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DOUBLY REFLECTED BSDES WITH CALL PROTECTION
AND THEIR APPROXIMATION

Jean-François Chassagneux
1,3
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Abstract. We study the numerical approximation of doubly reflected backward stochastic differential
equations with intermittent upper barrier (RIBSDEs). These denote reflected BSDEs in which the
upper barrier is only active on certain random time intervals. From the point of view of financial
interpretation, RIBSDEs arise as pricing equations of game options with constrained callability. In
a Markovian set-up we prove a convergence rate for a time-discretization scheme by simulation to
an RIBSDE. We also characterize the solution of an RIBSDE as the largest viscosity subsolution of a
related system of variational inequalities, and we establish the convergence of a deterministic numerical
scheme for that problem. Due to the potentially very high dimension of the system of variational
inequalities, this approach is not always practical. We thus subsequently prove a convergence rate for
a time-discretisation scheme by simulation to an RIBSDE.
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1. Introduction

In this work, we consider the issue of numerical solution of a doubly reflected backward stochastic differential
equation, with an upper barrier which is only active on random time intervals (doubly reflected BSDE with an
intermittent upper barrier, or RIBSDE for short henceforth, where the “I” in RIBSDE stands for “intermittent”).

From the mathematical point of view, such RIBSDEs and, in the Markovian case, the related variational
inequality approach, are considered in [8, 13, 16, 18, 19, 22]. They are a natural extension of reflected BSDEs
with one or two barriers [11, 13]. From the point of view of financial interpretation, RIBSDEs arise as pricing
equations of game options (like convertible bonds) with call protection, in which the call times of the option’s
issuer are subject to constraints preventing the issuer from calling the bond on certain random time intervals.
Because of this interpretation, we shall call pricing function the value function of a Dynkin game related to an
RIBSDE. In the standing example of convertible bonds, the call protection is typically monitored at discrete
times in a possibly very path-dependent way: calls may be allowed or not at a given time depending on past
values of the underlying stock S. This leads, after extension of the state space to markovianize the problem,
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Table 1. MC versus VI computation times and relative error (NA ↔ Non Available).

d 1 5 10 20 30
CPU MC 0.5 s 0.6 s 0.9 s 1.4 s 1.9 s
CPU VI 1.0 s 16.1 s 465.0 s NA NA
Rel Err 0.02% 0.02% 0.01% 0.02% 0.02%

to highly-dimensional pricing problems. This was actually our initial motivation for this work, as a financial
engineering software company expressed concern about the ability to deal with such kind of clauses with a
partial differential equations technology.

Pursuing the study initiated in Section 14.2 of [8], we first prove in a Markov setup an analytical characteriza-
tion of the pricing function, as the largest viscosity subsolution to a related system of obstacles problems. This
proof uses a stability property for the random time intervals related to the call protection, which is taken as an
assumption in the slightly more general set-up of [8]. This stability property is established in the context of the
present paper in Lemma 5.1. The analytical characterization of the value function allows us then to propose a
deterministic scheme, which is shown to be convergent, to solve numerically the RIBSDE (or, more precisely,
the corresponding system of variational inequalities), see Proposition 3.9.

But, due to the path dependence of the call protection, deterministic pricing schemes are ruled out by the curse
of dimensionality, and simulation methods appear to be the only viable alternative. We thus present a discrete-
time approximation scheme for an RIBSDE, inspired by [3, 6], but taking into account the fact that the upper
boundary is only active on some random time intervals. One important step in the proof of convergence for the
scheme is to prove the convergence of the approximated random time intervals, which is done in Proposition 4.1.

It should be pointed out that the “irregularity”, in some sense, of the upper boundary, implies, in general,
a discontinuous value process Y . Nevertheless, we are able to retrieve a bound for the convergence rate of the
scheme for the Y -component, see Theorem 4.3, and a convergence result for the Z-component, see Theorem 4.4,
in the case where the driver of the RIBSDE does not depend on Z. The study of the case where the driver of
the RIBSDE depends on Z, or the study of the rate of approximation of the Z-component, leads to the study
of the regularity of the Z-component, which is made difficult here by the discontinuity of the Y -component.

The practical value of the numerical schemes is thoroughly assessed in the companion paper [10]. For mo-
tivation, see Table 1, which gives computation times of the simulation scheme (MC) and of the alternative
deterministic numerical scheme for solving the related variational inequalities (VI), for problems of increasing
dimension d (dimension d in the context and in the sense of Example 2.8(ii), corresponding to systems of 2d

variational inequalities).
The relative errors in the last row are computed in reference to a price obtained by a low-dimensional

deterministic numerical scheme which is available in the special case under consideration, see [10]. But in
the general case only two algorithms are available, (MC) and (VI), and as visible in Table 1, (VI) becomes
unpractical for d greater than say 10, whereas computational times and accuracy of (MC) do not seem to be
affected by the increasing dimension d, at least, not exponentially.

The rest of the paper is organized as follows. Section 2 pursues the study of RIBSDEs initiated in Section 14.2
of [8]. In Section 3, we prove the analytical characterization of the pricing function and study a deterministic
pricing scheme. Discrete-time approximation of the RIBSDE is dealt within Section 4. All the proofs are deferred
to Section 5, see also the Appendix.

We shall denote:

• Et ≡ E(·|Ft),
• Rq, the set of q-dimensional vectors (or sometimes row-vectors, as should be clear from the context) with

real components,
• | · |p for p ∈ [1, +∞), or simply | · | in case p = 2, the p-norm of an element of Rq,
• Λ, a positive constant which may change from line to line.
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1.1. Set-up

Let be given a continuous time stochastic basis (Ω,F , F, P) over [0, T ], where P would stand for a risk-neutral
pricing measure in a financial interpretation. We assume that the filtration F satisfies the usual completeness
and right-continuity conditions, and that all semimartingales are càdlàg4. Also, since our practical concern is the
pricing of a financial derivative with maturity T, we set F = (Ft)t∈[0,T ] with F0 trivial and FT = F . A process
on [0, T ] (respectively a random variable) has to be F-adapted (respectively F-measurable), by definition. By
default in the sequel, all “stochastic” identities are to be understood dP – almost surely or dP ⊗ dt – almost
everywhere, respectively.

Given a q-dimensional Brownian motion W (q ≥ 1), let X be the solution on [0, T ] of the following SDE

Xt = X0 +
∫ t

0

b(s, Xs) ds +
∫ t

0

σ(s, Xs) dWs (1.1)

where the coefficients b : [0, T ] × Rq → Rq and σ : [0, T ]× Rq → Rq×q are such that:

(Hx) b, σ are uniformly bounded by Λ and Λ-Lipschitz continuous in (t, x), i.e.

|b(t, x) − b(t′, x′)| + |σ(t, x) − σ(t′, x′)| ≤ Λ(|t − t′| + |x − x′|), (t, x), (t′, x′) ∈ [0, T ]× Rd

For later use, let us denote by G the generator of X, so for any function u = u(t, x), with a(t, x) =
σ(t, x)σ(t, x)T,

Gu(t, x) = ∂tu(t, x) + ∂xu(t, x)b(t, x) +
1
2
Tr[a(t, x)∂2

x2u(t, x)], (1.2)

where ∂xu and ∂2
x2u denote the row-gradient and the Hessian of a function u = u(t, x) with respect to x.

Let be given a set T = {T0, T1, . . . , TN} of fixed times with 0 = T0 < T1 < . . . < TN−1 < TN = T , and a
finite set K. A K-valued argument k of a function u will be equivalently denoted as the last argument u(. . . , k)
or as a superscript uk(. . .). Thus k can be thought of as referring to the index of a vector or system of functions
of the variables other than k, if found more convenient in the context at hand.

We suppose that for every I = 0, . . . , N, a jump function κI : Rq ×K → K is given as

κI(x, k) = κk
I,−1{x∈O} + κk

I,+1{x/∈O},

where the κk
I,± are in K, and where O is an open domain of Rq. We also introduce the algebraic distance

function d to O, so O = {x ∈ Rq | d(x) < 0}. The function x 
→ κk
I (x) of this paper is constant in x on O

and outside Ō, and is therefore trivially continuous outside ∂O. In [8], one works with “abstract” functions κk
I

(denoted there by θi
l , see e.g. the Eq. (14.10) in [8]) and it is frequently assumed that “a certain condition

holds at a point x of continuity of κk
I”. In view of the above observation and for the sake of simplicity, we shall

rather postulate instead, in the context of the present paper, that “a certain condition holds for every x /∈ ∂O”.
Moreover, we impose the following regularity and non-characteristic boundary condition on O.

(Ho) The distance function d is of class C4
b . Moreover, for every (t, x),

(∂xd a (∂xd)T)(t, x) ≥ Λ−1. (1.3)

We are now in a position to introduce the factor process X = (X, H), in which X is defined by (1.1), and a
K-valued pure jump marker process H is supposed to be constant except for deterministic jumps at the positive
times TI , from HTI− to

HTI = κI(XTI , HTI−), (1.4)

4French acronym meaning “right continuous, with left-hand limit”.
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starting from an initial condition H0 = k ∈ K. In (1.4), HTI− stands for the left-hand limit at TI of the càdlàg
process H. Note that H does not jump at time T0 = 0.

Let finally be given a non-decreasing sequence of stopping times ϑ = (ϑl)0≤l≤N+1 defined by ϑ0 = 0 and, for
every l ≥ 1:

ϑ2l−1 = inf{t > ϑ2l−2 ; Ht /∈ K} ∧ T, ϑ2l = inf{t > ϑ2l−1 ; Ht ∈ K} ∧ T, (1.5)

for a given subset K of K. The ϑl are thus T-valued stopping times, and in particular ϑN+1 = T .

Remark 1.1. The financial interpretation will be developed in Section 2.1. In few words, T represents a set
of call protection monitoring times. The marker process H is used for keeping track of the path-dependence of
the call protection clauses, in order to make the set-up Markovian. The times ϑls are interpreted as times of
switching of call protection.

2. Markovian RIBSDE

We denote by (P ) the class of functions u on Rq, [0, T ] × Rq or E = [0, T ] × Rq × K, such that u is Borel-
measurable, with polynomial growth in its spatial argument x ∈ Rq. Let further be given real-valued and
continuous cost functions g(t, x), 	(t, x), h(t, x) and f(t, x, y) of class (P ), for every y ∈ R in the case of f , such
that:
• the running payoff function f(t, x, y) is Lipschitz in y;
• the payoff function at maturity g(x) and the put and call payoff functions 	(t, x) and h(t, x) satisfy 	 ≤ h,
	(T, ·) ≤ g ≤ h(T, ·).

Remark 2.1. Most developments of this paper can be elevated to the more general case of a z-dependent driver
f(t, x, y, z). However since one of our main results, Theorem 4.3, is only for f = f(t, x, y) we restrict ourselves
to this case altogether. Note that this restriction is fine with respect to the main real-life application we have in
mind, namely the pricing of convertible bonds with call protection. This typically only involves f = f(t, x, y),
where the dependence in y corresponds to discounting at some rate in the financial interpretation, see Crépey
et al. [8, 10].

In the sequel, we shall sometimes use the following assumptions.
(H	) 	(t, x) = λ(t, x) ∨ c, for a constant c ∈ R ∪ {−∞} and a function λ of class C1,2 on [0, T ]× Rq such that

λ, Gλ, (∂λ)σ are of class (P ), (2.1)

(Hh) h(t, x) is jointly Lipschitz in (t, x).

