Chap. 7). For any y ∈ R, i = 1, . . . , N , the process r̄ε(i) converges weakly when ε goes
to 0 to a Markov process r̄(i) generated by

B̄(y)g(r̄(i)) =
l∑

j=1

1j(r̄(i))
l∑

k=1,k �=j
(g(k) − g(j))

∑
ξ∈Ej

∑
ζ∈Ek

αζ,ξ(y)μj(y)(ζ)

with g : {1, · · · , l} → R measurable and bounded.

We proved in [17] (in the context of the model with Dirac mass) that the limit of (uε, r̄ε) when ε goes to zero
requires to average the reaction term Gr(u) against the quasi-invariant distributions. That is we consider that
each cluster of states Ej has reached its stationary behavior. This leads to the averaged reaction term of the
following form: for any r̄ ∈ R̄ = {1, · · · , l}N

Fr̄(u) =
1
N

N∑
i=1

l∑
j=1

1j(r̄(i))
∑
ζ∈Ej

cζμj(ūi))(ζ)(vζ − ūi)φzi . (3.3)

Therefore, we call the following hybrid PDE

∂tut = Δut + Fr̄t(ut), (3.4)

the averaged equation. We take zero Dirichlet boundary conditions and initial conditions u0 and q̄0 where q̄0 is
the aggregation of the initial channel configuration q0: q̄0 =

∑l
j=1 j1Ej (q0). In equation (3.4), each coordinate

of (r̄t)t∈[0,T ] evolves independently over infinitesimal time intervals and according to the averaged jump rates
between the subsets Ej of E. For j and k in {1, · · · , l}, the average jump rate from class Ej to class Ek is
given by

ᾱjk(y) =
∑
ζ∈Ej

∑
ξ∈Ek

αζ,ξ(y)μj(y)(ζ). (3.5)

We can now state the averaging result proved for the model with Dirac mass in [17] but easily adaptable to the
model with mollifiers.

Theorem 3.2. When ε goes to 0 the stochastic process (uε, r̄ε) solution of (3.1) converges in distribution in
the space C([0, T ], L2(I)) × D([0, T ],R) to (u, r̄), solution of (3.4)–(3.5).

Let us recall a result of first importance to prove Theorem 3.2 and in the present paper as well. We refer the
interested reader to [17] for the proof. This result establishes the uniform boundedness in ε of the process uε.
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Proposition 3.3. For any T > 0, there is a deterministic positive constant C independent of ε ∈]0, 1] such
that

sup
t∈[0,T ]

‖uεt‖L2(I) ≤ C,

almost-surely.

For the sake of completeness, we recall a second result which states that the averaged model is well posed and
is still a PDMP.

Proposition 3.4. For any T > 0 there exists a probability space such that equations (3.4)–(3.5) define a PDMP
(ut, r̄t)t∈[0,T ] in infinite dimension in the sense of [8]. Moreover, there is a constant C such that

sup
t∈[0,T ]

‖ut‖L2(I) ≤ C

and u ∈ C([0, T ], L2(I)) almost-surely.

4. Main results

We present in this section the main results of the present paper. The averaging result of Theorem 3.2 above
may be seen as a Law of Large Numbers. The natural next step is then to study the fluctuations of the slow-fast
system around its averaged limit, in other words, to look for a Central Limit Theorem.

4.1. Fluctuations for the stochastic Hodgkin–Huxley models

For the sake of clarity in our presentation, we first present our result in the so called all-fast case that we proceed
to define.

When all states in E communicate at fast rates, there is a single class as described in Section 3, which is
equal to the whole set E. For each ε > 0, the generator of the process (uε, rε) is given by

Aεf (uεt , r
ε
t ) =

df
dt

(uε· , r
ε
t ) (t) +

1
ε
B (uεt ) f (uεt , ·) (rεt ) , (4.1)

where the slow part of the generator reduces to zero, B̂ ≡ 0 in Section 3, and

B (uεt ) f (uεt , r
ε
t ) =

N∑
i=1

∑
ξ∈E

[f (uεt , r
ε
t (rεt (i) → ξ)) − f (uεt , r

ε
t )]αrε

t (i),ξ

(
ūεt,i
)
.

When u ∈ L2(I) is held fixed, the Markov process r(i) has a unique stationary distribution μ(ūi) for any
i = 1, . . . , N . Then the process (r(i), i = 1, . . . , N) has the following stationary distribution

μ(u) =
N⊗
i=1

μ(ūi).

The averaged reaction term reduces to

F (u) =
∫
R
Gr(u)μ(u)(dr) =

1
N

∑
ξ∈E

N∑
i=1

cξμ(ūi)(ξ)(vξ − ūi)φzi . (4.2)

The averaged limit u is solution of the PDE

∂tut = Δut + F (ut)
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with initial condition u0 and zero Dirichlet boundary conditions. Note that in this case, the limit PDE is no
longer hybrid in contrast with (3.4). For ε > 0, we denote by zε the renormalized difference between uε and u:

zε =
uε − u√

ε
· (4.3)

Recall that we denote by {fk, k ≥ 1} a Hilbert basis of L2(I). The main result of the present paper is the
following.

Theorem 4.1. When ε goes to 0 the process zε converges in distribution in C([0, T ], L2(I)) towards a process z.
For u ∈ L2(I), let C(u) : L2(I) → L2(I) be a diffusion operator characterized by

(C(u)fj , fi) =
∫
R

(Gr(u) − F (u), fi)L2(I)(Φ(r, u), fj)L2(I)μ(u)(dr).

Φ is the unique solution of the equation{
B(u)Φ(r, u) = −(Gr(u) − F (u)),∫

R Φ(r, u)μ(u)(dr) = 0.
(4.4)

Let us also define an operator Ḡ1 by, for t ∈ [0, T ] and a measurable, bounded and twice Fréchet differentiable
function ψ : L2(I) → R,

Ḡ1(t)ψ(z) =
dψ
dz

(z)
[
Δz +

dF
du

(ut)[z]
]

+ Tr
[
d2ψ

dz2
(z)C(ut)

]
.

The process z is uniquely determined as the solution of the following martingale problem. For any measurable,
bounded and twice Fréchet differentiable function ψ : L2(I) → R, the process

N̄ψ(t) := ψ(zt) −
∫ t

0

Ḡ1(s)ψ(zs)ds (4.5)

for t ∈ [0, T ], is a martingale.

The evolution equation associated to the martingale problem (4.5) is the following SPDE (see [11])

dzt =
(
Δzt +

dF
du

(ut)[zt]
)

dt+ Γ (ut)dWt (4.6)

with initial condition 0 and zero Dirichlet boundary conditions. The operator Γ (u) is the square root of C(u):
C(u) = Γ (u)Γ (u)∗, which is well defined by Proposition 5.9. W denotes the standard cylindrical Wiener process
on the Hilbert space L2(I). Formally, the cylindrical Wiener process W is defined as follows: let ((βk(t))t≥0, k ≥
1) be a family of independent Brownian motions, then

Wt =
∑
k≥1

βk(t)fk,

where the definition of the Hilbert basis {fk, k ≥ 1} of L2(I) is recalled in Appendix A. See [11], Sections 2.2.3
and 3.6 for more information about the construction of W . A complete description of the diffusion operator C
is provided is Section 5.3. For any u ∈ C([0, T ], L2(I)) and t > 0, the operator

Qt : ψ 
→
∫ t

0

eΔ(t−s)C(us)eΔ(t−s)ψds
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is of trace class in L2(I). Thus we can apply classical results from the theory of SPDE in Hilbert spaces to
deduce the existence and uniqueness of a mild solution to equation (4.6), see the classical reference [11] on this
topic.

