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FROM ALMOST SURE LOCAL REGULARITY TO ALMOST SURE
HAUSDORFF DIMENSION FOR GAUSSIAN FIELDS

Erick Herbin1, Benjamin Arras1 and Geoffroy Barruel1

Abstract. Fine regularity of stochastic processes is usually measured in a local way by local Hölder
exponents and in a global way by fractal dimensions. In the case of multiparameter Gaussian random
fields, Adler proved that these two concepts are connected under the assumption of increment station-
arity property. The aim of this paper is to consider the case of Gaussian fields without any stationarity
condition. More precisely, we prove that almost surely the Hausdorff dimensions of the range and the
graph in any ball B(t0, ρ) are bounded from above using the local Hölder exponent at t0. We define
the deterministic local sub-exponent of Gaussian processes, which allows to obtain an almost sure
lower bound for these dimensions. Moreover, the Hausdorff dimensions of the sample path on an open
interval are controlled almost surely by the minimum of the local exponents. Then, we apply these
generic results to the cases of the set-indexed fractional Brownian motion on RN , the multifractional
Brownian motion whose regularity function H is irregular and the generalized Weierstrass function,
whose Hausdorff dimensions were unknown so far.
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1. Introduction

Since the 70’s, the regularity of stochastic processes used to be considered in different ways. On one hand,
the local regularity of sample paths is usually measured by local moduli of continuity and Hölder exponents
(e.g. [11,17,29,40]). And on the other hand, the global regularity can be quantified by the global Hölder exponent
(e.g. [38, 39]) or by fractal dimensions (Hausdorff dimension, box-counting dimension, packing dimension,. . . )
and respective measures of the graph of the processes (e.g. [9, 31, 33]).

As an example, if BH = {BH
t ; t ∈ R+} is a real-valued fractional Brownian motion (fBm) with self-similarity

index H ∈ (0, 1), the pointwise Hölder exponent at any point t ∈ R+ satisfy αBH (t) = H almost surely. Besides,
the Hausdorff dimension of the graph of BH is given by dimH(GrBH ) = 2 −H almost surely. In this specific
case, we observe a connection between the global and local points of view of regularity for fBm. Is it possible
to obtain some general result, for some larger class of processes?

In [1], Adler showed that the Hausdorff dimension of the graph of a Rd-valued Gaussian field X = {X(i)
t ; 1 ≤

i ≤ p, t ∈ RN
+}, made of i.i.d. Gaussian coordinate processes X(i) with stationary increments, can be deduced
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from the local behavior of its incremental variance. More precisely, when the quantities σ2(t) = E[|X(i)
t+t0−X(i)

t0 |2]
independent of 1 ≤ i ≤ p and t0 ∈ RN

+ satisfy

∀ε > 0, |t|α+ε ≤ σ(t) ≤ |t|α−ε as t→ 0, (1.1)

the Hausdorff dimension of the graph GrX = {(t,Xt) : t ∈ RN
+} of X is proved to be

dimH(GrX) = min
{
N

α
,N + d(1 − α)

}
.

This result followed Yoder’s previous works in [41] where the Hausdorff dimensions of the graph and also the
range RgX = {Xt : t ∈ RN

+} were obtained for a multiparameter Brownian motion in Rd. As an application to
Adler’s result, the Hausdorff dimension of the graph of fractional Brownian motion can be deduced from the
local Hölder exponents of its sample paths. As an extension of this result, Xiao has completely determined in [37]
the Hausdorff dimensions of the image X(K) and the graph GrX(K) of a Gaussian field X whose components
may have different distributions, for a compact set K ⊂ RN

+ , in function of dimHK.
In this paper, we aim at extending Adler’s result to Gaussian random fields with non-stationary increments.

We will see that this goal requires a localization of Adler’s index α along the sample paths. There is a large
litterature about local regularity of Gaussian processes. We refer to [2, 20, 23, 26] for a contemporary and
detailled review of it. This field of research is still very active, especially in the multiparameter context, and
a non-exhaustive list of authors and recent works in this area includes Ayache and Lévy Véhel [3], Ayache,
Shieh and Xiao [4], Baraka, Mountford and Xiao [6], Dozzi [10], Herbin and Lévy Véhel [17], Khoshnevisan
and Xiao [21], Lawler and Viklund [22], Lind [24] and Meerschaert, Wang and Xiao [27], Tudor and Xiao [35],
Xiao [37–39].

Usually the local regularity of an Rd-valued stochastic process X at t0 ∈ RN
+ is measured by the pointwise

and local Hölder exponents αX(t0) and α̃X(t0) defined by

αX(t0) = sup

{
α > 0 : lim sup

ρ→0
sup

s,t∈B(t0,ρ)

‖Xt −Xs‖
ρα

< +∞
}
,

α̃X(t0) = sup

{
α > 0 : lim

ρ→0
sup

s,t∈B(t0,ρ)

‖Xt −Xs‖
‖t− s‖α

< +∞
}
, (1.2)

when the sample path of X is continuous but not differentiable at t0 (notice that the previous expressions for
the pointwise and local Hölder exponents are only valid when they belong to [0, 1]).