The Markovian RIBSDE (S), with data

f(t, Xt, y), g(XT ), 	(t, Xt), h(t, Xt), ϑ (2.2)

is then defined as a doubly reflected BSDE, see e.g., [8,11], with lower and upper barriers respectively given by,
for t ∈ [0, T ],

Lt = 	(t, Xt), Ut =
[N/2]∑
l=0

1t∈[ϑ2l,ϑ2l+1)∞ +
[(N+1)/2]∑

l=1

1t∈[ϑ2l−1,ϑ2l)h(t, Xt). (2.3)

With respect to standard, “continuously reflected” doubly reflected BSDEs, the peculiarity of RIBSDEs is thus
that the “nominal” upper obstacle h(t, Xt) is only active on the “odd” random time intervals [ϑ2l−1, ϑ2l), l > 0.
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Let us introduce the following Banach (or Hilbert, in case of L2 or H2
q) spaces of random variables or processes,

where p denotes here and henceforth a real number in [1,∞):

• Lp, the space of real valued random variables χ such that

‖χ‖Lp =
(
E [|χ|p]

) 1
p

< +∞ ;

• Sp
q , for any real p ≥ 2 (or Sp, in case q = 1), the space of Rq-valued càdlàg processes Y such that

‖Y ‖Sp
d

:=

(
E

[
sup

t∈[0,T ]

|Yt|p
]) 1

p

< +∞ ;

• Hp
q (or Hp, in case q = 1), the space of Rq-valued predictable processes Z such that

‖Z‖Hp
q

=

⎛⎝E

⎡⎣(∫ T

0

|Zt|2 dt

) p
2
⎤⎦⎞⎠

1
p

< +∞ ;

• A2, the space of finite variation processes A with non-decreasing Jordan components5 A± ∈ S2 null at
time 0.

Note that under (Hx), one has ‖X‖S2 ≤ CΛ, where, from now on, CΛ stands for a generic constant which
depends only on Λ, T , X0, N and q, and whose value may change from line to line. In case this constant depends
on some extra parameter, say ρ, we shall write Cρ

Λ.

Definition 2.2. An (Ω, F, P)-solution Y to (S) is a triple Y = (Y, Z, A), such that:

(i) Y ∈ S2, Z ∈ H2
q , A ∈ A2, A+ is continuous; and

{(ω, t) ; ΔY �= 0} = {(ω, t) ; ΔA− �= 0} ⊆
[N/2]⋃
l=0

[[ϑ2l]], ΔY = ΔA−on

[N/2]⋃
l=0

[[ϑ2l]];

(ii) Yt = g(XT ) +
∫ T

t

f(s, Xs, Ys)ds + AT − At −
∫ T

t

ZsdWs, t ∈ [0, T ];

(iii) Lt ≤ Yt, Yt ≤ Ut, t ∈ [0, T ] and
∫ T

0

(Yt − Lt)dA+
t =

∫ T

0

(Ut− − Yt−)dA−
t = 0,

where L and U are defined by (2.3), and with the convention that 0 × +∞ = 0 in (iii).

This definition admits an obvious extension to a random terminal time θ, instead of constant T . This extension
will be used freely in the sequel, in the special case of simply reflected and continuously doubly reflected BSDEs.

Note that (S) is implicitly parameterized by the initial condition (t = 0, X0, k) of X . We shall use whenever
necessary a superscript ξ, in reference to an initial condition ξ = (t, x, k) of X . So X ξ

t = (x, k), ϑξ
0 = t. For every

initial time t, all our processes are extended “in the natural way” to [0, T ], see Crépey [8], so that they live in
spaces of functions defined over [0, T ].

Under (H	), existence and uniqueness of solutions with a continuous reflecting process Al,ξ to the auxiliary
reflected BSDEs and doubly reflected BSDEs with random terminal time that appear in point (i) below, is
granted by the results of [8, 9]. Note in particular that under (H	), there exists a quasimartingale Q = L with

5By the Jordan components of A, we mean the terms of the unique decomposition A = A+ − A− of A as difference of two
non-decreasing processes A± null at 0, defining mutually singular random measures on [0, T ].
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Rao components in S2 such that L ≤ Q ≤ U over [0, T ]. By application of the results of [17], the so-called
Mokobodski condition is therefore satisfied by the doubly reflected BSDE problem with the continuously active
barriers 	(t, Xt) and h(t, Xt). This condition is key in the existence issue. As for uniqueness it follows from general
a priori error estimates which can be established for RIBSDEs exactly as those of [9] for doubly reflected BSDEs
(general estimates in the sense that they do not need a Markov setup).

Proposition 2.3 (Prop. 14.2.11 in [8]; see also [13, 16, 18, 19, 22]).
We assume (H	).

(i) The following iterative construction is well-defined, for l decreasing from N to 0: Y l,ξ = (Y l,ξ, Zl,ξ, Al,ξ)
is the unique solution, with Al,ξ continuous, to the reflected BSDE with random terminal time ϑξ

l+1 (for l

even) or the doubly reflected BSDE with random terminal time ϑξ
l+1 (for l odd) on [t, ϑξ

l+1], with data⎧⎪⎨⎪⎩
f(s, Xξ

s , y), Y l+1,ξ

ϑξ
l+1

, 	(s, Xξ
s ), ϑξ

l+1 (l even)

f(s, Xξ
s , y), min

(
Y l+1,ξ

ϑξ
l+1

, h

(
ϑξ

l+1, X
ξ

ϑξ
l+1

))
, 	(s, Xξ

s ), h(s, Xξ
s ), ϑξ

l+1 (l odd)
(2.4)

in which, in case l = N , Y l+1,ξ

ϑξ
l+1

is to be understood as g(Xξ
T ).

(ii) Let us define Yξ = (Y ξ, Zξ, Aξ) on [t, T ] by, for every l = 0, . . . , N :
• (Y ξ, Zξ) = (Y l,ξ, Zl,ξ) on [ϑξ

l , ϑ
ξ
l+1), and also at ϑξ

l+1 = T in case l = N ,
• dAξ = dAl,ξ on (ϑξ

l , ϑ
ξ
l+1), and

ΔAξ

ϑξ
l

= Y l,ξ

ϑξ
l

− min
(
Y l,ξ

ϑξ
l

, h
(
ϑξ

l , X
ξ

ϑξ
l

))
= ΔY ξ

ϑξ
l

(= 0 for l odd)

and ΔAξ
T = ΔY ξ

T = 0. So in particular (recall that k refers to ξ = (t, x, k))

Y ξ
t =

{
Y 0,ξ

t k ∈ K

Y 1,ξ
t , k /∈ K.

(2.5)

Then Yξ = (Y ξ, Zξ, Aξ) is the unique solution to the RIBSDE (Sξ).

One will need further stability results on the Y l,ξ. Toward this end, a suitable stability assumption on ϑξ is
needed. Our next result is essentially a càdlàg property of ϑ, viewed as a random function of the initial condition
ξ = (t, x, k) of X ξ. We denote, for I = 1, . . . , N,

EI = [TI−1, TI ] × Rq ×K, E∗
I = [TI−1, TI) × Rq ×K.

Proposition 2.4. Let ξn = (tn, xn, k) → ξ = (t, x, k) in E as n → ∞.

(i) In case t /∈ T, or in case t = TI and the ξn are in EI+1, then there exists an extraction (ξn′)n for which,
almost surely, ϑξn′ → ϑξ as n → ∞;

(ii) In case t = TI , x /∈ ∂O and the ξn are in E∗
I , then there exists an extraction (ξn′)n for which, almost surely,

ϑξn′ converges to some non-decreasing sequence ϑ̃ξ = (ϑ̃ξ
l )0≤l≤N+1 of T-valued stopping times as n → ∞.

Observe that since the ϑl are T-valued stopping times:

• ϑξn′ → ϑξ in part (i) of the Proposition effectively means that ϑ
ξn′
l = ϑξ

l for n′ large enough, almost surely,
for every l = 1, . . . , N + 1;

• the convergence of ϑξn′ to ϑ̃ξ in part (ii) of the Proposition effectively means that ϑ
ξn′
l = ϑ̃ξ

l for n large
enough, almost surely, for every l = 1, . . . , N + 1.
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Definition 2.5. Substituting ϑ̃ξ to ϑξ in the construction of Yξ in Proposition 2.3(i), one gets a new sequence
of reflected and doubly reflected BSDEs with random terminal times. One denotes by Ỹξ = (Ỹ l,ξ)0≤l≤N the
corresponding sequence of solutions, with Ỹ l,ξ = (Ỹ l,ξ, Z̃l,ξ, Ãl,ξ) and Ãl,ξ continuous, for every l = 0, . . . , N .

Proposition 2.6 (Prop. 14.2.14 in [8]; see also [13, 16, 18, 19, 22]).

We assume (H	) and (Hh). Then, for every l = N, . . . , 0:

(i) One has the following bound estimate on Y l,ξ,

‖Y l,ξ‖2
S2 + ‖Z l,ξ‖2

H2
q
+ ‖Al,ξ‖2

S2 ≤ C(1 + |x|2q). (2.6)

Moreover, an analogous bound estimate is satisfied by Ỹ l,ξ;
(ii) Let ξn = (tn, xn, k) → ξ = (t, x, k) in E as n → ∞.

• In case t /∈ T, or in case t = TI and the ξn are in EI+1, then there exists an extraction (ξn′)n such that
Y l,ξn′ converges in S2 ×H2

q × S2 to Y l,ξ as n → ∞;
• In case t = TI , x /∈ ∂O and the ξn are in E∗

I , then there exists an extraction (ξn′ )n for which Y l,ξn′

converges in S2 ×H2
q × S2 to Ỹ l,ξ as n → ∞.

Remark 2.7. In [8], an almost surely càdlàg property of ϑ slightly stronger than that established in Propo-
sition 2.4, is postulated (see Assumption 14.2.12 in [8]). However, as easily seen by inspection of the proof
in [8], the “sequential càdlàg property up to extraction of a subsequence” of Proposition 2.4 is enough for
Proposition 2.6 to hold.

2.1. Connection with finance

In the case of risk-neutral pricing problems in finance, the driver coefficient function f of (E) is typically
given as

f = f(t, x, y) = c(t, x) − μ(t, x)y, (2.7)

for dividend and interest-rate related functions c and μ. So f is affine in y and does not depend on z. Moreover,
in the financial interpretation:

• g(XT ) corresponds to a terminal payoff that is paid by the issuer to the holder at time T if the contract was
not exercised before T ;

• 	(t, Xt), respectively h(t, Xt), corresponds to a lower, respectively upper payoff that is paid by the issuer
to the holder of the claim in the event of early termination of the contract at the initiative of the holder,
respectively issuer;

• The sequence of stopping time ϑ is interpreted as a sequence of times of switching of a call protection. More
precisely, the issuer of the claim is allowed to call it back, enforcing early exercise, on the “odd” (random)
time intervals [ϑ2l−1, ϑ2l). At other times call is not possible.

The contingent claims under consideration are thus general game contingent claims [20], covering convertible
bonds, American options (and also European options) as special cases.

Now, in view of a rather standard verification principle and of the arbitrage theory for game options (see,
e.g., [8]), if Y = (Y, Z, A) is a solution to (E), then Π = Y is an arbitrage price process for the game option,
the arbitrage price relative to the pricing measure P. Given a suitable set of hedging instruments, Π is also a
bilateral super-hedging price, in the sense that there exists a self-financing super-hedging strategy for the issuer
of the claim starting from any issuer initial wealth greater than Π , and a self-financing super-hedging strategy
for the holder of the claim starting from any holder initial wealth greater than (−Π). Finally Π is also the
infimum of the initial wealths of all the issuer’s self-financing super-hedging strategies.
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Note that modeling the pricing problem under the historical, as opposed to the risk-neutral, probability,
would lead to a “z-dependent” driver coefficient function f . Also, the standard risk-neutral pricing approach
tacitly assumes a perfect, frictionless financial market. Accounting for market imperfections would lead to a
nonlinear coefficient f (see, e.g., El Karoui et al. [14]).