Theorem 4.1 extends to the multi-scale case. In this case there are at least two classes Ej as described in
Section 3.

Theorem 4.2. When ε goes to 0, the process zε converges in distribution in C([0, T ], L2(I)) towards a process z
uniquely defined as the solution of the following martingale problem: for any measurable, bounded and twice
Fréchet differentiable function ψ : L2(I) → R, the process

N̄ψ(t) := ψ(zt) −
∫ t

0

Ḡ1(us, r̄s)ψ(zs)ds (4.7)

is a martingale for t ∈ [0, T ]. The operator Ḡ1 is given by

Ḡ1(u, r̄)ψ(z) =
dψ
dz

(z)
[
Δz +

dFr̄
du

(ut)[z]
]

+ Tr
[
d2ψ

dz2
(z)Cr̄(u)

]
. (4.8)

Note that the evolution of the limit process z is coupled with the evolution of (r̄t, t ∈ [0, T ]) and (ut, t ∈ [0, T ])
in contrary to Theorem 4.1 where no jumps remain.

The diffusion operator Cr̄(u) : L2(I) → L2(I) is characterized by the quantities (Cr̄(u)fj , fi)L2(I) which are
given by ∫

R
(Gr(u) − Fr̄(u), fi)L2(I)(Φ(u, r), fj)L2(I) ⊗Ni=1 μr̄(i)(u)(dr),

Moreover Φ : L2(I) ×R → L2(I) is the unique solution of{ B(u)Φ(u, r) = −(Gr(u) − Fr̄(u)), ∀(u, r) ∈ L2(I) ×R∫
R Φ(u, r) ⊗Ni=1 μji(u)(dr) = 0, ∀(j1, · · · , jN ) ∈ {1, · · · , l}N , (4.9)

where B is the “fast” generator introduced in (3.2).

The evolution equation associated to the martingale problem (4.7) is no longer an SPDE but a hybrid SPDE
satisfying

dzt =
(
Δzt +

dFr̄t

du
(ut)[zt]

)
dt+ Γr̄t(ut)dWt (4.10)

with initial condition 0 and zero Dirichlet boundary conditions. For (u, r̄) held fixed, Γr̄(u) is the square root of
Cr̄(u): Cr̄(u) = Γr̄(u)Γr̄(u)∗. Hence, two noise sources are present in the multiscale case: the ionic channel noise
represented by the random jumps of the process r̄ and the Gaussian noise due to the fluctuations induced by the
white noise W . In between each jump of the component r̄, the process z follows a classical SPDE parametrized
by the current value of the process r̄. The hybrid SPDE (4.10) is well defined if for each r̄ = j ∈ {1, · · · , l} held
fixed, the SPDE

dzt =
(
Δzt +

dFj
du

(ut)[zt]
)

dt+ Γj(ut)dWt

is well defined. For any (j, u) ∈ {1, · · · , l} × C([0, T ], L2(I)) and t > 0, the operator

Qjt : ψ 
→
∫ t

0

eΔ(t−s)Cj(us)eΔ(t−s)ψds

is of trace class in L2(I). This allows us to apply classical results from the theory of SPDE in Hilbert spaces
to deduce existence and uniqueness of a mild solution to equation (4.10). See also [37] for an introduction to
switching diffusions.
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Theorem 4.1 (all-fast case) is proved in full details in Section 5. The proof of Theorem 4.2 (multi-scale
case) follows the same structure with an additional complication in the notations and the following necessary
adaptations. Regarding the proof of tightness, the argument in Section 5.1 below relies on the Poisson equation.
We refer the reader to [17] Section 3.2, which explains how the Poisson equation may be extended to the
multiscale setting. Regarding the identification of the limit, we adapt the method of [33], Chapter 5, Section 4.3,
where the multiscale case is considered in the finite dimensional setting. The key point is to be able to write
down the generator of the process (zε, uε, r̄ε). For another instructive example dealing with slow-fast continuous
Markov chain, see [36], Chapter 7.

4.2. The Langevin approximation

A natural step after having obtained a Central Limit Theorem corresponding to an averaged model is to look
for the associated Langevin approximation. Formally, the Langevin approximation corresponds to the averaged
model plus fluctuations. In our case, this results in the study of the process ũε defined in the all-fast case for
ε > 0 by

dũε = [Δũε + Fr̄(ũε)]dt+
√
εΓr̄(ũε)dWt (4.11)

with initial condition u0 and zero Dirichlet boundary conditions. We would like to compare the averaged equation
with the above Langevin approximation.

Proposition 4.3. The following estimate holds, where the trace is taken in the L2(I)-sense

Tr
∫ t

0

eΔ(t−s)Cr̄(us)eΔ(t−s)ds ≤
∑
k≥1

∫ t

0

(α‖us‖2
L2(I) + β‖us‖L2(I) + γ)e−2(kπ)2(t−s)ds

for any t ∈ [0, T ], any functions u ∈ C([0, T ], L2(I)) and averaged state r̄ ∈ {1, · · · , l} with α, β, γ three constants.

In particular, the operators Qjt are of trace class in L2(I) and the Langevin approximation of u is then well
defined.

Proposition 4.4. Let ε > 0. The hybrid SPDE:

dũε = [Δũε + Fr̄(ũε)]dt+
√
εΓr̄(ũε)dWt (4.12)

with initial condition u0 and zero Dirichlet boundary condition, has a unique solution with sample paths in
C([0, T ], L2(I)). Moreover

sup
t∈[0,T ]

E(‖ũεt‖2
L2(I)) < +∞. (4.13)

We can now compare the Langevin approximation to the averaged model u.

Theorem 4.5. Let T > 0 held fixed. There exists a deterministic constant c depending only on T but otherwise
not on ε such that

E

(
sup
t∈[0,T ]

‖ut − ũεt‖2
L2(I)

)
≤ cε. (4.14)

Therefore, the Langevin approximation is indeed an approximation of u.

Remark 4.6. The arguments developed for the averaging in [17] as well as those leading to the Central Limit
Theorem (Thm. 4.1) and to the Langevin approximation (Thm. 4.5) described in the previous sections are also
valid in the general setting present in Section 2.3. As mentioned in the introduction, we provide detailed proofs
for the stochastic generalized Hodgkin–Huxley model with mollifiers only (2.2).
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5. Proofs

In Theorem 4.1, we want to prove the convergence in distribution of the process zε when ε goes to zero. As
usual in this context such a proof can be divided in two parts: the proof of tightness of the family {zε, ε ∈]0, 1]}
which implies that there exists a convergent subsequence and the identification of the limit which allows us
to characterize the limit of any converging subsequence and prove its uniqueness. We write in full details the
proof in the all fast case corresponding to Section 4.1, that is when all the states in E communicate at fast
rates of order 1

ε . In this case there is a unique class of fast communications which is the whole state space E
(that is l = 1 w.r.t. the notation of Sect. 3). As already noticed, the multiscale case (when l > 1) considered
in Theorem 4.2 may be deduced from the all fast case and amounts mainly in additional complication in the
notations.

5.1. Tightness

To show that the family {zε, ε ∈]0, 1]} is tight in D([0, T ], L2(I)), we use Aldous criterion (cf. [24]) which can
be splitted in two parts as follows.