A general connection between the local structure of a stochastic process and the Hausdorff dimension of
its graph has already been studied. In [7], the specific case of local self-similarity (LASS) property has been
considered. Here, we do not want to consider any strong distributional condition, such as stationarity or LASS
property, and we show how the local Hölder regularity of a Gaussian random field allows to estimate the
Hausdorff dimensions of its range RgX and its graph GrX . However, the two works could be connected by the
study of the local regularity of locally self-similar processes. A first element is proved in [14]: any H-index locally
self-similar process has a pointwise Hölder exponent equal to H .

Recently in [17], the quantities E[|Xt − Xs|2] when s, t are close to t0 ∈ RN
+ are proved to capture a lot

of information about the almost sure local regularity of Gaussian processes. More precisely, the almost sure
2-microlocal frontier of X at t0 can be determined and, as an extension of the deterministic frame, allows to
predict the evolution of the local regularity at t0 under fractional integrations or derivations. Particularly, as
special points of the 2-microlocal frontier, both pointwise and local Hölder exponents can be derived from the
study of E[|Xt−Xs|2]. For all t0 ∈ RN

+ , we define in Section 2.1 the exponents �X(t0) and �̃X(t0) of a real-valued
Gaussian process X as the minimum of � > 0 and maximum of �̃ > 0 such that

∀s, t ∈ B(t0, ρ0), ‖t− s‖2 � ≤ E[|Xt −Xs|2] ≤ ‖t− s‖2 �̃,
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for some ρ0 > 0. The exponents of the components X(i) of a Gaussian random field X = (X(1), . . . , X(d)) allow
to get almost sure lower and upper bounds for quantities,

lim
ρ→0

dimH(GrX(B(t0, ρ))) and lim
ρ→0

dimH(RgX(B(t0, ρ))).

After the statement of the main result in Section 2.2, the almost sure local Hausdorff dimensions are given
uniformly in t0 ∈ RN

+ and the global dimensions dimH(GrX(I)) and dimH(RgX(I)) are almost surely bounded
for any open interval I ⊂ RN

+ , in function of inft∈I �X(i)(t) and inft∈I �̃X(i)(t). Sections 2.3 and 2.4 are devoted
to the proofs of the upper bound and lower bound of the Hausdorff dimensions respectively.

In Section 3, the main result is applied to some stochastic processes whose increments are not stationary and
whose Hausdorff dimension is still unknown.

The first one is the multiparameter extension of fractional Brownian motion (MpfBm), derived from the
set-indexed fractional Brownian motion introduced in [15, 16]. On the contrary to fractional Brownian sheet
studied in [5, 36], the MpfBm does not satisfy the increment stationarity property. Then the study of the local
regularity of its sample path allows to determine the Hausdorff dimension of its graph in Section 3.1.

The second application is multifractional Brownian motion (mBm), introduced in [8, 30] as an extension of
classical fractional Brownian motion where the self-similarity index H ∈ (0, 1) is substituted with a function
H : R+ → (0, 1) in order to allow the local regularity to vary along the sample path. The immediate consequence
is the loss of the increment stationarity property. Then, the knowledge of local Hölder regularity implies the
Hausdorff dimensions of the graph and the range of the mBm. In the case of a regular function H , the almost sure
value of limρ→0 dimH(GrX(B(t0, ρ))) was already known to be 2−H(t0) for any fixed t0 ∈ R+. In Section 3.2,
this almost sure result is proved uniformly in t0. The new case of an irregular function H is also considered.
These kind of quantities have already been studied by Meerschaert et al. [28] for the level sets of mBm when
the function H is regular.

The last application of this article concerns the generalized Weierstrass function, defined as a stochastic
version of the well-known Weierstrass function, where the index varies along the trajectory. The local Hölder
regularity is determined in Section 3.3 and consequentely, the Hausdorff dimension of its sample path.

2. Hausdorff dimension of the sample paths of Gaussian random fields

In this paper, we denote by multiparameter Gaussian random field in Rd, a stochastic process X = {Xt; t ∈
RN

+}, where Xt = (X(1)
t , . . . , X

(d)
t ) ∈ Rd for all t ∈ RN

+ and the coordinate processes X(i) = {X(i)
t ; t ∈ RN

+}
are independent real-valued Gaussian processes (not necessarily zero-mean) with the same law.

2.1. A new local exponent

According to [17], the local regularity of a Gaussian process X = {Xt; t ∈ RN
+} can be obtained by the

deterministic local Hölder exponent

�̃X(t0) = sup

{
α > 0 : lim

ρ→0
sup

s,t∈B(t0,ρ)

E[|Xt −Xs|2]
‖t− s‖2α

< +∞
}
. (2.1)

More precisely, the local Hölder exponent of X at any t0 ∈ RN
+ is proved to satisfy P

(
α̃X(t0) = �̃X(t0)

)
= 1.

In order to get a localized version of (1.1), we need to introduce a new exponent �X(t0), the deterministic
local sub-exponent at any t0 ∈ RN

+ , defined for any 2nd-order stochastic process X ,

�X(t0) = inf
{
α > 0 : lim

ρ→0
inf

s,t∈B(t0,ρ)

E[|Xt −Xs|2]
‖t− s‖2α

= +∞
}

(2.2)

= sup
{
α > 0 : lim

ρ→0
inf

s,t∈B(t0,ρ)

E[|Xt −Xs|2]
‖t− s‖2α

= 0
}
.
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Lemma 2.1. Let X = {Xt; t ∈ RN
+} be a multiparameter 2nd-order stochastic process.