A rather typical specification of the terminal cost functions is given by, for constants P̄ ≤ N̄ ≤ C̄,

	(t, x) = P̄ ∨ S, h(t, x) = C̄ ∨ S, g(x) = N̄ ∨ S, (2.8)

where S = x1 denotes the first component of x. Note that this specification satisfies assumptions (H	)-(Hh), as
well as all the standing assumptions of this paper. In particular, one then has (cf. (1.1), (1.2) and (H	)),

λ(t, x) = x1 = S, Gλ = b1, (∂λ)σ = σ1,

so that condition (2.1) in (Hh) reduces to b1 and σ1 being of class (P ), which holds by the Lipschitz property
of b and σ.

As for ϑ, the following specifications are commonly found in the case of convertible bonds on an underlying
stock X = S (see [8, 10] for more details).

Example 2.8. Let the domain O be defined as {x ∈ Rq |x1 < S̄}, for some constant trigger level S̄. Then,
given a constant l ≤ N , one may consider the following two specifications, where the first one can be seen as
the special case where d = l in the second one:

(i) K = {0, . . . , l}, K = {0, . . . , l − 1}, and, for every I,

κk
I (x) =

{
(k + 1) ∧ l, x /∈ O ,
0, x ∈ O .

Starting from H0 = 0, Ht then represents the number of consecutive monitoring dates TI with STI ≥ S̄
from time t backwards, capped at l. Call is possible whenever Ht ≥ l, which means that S has been ≥ S̄
at the last l monitoring times; otherwise call protection is in force.

(ii) K = {0, 1}d for some given integer d ∈ {l, . . . , N}, K = {k ∈ K ;
∑

1≤p≤d kp < l}, and, for every I,

κI(x, k) = (k1, . . . , kd−1,1S≥S̄) =
{

(k1, . . . , kd−1, 1), x /∈ O
(k1, . . . , kd−1, 0), x ∈ O.

(2.9)

Starting from H0 = (0, . . . , 0) ∈ Rd, Ht represents the vector of the indicator functions of the events
STI ≥ S̄ at the last d monitoring dates preceding time t. Call is possible whenever

∑
1≤p≤d Hp

t ≥ l, which
means that S has been ≥ S̄ on at least l of the last d monitoring times; otherwise call protection is in force.

3. Variational inequalities approach

In view of introducing the value function u related to our Markovian BSDE (S), it is convenient to state the
following definition.

Definition 3.1.

(i) A Cauchy cascade U on E is a sequence U = (uI)1≤I≤N of functions uI of class (P ) on the EI , satisfying
the following jump condition, at every x /∈ ∂O:

uk
I (TI , x) =

{
min(uI+1(TI , x, κk

I (x)), h(TI , x)) if k /∈ K and κk
I (x) ∈ K,

uI+1(TI , x, κk
I (x)) else,

(3.1)

where, in case I = N , uI+1 is to be understood as g.
A continuous Cauchy cascade is a Cauchy cascade with continuous ingredients uI on the EI , except maybe
for discontinuities of the uk

I at the points (TI , x) with x ∈ ∂O.
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(ii) The function defined by a Cauchy cascade is the function on E given as the concatenation on the E∗
I of

the uI , and by the terminal condition g at T .

Now,

Proposition 3.2 (Thm. 14.2.18 in [8]).
Assuming (H	) and (Hh), the state-process Y of Y satisfies, P-a.s.,

Yt = u(t,Xt), t ∈ [0, T ], (3.2)

for the deterministic function pricing function u(t, x, k) = Y t,x,k
t . Moreover, u is defined by a continuous Cauchy

cascade U = (uI)1≤I≤N on E.

Remark 3.3. The analog of Remark 2.7 also applies here.

The next step consists in deriving an analytic characterization of the value function u, or, more precisely, of
U = (uI)1≤I≤N , as the solution of a related analytic problem.

A technical difficulty comes from the potential discontinuity in x of the functions uk
I on T × ∂O, unless of

course one is in the trivial case where κk
I,+ = κk

I,−. Our next goal is to characterize the Cauchy cascade U
defining u in terms of a suitable notion of discontinuous viscosity solutions (see [7]) to the following Cauchy
cascade of variational inequalities:

For I decreasing from N to 1,
• At t = TI , for every k ∈ K and x /∈ ∂O,

uk
I (TI , x) =

{
min(uI+1(TI , x, κk

I (x)), h(TI , x)), k /∈ K and κk
I (x) ∈ K

uI+1(TI , x, κk
I (x)), else,

(3.3)

with uI+1 in the sense of g in case I = N ;
• On the time interval [TI−1, TI), for every k ∈ K,⎧⎨⎩ min

(
− Guk

I − fuk
I , uk

I − 	
)

= 0, k ∈ K

max
(

min
(
− Guk

I − fuk
I , uk

I − 	
)
, uk

I − h
)

= 0, k /∈ K
(3.4)

where we denote, for any function v = v(t, x),

fv = fv(t, x) = f(t, x, v(t, x)).

By standard arguments, see e.g. [2, 8, 13, 16, 18, 19], Proposition 3.2 implies that every uI is a viscosity solution
in the usual sense [7] of (3.4) on E∗

I . Now, in view of characterizing uI as the unique solution in some viscosity
sense to (3.3)–(3.4) on EI , one needs to investigate the behavior of uI at the parabolic boundary TI × Rq × K
of EI , and to make precise the corresponding notion of boundary condition for uI in (3.3). Toward this end, let
us introduce the notation u±

N+1 ≡ g, and for every I < N, k ∈ K, and x ∈ Rq,

u+,k
I+1(TI , x) =

{
min(uI+1(TI , x, κk

I,+), h(TI , x)), k /∈ K and κk
I,+ ∈ K

uI+1(TI , x, κk
I,+), else,

u−,k
I+1(TI , x) =

{
min(uI+1(TI , x, κk

I,−), h(TI , x)), k /∈ K and κk
I,− ∈ K

uI+1(TI , x, κk
I,−), else.

(3.5)
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Note that the functions u±,k
I+1 are continuous in x on the E∗

I , and that (3.3) can equivalently be written as,

uk
I (TI , x) =

{
u+,k

I+1(TI , x), x /∈ O
u−,k

I+1(TI , x), x ∈ O.
(3.6)

Let also for I ≤ N,

ǔk
I+1(TI , x) =

⎧⎪⎨⎪⎩
u+,k

I+1(TI , x), x /∈ O
u+,k

I+1(TI , x) ∨ u−,k
I+1(TI , x), x ∈ ∂O

u−,k
I+1(TI , x), x ∈ O,

(3.7)

ûk
I+1(TI , x) =

⎧⎪⎨⎪⎩
u+,k

I+1(TI , x), x /∈ O
u+,k

I+1(TI , x) ∧ u−,k
I+1(TI , x), x ∈ ∂O

u−,k
I+1(TI , x), x ∈ O.

(3.8)

In the following definitions of solutions uI to (3.3)–(3.4), one assumes that the function uI+1, which sits
implicitly via u±,k

I+1 in (3.6), is known and given, and continuous in the x variable at t = TI . We refer the reader
to [7] for the classical notions of viscosity solutions which are embedded in the following definitions.

Definition 3.4. A locally bounded upper semi-continuous function, respectively locally bounded lower semi-
continuous function, ω = ωk(t, x), of class (P ) on EI , is called a subsolution, respectively supersolution, of (3.3)–
(3.4) on EI , if and only if:

(i) ω is a viscosity subsolution, respectively supersolution, of (3.4) on E∗
I ;

(ii) ω ≤ ǔI+1, respectively ω ≥ ûI+1, at TI . In case ω ≤ ûI+1, respectively ω ≥ ǔI+1, at TI , ω is said to be a
strong subsolution, respectively strong supersolution, of (3.3)–(3.4) on EI .

We also introduce the following additional assumption on the driver coefficient f :
(Hη) There exists, for every R > 0, a nonnegative function ηR continuous and null at 0 such that

|f(t, x, y) − f(t, x′, y)| ≤ ηR(|x − x′|)

for any t ∈ [0, T ] and x, x′ ∈ Rq, y ∈ R with |x|, |x′| ≤ R.

In virtue of a rather standard comparison principle that can be found for instance as Theorem 13.2.2 in [8]
(see also [2, 8, 13, 16, 18, 19]), it holds that:

(CP) Assuming (Hη), we have μ ≤ ν on EI , for every strong subsolution μ and supersolution ν (resp. subsolution
μ and strong supersolution ν) of (3.3)–(3.4) on EI .

3.1. Non-decreasing call protection

For ε ≥ 0, let Oε = {x ∈ Rq | d(x) < ε}, let uε stand for the pricing function of the pricing problem
corresponding to the dilated domain Oε and other data unchanged, and let Uε = (uε,I)1≤I≤N denote the
associated Cauchy cascade of functions. We attach the index ε to all the formerly introduced quantities, defined
in reference to the dilated domain Oε. We will need to postulate below that the call protection satisfies the
following monotonicity assumption with respect to dilation of the domain O.
(Hm) One has on E :

(i) u ≤ uε ≤ uε′ for every ε′ ≥ ε ≥ 0;
(ii) uε(TI , x, κk

I,+) ≤ uε(TI , x, k) ≤ uε(TI , x, κk
I,−) for every ε ≥ 0.
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Remark 3.5. By doubly reflected BSDEs comparison theorem, Assumption (Hm)(i), respectively (ii), holds if
for every l > 0 :

[ϑε′
2l−1, ϑ

ε′
2l) ⊆ [ϑε

2l−1, ϑ
ε
2l) ⊆ [ϑ2l−1, ϑ2l), so that U ≤ Uε ≤ Uε′

, (3.9)

respectively (denoting here by a further superscript (t, x, k) the initial condition of the marker process Hε

corresponding to the dilated domain Oε)[
ϑ

ε;t,x,κk
I,−

2l−1 , ϑ
ε;t,x,κk

I,−
2l

)
⊆

[
ϑε;t,x,k

2l−1 , ϑε;t,x,k
2l

)
⊆

[
ϑ

ε;t,x,κk
I,+

2l−1 , ϑ
ε;t,x,κk

I,+
2l

)
, (3.10)

so that

Uε;t,x,κk
I,+ ≤ Uε;t,x,k ≤ Uε;t,x,κk

I,− .

Example 3.6. By application of the above sufficiency conditions, Assumption (Hm) holds for instance in
the situations of Example 2.8. Let us thus consider the situation of Example 2.8(ii), which includes that of
Example 2.8(i) as a special case. In view of the interpretation of Ht as vector of the indicator functions of the
events STI ≥ S̄ at the last d monitoring dates preceding time t, it follows for ε′ ≥ ε ≥ 0 that |Hε′ | ≤ |Hε| ≤ |H |,
hence (3.9) follows. Moreover, we have in view of the definition (2.9) of the jump function in this example that
for every ε ≥ 0,

|Hε;t,x,κk
I,− | ≤ |Hε;t,x,k| ≤ |Hε;t,x,κk

I,+ |,

hence (3.10) follows.