Criterion 5.1 (general criterion for tightness [24]). Let us assume that the family {zε, ε ∈]0, 1]} satisfies
Aldous’s condition: for any δ,M > 0, there exist η, ε0 > 0 such that for all stopping times τ with τ + η < T ,

sup
ε∈]0,ε0]

sup
θ∈]0,η[

P(‖zετ+θ − zετ‖L2(I) ≥M) ≤ δ (5.1)

and moreover, for each t ∈ [0, T ], the family {zεt , ε ∈]0, 1]} is tight in L2(I). Then {zε, ε ∈]0, 1]} is tight in
D([0, T ], L2(I)).

Criterion 5.2 (tightness in a Hilbert space [24]). Recall that L2(I) is a separable Hilbert space endowed with
its basis {fk, k ≥ 1} and for k ≥ 1 define

Lk = span{fi, 1 ≤ i ≤ k}.

Then, for t held fixed, (zεt , ε ∈]0, 1]) is tight in L2(I) if, and only if, for any δ, η > 0 there exist ρ, ε0 > 0 and
Lδ,η ⊂ {Lk, k ≥ 1} such that

sup
ε∈]0,ε0]

P(‖zεt ‖L2(I) > ρ) ≤ δ, (5.2)

sup
ε∈]0,ε0]

P(d(zεt , Lδ,η) > η) ≤ δ, (5.3)

where d(zεt , Lδ,η) = infv∈Lδ,η
‖zεt − v‖L2(I) is the distance of zε to the subspace Lδ,η.

We begin by showing that for a fixed t ∈ [0, T ], the family {zεt , ε ∈]0, 1]} is uniformly bounded in L2(Ω,L2(I)).
We recall the definition of the Hilbert basis {fk, k ≥ 1} of L2(I)

fk(x) =
√

2 sin(kπx), x ∈ I.

Proposition 5.3. There exists a constant C depending only on T but otherwise neither on t ∈ [0, T ] nor on
ε ∈]0, 1] such that

E

(
‖zεt ‖2

L2(I)

)
≤ C

In particular, for any fixed t ∈ [0, T ], condition (5.2) is satisfied by the family {zεt , ε ∈]0, 1]}.
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Proof. Let t ∈ [0, T ] and ε ∈]0, 1] be fixed. Using the evolution equations on uε and u and plugging F given
by (4.2) in the calculation, we have:

d
dt

‖uεt − ut‖2
L2(I) = 2 〈∂t (uεt − ut) , uεt − ut〉

= 2 〈Δ (uεt − ut) , uεt − ut〉 + 2
〈
Grε

t
(uεt ) − F (ut), uεt − ut

〉
= −2 ‖D (uεt − ut)‖2

L2(I) + 2
(
Grε

t
(uεt ) − F (uεt ) , u

ε
t − ut

)
L2(I)

+ 2 (F (uεt ) − F (ut), uεt − ut)L2(I) ,

almost surely. We treat each of the above terms separately. Regarding the third term, we notice that the
application u 
→ (F (u), u)L2(I) is locally Lipschitz on L2(I) and that the quantities uεt and ut are uniformly
bounded w.r.t. t ∈ [0, T ] and ε ∈]0, 1] thanks to Propositions 3.2 and 3.3. Thus there exists a constant C,
depending only on T but otherwise not on t ∈ [0, T ] and ε ∈]0, 1], such that

2 (F (uεt ) − F (ut), uεt − ut)L2(I) ≤ C ‖uεt − ut‖2
L2(I) .

Integrating over [0, t] and taking expectation yields the following inequality

E

(
‖uεt − ut‖2

L2(I)

)
≤ E

(
‖uε0 − u0‖2

L2(I)

)
+ 2C

∫ t

0

E

(
‖uεs − us‖2

L2(I)

)
ds

+ E

(∫ t

0

2
(
Grε

s
(uεs) − F (uεs) , u

ε
s − us

)
L2(I)

ds
)
.

Let us consider the latter of these terms. Using the same approach as the one developed for the identification
of the limit in the proof of the averaging result in [17], we deduce the existence of a constant C(T ) depending
only on T such that ∣∣∣∣E

(∫ t

0

2
(
Grε

s
(uεs) − F (uεs) , u

ε
s − us

)
L2(I)

ds
)∣∣∣∣ ≤ C(T )ε.

For the sake of completeness, we review now briefly this approach and refer to [17] for more details. The key
point is to show that there exists a measurable and bounded function f : L2(I) × R × [0, T ] → R such that∫
R f(u, r, t)μ(u)(dr) = 0 and for all (u, r, t) ∈ L2(I) ×R× [0, T ]

B(u)f(u, ·, t)(r) = (Gr(u) − F (u), u− ut)L2(I). (5.4)

Equation (5.4) is called the Poisson equation related to B. Then using the regularity of the mappings (u, r, t) ∈
L2(I) × R × [0, T ] 
→ (Gr(u) − F (u), u − ut)L2(I) and the operator B(u) for u ∈ L2(I), we deduce that the
application (u, r, t) ∈ L2(I)×R× [0, T ] 
→ f(u, r, t) is bounded, Fréchet differentiable in u with bounded Fréchet
derivative and differentiable in t with bounded derivative. Using the general theory of Markov processes, we
deduce that there exists a martingale M ε such that

f (uεt , r
ε
t , t) = f (uε0, r

ε
0, 0) +

∫ t

0

Aεf (uεs, r
ε
s, s) ds+M ε

t

= f (uε0, r
ε
0, 0) +

1
ε

∫ t

0

B (uεs) f (uεs, r
ε
s , s) +

df
ds

(uε· , r
ε
s, s) (s) +

df
ds

(uεs, r
ε
s, ·) (s)ds+M ε

t

= f (uε0, r
ε
0, 0) +

1
ε

∫ t

0

(
Grε

s
(uεs) − F (uεs) , u

ε
s − us

)
L2(I)

ds

+
∫ t

0

df
ds

(uε· , r
ε
s, s) (s) +

df
ds

(uεs, r
ε
s, ·) (s)ds+M ε

t .
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Therefore∫ t

0

(
Grε

s
(uεs) − F (uεs) , u

ε
s − us

)
L2(I)

ds = εf (uεt , r
ε
t , t) − εf (uε0, r

ε
0, 0)

− ε

∫ t

0

df
ds

(uε· , r
ε
s, s) (s) − df

ds
(uεs, r

ε
s, ·) (s)ds− εM ε

t .

Taking the expectation, using the fact that M ε is a martingale and that f is regular, we obtain the desired
estimate.

Assembling all the above estimates we obtain

E

(
‖uεt − ut‖2

L2(I)

)
≤ E

(
‖uε0 − u0‖2

L2(I)

)
+ C(T )ε+ 2C

∫ t

0

E

(
‖uεs − us‖2

L2(I)

)
ds.

Since uε0 = u0 a standard application of Gronwall’s lemma leads to the desired result. We end this proof by
showing that for any fixed t ∈ [0, T ], the family {zεt , ε ∈]0, 1]} fulfills the requirement (5.2). Indeed, let δ > 0
and denote by C the constant independent of ε and t ∈ [0, T ] such that

E

(
‖zεt ‖2

L2(I)

)
≤ C.

By the Markov inequality we have, for ρ > 0,

sup
ε∈]0,1]

P(‖zεt ‖L2(I) > ρ) ≤ sup
ε∈]0,1]

E(‖zεt ‖2
L2(I))

ρ2
≤ C

ρ2

and for ρ large enough, we obtain that supε∈]0,1] P(‖zεt ‖L2(I) > ρ) < δ. �

We now prove the tightness of the family {zεt , ε ∈]0, 1]} in L2(I) for any fixed t ∈ [0, T ]. This is the object of
the following propositions.

Proposition 5.4. Let t ∈]0, T ] and for p ≥ 1 let us define the following truncation

zε,pt =
p∑
k=1

(zεt , fk) fk.