Consider �̃X(t0) and �X(t0) the deterministic local Hölder exponent and local sub-exponent of X at t0 ∈ RN
+

(as defined in (2.1) and (2.2)).
For any ε > 0, there exists ρ0 > 0 such that

∀s, t ∈ B(t0, ρ0), ‖t− s‖2 �X(t0)+ε ≤ E[|Xt −Xs|2] ≤ ‖t− s‖2 �̃X (t0)−ε.

The previous result comes directly from definitions of �X(t0) and �̃X(t0). It allows to derive an ordering
relation between the deterministic local sub-exponent and the deterministic local Hölder exponent. We have

∀t0 ∈ RN
+ , �̃X(t0) ≤ �X(t0). (2.3)

2.2. Main results: The Hausdorff dimension of Gaussian random fields

For sake of self-containess of the paper, we recall the basic frame of the Hausdorff dimension definition.
For all δ > 0, we denote by δ-covering of a non-empty subset E of Rd all collection A = (Ai)i∈N such that

• ∀i ∈ N, diam(Ai) < δ, where diam(Ai) denotes sup(‖x− y‖; x, y ∈ Ai); and
• E ⊆ ⋃i∈NAi.

We denote by Σδ(E) the set of δ-covering of E and by Σ(E) the set of the covering of E. We define

Hs
δ(E) = inf

A∈Σδ(E)

{ ∞∑
i=1

diam(Ai)s

}
,

and the Hausdorff measure of E by Hs(E) = limδ→0 Hs
δ(E). The Hausdorff dimension of E is defined by

dimH(E) = inf {s ∈ R+ : Hs(E) = 0} = sup {s ∈ R+ : Hs(E) = +∞} .

For any random field X = {X(i)
t ; 1 ≤ i ≤ p, t ∈ RN

+} made of i.i.d. Gaussian coordinate processes with
possibly non-stationary increments, the Hausdorff dimensions of the range RgX(B(t0, ρ)) = {Xt; t ∈ B(t0, ρ)}
and the graph GrX(B(t0, ρ)) = {(t,Xt); t ∈ B(t0, ρ)} of X in the ball B(t0, ρ) of center t0 and radius ρ > 0
can be estimated when ρ goes to 0, using the deterministic local Hölder exponent and the deterministic local
sub-exponent of X(i) at t0.

In the following statements and in the sequel of the paper, the deterministic local Hölder exponent �̃X(i)(t0)
and the deterministic local sub-exponent �X(i)(t0) of X(i) at any t0 ∈ RN

+ are independent of 1 ≤ i ≤ d, since
the component X(i) are assumed to be i.i.d.

Theorem 2.2 (Pointwise almost sure result). Let X = {Xt; t ∈ RN
+} be a multi-parameter Gaussian random

field in Rd. Let �̃X(i)(t0) be the deterministic local Hölder exponent and �X(i)(t0) the deterministic local sub-
exponent of X(i) at fixed t0 ∈ RN

+ as defined in (2.1) and (2.2), independent of 1 ≤ i ≤ d. Assume that
�̃X(i)(t0) > 0.

Then, the Hausdorff dimensions of the graph and the range of X satisfy almost surely,

min
{

N

�X(i)(t0)
;N + d(1 − �X(i)(t0))

}
≤ lim

ρ→0
dimH(GrX(B(t0, ρ))) ≤ min

{
N

�̃X(i)(t0)
;N + d(1 − �̃X(i)(t0))

}
and

min
{

N

�X(i)(t0)
; d
}

≤ lim
ρ→0

dimH(RgX(B(t0, ρ))) ≤ min
{

N

�̃X(i)(t0)
; d
}
.

The proof of Theorem 2.2 relies on Propositions 2.6 and 2.8.
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Theorem 2.3 (Uniform almost sure result). Let X = {Xt; t ∈ RN
+} be a multi-parameter Gaussian random

field in Rd. Let �̃X(i)(t) be the deterministic local Hölder exponent and �X(i)(t) the deterministic local sub-
exponent of X(i) at any t ∈ RN

+ .
Set A = {t ∈ RN

+ : lim infu→t �̃X(i)(u) > 0}.
Then, with probability one, for all t0 ∈ A,

min

⎧⎨⎩ N

lim inf
u→t0

�X(i)(u)
;N + d(1 − lim inf

u→t0
�X(i)(u))

⎫⎬⎭ ≤ lim
ρ→0

dimH(GrX(B(t0, ρ)))

≤ min

⎧⎨⎩ N

lim inf
u→t0

�̃X(i)(u)
;N + d(1 − lim inf

u→t0
�̃X(i)(u))

⎫⎬⎭ .

and

min

⎧⎨⎩ N

lim inf
u→t0

�X(i)(u)
; d

⎫⎬⎭ ≤ lim
ρ→0

dimH(RgX(B(t0, ρ))) ≤ min

⎧⎨⎩ N

lim inf
u→t0

�̃X(i)(u)
; d

⎫⎬⎭ .