Note that under (Hm)(ii), the extensions to ε ≥ 0 of definitions (3.7) are equivalent to

ǔk
ε,I+1(TI , x) =

{
u+,k

ε,I+1(TI , x), x /∈ Oε

u−,k
ε,I+1(TI , x), x ∈ Oε

, ûk
ε,I+1(TI , x) =

{
u+,k

ε,I+1(TI , x), x /∈ Oε

u−,k
ε,I+1(TI , x), x ∈ Oε.

(3.11)

The following result establishes the convergence of the value function uε for the dilated domain Oε to the
value function u, at the “regular” points ξ = (t, x, k) with (t, x) /∈ T × ∂O.

Proposition 3.7. Assuming (H	), (Hh) and (Hm), one has for every (t, x, k) ∈ E∗
I

lim ↘ε↘0+ uk
ε,I(t, x) = uk

I (t, x). (3.12)

Moreover the pointwise convergence (3.12) is uniform on every compact set of E∗
I .

Let uε,I , respectively uε,I , denote the function on EI defined as uε,I on E∗
I and prolongated at TI by ǔε,I+1,

respectively ûε,I+1. Let also uI = u0,I , uI = u0,I .
The next result shows that every uI on E∗

I , extended as uI on EI , is the unique solution in some sense (maximal
subsolution) to (3.3)–(3.4), in which uI+1 determines the terminal condition at time TI (with uN+1 ≡ g). This
result thus provides an analytical characterization of the value function u, in terms of the related Cauchy cascade
of variational inequalities,

Theorem 3.8. Assuming (H	), (Hh), (Hm) and (Hη), one has for I decreasing from N to 1, pointwise on EI ,

uI = lim ↘ε↘0+ uε,I , (3.13)

and uI is the largest subsolution of (3.3)–(3.4) on EI .
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3.2. Deterministic approximation scheme

We now discuss the numerical solution of the Cauchy cascade of variational inequalities (3.3)–(3.4), which,
given the representation (3.2), can be seen as a first way of solving (S) numerically (at least, as far as determi-
nation of the value component Y is concerned).

We work under assumption (Hm). As we did above, we shall proceed iteratively in I decreasing from N to 1.
More specifically, we assume that the function uI+1 which sits implicitly in u±,k

I+1 in (3.6), and more generally,
every function uε,I+1 sitting implicitly in u±,k

ε,I+1 in (3.15) below for any ε ≥ 0, is known and given. We then
consider the problem of computing uI , or, equivalently, its “upper semicontinuous envelope” uI , which was
characterized analytically in Theorem 3.8 as the largest subsolution of (3.3)–(3.4) on EI .

Let (Uh
ε,I)

h>0, where ε stands for the parameter of dilation of the domain O and h is a discretization parameter,
denote a stable, monotone and consistent approximation scheme for uε,I , for every ε > 0. On the notions of
stable, monotone and consistent approximation scheme, we refer the reader to the seminal paper of Barles and
Souganidis [2] and, as the closest reference to the present set-up, Subsection 13.2.3 of [8]. One may thus view
(Uh

ε,I)
h>0 as the solution, suitably interpolated over EI , of a standard finite differences schemes for “the solution”

6 uε,I to the following problem on EI (cf. (3.3), (3.4) and (3.6), (3.11)):

• At t = TI , for every k ∈ K and x /∈ ∂O,

uk
ε,I(TI , x) =

{
u+,k

ε,I+1(TI , x), x /∈ Oε

u−,k
ε,I+1(TI , x), x ∈ Oε ;

(3.14)

• On the time interval [TI−1, TI), for every k ∈ K,⎧⎨⎩ min
(
− Guk

ε,I − fuk
ε,I , uk

ε,I − 	
)

= 0, k ∈ K

max
(

min
(
− Guk

ε,I − fuk
ε,I , uk

ε,I − 	
)
, uk

ε,I − h
)

= 0, k /∈ K.
(3.15)

One also refers the reader to [2] or Subsection 13.2.3 of [8], for the classical notions of lower and upper envelopes
of the numerical scheme (Uh

ε,I)
h>0 as h → 0+ (for a fixed ε > 0, here). Building on these notions, one then has

the following “double convergence” result.

Proposition 3.9. We assume (H	), (Hh), (Hm) and (Hη).

(i) For every ε > 0, one has on EI ,

uI ≤ Uε,I ≤ Uε,I ≤ u2ε,I , (3.16)

where Uε,I and Uε,I denote the lower and upper envelopes of the numerical scheme (Uh
ε,I)

h>0.
(ii) As ε → 0+, the double scheme (Uh

ε,I)
h>0
ε>0 converges to uI locally uniformly on E∗

I , in the sense that one has
for every compact set C of E∗

I , for every γ > 0 :

max
C

|Uh
ε,I − uI | ≤ γ, (3.17)

for ε < ε(γ) and h < h(ε).

Note that this proposition only yields a partial convergence result, since one does not know the functions ε(γ)
and h(ε) in Proposition 3.9(ii). Moreover, one only gets the convergence on E∗

I under the working assumption
that the true value for uε,I+1 is plugged at TI in the approximation schemes (3.14)–(3.15) for uε,I . In this regard
this result remains a bit theoretical.

6In any reasonable meaning, e.g., uε,I largest viscosity subsolution.
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It is also theoretical in the sense that (3.14)–(3.15) involves Card(K) equations in the uk
ε,I . From a determin-

istic computational point of view, the Cauchy cascade (3.14)–(3.15) (or (3.3)–(3.4)) can thus be considered as
a “q + d – dimensional” pricing problem, with d = log(Card(K)). For “very large” sets K, like for instance in
Example 2.8(ii), the use of deterministic schemes is precluded by the curse of dimensionality, and simulation
schemes such as the one of the next section are the only viable alternative. We refer the reader to [10] for a
thorough comparison of the practical performances of the two schemes.

4. RIBSDE time-discretization results

In Sections 4.1 to 4.3, we propose an approximation scheme in time for a solution Y = (Y, Z, A), assumed to
exist, to (S) (for instance because assumption (H	) holds, see Prop. 2.3), and we provide an upper bound for
the convergence rate of this scheme.

For every time-grid t := {0 = t0 < t1 < . . . < tn = T } of [0, T ] we denote

|t| = max
i≤n−1

(ti+1 − ti), |t|	 = min
i≤n−1

(ti+1 − ti).

In the sequel, we consider a particular time-grid t := {0 = t0 < t1 < . . . < tn = T } of [0, T ], which will be used
for time-discretizing the RIBSDE (S).

4.1. Approximation of the forward process

When the diffusion X in (1.1) cannot be simulated exactly, we use the Euler approximation scheme X̂ defined
on the time-grid t, by X̂0 = X0, and for i ≤ n − 1,

X̂ti+1 = X̂ti + b(ti, X̂ti)(ti+1 − ti) + σ(ti, X̂ti)(Wti+1 − Wti).

We assume n|t| ≤ Λ. We also define the usual continuous-time extension of X̂ by setting, for every i ≤ n − 1
and t ∈ [ti, ti+1),

X̂t = X̂ti + b(ti, X̂ti)(t − ti) + σ(ti, X̂ti)(Wt − Wti) (4.1)

or in an equivalent differential notation, for t ∈ [0, T ],

dX̂t = b(t̄, X̂t̄)dt + σ(t̄, X̂t̄)dWt (4.2)

with t̄ := sup{s ∈ t|s ≤ t}. Under the Lipschitz continuity assumption (Hx), one has, for every p ≥ 1, see
e.g. [21],

‖ sup
t≤T

|Xt − X̂t| ‖Lp + max
i<n

‖ sup
t∈[ti,ti+1]

|Xt − X̂ti | ‖Lp ≤ Cp
Λ |t| 12 . (4.3)

4.2. Approximation of the Barriers

The lower barrier is approximated by L̂t = 	(t, X̂t). As for the upper barrier, we first define the approximation
Ĥ of the marker process H by

Ĥ0 = H0 and ĤTI = κI(X̂TI , ĤTI−), for 1 ≤ I ≤ N.

We then define the approximation ϑ̂ of ϑ as the sequence of T-valued stopping times obtained by using
X̂ = (X̂, Ĥ) instead of X in (1.5). This leads to the following approximation of the upper boundary:

Ût =
[N/2]∑
l=0

1[ϑ̂2l,ϑ̂2l+1)
∞ +

[(N+1)/2]∑
l=1

1[ϑ̂2l−1,ϑ̂2l)
h(t, X̂t). (4.4)

The following control is key in the sequel.
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Proposition 4.1. For every ε > 0, there exists a constant Cε
Λ such that for every l ≤ N + 1,

E

[
|ϑl − ϑ̂l|

]
≤ Cε

Λ|t|
1
2−ε.

4.3. Approximation of the RIBSDE

In the sequel, we shall use one of the following regularity assumptions:

(Hb) h and 	 are Λ-Lipschitz continuous with respect to (t, x),
(Hb)’ h and 	 are Λ-Lipschitz continuous with respect to (t, x) and there exists a constant Λ and some func-
tions Λ1, Λ2 : Rq → Rq and Λ3 : Rq → R+ such that |Λ1(x)| + |Λ2(x)| + |Λ3(x)| ≤ Λ(1 + |x|Λ), and for every
x, y ∈ Rq,

	(t, x) − 	(t, y) ≤ Λ1(x)(y − x) + Λ3(x)|x − y|2

h(t, y) − h(t, x) ≤ Λ2(x)(y − x) + Λ3(x)|x − y|2.

Note that assumption (Hb)’ is related to the classical semi-convexity assumption of Definition 1 in [1]. For �

defined as ϑ or ϑ̂, let the projection operator P
 be defined by

P
(t, x, y) = y + [	(t, x) − y]+ − [y − h(t, x)]+
[(N+1)/2]∑

l=1

1{
2l−1≤t≤
2l}. (4.5)

To tackle the reflection issue, we introduce a discrete set of reflection times defined by

r = {0 = r0 < r1 < . . . < rν = T }, (4.6)

such that T ⊆ r ⊆ t and |r| ≤ CΛ|r|	, where |r|	 = minj≤ν−1(rj+1 − rj). Here the point is that, in the
approximation scheme for Y, the reflection will operate only on r (this feature is used in the Proof of Thm. 4.3,
see end of Sect. 5.2.4). The components Y and Z of a solution Y = (Y, Z, A) to the RIBSDE (S) are thus
approximated by a triplet of processes (Ŷ , Ỹ , Z̄) on t, which are defined by the terminal condition

ŶT = ỸT = g(X̂T ),

and then satisfy the following relations, for i decreasing from n − 1 to 0:⎧⎪⎪⎨⎪⎪⎩
Z̄ti = 1

ti+1−ti
Eti

[
Ŷti+1(Wti+1 − Wti)′

]
Ỹti = Eti

[
Ŷti+1

]
+ (ti+1 − ti)f(ti, X̂ti , Ỹti)

Ŷti = Ỹti1{ti /∈r} + Pϑ̂(ti, X̂ti , Ỹti)1{ti∈r}.

(4.7)

By convention, we also set Z̄T = 0. Using an induction argument and the Lipschitz-continuity assumption
on f , g, l, h, one easily checks that the above processes are square integrable. It follows that the conditional
expectations are well defined at each step of the algorithm.

We also need for the proofs a piecewise time-continuous extension of the scheme. Using the martingale
representation theorem, we define Ẑ on [ti, ti+1) by

Ŷti+1 = Eti

[
Ŷti+1

]
+
∫ ti+1

ti

ẐsdWs.

We then define Ỹ on [ti, ti+1) by

Ỹt = Ŷti+1 + (ti+1 − t)f(ti, X̂ti , Ỹti) −
∫ ti+1

t

ẐsdWs,
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and we let finally, for t ∈ [0, T ],

Ŷt = Ỹt1{t/∈r} + Pϑ̂(t, X̂t, Ỹt)1{t∈r}. (4.8)

Observe that one has, for i ≤ n − 1,

Z̄ti =
1

ti+1 − ti
Eti

[∫ ti+1

ti

Ẑsds

]
.