Then
lim
p→∞ E

(
‖zεt − zε,pt ‖2

L2(I)

)
= 0,

uniformly in ε ∈]0, 1].

Proof. For a fixed k ≥ 1 we have

d
dt

(zεt , ek)
2 = 2 (zεt , fk)

d
dt

(zεt , fk)

= 2 (zεt , fk)
(
−(kπ)2 (zεt , fk) +

1√
ε

〈
Grε

t
(uεt ) − F (ut), fk

〉)

= − 2(kπ)2 (zεt , fk)
2 +

2√
ε

(zεt , fk) (F (uεt ) − F (ut), fk)L2(I)

+
2√
ε

(zεt , fk)
(
Grε

t
(uεt ) − F (uεt ) , fk

)
L2(I)

,
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almost surely. A direct computation using the arguments developed in the proof of Proposition 5.3 leads to the
existence of a constant C(T ) independent of ε ∈]0, 1] such that

(zεt , fk)
2 ≤ C(T ) − 2(kπ)2

∫ t

0

(zεs , fk)
2 ds,

almost surely. Using Gronwall’s lemma we deduce that

(zεt , fk)
2 ≤ C(T )e−2(kπ)2t.

The result follows since the series
∑

e−2(kπ)2t is convergent for t > 0. �

We now check that the family {zε, ε ∈]0, 1]} satisfies the first part of Criterion 5.1.

Proposition 5.5. Let τ > 0 be a stopping time and θ > 0 such that τ + θ ≤ T . There exists a constant C
depending only on T such that

E

(∥∥zετ+θ − zετ
∥∥2
L2(I)

)
≤ Cθ.

Proof. We notice that for k ≥ 1, t > 0 and θ > 0 such that t+ θ ≤ T we have

∂θ
(
zεt+θ − zεt , fk

)
L2(I)

= −(kπ)2
(
zεt+θ, fk

)
L2(I)

+
1√
ε

(
Grε

t+θ

(
uεt+θ

)− F (ut+θ), fk
)
L2(I)

.

Thus, almost surely

d
dθ
(
zεt+θ − zεt , fk

)2
L2(I)

= −2(kπ)2
(
zεt+θ, fk

)
L2(I)

(
zεt+θ − zεt , fk

)
L2(I)

+
2√
ε

〈
Grε

t+θ

(
uεt+θ

)− F (ut+θ), fk
〉 (
zεt+θ − zεt , fk

)
L2(I)

.

The first term satisfies

−2(kπ)2
(
zεt+θ, fk

)
L2(I)

(
zεt+θ − zεt , fk

)
L2(I)

= −2(kπ)2
(
zεt+θ − zεt , fk

)2 + 2(kπ)2 (zεt , fk)
2
L2(I)

− 2(kπ)2
(
zεt+θ, fk

)
L2(I)

(zεt , fk)L2(I)

≤ −2(kπ)2
(
zεt+θ − zεt , fk

)2
+ 3(kπ)2 ‖zεt ‖2

L2(I) + (kπ)2
∥∥zεt+θ∥∥2L2(I)

where ‖zεt ‖2
L2(I) and ‖zεt+θ‖2

L2(I) are bounded in expectation by a constant independent of t, θ and ε by Propo-
sition 5.3. For the second term, the arguments developed in the proof of Proposition 5.3 lead to the existence
of a constant C depending only on T such that

E

(∫ θ

0

(
Grε

t+s

(
uεt+s

)− F
(
uεt+s

)
, fk

)
L2(I)

ds

)
≤ Cθε.

Therefore, still denoting by C a constant depending only of T

E

((
zεt+θ − zεt , fk

)2
L2(I)

)
≤ −2(kπ)2

∫ θ

0

E

((
zεt+s − zεt , fk

)2)ds+ C
(
1 + (kπ)2

)
θ.

By application of the Gronwall’s lemma and summation over k we obtain

E

((‖zεt+θ − zεt
∥∥2
L2(I)

)
≤ Cθ

∑
k≥1

(
1 + (kπ)2

)
e−2(kπ)2t

which yields the result for any t > 0 since the series
∑
k≥1(1+(kπ)2)e−2(kπ)2t is convergent for t > 0. The same

arguments apply when replacing t by the stopping time τ . �
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According to Criteria 5.1 and 5.2, Propositions 5.3, 5.4 and 5.5, the family {zε, ε ∈]0, 1]} is tight in
D([0, T ], L2(I)). The continuity of each element of the family implies that {zε, ε ∈]0, 1]} is tight in C([0, T ], L2(I)).

5.2. Identification of the limit

In this section we want to prove that (zε, ε ∈]0, 1]) has a unique accumulation point that we identify as the
unique solution of a martingale problem. For this purpose, we study the process (zε, rε) for ε ∈]0, 1].

Let us outline the strategy of the proof.

Step 1. Use the general theory on PDMP developed in [8] to write down the generator Gε of the process (zε, rε).
The associated martingale problem gives rise to martingales M ε

φ for appropriate functions φ.
Step 2. For a nice choice of φ, identify the terms of order one in ε of the martingale M ε

φ. Since the difference
between u and uε is renormalized by

√
ε, choose φ of the form ψ +

√
εγ (perturbed test function).

Step 3. Identify the generator Ḡ of the limit process z. Prove that z is solution of the martingale problem
associated to Ḡ.

Step 1. Notice first that the process zε satisfies the following equation

∂tz
ε
t = Δzεt +

1√
ε
(Grε

t
(uεt ) − F (ut)) (5.5)

= Δzεt +
1√
ε
(Grε

t
(ut +

√
εzεt ) − F (ut)),

by definition of zε. The initial condition for zε is 0 and the boundary conditions are still zero Dirichlet boundary
conditions.

Let φ : L2(I) × R × R+ be a real valued, measurable and bounded function of class C2 on L2(I) and C1

on R+. We write down the generator of the process (zε, rε) against φ. Recall that in the all-fast case, the limit u
of uε is deterministic so that (zε, rε) is a classical PDMP with evolution equation given by (5.5) and dynamic
of jumps given by (2.7). According to Theorem 4 of [8], for (z, r, t) ∈ L2(I)×R×R+, the generator G of (zε, rε)
is given by

G(t)φ(z, r, t) =
dφ
dz

(z, r, t)
[
Δz +

1√
ε

(
Gr
(
ut +

√
εz
)− F (ut)

)]
(5.6)

+
1
ε
B(ut +

√
εz)φ(z, r, t) + ∂tφ(z, r, t).

Following the usual theory of Markov processes (see [15], Chap. 4), the process (M ε
φ(t), t ∈ [0, T ]) defined for

t ≥ 0 by

M ε
φ(t) = φ (zεt , r

ε
t , t) −

∫ t

0

G(s)φ (zεs , r
ε
s, s) ds,

is a martingale for the natural filtration associated to the process (zε, rε).