The proof of Theorem 2.3 relies on Proposition 2.6 and Corollary 2.10.

Theorem 2.4 (Global almost sure result). Let X = {Xt; t ∈ RN
+} be a multiparameter Gaussian field in Rd.

Let �̃X(i)(t) be the deterministic local Hölder exponent and �X(i)(t) the deterministic local sub-exponent of X(i)

at any t ∈ RN
+ .

For any open interval I ⊂ RN
+ , assume that the quantities � = inft∈I �X(i)(t) and �̃ = inft∈I �̃X(i)(t) satisfy

0 < �̃ ≤ �. Then, with probability one,

min {N/�;N + d(1 − �)} ≤ dimH(GrX(I)) ≤ min {N/�̃;N + d(1 − �̃)}
and

min {N/�; d} ≤ dimH(RgX(I)) ≤ min {N/�̃; d} .
The proof of Theorem 2.4 relies on Corollary 2.7 and Corollary 2.9.

2.3. Upper bound for the Hausdorff dimension

Lemma 2.5. Let X = {Xt; t ∈ RN
+} be a multiparameter random process with values in Rd. Let α̃X(t0) be

the local Hölder exponent of X at t0 ∈ RN
+ .

For any ω such that α̃X(t0) > 0,

lim
ρ→0

dimH(RgX(B(t0, ρ))) ≤ lim
ρ→0

dimH(GrX(B(t0, ρ))) ≤ min
{

N

α̃X(t0)
;N + d(1 − α̃X(t0))

}
.

Proof. The first inequality follows the fact that the range RgX(B(t0, ρ)) is a projection of the graph
GrX(B(t0, ρ)). For the second inequality, we need to localize the argument of Yoder ([41]), who proved the
upper bound for the Hausdorff dimensions of the range and the graph of a Hölderian function from RN (or
[0, 1]N) to Rd (see also [12], Cor. 11.2 p. 161).

Assume that ω is fixed such that α̃X(t0, ω) > 0. By definition of α̃X(t0), for all ε > 0 there exists ρ0 > 0
such that for all ρ ∈ (0, ρ0],

∀s, t ∈ B(t0, ρ), ‖Xt(ω) −Xs(ω)‖ ≤ ‖t− s‖α̃X (t0,ω)−ε.
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There exists a real 0 < δ0 < 1 such that for all u ∈ [0, 1]N , t0 + δ0.u ∈ B(t0, ρ0) and consequently,

∀u, v ∈ [0, 1]N , ‖Xt0+δ0.u(ω) −Xt0+δ0.v(ω)‖ ≤ (δ0 ‖u− v‖)α̃X (t0,ω)−ε.

Then, the function Y•(ω) : u 
→ Yu(ω) = Xt0+ρ0.u(ω) is Hölder-continuous of order α̃X(t0, ω) − ε on [0, 1]N

and therefore, according to [41],

dimH(RgY•(ω)([0, 1]N)) ≤ dimH(GrY•(ω)([0, 1]N)) ≤ min
{

N

α̃X(t0, ω) − ε
;N + d(1 − α̃X(t0, ω) + ε)

}
.

We can observe that the graph GrX•(ω)(t0+δ0.[0, 1]N )) is an affine transformation of the graph GrY•(ω)([0, 1]N )),
therefore their Hausdorff dimensions are equal. Moreover, there exists ρ > 0 such that B(t0, ρ) ⊂ t0 + δ0.[0, 1]N .
By monotony of the function ρ 
→ dimH(GrX•(ω)(B(t0, ρ))), we can write

lim
ρ→0

dimH(GrX•(ω)(B(t0, ρ))) ≤ min
{

N

α̃X(t0, ω) − ε
;N + d(1 − α̃X(t0, ω) + ε)

}
.

Since this inequality stands for all ε > 0, we get

lim
ρ→0

dimH(GrX•(ω)(B(t0, ρ))) ≤ min
{

N

α̃X(t0, ω)
;N + d(1 − α̃X(t0, ω))

}
. �

Lemma 2.5 gives a random upper bound for the Hausdorff dimensions of the (localized) range and graph of
the sample path, in function of its local Hölder exponents. When X is a multiparameter Gaussian field in Rd,
we prove that this upper bound can be expressed almost surely with the deterministic local Hölder exponent of
the Gaussian component processes X(i).

Proposition 2.6. Let X = {Xt; t ∈ RN
+} be a multiparameter Gaussian field in Rd. Let �̃X(i)(t0) be the

deterministic local Hölder exponent of X(i) at t0 ∈ RN
+ and assume that �̃X(i)(t0) > 0.

Then, almost surely

lim
ρ→0

dimH(RgX(B(t0, ρ))) ≤ lim
ρ→0

dimH(GrX(B(t0, ρ))) ≤ min {N/�̃X(i)(t0);N + d(1 − �̃X(i)(t0))} .

Moreover, an uniform result can be stated on the set

A = {t0 ∈ RN
+ : lim inf

u→t0
�̃X(i)(u) > 0}.