We also define Z̄t = Z̄t̄, for t ∈ [0, T ].

4.3.1. Convergence results

When there is no call or no call protection, the convergence of the scheme is given by Theorem 6.2 in [6] and
Theorem 4.1 in [3] (in which f may actually further depend on z).

Theorem 4.2 (see [3, 6]). We assume no call or no call protection. With α = 1
3 and |r| ∼ |t| 23 under (Hb),

respectively α = 1
2 and |r| ∼ |t| 12 under (Hb)′, one has,

max
i≤n−1

sup
t∈[ti,ti+1)

E

[
|Yt − Ỹti |2 + |Yt − Ŷti |2

]
+ E

[∫ T

0

|Zt − Z̄2
t̄ |dt

]
≤ CΛ|t|α.

Note that under stronger assumption on the boundaries and on the regularity of the coefficients b, σ, it is
possible to obtain a better control of the convergence rate of the approximation, see Theorem 6.2 in [6] and
Theorem 4.1 in [3].

Regarding call protection, our main result is the following.

Theorem 4.3. With α = 1
4 and |r| ∼ |t| 12 under (Hb), respectively α = 1

2 and r = t under (Hb)′, one has,

max
i≤n−1

sup
t∈[ti,ti+1)

E

[
|Yt − Ỹti |2

]
+ max

i≤n−1
sup

t∈[ti,ti+1)

E

[
|Yt− − Ŷti |2

]
≤ Cε

Λ|t|α−ε,

for every ε > 0.

We also have the following result concerning the approximation of the Z-process in the general case.

Theorem 4.4. Under (Hb), setting |r| ∼ |t| 12 , we have

lim
|t|→0

E

[∫ T

0

|Zt − Z̄2
t̄ |dt

]
= 0.

Remark 4.5. As shown in Theorem 4.2, in the “no call” or “no call protection” cases, convergence bounds
are also available for Z, see Theorem 6.1 in [6] and Theorem 4.1 in [3]. The “call protection” case is currently
an open problem in this regard, as more generally in regard to establishing convergence bounds on Y and Z
in case f depends on z. Maybe this could be dealt with by combining the ideas of the present work with the
techniques of Gobet and Makhlouf [15]. We leave this for further research however.

4.3.2. Discretely reflected BSDEs

The Proof of Theorem 4.3 will be done in Section 5 in several steps, using a suitable concept of a discretely
reflected BSDE. In finance, discretely reflected BSDEs represent game option which can be exercised only on
the discrete set of times r.
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Given the reflection grid r as of (4.6) and for � = ϑ or ϑ̂, the solution of the discretely reflected BSDE is a
triplet (I
, Ĩ
, Z
) defined by the terminal condition

I

T = Ĩ


T = g(XT ),

and then for ı decreasing from ν − 1 to 0 in (4.6) and t ∈ [rı, rı+1),{
Ĩ


t = I

rı+1

+
∫ rı+1

t
f(u, Xu, Ĩ


u)du −
∫ rı+1

t
Z


udWu ,

I

t = Ĩ


t 1{t/∈r} + P
(t, Xt, Ĩ


t )1{t∈r}.

(4.9)

Under (Hb), the triplet (I
, Ĩ
, Z
) can be defined by backward induction. At each step, existence and uniqueness
of a solution in S2 ×H2

q follow from [14]. Note that Ĩ
 is a càdlàg process, whereas I
 is a càglàd process. Also
observe that one has, for r ∈ r,

Yr− = Pϑ(r, Xr, Yr), I

r = P
(r, Xr, Ĩ



r). (4.10)

We first present two properties of discretely reflected BSDEs which are useful to prove Theorem 4.3. We
show that under suitable conditions the discretely reflected BSDE with � = ϑ is a “good” approximation of the
RIBSDE (E). In view of Definition 2.2(i), the component Y of Y may be discontinuous at ϑ2l on 0 < ϑ2l < T .
The fact that T ⊆ r will then be essential to obtain the following result.

Proposition 4.6. Let α = 1
2 or α = 1 under (Hb) or (Hb)’, respectively. Then,

sup
t∈[0,T ]

E

[
|Yt − Ĩϑ

t |2 + |Yt− − Iϑ
t |2

]
+ E

[∫ T

0

|Zs − Zϑ
s |2ds

]
≤ |r|α.

We also give a control of the difference between the solutions (Iϑ, Ĩϑ, Zϑ) and (Iϑ̂, Ĩϑ̂, Zϑ̂) of the two discretely
reflected BSDEs with � = ϑ and ϑ̂.

Proposition 4.7. Let α = 1
2 or α = 1 under (Hb) or (Hb)’, respectively. Then,

sup
t∈[0,T ]

E

[
|Iϑ

t − Iϑ̂
t |2 + |Ĩϑ

t − Ĩϑ̂
t |2

]
+ E

[∫ T

0

|Zϑ
t − Zϑ̂

t |2dt

]
≤ Cε

Λ|r|α−1
N∑

l=1

(
E

[
|ϑl − ϑ̂l|

] )1−ε

,

for every ε > 0.

We conclude this section by giving a bound for the convergence rate of the scheme (4.7) to the discretely
reflected BSDE (4.9), with � = ϑ.

Proposition 4.8. Let α = 1
2 or α = 1 under (Hb) or (Hb)’. Then,

sup
t∈[0,T ]

E

[
|Ĩϑ

t − Ỹt|2
]

+ sup
t∈[0,T ]

E

[
|Iϑ

t − Ŷt|2
]
≤ CΛ|t| + Cε

Λ|r|α−1
N∑

l=1

(
E

[
|ϑl − ϑ̂l|

] )1−ε

,

and

E

[∫ T

0

|Zϑ
t − Ẑt|2dt

]
≤ CΛν|t| + Cε

Λ|r|α−1
N∑

l=1

(
E

[
|ϑl − ϑ̂l|

] )1−ε

,

for ε > 0.
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5. Proofs

5.1. Stability of call protection switching times

Let us first define ξ = (t, x, k) and ξ′ = (t′, x′, k) for (t, t′) ∈ [0, T ]2, (x, x′) ∈ R2q and k ∈ K. In the following,
we consider two Itô processes with different initial condition and coefficients. The first one, Xξ, is the solution
of the following SDE:

Xξ
s = x +

∫ s

t

b(s, Xξ
s )ds +

∫ s

t

σ(s, Xξ
s )dWs, for s ∈ [t, T ].

The second one, X̌ξ′
can be written:

X̌ξ′
s = x′ +

∫ s

t′
b̌sds +

∫ s

t′
σ̌sdWs, for s ∈ [t′, T ].

We consider the following “monitoring grid’ for Xξ, respectively X̌ξ′
:

Tt = {s ∈ T | s > t}, respectively Tt′ = {s ∈ T | s > t′},

and we let T t = inf Tt, respectively T t′ = inf Tt′ .

Let us also introduce X̌ ξ′
= (X̌ξ′

, Ȟξ′
), where the marker process Ȟξ′

is defined by Ȟξ′
t′ = k, and for every

TI ∈ Tt′ ,

Ȟξ′
TI

= κI(X̌
ξ′
TI

, Ȟξ′
TI−),

and Ȟξ′
is constant between two dates of {t′} ∪ Tt′ . Observe that Ȟξ′

does not jump at t′.
We also consider a non-decreasing sequence of stopping times ϑ̌ξ′

= (ϑ̌ξ′
l )0≤l≤N+1, representing call protection

switching times, defined by ϑ̌ξ′
0 = t′ and for every l ≥ 1,

ϑ̌ξ′
2l+1 = inf{t > ϑ̌ξ′

2l ; H ′
t /∈ K} ∧ T, ϑ̌ξ′

2l+2 = inf{t > ϑ̌ξ′
2l+1 ; H ′

t ∈ K} ∧ T. (5.1)

The ϑ̌ξ′
l effectively reduce to {t′} ∪ Tt′-valued stopping times, and one has ϑ̌ξ′

N+1 = T.

To the process Xξ, we associate three different extended factor processes X ξ, X ξ,ε, for ε > 0 and X̃ ξ.
The first one, X ξ = (Xξ, Hξ), is defined as above, replacing X̌ξ′

by Xξ. Observe that Hξ does not jump at t

and that Hξ
t = Ȟξ′

t′ = k. We also consider the sequence of call protection monitoring times ϑ, defined as in (5.1)
with t and Hξ instead of t′ and Ȟξ′

.
The second factor process X ξ,ε, ε > 0, is defined as X but using the dilated domain Oε := {x ∈ Rq|d(x) < ε}

instead of O in the construction of Hξ,ε, recalling Section 3.1. We also consider the sequence of call protection
monitoring times ϑξ,ε, defined as in (5.1) with t and Hξ,ε instead of t′ and Ȟξ′

.
The third factor process, X̃ ξ = (Xξ, H̃ξ), defined using the domain O, is given by H̃ξ

t− = k, and for every
TI ∈ Tt′ ,

H̃ξ
TI

= κI(TI , H̃
ξ
TI−)

and H̃ constant between two dates of {t} ∪ Tt. Observe that, contrary to Hξ, H̃ξ may jump at t. We also
consider the corresponding call protection switching times ϑ̃ξ defined as in (5.1) with t and H̃ξ instead of t′

and Ȟξ′
.

We are interested in two different cases regarding the initial set of data (t, x) and (t′, x′).
Case 1. T t = T t′ .
Case 2. T t′ = t and x /∈ ∂O.
The proof of the following Lemma is deferred to 5.3.3.
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Lemma 5.1. (i) One has, for TI ∈ Tt,

P({|d(Xξ
TI

)| ≤ δ}) ≤ Cε
Λδ1−ε, ∀ε > 0. (5.2)

(ii) For p, ε > 0, and l = 0, . . . , N + 1, one has,

E

[
|�l − ϑ̌ξ′

l

]
≤ |t − t′| + Cε

Λδ1−ε + Cp
Λ

E

[
supu∈[T t,T ] |X̌ξ′

u − Xξ
u|p

]
δp

,

with � = ϑξ in Case 1 and � = ϑ̃ξ in Case 2.
(iii) For ε > 0, ε ≥ 0, and l = 0, . . . , N + 1, one has,

E

[
|ϑξ,ε

l − ϑξ
l |
]
≤ Cε

Λε1−ε.

5.1.1. Proof of Proposition 2.4

Let in this section X̌ξn = Xξn , for ξn = (tn, xn, k) ∈ E .

(i) When tn ↓ t, we want to control the difference between ϑξ and ϑ̌ξn = ϑξn to prove the càglàd property. We
shall use here the result of Case 1. First we know that

E

[
sup

u∈[0,T ]

|Xξn
u − Xξ

u|p
]
≤ Cp

Λ(|x − xn|p + |t − tn|
p
2 ).

We then obtain, applying Lemma 5.1(ii), that

E

[
|ϑξ

l − ϑξn

l |
]
≤ |t − tn| + Cε

Λδ1−ε
n + Cp

Λ

|x − xn|p + |t − tn|
p
2

δp
n

·

The proof is concluded by taking δ2
n = |x − xn| ∨ |t − tn|

1
2 , p = 2 and letting n go to ∞.

(ii) When tn ↑ t, we want to control the difference between ϑ̃ξ and ϑξn to prove the làglàd7 property, assuming
x /∈ ∂O. Since xn → x, we have for some n ≥ 0 that xn /∈ ∂O. We then argue as in (i), using this time the
result of Case 2 in Lemma 5.1(i).