Step 2. We want to identify the terms of different orders in ε of M ε
φ. For this purpose, we choose a function φ

with the following decomposition
φ(z, r, t) = ψ(z, r) +

√
εγ(z, r, t),

where the functions ψ and γ have the same regularity as φ. We write the Taylor expansion in ε of the two
following terms

Gr
(
ut +

√
εz
)

= Gr(ut) +
√
ε
dGr
du

(ut)[z] +
√
ε‖z‖L2(I)δ1

(√
εz
)

B (ut +
√
εz
)

= B(ut) +
√
ε
dB
du

(ut)[z] +
√
ε‖z‖L2(I)δ2

(√
εz
)
,
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where δ1 and δ2 are two L2(I)-valued continuous functions such that δ1(0L2(I)) = δ2(0L2(I)) = 0L2(I). Plugging
this expansion in the expression of the generator (5.6) we want the terms of order 1

ε to vanish. For (z, r, t) ∈
L2(I) ×R× R+ this leads to

B(ut)ψ(z, r) = 0. (5.7)

That is to say, the application ψ does not depend on r ∈ R and is of the form

ψ(z, r) = ψ(z),

where ψ : L2(I) → R is of class C2. The generator is then of the following form, where we gather the terms of
the same order in ε

G(t)φ(z, r, t) =
1√
ε

(
dψ
dz

(z)[Gr(ut) − F (ut)] + B(ut)γ(z, r, t) +
dB
du

(ut)[z]ψ(z)
)

+
dψ
dz

(z)
[
Δz +

dGr
du

(ut)[z]
]

+
dγ
dz

(z, r, t)[Gr(ut) − F (ut)] +
dB
du

(ut)[z]γ(z, r, t)

+
√
ε

(
∂tγ(z, r, t) +

dγ
dz

(z, r, t)
[
Δz +

dGr
du

(ut)[z]
])

+ o
(√
ε
)
.

We now want the terms of order 1√
ε

to vanish, that is to say, or (z, r, t) ∈ L2(I) ×R× R+

dψ
dz

(z)[Gr(ut) − F (ut)] + B(ut)γ(z, r, t) +
dB
du

(ut)[z]ψ(z) = 0.

Notice that B(ut)1 = 0 implies that for all (z, t) ∈ L2(I) × R+

dB
du

(ut)[z]ψ(z) = 0

and we are left with the equation

B(ut)γ(z, r, t) = −dψ
dz

(z)[Gr(ut) − F (ut)]. (5.8)

We look for γ of the form:

γ(z, r, t) =
dψ
dz

(z)[Φ(r, ut)],

where Φ : R× L2(I) → L2(I) has to be identified. Inserting the above expression of γ in (5.8) we obtain

dψ
dz

(z)[B(ut)Φ(r, ut)] = −dψ
dz

(z)[Gr(ut) − F (ut)].

Therefore, it is enough that for any (u, r) ∈ L2(I) ×R

B(u)Φ(r, u) = −(Gr(u) − F (u)). (5.9)

To ensure uniqueness of the solution for equation (5.9) we impose moreover the condition∫
R
Φ(r, u)μ(u)(dr) = 0.

Then, from the definition of F we have
∫
R (Gr(u) − F (u))μ(u)(dr) = 0. Moreover, equation (5.9) has a unique

solution Φ thanks to the Fredholm alternative.
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Step 3. We have identified the terms of order 1 in ε of the generator of the process (zε, rε). It remains
to show that the terms of order 1 in ε correspond, after averaging, to the generator of the process z. For
(z, r, t) ∈ L2(I) ×R× R+ we define

G1(t, r)ψ(z) =
dψ
dz

(z)
[
Δz +

dGr
du

(ut)[z]
]

+
d2ψ

dz2
(z)[Φ(r, ut), Gr(ut) − F (ut)]

+
dB
du

(ut)[z]
dψ
dz

(z)[Φ(r, ut)]. (5.10)

Let us define also the following process

Nε
ψ(t) = ψ(zεt ) −

∫ t

0

G1(s, rεs)ψ(zεs)ds.

By construction we see that E(|M ε
φ(t) − Nε

ψ(t)|2) = O(ε). When ε goes to 0, by the averaging result of
Theorem 3.2, we see that the term

∫ t
0 G1(s, rεs)ψ(zεs)ds should converge to∫ t

0

∫
R
G1(s, r)ψ(zs)μ(us)(dr)ds.

Therefore, we want to prove that, whenever z is an accumulation point of the family (zε, ε ∈]0, 1]), the process

N̄ψ(t) = ψ(zt) −
∫ t

0

Ḡ1(s)ψ(zs)ds,

is a martingale w.r.t. the natural filtration associated to the process (zt, t ≥ 0) where

Ḡ1(t)ψ(z) =
dψ
dz

(z)[Δz +
dF
du

(ut)[z]] +
d2ψ

dz2
(z)
∫
R

[Φ(r, ut), Gr(ut) − F (ut)]μ(ut)(dr). (5.11)

This is not straightforward since we have no information on the asymptotic behavior of the process (zε, rε)
when ε goes to 0.
Proposition 5.6. The process (N̄ψ(t), t ≥ 0) is a martingale w.r.t. the natural filtration associated to the
process (zt, t ≥ 0).

Proof. Let 0 ≤ t1 ≤ t2 ≤ . . . ≤ tk ≤ s ≤ t be k + 2 reals, with k ≥ 1 an integer. For i ∈ {1, · · · , k}, we take a
measurable and bounded function gi. In order to show that the process (N̄ψ(t), t ≥ 0) is a martingale for the
natural filtration associated to the process (zt, t ≥ 0) we will prove that

E((N̄ψ(t) − N̄ψ(s))g1(zt1) . . . gk(ztk)) = 0.

In order to not overload the proof with too many computations, we write Zk for the random variable
g1(zt1) . . . gk(ztk) and Zεk for g1(zεt1) . . . gk(z

ε
tk

). Using elementary substitution and the fact that zε converges in
law toward z when ε goes to 0 we have

E((N̄ψ(t) − N̄ψ(s))Zk) = E

((
ψ(zt) − ψ(zs) −

∫ t

s

Ḡ1(l)ψ(zl)dl
)
Zk

)

= E((ψ(zt) − ψ(zs))Zk) − E

((∫ t

s

Ḡ1(l)ψ(zl)dl
)
Zk

)

= lim
ε→0

E ((ψ (zεt ) − ψ (zεs))Z
ε
k) − E

((∫ t

s

Ḡ1(l)ψ(zl)dl
)
Zk

)

= lim
ε→0

E
((
Nε
ψ(t) −Nε

ψ(s)
)
Zεk
)

+ lim
ε→0

E

((∫ t

s

G1 (l, rεl )ψ (zεl ) dl
)
Zεk

)

− E

((∫ t

s

Ḡ1(l)ψ(zl)dl
)
Zk

)
.
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On one hand, from the definition of Nε
ψ and the previous study of the different orders in ε of the martingale M ε

φ

we see that

lim
ε→0

E
((
Nε
ψ(t) −Nε

ψ(s)
)
Zεk
)

= lim
ε→0

E
((
Nε
ψ(t) −Nε

ψ(s)
)
Zεk
)− E

((
M ε
φ(t) −M ε

φ(s)
)
Zεk
)
.