With probability one, for all t0 ∈ A,

lim
ρ→0

dimH(RgX(B(t0, ρ))) ≤ lim
ρ→0

dimH(GrX(B(t0, ρ))) ≤ min
{
N/ lim inf

u→t0
�̃X(i)(u);N + d(1 − lim inf

u→t0
�̃X(i)(u))

}
.

Proof. In [17], the local Hölder exponent of any Gaussian process Y at t0 ∈ RN
+ such that �̃Y (t0) > 0 is proved

to satisfy α̃Y (t0) = �̃Y (t0) almost surely. Therefore, by definition of α̃X(i)(t0), for all ε > 0 there exists ρ0 > 0
such that for all ρ ∈ (0, ρ0], we have almost surely

∀s, t ∈ B(t0, ρ), |X(i)
t −X(i)

s | ≤ ‖t− s‖�̃X(i) (t0)−ε,

and consequently, almost surely

∀s, t ∈ B(t0, ρ), ‖Xt −Xs‖ ≤ K ‖t− s‖�̃X(i) (t0)−ε, (2.4)

for some constant K > 0.
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From (2.4), we deduce that α̃X(t0) ≥ �̃X(i)(t0) almost surely. Then Lemma 2.5 implies almost surely

lim
ρ→0

dimH(RgX(B(t0, ρ))) ≤ lim
ρ→0

dimH(GrX(B(t0, ρ)))

≤ min {N/�̃X(i)(t0);N + d(1 − �̃X(i)(t0))} .
For the uniform result on t0 ∈ RN

+ , we use the Theorem 3.14 of [17] which states that if Y is a Gaussian
process such that the function t0 
→ lim infu→t0 �̃Y (u) is positive, then with probability one,

∀t0 ∈ RN
+ , lim inf

u→t0
�̃Y (u) ≤ α̃Y (t0) ≤ lim sup

u→t0

�̃Y (u).

This inequality yields to the existence of Ωi ∈ F for all 1 ≤ i ≤ d with P(Ωi) = 1 and:
For all ω ∈ Ωi, all t0 ∈ A and all ε > 0, there exists ρ0 > 0 such that for all ρ ∈ (0, ρ0],

∀s, t ∈ B(t0, ρ), |X(i)
t (ω) −X(i)

s (ω)| ≤ ‖t− s‖lim infu→t0 �̃X(i) (u)−ε.

This yields to: for all ω ∈ ⋂1≤i≤d Ωi, all t0 ∈ A and all ε > 0, there exists ρ0 > 0 such that for all ρ ∈ (0, ρ0],

∀s, t ∈ B(t0, ρ), ‖Xt(ω) −Xs(ω)‖ ≤ K ‖t− s‖lim infu→t0 �̃X(i) (u)−ε,

for some constant K > 0.
With the argument of Lemma 2.5, the result follows. �

Corollary 2.7. Let X = {Xt; t ∈ RN
+} be a multiparameter Gaussian field in Rd and �̃X(i)(t0) the determin-

istic local Hölder exponent of X(i) at t0 ∈ RN
+ .

Assume that for some bounded interval I ⊂ RN
+ , we have α = inft0∈I �̃X(i)(t0) > 0. Then, with probability

one,
dimH(RgX(I)) ≤ dimH(GrX(I)) ≤ min {N/α;N + d(1 − α)} .

Proof. With the same arguments as in the proof of Proposition 2.6, we can claim that, with probability one,
∀t0 ∈ I, α ≤ α̃X(t0). Then, there exists Ω0 ∈ F with P(Ω0) = 1 and: For all ω ∈ Ω0, all t0 ∈ I and all ε > 0,
there exist ρ0 > 0 and K > 0 such that ∀ρ ∈ (0, ρ0],

∀s, t ∈ B(t0, ρ), ‖Xt(ω) −Xs(ω)‖ ≤ K ‖t− s‖α−ε.

Then the continuity of t 
→ Xt(ω) on the bounded interval I allows to deduce that, for all ω ∈ Ω0 and all
ε > 0, there exists a constant K ′ > 0 such that

∀s, t ∈ I, ‖Xt(ω) −Xs(ω)‖ ≤ K ′ ‖t− s‖α−ε. (2.5)

If the interval I is compact, we can exhibit an affine one-to-one mapping I → [0, 1]N and conclude with the
arguments of Lemma 2.5 that [41] implies

dimH(RgX•(ω)(I)) ≤ dimH(GrX•(ω)(I)) ≤ min
{

N

α− ε
;N + d(1 − α+ ε)

}
a.s.

Since this inequality stands for any ε > 0, the result follows in that case.
If I is not closed, we remark that

dimH(RgX•(ω)(I)) ≤ dimH(RgX•(ω)(I)) and dimH(GrX•(ω)(I)) ≤ dimH(GrX•(ω)(I)).

Then, extending the inequality (2.5) to I by continuity, the result for the compact interval I is proved as
previously. �
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2.4. Lower bound for the Hausdorff dimension

Frostman’s Theorem constitutes the key argument to prove the lower bound for the Hausdorff dimensions.
We recall the basic notions of potential theory, which are used along the proofs of this section. For any Borel
set E ⊆ Rd, the β-dimensional energy of a probability measure μ on E is defined by

Iβ(μ) =
∫

E×E

‖x− y‖−β μ(dx) μ(dy).