5.1.2. Proof of Proposition 4.1

Let in this section X̌ξ′
= X̂, where ξ′ := (0, x, k), for x ∈ Rq, k ∈ K.We have here that t = t′ = 0, so we are

in Case 1 and basicly ϑ̌ξ′
= ϑ̂. Applying Lemma 5.1(ii), we thus get, in view of (4.3),

E

[
|ϑl − ϑ̂l|

]
≤ Cε

Λδ1−ε + Cp
Λ

|t| p
2

δp
.

The proof is concluded by setting δ = |t| 12− θ
2 , ε = θ

2 , p = 1
θ − 2, for θ and |t| small enough.

5.2. Proof of the BSDE results

We denote by χ a positive random variable which may change from line to line but satisfies E [χp] ≤ Cp
Λ, for

p ≥ 1.

7French acronym meaning “with left-hand and right-hand limits”.
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5.2.1. Proof of Proposition 4.6

Let for t ≤ T,

δỸt = Yt − Ĩϑ
t , δYt = Yt− − Iϑ

t , δZt = Zt − Zϑ
t , δft = f(t, Xt, Yt) − f(t, Xt, Ĩ

ϑ
t ).

Observe that is δỸ continuous outside r and that δỸt− = δYt for t ∈ (0, T ], so that one has by (4.10), for r ∈ r,

|δYr| = |Yr− − Iϑ
r | ≤ |δỸr|. (5.3)

Applying Itô’s formula to the càdlàg process |δỸ |2 and observing that the local martingale term is in fact a
martingale, we compute,

Erı

[
|δỸt|2 +

∫ rı+1

t

|δZu|2du

]
= Erı

[
|δỸrı+1−|2 + 2

∫ rı+1

t

δỸsδfsds + 2
∫

(t,rı+1)

δỸsdAs

]
,

for t ∈ [rı, rı+1). Given (5.3), one thus gets by usual arguments, for t ∈ [rı, rı+1),

Erı

[
|δỸt|2 +

∫ rı+1

t

|δZs|2ds

]
≤ (1 + CΛ|r|)Erı

[
|δỸrı+1 |2 + 2

∫
(t,rı+1)

δỸsdA+
s − 2

∫
(t,rı+1)

δỸsdA−
s

]
.

We study the term related to the upper barrier. One has,

−Erı

[∫
(t,rı+1)

δỸsdA−
s

]
= Erı

[∫
(t,rı+1)

(Ĩϑ
s − h(s, Xs))dA−

s

]

= Erı

[∫
(t,rı+1)

(Iϑ
rı+1

− h(s, Xs))dA−
s +

∫
(t,rı+1)

∫ rı+1

s

f(u, Xu, Ĩϑ
u)dudA−

s

]

where in particular the upper barrier minimality condition in (S) was used in the first identity. The second term
is bounded by

Erı

[
χ|r|(A−

rı+1− − A−
rı

)
]
≤ Erı

[
χ|r|(A−

rı+1
− A−

rı
)
]
,

since f does not depend on z and A− is increasing. For the first term, we use the fact that dA−1]]ϑ2l,ϑ2l+1[[ = 0,
0 ≤ l ≤ [(N + 1)/2], to obtain that

Erı

[∫
(t,rı+1)

(Iϑ
rı+1

− h(s, Xs))dA−
s

]
= Erı

⎡⎣[(N+1)/2]∑
l=1

∫
(t,rı+1)

(Iϑ
rı+1

− h(s, Xs))1{ϑ2l−1≤s≤ϑ2l}dA−
s

⎤⎦
≤ Erı

⎡⎣[(N+1)/2]∑
l=1

∫
(t,rı+1)

(h(rı+1, Xrı+1) − h(s, Xs))1{ϑ2l−1≤s≤ϑ2l}dA−
s

⎤⎦
≤ Erı

[∫
(t,rı+1)

(h(rı+1, Xrı+1) − h(s, Xs))dA−
s

]
.

The proof is then concluded using the same argument as in the proof of Propositions 2.6.1 and 1.4.1 in [5]. �
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5.2.2. Proof of Proposition 4.7

Let, for t ≤ T,

δĨt = Ĩϑ
t − Ĩϑ̂

t , δIt = Iϑ
t − Iϑ̂

t , δZt = Zϑ
t − Zϑ̂

t

ηt = |δIt|2 − |δĨt|2, δft = f(t, Xt, Ĩ
ϑ
t ) − f(t, Xt, Ĩ

ϑ̂
t ).

Step 1. Applying Itô’s formula to the càdlàg process |δĨ|2, we compute for t ∈ [rı, rı+1)

Erı

[
|δĨt|2 +

∫ rı+1

t

|δZu|2du

]
= Erı

[
|δĨrı+1 |2 + ηrı+1 + 2

∫ rı+1

t

δĨsδfsds

]
.

Usual arguments then yield that

sup
s∈[t,T ]

E

[
|δĨs|2 + |δIs|2 +

∫ T

s

|δZs|2ds

]
≤ CΛE

[∑
r∈r

ηr

]
, (5.4)

recalling |δIs|2 = ηs + |δĨs|2.

Step 2. In order to study the right-hand side term of (5.4), we introduce the processes defined by, for r ∈ [0, T ],

Ir =
[(N+1)/2]∑

l=1

1{ϑ2l−1≤r≤ϑ2l}, Îr =
[(N+1)/2]∑

l=1

1{ϑ̂2l−1≤r≤ϑ̂2l},
cIr = 1 − Ir, cÎr = 1 − Îr. (5.5)

Observe that I = 1 (or Î = 1) means that the upper barrier is activated for reflection.

|δIr| = |P(r, Xr, Ĩ
ϑ̂
r ) − P(r, Xr, Ĩ

ϑ
r )| (5.6)

≤ |δĨr| + [h(r, Xr) − Ĩϑ
r ]+IrĉIr + [h(r, Xr) − Ĩϑ̂

r ]+ Îr cIr. (5.7)

We thus compute, for r ∈ r,

ηr ≤ Er[χ] ([h(r, Xr) − Ĩϑ
r ]+ IrcÎr + [h(r, Xr) − Ĩϑ̂

r ]+ Îr cIr). (5.8)

The two terms at the right-hand side of (5.8) are treated similarly, we thus concentrate on the first one.

Step 3. We have to take into account the fact that a reflection date may be a deactivation date for the upper
boundary, i.e., for r ∈ r,

Er[χ] [Ĩϑ
r − h(r, Xr)]+ IrcÎr = Er[χ]

([
Ĩϑ

r − h(r, Xr)
]+

)
cÎr

⎛⎝[(N+1)/2]∑
l=1

1{r=ϑ2l} +
[(N+1)/2]∑

l=1

1{ϑ2l−1≤r<ϑ2l}

⎞⎠ .

(5.9)

Step 3a. We study the first term in the right hand side of (5.9). We obviously have that Er[χ] [h(r, Xr)−Ĩϑ̂
r−]+ ≤

Er[χ]2, thus, since the ϑl are T-valued stopping-times,

∑
r∈r

Er[χ] [Ĩϑ̂
r − h(r, Xr)]+ cÎr

[(N+1)/2]∑
l=1

1{r=ϑ2l} ≤
∑
r∈T

Er[χ]2 cÎr
[(N+1)/2]∑

l=1

1{r=ϑ2l}.
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Moreover, by definition of I and Î,

∑
r∈T

Er[χ]2 ĉIr
[(N+1)/2]∑

l=1

1{r=ϑ2l} =
∑
r∈T

Er[χ]2 cÎr
[(N+1)/2]∑

l=1

1{r=ϑ2l,r 	=ϑ̂2l}

≤ sup
r∈T

Er[χ]2
∑
r∈T

[(N+1)/2]∑
l=1

1{|ϑ2l−ϑ̂2l|≥|T|�}.

Using the Cauchy−Schwartz inequality with 1
p = 1− ε, Doob’s inequality and the Markov inequality, we obtain

E

⎡⎣∑
r∈T

[(N+1)/2]∑
l=1

sup
r∈T

Er[χ]2 1{|ϑ2l−ϑ̂2l|≥|T|�|}

⎤⎦ ≤ Cε
Λ

[(N+1)/2]∑
l=1

E

[
|ϑ2l − ϑ̂2l|

]1−ε

. (5.10)

Step 3b. We now study the last term in the right hand side of (5.9). On the event {ϑ2l−1 ≤ r < ϑ2l}, which is
Fr-measurable, the upper barrier is active on [ϑ2l−1, ϑ2l], thus

Ĩϑ
r − h(r, Xr) ≤ Er

[
h(r+, Xr+) − h(r, Xr) +

∫ r+

r

∣∣f (
s, Xs, I

ϑ
s

)∣∣ds

]

where we set r+ = inf{s ∈ r|s > r} ∧ T . One thus gets, using (Hb) or (Hb)’,

[Ĩϑ
r − h(r, Xr)]+1{ϑ2l−1≤r<ϑ2l} ≤ Er[χ] |r|α. (5.11)

This leads to

∑
r∈r

⎛⎝Er[χ] [Ĩϑ
r − h(r, Xr)]+ ĉIr

[(N+1)/2]∑
l=1

1{ϑ2l−1≤r<ϑ2l}

⎞⎠ ≤ |r|αEr[χ]2
∑
r∈r

⎛⎝ĉIr
[(N+1)/2]∑

l=1

1{ϑ2l−1≤r<ϑ2l}

⎞⎠ .

Moreover,

∑
r∈r

[(N+1)/2]∑
l=1

ĉIr1{ϑ2l−1≤r<ϑ2l} ≤
∑
r∈r

[(N+1)/2]∑
l=1

1{ϑ2l−1≤r<ϑ2l}

(
1{ϑ̂2l−1>r} + 1{r>ϑ̂2l}

)

≤
∑
r∈r

[(N+1)/2]∑
l=1

(
1{|ϑ2l−ϑ̂2l|≥|T|�} + 1{|ϑ2l−1−ϑ̂2l−1|≥|T|�}

)
.

We obtain combining the last inequality with (5.12) and using the Cauchy−Schwartz inequality with 1
p = 1− ε,

Doob’s inequality and the Markov inequality

E

⎡⎣∑
r∈r

⎛⎝Er[χ] [Ĩϑ
r − h(r, Xr)]+ cÎr

[(N+1)/2]∑
l=1

1{ϑ2l−1≤r<ϑ2l}

⎞⎠⎤⎦ ≤ |r|α−1Cε
Λ

[(N+1)/2]∑
l=1

E

[
|ϑ2l − ϑ̂2l|

]1−ε

. (5.12)

Step 4. The proof is concluded by combining (5.4) with (5.9), (5.10) and (5.12).