From the previous study of the different orders in ε, the right hand side is O(
√
ε) and therefore converges to 0

when ε goes to 0. On the other hand, for ε1 > 0 which will be chosen later

lim
ε→0

E

((∫ t

s

G1(l, rεl )ψ(zεl )dl
)
Zεk

)
− E

((∫ t

s

Ḡ1(l)ψ(zl)dl
)
Zk

)
(5.12)

= lim
ε→0

E

((∫ t

s

G1(l, rεl )ψ(zεl )dl
)
Zεk

)
− E

((∫ t

s

G1(l, rε
1

l )ψ(zεl )dl
)
Zεk

)
(5.13)

+ lim
ε→0

E

((∫ t

s

G1(l, rε
1

l )ψ(zεl )dl
)
Zεk

)
− E

((∫ t

s

G1(l, rε
1

l )ψ(zl)dl
)
Zk

)
(5.14)

+ E

((∫ t

s

G1(l, rε
1

l )ψ(zl)dl
)
Zk

)
− E

((∫ t

s

Ḡ1(l)ψ(zl)dl
)
Zk

)
. (5.15)

We know that the quantity corresponding to (5.15) can be made arbitrarily small by conditioning appropriately
(as in the proof of Prop. 5.3 for example) for small enough ε1. Then, since zε converges in law towards z when
ε goes to 0, the quantity (5.14) converges to 0 when ε goes to 0. This shows finally that (5.12) converges to 0
when ε goes to 0 and therefore

E((N̄ψ(t) − N̄ψ(s))g1(zt1) · · · gk(ztk)) = 0,

as announced. �

We can now conclude that the limit process z is solution of the following martingale problem: for any measurable,
bounded and twice Fréchet differentiable function ψ, the process defined by

N̄ψ(t) = ψ(zt) −
∫ t

0

Ḡ1(s)ψ(zs)ds,

for t ∈ [0, T ] is a martingale, where Ḡ1 is given by (5.11).
In other word, the limit process z is solution to the martingale problem associated with the operator Ḡ1.

Then z is a solution of the SPDE (4.6) where the diffusion operator C(u) for u ∈ L2(I) is identified thanks to
the relation

d2ψ

dz2
(z)
∫
R

[Φ(r, u), Gr(u) − F (u)]μ(u)(dr) = Tr
d2ψ

dz2
(z)C(u) (5.16)

for (u, z) ∈ L2(I)×L2(I). The uniqueness of z follows from the properties of the Laplacian operator, the reaction
term dF

du and the operator C(u). For more insight in the properties of the diffusion operator, see the following
section.

5.3. The diffusion operator C

In this section, we give more details about the diffusion operator C. In particular, we make explicit the
dependence of Φ in (5.16) w.r.t. the data of our problem.

Proposition 5.7 (first representation of the diffusion operator). For u ∈ L2(I) and r ∈ R we have:

Φ(r, u) = − (μ∗(u)μ(u) + B∗(u)B(u))−1 B∗(u)(G·(u) − F (u))(r).

That is, the function Φ(·, u) is explicitly given as a function of the “fast jumping part” operator B(u) and the
associated invariant measure μ(u).
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Proof. The application Φ is defined by the two conditions{
B(u)Φ(r, u) = −(Gr(u) − F (u))∫

R Φ(r, u)μ(u)(dr) = 0
(5.17)

for (u, r) ∈ L2(I) ×R. Let u ∈ L2(I) be held fixed. Defining D(u) = (μ(u),B(u))T reduces (5.17) to

D(u)Φ(·, u) = −
(

0
G·(u) − F (u)

)
.

Then

D∗(u)D(u)Φ(·, u) = −D∗(u)
(

0
G·(u) − F (u)

)
.

It remains to prove that the operator D∗(u)D(u) is invertible which is the key point to conclude. Indeed

D∗(u)D(u) = μ(u)∗μ(u) + B∗(u)B(u)

and the kernel of the two operators μ(u)∗μ(u) and B∗(u)B(u) are in direct sum and span the whole space R
|R|.

Let x ∈ KerD∗(u)D(u), then x can be written uniquely as z+ y with z ∈ Kerμ(u)∗μ(u) and y ∈ KerB∗(u)B(u).
We have

μ(u)∗μ(u)y + B∗(u)B(u)z = 0.

Since B(u)1 = 0 (where 1 ∈ R
|R|) and μ(u)1 = 1, multiplying the above equation to the left by 1T we have

μ(u)y = 0.

Since y ∈ KerB∗(u)B(u) = KerB(u) = span1 here, we have y = y1 with y ∈ R and

μ(u)y = μ(u)y1 = y

and thus y = 0 and y = 0. Therefore x = z ∈ Kerμ(u)∗μ(u) and B∗(u)B(u)z = 0. Thus z ∈ Kerμ(u)∗μ(u) ∩
KerB∗(u)B(u) = {0} and x = z = 0. The operator D∗(u)D(u) is then invertible. �

Proposition 5.8 (second representation of the diffusion operator). For any (u, r) ∈ L2(I) ×R

Φ(u, r) =
∫ ∞

0

Er(Gru
s
(u) − F (u))ds,

where for a given u, ru denotes a Markov chain on R with transition rates qrr̃ (cf. (2.2)).

Proof. The process

Mt = Φ(u, rut ) − Φ(u, r) −
∫ t

0

B(u)Φ(u, rus )ds,

is a martingale w.r.t. the natural filtration generated by the process ru. Let us take expectation and remember
that {

B(u)Φ(r, u) = −(Gr(u) − F (u))∫
R Φ(r, u)μ(u)(dr) = 0,

. (5.18)

Then,

Er (Φ(u, rut )) = Φ(u, r) −
∫ t

0

Er

(
Gru

s
(u) − F (u)

)
ds.

The desired result follows since:

lim
t→∞ Er (Φ(u, rut )) =

∫
R
Φ(r, u)μ(u)(dr) = 0. �
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Proposition 5.9. The diffusion operator C(u), for u ∈ L2(I), is positive in the sense that

Tr C(u) ≥ 0.

Therefore the operator Γ (u) such that C(u) = Γ ∗(u)Γ (u) is well defined.

Proof. For u ∈ L2(I) we have:

Tr C(u) =
∑
k≥1

∫
R

(Gr(u) − F (u), fk)L2(I)(Φ(r, u), fk)L2(I)μ(u)(dr)

= −
∑
k≥1

∫
R

(B(u)Φ(r, u), fk)L2(I)(Φ(r, u), fk)L2(I)μ(u)(dr).

We conclude that Tr C(u) ≥ 0 because all the eigenvalues of the operator B(u) are non positive. �

5.4. Langevin approximation

We are interested in this section by the Langevin approximation of the averaged model. We start with the
proof of Propositions 4.3 and 4.4. As for the Central Limit Theorem we detail the proof only in the all-fast case.

Proposition 5.10. The following estimate holds,

Tr
∫ t

0

eΔ(t−s)C(us)eΔ(t−s)ds ≤
∑
k≥1

∫ t

0

(α‖us‖2
L2(I) + β‖us‖L2(I) + γ)e−2(kπ)2(t−s)ds

for all t ∈ [0, T ] and all functions u ∈ C([0, T ], L2(I)). The trace is taken in the L2(I)-sense and α, β, γ are
three constants.

Proof. This is a direct consequence of Proposition 5.8. Indeed, Proposition 5.8 implies that

∣∣(Φ(u, r), fk)L2(I)

∣∣ ≤ c1
N

N∑
i=1

∣∣(φzi , fk)L2(I)

∣∣ (1 + ‖us‖L2(I)

)

for a constant c1 and {fk, k ≥ 1} a Hilbert basis of L2(I). Since each φzi is in L2(I) we obtain
∣∣(Φ(u, r), fk)L2(I)

∣∣ ≤ c1
(
1 + ‖us‖L2(I)

)
for another constant c1. Let us write, in the same way as in the proof of Proposition 5.9,

Tr
∫ t

0

eΔ(t−s)C(us)eΔ(t−s)ds ≤
∑
k≥1

e−(kπ)2(t−s)
∫
R

(Gr(u) − F (u), fk)(Φ(r, u), fk)μ(u)(dr). (5.19)

Using the explicit expression of Gr(u)−F (u), it is not difficult to show that there exists a constant c2 such that

|(Gr(u) − F (u), fk)| ≤ c2
(
1 + ‖us‖L2(I)

)
.