Then, the β-dimensional Bessel–Riesz capacity of E is defined as

Cβ(E) = sup
(

1
Iβ(μ)

; μ probability measure on E
)
.

According to Frostman’s Theorem, the Hausdorff dimension of E is obtained from the capacity of E by the
expression

dimHE = sup (β : Cβ(E) > 0) = inf (β : Cβ(E) = 0) .

Consequently, if Iβ(μ) < +∞ for some probability measure (or some mass distribution) μ on E, then
dimHE ≥ β.

Proposition 2.8. Let X = {Xt; t ∈ RN
+} be a multiparameter Gaussian field in Rd and �X(i)(t0) the deter-

ministic local sub-exponent of X(i) at t0 ∈ RN
+ .

Then, almost surely

lim
ρ→0

dimH(GrX(B(t0, ρ))) ≥
{
N/�X(i)(t0) if N ≤ d �X(i)(t0);
N + d(1 − �X(i)(t0)) if N > d �X(i)(t0);

and

lim
ρ→0

dimH(RgX(B(t0, ρ))) ≥
{
N/�X(i)(t0) if N ≤ d �X(i)(t0);
d if N > d �X(i)(t0).

Proof. Following Adler’s proof for the lower bound in the case of processes with stationary increments, we
distinguish the two cases: N ≤ d �X(i)(t0) and N > d �X(i)(t0).

• Assume that N ≤ d �X(i)(t0). In that case, we prove that almost surely,

lim
ρ→0

dimH(GrX(B(t0, ρ)) ≥ lim
ρ→0

dimH(RgX(B(t0, ρ)) ≥ N

�X(i)(t0)
· (2.6)

For any ε > 0, we consider any β < N/(�X(i)(t0) + ε) ≤ d and we aim at showing that the β-dimensional
capacity Cβ(RgX(B(t0, ρ))) is positive almost surely for all ρ > 0.
With this intention, for E = RgX(B(t0, ρ)) = X(B(t0, ρ)), we consider the β-dimensional energy Iβ(μ)
of the mass distribution μ = λ|B(t0,ρ) ◦ X−1 of E, where λ|B(t0,ρ) denotes the restriction of the Lebesgue
measure to B(t0, ρ). As mentioned above (see also Thm. B in [34]), a sufficient condition for the capacity to
be positive is that, almost surely∫

E×E

‖x− y‖−β μ(dx) μ(dy) =
∫

B(t0,ρ)×B(t0,ρ)

‖Xt −Xs‖−β ds dt < +∞. (2.7)

Since the X(i) are independent and have the same distribution, we compute for all s, t ∈ RN
+ ,

E
[‖Xt −Xs‖−β

]
=

1
[2πσ2(s, t)]d/2

∫
Rd

‖x‖−β exp
(
− ‖x‖2

2 σ2(s, t)

)
dx,

where σ2(s, t) = E[|X(i)
t −X

(i)
s |2] is independent of 1 ≤ i ≤ d.
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Let us consider the change of variables (R+ \ {0},Sd−1) → Rd \ {0} defined by (r, u) 
→ r.u, where Sd−1

denotes the unit hypersphere of Rd. The previous expression becomes

E
[‖Xt −Xs‖−β

]
=

K1

[2πσ2(s, t)]d/2

∫
R+

rd−1−β exp
(
− r2

2 σ2(s, t)

)
dr

= K1 (σ(s, t))−β

∫
R+

zd−1−β exp
(
−1

2
z2

)
dz,

where K1 is a positive constant and using the change of variables r = σ(s, t) z.
Since the integral is finite when β < d, we get

∀s, t ∈ RN
+ , E

[‖Xt −Xs‖−β
] ≤ K2 (σ(s, t))−β , (2.8)

for some positive constant K2.
By Tonelli’s theorem and Lemma 2.1, this inequality implies the existence of ρ0 > 0 such that for all
ρ ∈ (0, ρ0],

E

[∫
B(t0,ρ)×B(t0,ρ)

‖Xt −Xs‖−β dt ds

]
≤
∫

B(t0,ρ)×B(t0,ρ)

K2 ‖t− s‖−β(�
X(i) (t0)+ε) dt ds < +∞

because β(�X(i)(t0) + ε) < N . Thus (2.7) holds and for all ρ ∈ (0, ρ0],

dimH(RgX(B(t0, ρ))) ≥ N

�X(i)(t0) + ε
a.s.

Taking ρ, ε ∈ Q+, this yields to

lim
ρ→0

dimH(RgX(B(t0, ρ))) ≥ N

�X(i)(t0)
a.s.,

which proves (2.6).

• Assume N > d �X(i)(t0). We use the previous method to prove that almost surely

lim
ρ→0

dimH(RgX(B(t0, ρ))) ≥ d. (2.9)

For any ε > 0 such that d < N/(�X(i)(t0) + ε), consider any real β such that β < d. As previously, we show
that equation (2.7) is verified, which implies that the β-dimensional capacity Cβ(RgX(B(t0, ρ))) is positive
almost surely for all ρ > 0.
Since β < d, equation (2.8) still holds. As in the previous case, the inequality β(�X(i)(t0)+ε) < N implies (2.7)
for ρ small enough and then

dimH(RgX(B(t0, ρ))) ≥ d a.s.