5.2.3. Proof of Proposition 4.8

Since

|Iϑ
t − Ŷt|2≤CΛ(|Iϑ

t − Iϑ̂
t |2+|Iϑ̂

t − Ŷt|2) and |Ĩϑ
t − Ỹt|2≤CΛ(|Ĩϑ

t − Ĩϑ̂
t |2+|Ĩϑ̂

t − Ỹt|2), (5.13)
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and

|Zϑ
t − Ẑt|2 ≤ CΛ(|Zϑ

t − Zϑ̂
t |2 + |Zϑ̂

t − Ẑt|2) (5.14)

it remains to study the error between (Iϑ̂, Ĩϑ̂, Zϑ̂) and the continuous-time Euler scheme (Ŷ , Ỹ , Ẑ). We are thus
going to show that

sup
t∈[0,T ]

E

[
|Ĩϑ̂

t − Ỹt|2
]

+ sup
t∈[0,T ]

E

[
|Iϑ̂

t − Ŷt|2
]
≤ CΛ|t| (5.15)

‖Zϑ̂ − Ẑ‖2
H2 ≤ CΛν|t|. (5.16)

Step 1. We first prove (5.15). Toward this end, arguing as in the proof of Lemma 2.1 in [6] (See also Rem. 5.2
in [6]), one shows that under (Hb), for t ∈ t, there exists St, Qt in Ft such that St ∩ Qt = ∅ and

|Iϑ̂
t − Ŷt|2 ≤ |Ĩϑ̂

t − Ỹt|21St + CΛ|Xt − X̂t|21Qt . (5.17)

Observe in particular that for t /∈ r, one can take St = Ω and Qt = ∅ in (5.17) since, in this case, Iϑ̂
t = Ĩϑ̂

t and
Ŷt = Ỹt.

The proof of (5.15) is then similar to the proof of Proposition 5.1 (steps ia and ii) in [6]. Note that since f
does not depend on z in the present case, the expression of Bi in equation (5.5) of [6] reduces to

Bi =
∫ ti

ti−1

(|Xu − X̂ti−1 |2 + |Ĩϑ̂
u − Ĩϑ̂

ti−1
|2)du.

Observing that, for u ∈ [ti−1, ti),

E

[
|Ĩϑ̂

u − Ĩϑ̂
ti−1

|2
]
≤ CΛE

[∫ ti

ti−1

|f(s, Xs, Ĩ
ϑ̂
s )|2ds +

∫ ti

ti−1

|Zϑ̂
s |2du

]
,

we obtain E [
∑

i Bi] ≤ CΛ|t|. Inequalities (5.15) then follow from exactly the same arguments as in the proof of
Proposition 5.1 of [6].
Step 2. We now prove (5.16). Adapting to our context equation (5.10) in [6], we obtain

E

[∫ T

0

|Zϑ̂
t − Ẑt|2dt

]
≤ CΛ

(
sup
t∈t

E

[
|Ĩϑ̂

t − Ỹt|2
]

+ E

[∑
i

Bi

]
+ νE

[
sup
r∈r

|Xr − X̂r|2
])

Combining the results of Step 1 with (4.3), we get (5.16).
Step 3. The proof of the Proposition is then concluded by combining (5.13)−(5.15) and (5.14)−(5.16) with
Proposition 4.7. �
5.2.4. Proof of Theorems 4.3 and 4.4

Proof of Theorem 4.3. Since

|Yt− − Ŷt|2 ≤ CΛ(|Yt− − Iϑ
t |2 + |Iϑ

t − Ŷt|2) and |Yt − Ỹt|2 ≤ CΛ(|Yt − Ĩϑ
t |2 + |Ĩϑ

t − Ỹt|2),

we obtain using Propositions 4.6 and 4.8 that

sup
t∈[0,T ]

E

[
|Yt− − Ŷt|2

]
+ sup

t∈[0,T ]

E

[
|Yt − Ỹt|2

]
≤ CΛ

(
|t| + |r|α + Cε

Λ|r|α−1
N∑

l=1

E

[
|ϑ̂l − ϑl|

]1−ε
)

.
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Under (Hb)’, the proof is concluded by using the last inequality together with Proposition 4.1 and letting r = |t|.
Under (Hb), one chooses |r| ∼ |t| 12 .

Proof of Theorem 4.4. For i < n and ti ∈ t, let us define Żti := Eti

[∫ ti+1

ti
Zsds

]
1{ti<T} and then for t ∈ [0, T ]\ t,

Żt = Żt̄. We observe that

E

[∫ T

0

|Zt − Z̄t̄|2dt

]
≤ CΛ

(
E

[∫ T

0

|Zt − Żt̄|2dt

]
+ E

[∫ T

0

|Żt̄ − Z̄t̄|2dt

])
(5.18)

We then compute that

E

[∫ T

0

|Żt̄ − Z̄t̄|2dt

]
≤ CΛE

[∫ T

0

|Zt − Ẑt|2dt

]

≤ CΛE

[∫ T

0

(
|Zt − Zϑ

t |2 + |Zϑ
t − Ẑt|2

)
dt

]

Setting |r| ∼ |t| 12 , and combining Proposition 4.1, Proposition 4.6 and 4.8, we then have

E

[∫ T

0

|Żt̄ − Z̄t̄|2dt

]
≤ Cε

Λ|t|
1
4−ε (5.19)

for ε > 0.
But we also have that

E

[∫ T

0

|Zt − Żt̄|2dt

]
→ 0 as |t| → 0. (5.20)

Indeed Ż is the best approximation of Z in L2([0, T ]×Ω) by processes wich are adapted and piecewise constant
on t.
The proof of the Theorem is concluded by combining equations (5.19), (5.18) and (5.20). �

5.3. Proof of the PDE Results

5.3.1. Proof of Proposition 3.7

Let Yεn,l,ξ be the analog for the dilated domain Oεn of Y l,ξ in Proposition 2.6, where the sequence εn goes
to 0 as n → ∞.

In the same way as Lemma 5.1(ii) implies Proposition 2.4(i), one can imply from Lemma 5.1(iii) the existence
of an extraction (εn′)n for which, almost surely, ϑεn′ ,ξ converges to ϑξ as n → ∞.

In the same way as Proposition 2.4(i) implies the result of the first bullet point in Proposition 2.6(ii) (see the
related proof in [8]), one can in turn imply, from the almost sure convergence of ϑεn′ ,ξ to ϑε,ξ, the convergence
in S2×H2

q ×S2 of Yεn′ ,l,ξ to Y l,ξ as n → ∞, for every l = 0, . . . , N. In view of Proposition 3.2 and identity (2.5)
(both applied for O and Oε), one thus has, for k ∈ K,{

uk
εn′ ,I(t, x) = Y

εn′ ,0,ξ
t → Y 0,ξ

t = uk
I (t, x), k ∈ K

uk
εn′ ,I(t, x) = Y

εn′ ,1,ξ
t → Y 1,ξ

t = uk
I (t, x), k /∈ K.

This proves (3.12).
Moreover the pointwise convergence (3.12) is uniform on every compact set of E∗

I , by Dini’s theorem applied
to the functions uI and uε,I , which are continuous on E∗

I . �
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5.3.2. Proof of Theorem 3.8

First note that Theorem 3.8 can be reduced to the following three lemmas, which will be established below.

Lemma 5.2. uI , respectively uI , is upper, respectively lower semi-continuous on EI .

Since we already know that uI is a continuous viscosity solution of (3.4) on E∗
I , and given the definition of uI

at TI , this implies in particular that uI is a subsolution of (3.3)–(3.4) on EI .

Remark 5.3. One has likewise that uε,I , respectively uε,I , is a subsolution on EI , respectively supersolution
on EI , of problem (3.14)–(3.15) (which is problem (3.3)–(3.4) with O replaced by Oε), for every ε ≥ 0. Moreover,
thanks to (Hm), one also has that uε,I is a supersolution of (3.3)–(3.4) (for the original domain O) on EI .

Lemma 5.4. For every ε > 0, uε,I is a strong supersolution of (3.3)–(3.4) on EI .

Given also Lemma 5.2, the comparison principle mentioned after Definition 3.4 then implies that μ ≤ lim ↘ε↘0+

uε,I , for any subsolution μ of (3.3)–(3.4) on EI . In particular, uI ≤ lim ↘ε↘0+ uε,I .

Lemma 5.5. lim ↘ε↘0+ uε,I ≤ uI .

Thus (3.13) is satisfied, μ ≤ uI for every subsolution μ of (3.3)–(3.4) on EI , and Theorem 3.8 holds as a whole.
Next observe that Lemmas 5.2, 5.4 and 5.5 can in turn be reduced to showing that, at every t = TI :

• For Lemma 5.2: for every x ∈ ∂O and k ∈ K,

ǔk
I+1(t, x) ≥ lim

tn↑t−, xn→x
uk

I (tn, xn), respectively ûk
I+1(t, x) ≤ lim

tn↑t−, xn→x
uk

I (tn, xn), (5.21)

where (uk
I (tn, xn))n≥0 reaches lim sup(t−,x) uk

I := lim sup(s,y)→(t,x) with s<t uk
I (s, y), respectively

lim inf(t−,x) uk
I := lim inf(s,y)→(t,x) with s<t uk

I (s, y);
• For Lemma 5.4 (admitting Lem. 5.2, so uε,I supersolution of (3.3)–(3.4) on EI):

ûε,I+1 ≥ ǔI+1 ; (5.22)

• For Lemma 5.5: for every (t = TI , x, k) with x ∈ ∂O,

lim ↘ε↘0+ uε,I(t, x, k) ≤ uI(t, x, k), (5.23)

where this “reduction” of Lemma 5.5 means that (5.23) only needs to be verified at the “critical” boundary
points (t = TI , x, k) with x ∈ ∂O to which we reduce attention here, since it already holds at all the other points
(t, x, k) as⎧⎪⎪⎨⎪⎪⎩

lim ↘ε↘0+ uk
ε,I(t, x) = lim ↘ε↘0+ uk

ε,I(t, x) = uk
I (TI , x) = uk

I (TI , x), t < TI

lim ↘ε↘0+ uk
ε,I(t, x) = lim ↘ε↘0+ u+,k

ε,I+1(t, x) = u+,k
I+1(TI , x) = uk

I (TI , x), t = TI , x /∈ O
lim ↘ε↘0+ uk

ε,I(t, x) = lim ↘ε↘0+ u−,k
ε,I+1(t, x) = u−,k

I+1(TI , x) = uk
I (TI , x), t = TI , x ∈ O,

(5.24)

in which the middle identities result from Proposition 3.7.
Now, in order to establish (5.21), (5.22) and (5.23), there are five cases to consider, namely:

• k ∈ K (easiest case),
• k /∈ K, κk

I,+ ∈ K and κk
I,− /∈ K, or the analogous but simpler case where k /∈ K and κk

I,± ∈ K,
• k /∈ K, κk

I,+ /∈ K and κk
I,− ∈ K, or the analogous but simpler case where k /∈ K and κk

I,± /∈ K.
Moreover, the treatments of the “more difficult” cases k /∈ K, κk

I,+ ∈ K and κk
I,− /∈ K, or k /∈ K, κk

I,+ /∈ K

and κk
I,− ∈ K, are symmetrical to each other. Considering the latter case, so in particular (cf. (3.5)):

u+,k
ε,I+1(t, x) = uε(t, x, κk

I,+), u−,k
ε,I+1(t, x) = uε(t, x, κk

I,−) ∧ h(t, x), (5.25)

we now prove (5.21), (5.22) and (5.23) in this case, leaving the detail of the other cases to the reader.
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Proof of (5.21). We set ξn = (tn, xn, k). In the considered case, since k /∈ K, one has that ϑξn

0 = tn = ϑξn

1 <

ϑξn

2 , uk
I (tn, xn) = Y 1,ξn

tn
, and:

• Whenever Xξn

t /∈ O:
Hξn

t = κk
I,+ /∈ K, ϑξn

2 > t, u(t,X ξn

t ) = Y 1,ξn

t

• Whenever Xξn

t ∈ O:

Hξn

t = κk
I,− ∈ K, ϑξn

2 = t, u(t,X ξn

t ) = Y 2,ξn

t , u(t,X ξn

t ) ∧ h(t, Xξn

t ) = Y 1,ξn

t ,

where the last identity results from (2.4).
Let us prove the left-hand-side inequality in (5.21) (leaving the other one to the reader), assuming that

(uk
I (tn, xn))n≥0 reaches lim sup(t−,x) uk

I . One has, recalling (5.25),

ǔk
I+1(t, x) − uk

I (tn, xn) = E

{
1Xξn

t /∈O

[(
ǔk

I+1(t, x) − u(t, Xξn

t , κk
I,+)

)
+
(
Y 1,ξn

t − Y 1,ξn

tn

)]}
+E

{
1Xξn

t ∈O

[(
ǔk

I+1(t, x) − u(t, Xξn

t , κk
I,−) ∧ h(t, Xξn

t )
)

+
(
Y 1,ξn

t − Y 1,ξn

tn

)]}
≥ −E|u(t, x, κk

I,+) − u(t, Xξn

t , κk
I,+)|

−E|u(t, x, κk
I,−) ∧ h(t, Xξn

t ) − u(t, Xξn

t , κk
I,−) ∧ h(t, Xξn

t )|
−E|Y 1,ξn

t − Y 1,ξn

tn
|,

where, as n → ∞ (cf. the proof of Prop. 3.2, see [8]):
• the first two terms go to 0 by continuity of the value function u on E∗

I+1, and
• the last term goes to 0, by convergence of the Yξn (up to an extracted subsequence).
The left-hand-side inequality in (5.21) follows.