Plugging the latter inequality in (5.19) leads to the result. An explicit computation of Tr C is presented in
Section 6. �
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In particular, the operator Qt defined by

Qt : ψ ∈
→
∫ t

0

eΔ(t−s)C(us)eΔ(t−s)ψds

with (j, u) ∈ {1, · · · , l}×C([0, T ], L2(I)) is of trace class in L2(I). The Langevin approximation of u is then well
defined as stated in the following proposition. We recall that in the all-fast case

F (u) =
1
N

N∑
i=1

∑
ξ∈E

cξμ(ūi)(ξ)(vξ − ūi)φzi

for u ∈ L2(I).

Proposition 5.11. Let ε > 0. The SPDE

dũε = [Δũε + F (ũε)]dt+
√
εΓ (ũε)dWt (5.20)

with initial condition u0 and zero Dirichlet boundary condition has a unique solution with sample paths in
C([0, T ], L2(I)). Moreover the quantity

sup
t∈[0,T ]

E(‖ũεt‖2
L2(I)) <∞. (5.21)

Proof. Thanks to the properties of the laplacian operator, the local Lipschitz continuity of F and Proposition 4.3,
we can apply classical results on SPDE, see for example ([11], Chap. 7, Thm. 7.4) to prove existence and
uniqueness of solution to (5.20) in C([0, T ], L2(I)). The bound (5.21) is obtained using similar arguments to
those used in the proof of the following theorem. �

We proceed to the Proof of Theorem 4.5.

Proof of Theorem 4.5. Since there is no ambiguity in the proof, we write simply ‖·‖ for the L2(I) -norm ‖·‖L2(I).
First we notice that we have

ũεt − ut =
∫ t

0

eΔ(t−s)(F (ũεs) − F (us))ds +
√
ε

∫ t

0

eΔ(t−s)Γ (ũεs)dWs.

Remember that, for any u ∈ L2(I),

F (u) =
1
N

∑
ξ∈E

N∑
i=1

cξμ(ūi)(ξ)(vξ − ūi)φzi =
1
N

N∑
i=1

f(ūi)φzi ,

and if moreover ũ ∈ L2(I) we have

|f(¯̃ui) − f(ūi)| ≤ max
ξ∈E

cξ

(
1 + max

ξ∈E
|vξ| + ‖u‖L2(I)

)
‖ũ− u‖L2(I). (5.22)

By the Parseval identity we have∥∥∥∥
∫ t

0

eΔ(t−s)(F (ũεs) − F (us))ds
∥∥∥∥

2

=

∥∥∥∥∥∥
∑
k≥1

1
N

N∑
i=1

∫ t

0

(f (¯̃us,i) − f (ūs,i)) e−(kπ)2(t−s)ds(φzi , fk)L2(I)fk

∥∥∥∥∥∥
2

.
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Then, using the fact (fk, k ≥ 1) is an orthonormal basis, supt∈[0,T ] ‖ut‖L2(I) is finite a.s. and (5.22) we obtain

∥∥∥∥
∫ t

0

eΔ(t−s) (F (ũεs) − F (us)) ds
∥∥∥∥

2

≤ C1

N2

N∑
i=1

∑
k≥1

(φzi , fk)
2
L2(I)

(∫ t

0

max
ξ∈E

cξ

(
1+max

ξ∈E
|vξ|+‖us‖

)
‖ũεs−us‖ds

)2

≤ C2

N2

N∑
i=1

∑
k≥1

(φzi , fk)
2
L2(I)

(∫ t

0

‖ũεs − us‖ds
)2

,

where C1 and C2 are two deterministic constants depending only on T . Since each φzi is in L2(I), there exists
a constant C3 depending only on T such that∥∥∥∥

∫ t

0

eΔ(t−s)(F (ũεs) − F (us))ds
∥∥∥∥ ≤ C3

∫ t

0

‖ũεs − us‖ds.

We prove now that there exists a constant C4 such that

E

(
sup
t∈[0,T ]

∥∥∥∥
∫ t

0

eΔ(t−s)Γ (ũεs)dWs

∥∥∥∥
2
)

≤ C4. (5.23)

Using Proposition 1.3 of [19], (analogous to the Burkholder–Davis–Gundy inequality but for stochastic convolu-
tions rather than martingales) to control the supremum on [0, T ] by the value at T , we obtain that there exists
a constant c4 independent of ε such that

E

(
sup
t∈[0,T ]

∥∥∥∥
∫ t

0

eΔ(t−s)Γ (ũεs)dWs

∥∥∥∥
2
)

≤ c4E

(
Tr
∫ T

0

eΔsC(ũεt−s)e
Δsds

)
.

According to Proposition 4.3 and Proposition 4.4, the latter term is upper bounded by a constant C4 depending
only on T . From the above inequalities we obtain that

E

(
sup
t∈[0,T ]

‖ũεt − ut‖2

)
= E

(
sup
t∈[0,T ]

∥∥∥∥
∫ t

0

eΔ(t−s)(F (ũεs) − F (us))ds+
√
ε

∫ t

0

eΔ(t−s)Γ (ũεs)dWs

∥∥∥∥
2
)

≤ 2E

(
sup
t∈[0,T ]

∥∥∥∥
∫ t

0

eΔ(t−s)(F (ũεs) − F (us))ds
∥∥∥∥

2
)

+2εE

(
sup
t∈[0,T ]

∥∥∥∥
∫ t

0

eΔ(t−s)Γ (ũεs)dWs

∥∥∥∥
2
)

≤ 2E

⎛
⎝
(
C3

∫ T

0

sup
t∈[0,s]

‖ũεt − ut‖ds
)2
⎞
⎠+ 2εC4

≤ 2C2
3T

∫ T

0

E

(
sup
t∈[0,s]

‖ũεt − ut‖2

)
ds+ 2εC4.

A standard application of Gronwall’s lemma leads to the result stated in Theorem 4.5. �

6. Example

We consider in this section a spatially extended stochastic Morris–Lecar model. Since the seminal work [25],
the deterministic Morris–Lecar model is considered as one of the classical mathematical models for investigating
neuronal behavior. At first, this model was designed to describe the voltage dynamic of the barnacle giant muscle
fiber (see [25] for a complete description of the deterministic Morris–Lecar model). To take into account the
intrinsic variability of the ion channels dynamic, a stochastic interpretation of this class of models has been
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introduced (see [8] and [33], Chap. 5, Sect. 3) in which ion channels are modeled by jump Markov processes.
The model then falls into the class of stochastic generalized Hodgkin–Huxley models considered in the present
paper. Let us proceed to the mathematical description of the spatially extended stochastic Morris–Lecar model.
In this model, the total current GrK,rCa(u) is given by

1
C

[
1
NK

NK∑
i=1

11

(
rK(i)

)
cK (vK − ūi)φzi +

1
NCa

NCa∑
i=1

11

(
rCa(i)

)
cCa (vCa − ūi)φzi + I

]

and the evolution equation for the transmembrane potential

∂tut =
a

2RC
Δut +GrKt ,rCa

t
(ut),

on [0, T ] × [0, 1] and with zero Dirichlet boundary condition. The total current is the sum of the potassium K
current, the calcium Ca current and the impulse I. The positive constants a,R,C are relative to the bio-physical
properties of the membrane. When the voltage is held fixed, for any 1 ≤ i ≤ Nq where q is equal to K or Ca,
rq(i) is a continuous time Markov chain with only two states 0 for closed and 1 for open. The jump rate from 1
to 0 is given by βq(ūi) and from 0 to 1 by αq(ūi). All the jump rates are bounded below and above by positive
constants. We will assume that the potassium ion channels communicate at fast rates of order 1

ε for a small
ε > 0. The calcium rates are of order 1. The invariant measure associated to each channel 1 ≤ i ≤ NK is given by

μK
i (ūi) =

(
βK(ūi)

αK(ūi) + βK(ūi)
,

αK(ūi)
αK(u(zi)) + βK(ūi)

)
·

Therefore the averaged applied current is

FrCa(u) =
1
C

[
1
NK

NK∑
i=1

αK(ūi)
αK(ūi) + βK(ūi)

cK (vK − ūi)φzi

+
1

NCa

NCa∑
i=1

11

(
rCa(i)

)
cCa (vCa − ūi)φzi + I

]
.