Taking ρ ∈ Q+, the inequality (2.9) follows.
• Assume N > d �X(i)(t0). To prove the lower bound for the Hausdorff dimension of the graph,

lim
ρ→0

dimH(GrX(B(t0, ρ))) ≥ N + d(1 − �X(i)(t0)) a.s., (2.10)

we use the same arguments of potential theory than for the range.
For any ε > 0, consider any real β such that d < β < N + d(1 − �X(i)(t0) − ε). In order to prove that the
β-dimensional capacity Cβ(GrX(B(t0, ρ))) is positive almost surely for all ρ > 0, it is sufficient to show that∫

B(t0,ρ)×B(t0,ρ)

‖(t,Xt) − (s,Xs)‖−β ds dt < +∞ a.s. (2.11)



LOCAL REGULARITY AND HAUSDORFF DIMENSION OF GAUSSIAN FIELDS 427

A same kind of computation as previously (see also [19] pp. 278–279) allows to obtain

E
[
(‖Xt −Xs‖2 + ‖t− s‖2)−β/2

]
≤ K4

‖t− s‖d−β

σ(s, t)d
·

By Tonelli’s Theorem and Lemma 2.1, this inequality implies the existence of ρ0 > 0 such that for all
ρ ∈ (0, ρ0],

E

[∫
B(t0,ρ)×B(t0,ρ)

‖(t,Xt) − (s,Xs)‖−β dt ds

]
≤
∫

B(t0,ρ)×B(t0,ρ)

K4
‖t− s‖d−β

σ(s, t)d
ds dt

≤
∫

B(t0,ρ)×B(t0,ρ)

K4 ‖t− s‖−β+d(1−�
X(i) (t0)−ε) ds dt < +∞,

because β < N + d(1 − �X(i)(t0) − ε). Thus (2.11) holds and for all ρ ∈ (0, ρ0],

dimH(GrX(B(t0, ρ)) ≥ N + d(1 − �X(i)(t0) − ε) a.s.

Taking ρ, ε ∈ Q+, this yields to

lim
ρ→0

dimH(GrX(B(t0, ρ)) ≥ N + d(1 − �X(i)(t0)) a.s.,

which proves (2.10). �

We now investigate uniform extensions of Proposition 2.8.

Corollary 2.9. Let X = {Xt; t ∈ RN
+} be a multiparameter Gaussian field in Rd and �X(i)(t) the deterministic

local sub-exponent of X(i) at any t ∈ RN
+ .

Assume that for some open subset I ⊂ RN
+ , we have α = inft∈I �X(i)(t) > 0.

Then, with probability one,

dimH(GrX(I)) ≥
{
N/α if N ≤ d α;
N + d(1 − α) if N > d α;

and

dimH(RgX(I)) ≥
{
N/α if N ≤ d α;
d if N > d α.

Proof. For any open subset I ⊂ RN
+ , we first prove that for all ω, the Hausdorff dimension of the graph of

X•(ω) : t 
→ Xt(ω) satisfies

dimH(GrX•(ω)(I)) ≥ sup
t0∈I

lim
ρ→0

dimH(GrX•(ω)(B(t0, ρ))). (2.12)

Since I is an open subset of RN
+ , for all t0 ∈ I, there exists ρ > 0 such that B(t0, ρ) ⊂ I. This leads to

dimH(GrX•(ω)(B(t0, ρ))) ≤ dimH(GrX•(ω)(I)) and then

dimH(GrX•(ω)(I)) ≥ lim
ρ→0

dimH(GrX•(ω)(B(t0, ρ))),

since ρ 
→ dimH(GrX•(ω)(B(t0, ρ))) is decreasing. Then (2.12) follows.
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In the same way, we prove that for all ω,

dimH(RgX•(ω)(I)) ≥ sup
t0∈I

lim
ρ→0

dimH(RgX•(ω)(B(t0, ρ))). (2.13)

Following the proof of Proposition 2.8, we distinguish the two cases: N ≤ d α and N > d α with α =
inft∈I �X(i)(t). The result follows in the same way. �
Corollary 2.10. Let X = {Xt; t ∈ RN

+} be a multiparameter Gaussian field in Rd and �X(i)(t) the determin-
istic local sub-exponent of X(i) at any t ∈ RN

+ .
Set A = {t ∈ RN

+ : lim infu→t �X(i)(u) > 0}.
Then, with probability one, for all t0 ∈ A,

lim
ρ→0

dimH(GrX(B(t0, ρ))) ≥
⎧⎨⎩
N/ lim inf

t→t0
�X(i)(t) if N ≤ d lim inf

t→t0
�X(i)(t);

N + d

(
1 − lim inf

t→t0
�X(i)(t)

)
if N > d lim inf

t→t0
�X(i)(t);

and

lim
ρ→0

dimH(RgX(B(t0, ρ))) ≥
{
N/ lim inf

t→t0
�X(i)(t) if N ≤ d lim inf

t→t0
�X(i)(t);

d if N > d lim inf
t→t0

�X(i)(t).