Proof of (5.22). One needs to prove⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

uε(t, x, κk
I,+) ≥ u(t, x, κk

I,+), x /∈ Oε;

uε(t, x, κk
I,+) ∧ uε(t, x, κk

I,−) ∧ h(t, x) ≥ u(t, x, κk
I,+), x ∈ ∂Oε;

uε(t, x, κk
I,−) ∧ h(t, x) ≥ u(t, x, κk

I,+), x ∈ Oε \ O;

uε(t, x, κk
I,−) ∧ h(t, x) ≥ u(t, x, κk

I,+) ∨
(
u(t, x, κk

I,−) ∧ h(t, x)
)
, x ∈ ∂O;

uε(t, x, κk
I,−) ∧ h(t, x) ≥ u(t, x, κk

I,−) ∧ h(t, x), x ∈ O,

which readily follows from (Hm).

Proof of (5.23).
One has in the considered case (cf. (5.25)),

uk
ε,I(TI , x) = uε(TI , x, κk

I,+) = uε,I+1(TI , x, κk
I,+)

uk
I (TI , x) = u(TI , x, κk

I,+) ∨
(
u(TI , x, κk

I,−) ∧ h(TI , x)
)

= uI+1(TI , x, κk
I,+) ∨

(
uI+1(TI , x, κk

I,−) ∧ h(TI , x)
)

where lim ↘ε↘0+ uε,I+1(t, x, κk
I,+) = uI+1(t, x, κk

I,+), by application of Proposition 3.7. Hence (5.23) follows. �

5.3.3. Proof of Proposition 3.9

This is obtained by a combination of classical viscosity arguments as in [2] (see also Subsect. 13.2.3 of [8])
and of arguments already used in the Proof of Theorem 3.8, so we shall only sketch the demonstration.
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(i) The middle inequality in (3.16) is immediate by definition of the envelopes of a scheme. Moreover, by
classical viscosity solution arguments, Uε,I and Uε,I are respectively supersolutions and subsolutions of
(3.14)–(3.15) on EI (cf. Def. 3.4(ii) and (3.7)–(3.8) for the related definitions for ε = 0). In particular, one
has at TI :

Uε,I ≥ ûε,I+1, Uε,I ≤ ǔε,I+1.

Moreover, by the dilation argument already used in the Proof of Proposition 3.8, one also has at TI , for
every ε > 0 (cf. (5.22)):

ûε,I+1 ≥ ǔI+1, ǔε,I+1 ≤ û2ε,I+1.

In view also of Remark 5.3, one thus has that Uε,I and uI are respectively a strong supersolution and a
subsolution on EI of (3.3)–(3.4), whilst Uε,I and u2ε,I are respectively a strong subsolution and a superso-
lution on EI of (3.3)–(3.4) with O replaced by O2ε, for every ε > 0. The extreme inequalities in (3.16) thus
follow by application of the comparison principle (CP) to uI and Uε,I for the left side and Uε,I and u2ε,I

for the right one.
(ii) is then an elementary consequence of (3.16) joint to the fact that on E∗

I , u2ε,I = u2ε,I converges locally
uniformly to uI = uI , by Proposition 3.7. �

Appendix A. Proof of Lemma 5.1

A.1. Proof of Part (i)

We only consider the case of t = 0, the arguments for general time initial condition being exactly the same.
Using Itô Formula, we compute

d(Xs) = d(X0) +
∫ s

0

Gd(u, Xu)du +
∫ s

0

∂xd σ(u, Xu)dWu. (A.1)

We define a new probability Q ∼ P whose density is given by

e−
∫

T
0 λudWu− 1

2

∫
T
0 |λu|2du where λu :=

(
(∂xd σ)T(∂xd a ∂xdT)−1Gd

)
(u, Xu)

and the process W Q by dW Q
u := dWu + λudu. Observe that Novikov’s condition holds since λ is bounded,

under (Hx)−(Ho). Thus, it follows from Girsanov’s Theorem that W Q is a brownian motion under Q. Equa-
tion (A.1) reads then

d(Xs) = d(Xs) +
∫ s

0

∂xd σ(u, Xu)dW Q
u .

For TI ∈ T \ {0}, using Holder’s inequality, one computes that

P{|d(XTI )| ≤ δ} ≤ Cε
ΛQ{|d(XTI )| ≤ δ}1−ε. (A.2)

The proof is then concluded using Corollary 2.1.1 in [23] and working under Q. �

A.2. Proof of Part (ii)

We first define for δ > 0, the sets

Ω̂δ =

{
sup

u∈[0,T ]

|X̌ξ′
u − Xξ

u| < δ

}
, cΩ̂δ = Ω \ Ω̂δ.

We consider the two different cases.
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Case 1. (a) By definition of ϑξ, ϑ̌ξ′
, we have that E

[
|ϑξ

0 − ϑ̌ξ′
0 |
]

= |t − t′|, and obviously, for l ≥ 1,

E

[
|ϑξ

l − ϑ̌ξ′
l |
]

= E

[
|ϑξ

l − ϑ̌ξ′
l |1cΩ̂δ

]
+ E

[
|ϑξ

l − ϑ̌ξ′
l |1

Ω̂δ∩{ϑξ
l 	=ϑ̌ξ′

l }

]
. (A.3)

Markov’s inequality applied on cΩ̂δ, and the bound |ϑξ
l − ϑ̌ξ′

l | ≤ T , yield that

E

[
|ϑξ

l − ϑ̌ξ′
l |1cΩ̂δ

]
≤ Cp

Λ

E

[
supu∈[T t,T ] |X̌ξ′

u − Xξ
u|p

]
δp

, (A.4)

for p¿ 0.

(b) We now work on the second term of the right-hand side of (A.3). By definition of ϑξ, ϑ̌ξ′
, if k /∈ K, we have

E

[
|ϑξ

1 − ϑ̌ξ′
1 |1{k/∈K}

]
= |t − t′|. We are going to prove a control between ϑξ and ϑ̌ξ′

, for l ≥ 2, and for l = 1,
k ∈ K. To this end, we observe that

1{Xξ
TI

∈O} = 1{X̌ξ′
TI

∈O}, ∀TI ∈ Tt =⇒ Hξ = Ȟξ′
, (A.5)

thus for l ≥ 2, ϑξ
l = ϑ̌ξ′

l and if k ∈ K, ϑξ
1 = ϑ̌ξ′

1 .
We then introduce the set

Ω1 =
⋃

TI∈Tt

({d(Xξ
TI

) ≥ 0} ∩ {d(X̌ξ′
TI

) < 0}) ∪ ({d(Xξ
TI

) < 0} ∩ {d(X̌ξ′
TI

) ≥ 0}).

Since d is 1-Lipschitz continuous, by definition of Ω̂δ, we have

Ω̂δ ∩ Ω1 ⊂
⋃

TI∈Tt

{|d(Xξ
TI

)| ≤ δ} =: Ω̄

Using (A.5), we have that, for l ≥ 2, {ϑξ
l �= ϑ̌ξ′

l } ⊂ Ω1 and if k ∈ K, {ϑξ
1 �= ϑ̌ξ′

1 } ⊂ Ω1. Thus, for l ≥ 2,
Ω̂δ ∩ {ϑξ

l �= ϑ̌ξ′
l } ⊂ Ω̄ and if k ∈ K, Ω̂δ ∩ {ϑξ

1 �= ϑ̌ξ′
1 } ⊂ Ω̄.

Using the result of Part (i), one then gets,

E

[
|ϑξ

l − ϑ̌ξ′
l |1

Ω̂δ∩{ϑξ
l 	=ϑ̌ξ′

l }

]
≤ CΛδ1−ε,

for l ≥ 2 and l = 1, if k ∈ K. In this case, the proof is concluded combining the last inequality with (A.4)
and (A.3).

Case 2. In this case, Tt′ = Tt ∪ {t}. As in Case 1 (a) above, we compute

E

[
|ϑ̃l

ξ
− ϑ̌ξ′

l |
]
≤ Cp

Λ

E

[
supu∈[T t,T ] |X̌ξ′

u − Xξ
u|p

]
δp

+ E

[
|ϑ̃l

ξ
− ϑ̌ξ′

l |1
Ω̂δ∩{ϑ̃l

ξ 	=ϑ̌ξ′
l }

]
, (A.6)

for l ≥ 0 and p, ε ¿ 0. Recall that by definition of ϑ̃ξ, ϑ̌ξ′
, E

[
|ϑ̃ξ

0 − ϑ̌ξ′
0 |
]

= |t− t′| and if k /∈ K, E

[
|ϑ̃ξ

1 − ϑ̌ξ′
1 |
]

=
|t − t′|. Regarding the last term of (A.6), we observe here that

1{Xξ
TI

∈O} = 1{X̌ξ′
TI

∈O}, ∀TI ∈ Tt ∪ {t} =⇒ H̃ξ = Ȟξ′
.



28 J.-F. CHASSAGNEUX AND S. CRÉPEY

The set Ω1 is now replaced by

Ω2 =
⋃

TI∈Tt∪{t}
({d(Xξ

TI
) ≥ 0} ∩ {d(X̌ξ′

TI
) < 0}) ∪ ({d(Xξ

TI
) < 0} ∩ {d(X̌ξ′

TI
) ≥ 0})

The difference with Case 1(b) is that the reunion is on Tt∪{t}. But, since for δ small enough {|d(Xξ
t )| < δ} = ∅,

we have

Ω̂δ ∩ Ω2 ⊂ Ω̄.

The proof is then concluded arguing as in Case 1(b). �

A.3. Proof of Part (iii)

As in Part (ii), we observe that

1{Xξ
TI

∈O} = 1{Xξ
TI

∈Oε}, ∀TI ∈ Tt =⇒ Hξ = Hξ,ε, (A.7)

thus for l ≥ 0, ϑξ,ε
l = ϑξ

l .
We then introduce the set

Ω3 =
⋃

TI∈Tt

({d(Xξ
TI

) ≥ 0} ∩ {dε(X
ξ
TI

) < 0}) ∪ ({d(Xξ
TI

) < 0} ∩ {dε(X
ξ
TI

) ≥ 0}).

where dε is the distance function associated to Oε. By definition of Oε, we have

Ω3 ⊂
⋃

TI∈Tt

{|d(Xξ
TI

)| ≤ ε}

The proof is then concluded using Part (i). �
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