In this case the application Φ of Theorem 4.2 should read as follows for a model with Dirac mass. For (u, r) ∈
L2(I) ×RK, Φ(u, r) is given by

1
C

1
NK

NK∑
i=1

cK(vK − ūi)φzi

∫ ∞

0

Er

(
11(rK,us (i)) − αK(ūi)

αK(ūi) + βK(ūi)

)
ds,

where, for u held fixed, rK,us (i) is a Markov chain on {0, 1} with jump rate from 1 to 0 is given by βK(ūi) and
from 0 to 1 by αK(ūi). Of course, in this case, the law of (rK,us (i), s ≥ 0) can be fully explicited. After some
algebra one obtains that Φ(u, r) is given by

1
C

1
NK

NK∑
i=1

cK
vK − ūi

αK(ūi) + βK(ūi)

(
11(r(i)) − αK(ūi)

αK(ūi) + βK(ūi)

)
φzi .

Then the diffusion operator (CK(u)φ, ψ)L2(I) is given for u ∈ L2(I) by

1
N2

K

NK∑
i=1

c2K(vK − ūi)2
aK(ūi)bK(ūi)

(αK(ūi) + βK(ūi))3
φ̄iψ̄i
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for (φ, ψ) ∈ L2(I) × L2(I). From the above expression, we see that for any u ∈ L2(I), CK is of trace class in
L2(I). Let us consider, for t ∈ [0, T ]

Qt : φ ∈ L2(I) 
→
∫ t

0

eΔ(t−s)CK(us)eΔ(t−s)φds,

where (us, s ∈ [0, T ]) is the averaged limit. From the expression of CK we see that in the L2(I)-sense, Tr Qt is
finite for any t > 0.

We present in Figure 1 numerical simulations of the slow fast Morris–Lecar model with no Calcium current for
various ε > 0. The averaged model (denoted by ε = 0) and the trace of the diffusion operator are also plotted.
We set the calcium current equals to zero in our simulations to emphasize the convergence of the slow-fast
spatially extended Morris–Lecar model towards the associated averaged model. See [25] Figure 2 for simulations
of the deterministic finite dimensional Morris–Lecar system with no calcium current. We observe in Figure 1
that averaging affects the model in several ways. As ε goes to zero, the averaged number of spikes on a fixed
time duration increases until finally form a front wave in the averaged model (ε = 0). In the same time the
intensity of the spikes decreases. Let us also mention the fact that the trace of the diffusion operator is higher
in the neighborhood of a spike in accordance to [33], Chapter 5, Section 3, where the same phenomenon has
been observed for the finite dimensional stochastic Morris–Lecar model.

Acknowledgements. Acknowledgments: the authors are grateful to the anonymous referees for their suggestions and
comments. Their advices lead to a significant improvement in the presentation of the text.

Appendix A. Basic facts on the spaces L2(I), H1
0(I) and Fréchet derivatives

Let I = [0, 1]. L2(I) is the space of measurable and squared integrable functions. It is a Hilbert space endowed
with the usual scalar product

(f, g)L2(I) =
∫
I

f(x)g(x)dx

and norm ‖ · ‖2
L2(I) = (·, ·)L2(I). H = H1

0 (I) denotes the completion of the set of C∞ functions with compact
support on I with respect to the norm ‖ · ‖H defined by

‖f‖H =

√∫
I

(f(x))2 + (f ′(x))2dx.

H is also a Hilbert space and we denote its scalar product simply by (·, ·). A Hilbert basis of H (resp. L2(I)) is
given by the following functions on I

ek(·) =
√

2√
1 + (kπ)2

sin(kπ·), (resp. fk(·) =
√

2 sin(kπ·)).

for k ≥ 1. The dual space of H which is H−1 is denoted by H∗. 〈·, ·〉 is the duality pairing between H and
H∗. The triple of Banach spaces H ⊂ L2(I) ⊂ H∗ is an evolution triple or Gelfand triple. The embeddings in
between these three spaces are continuous and dense. For any h ∈ L2(I) and any u ∈ H : 〈h, u〉 = (h, u)L2(I)

and for any x ∈ I, k ≥ 1
〈δx, ek〉 = (1 + (kπ)2)ek(x).

The embedding H ⊂ C(I,R) also holds and we denote by CP the constant such that, for all u ∈ H

sup
I

|u| ≤ CP ‖u‖H .
We refer the reader to [20], Chapter 1, Section 1.3 for more details.
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a) f)

b) c)

d) e)

Figure 1. Simulations of the spatially extended Morris–Lecar model with no Calcium current
for ε equals successively to a) ε = 1, b) ε = 0.1, c) ε = 0.01, d) ε = 0.001, e) ε = 0, that is
for the averaged model. The plotted curve f) is related to the simulation of the Morris Lecar
model on its left side a): it is the plot of the function t 
→ Tr Qt. A stimulus is exciting the
membrane during all the time duration of the simulation on the portion [0, 0.1] of the fiber.

In L2(I), the Laplacian with zero Dirichlet boundary conditions has the following spectral decomposition

Δu = −
∑
k≥1

(kπ)2(u, fk)fk
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for u in the domain D(Δ) = {u ∈ L2(I);
∑

k≥1 k
4(u, fk)2L2(I) < ∞}. It generates the semi-group of operators

{eΔt, t ≥ 0} defined for u ∈ L2(I) by

eΔtu =
∑
k≥1

e−(kπ)2t(u, fk)L2(I)fk.

We say that a function f : L2(I) 
→ R has a Fréchet derivative in u ∈ L2(I) if there exists a bounded linear
operator Tu : L2(I) 
→ R such that

lim
h→0

f(u+ h) − f(u) − Tu(h)
‖h‖L2(I)

= 0.

We then write df
du (u) for the operator Tu. For example, the square of the ‖ · ‖L2(I)-norm is Fréchet differentiable

on L2(I). For all u ∈ L2(I)
d‖ · ‖2

L2(I)

du
(u)[h] = 2(u, h)L2(I)

for all h ∈ L2(I). In the same way, we can define the Fréchet derivative of order 2. The second Fréchet derivative
of a twice Fréchet differentiable function f : L2(I) → R is denoted by d2f

du2 (u). It can be considered as a bilinear
form on L2(I) × L2(I). For instance

d2‖ · ‖2
L2(I)

du2
(u)[h, k] = 2(h, k)L2(I),

for all (h, k) ∈ L2(I) × L2(I). Fréchet differentiation is stable by summation and multiplication.

Appendix B. Numerical data for the simulations

Here are the numerical data used for the simulations of the Morris Lecar model

C = 1, cK = 32, vK = −70,

a = 1, cCa = 0, vCa = 0,

R = 0.5, NK = 50, NCa = 0.

The length of the fiber is l = 0.5 and the time duration is T = 2.4. The impulse I is of the form

I(x, t) = λ1[0,0.1](x)

with λ = 300. The data for the internal resistance R and the capacitance C are arbitraly chosen for the purpose
of the simulations. The values for the other parameters correspond to [25].
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