Proof. Corollary 2.9 implies the existence of Ω∗ ∈ F with P(Ω∗) = 1 such that: for all ω ∈ Ω∗ and all
a, b ∈ QN

+ with a ≺ b, such that α = inft∈(a,b) �X(i)(t) > 0, we have dimH(GrX•(ω)((a, b))) ≥ N/α if N ≤ d α
and ≥ N + d(1 − α) if N > d α and dimH(RgX•(ω)((a, b))) ≥ N/α if N ≤ d α and ≥ d if N > d α.

Therefore, taking two sequences (an)n∈N and (bn)n∈N such that ∀n ∈ N, an < t0 < bn and converging to t0,
we get

lim
n→∞ dimH(GrX•(ω)((an, bn))) ≥

{
N/ lim inf

t→t0
�X(i)(t) if N ≤ d lim inf

t→t0
�X(i)(t);

N + d(1 − lim inf
t→t0

�X(i)(t)) if N > d lim inf
t→t0

�X(i)(t);

and

lim
n→∞ dimH(RgX•(ω)((an, bn))) ≥

{
N/ lim inf

t→t0
�X(i)(t) if N ≤ d lim inf

t→t0
�X(i)(t);

d if N > d lim inf
t→t0

�X(i)(t).

By monotony of the Hausdorff dimension, the result follows. �

3. Applications

In this section, we apply the main results to Gaussian processes whose fine regularity is not completely known:
the set-indexed fractional Brownian motion on RN

+ and the multi-fractional Brownian motion with a regularity
function lower than its own regularity. We end this section with the generalized Weierstrass function, which is
not a Gaussian process.

3.1. Set-indexed fractional Brownian motion

A multiparameter extension of fractional Brownian motion (MpfBm) BH = {BH
t ; t ∈ RN

+} of index H ∈
(0, 1/2] is defined as a particular case of set-indexed fractional Brownian motion (see [15,16]), where the indexing
collection is A = {[0, t]; t ∈ RN

+} ∪ {∅}. It is characterized as a real-valued mean-zero Gaussian process with
covariance function

∀s, t ∈ RN
+ , E

[
BH

s BH
t

]
=

1
2
[
m([0, s])2H +m([0, t])2H −m([0, s] � [0, t])2H

]
,

where m denotes a Radon measure in RN
+ .
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In the specific case where N = 2 and m is the Lebesgue measure of R2
+, the covariance structure of the

MpfBm is

∀s, t ∈ R2
+, E

[
BH

s BH
t

]
=

1
2
[
(s1s2)2H + (t1t2)2H − (s1s2 + t1t2 − 2(s1 ∧ t1)(s2 ∧ t2))2H

]
.

Then, its incremental variance is

∀s, t ∈ R2
+, E

[|BH
t − BH

s |2] = (s1s2 + t1t2 − 2(s1 ∧ t1)(s2 ∧ t2))2H . (3.1)

Let us remark that the process BH is different from the two other multiparameter extensions of fBm, which are
Lévy fractional Brownian motion and fractional Brownian sheet.

The stationarity of the increments of the set-indexed fractional Brownian motion on RN
+ are studied in [16].

Among all the various definitions of the stationarity property for a multiparameter process, the MpfBm does
not satisfy the increment stationarity assumption of [1]. Indeed, (3.1) shows that E

[|BH
t − BH

s |2] does not only
depend on t− s. Since the Hausdorff dimension of its graph does not come directly from [1], we use the generic
results of Section 2.2.

Lemma 3.1. If m is the Lebesgue measure of RN , for any a ≺ b in RN
+ \ {0}, there exists two positive

constants ma,b and Ma,b such that

∀s, t ∈ [a, b]; ma,b d1(s, t) ≤ m([0, s] � [0, t]) ≤Ma,b d∞(s, t)

where d1 and d∞ are the usual distances of RN defined by

d1 : (s, t) 
→ ‖t− s‖1 =
N∑

i=1

|ti − si|

d∞ : (s, t) 
→ ‖t− s‖∞ = max
1≤i≤N

|ti − si|.

Proof. For all s, t ∈ [a, b], we write

[0, s] � [0, t] = ([0, s] \ [0, t]) ∪ ([0, t] \ [0, s]) .

Suppose that for all i ∈ I ⊂ {1, . . . , N}, si > ti, and that for all i ∈ {1, . . . , N} \ I, si ≤ ti. For any subset J of
{1, . . . , N}, we denote by

∏
i∈J [0, si] the cartesian product of [0, si] for i ∈ J .

We have

[0, s] =
∏
i/∈I

[0, si] ×
∏
i∈I

([0, ti] ∪ [ti, si])

=

(∏
i/∈I

[0, si] ×
∏
i∈I

[0, ti]

)
∪
⋃
J�I

⎛⎝∏
i/∈I

[0, si] ×
∏
i∈J

[0, ti] ×
∏

i∈I\J

[ti, si]

⎞⎠ ,

and then

[0, s] \ [0, t] =
⋃
J�I

⎛⎝∏
i/∈I

[0, si] ×
∏
i∈J

[0, ti] ×
∏

i∈I\J

[ti, si]

⎞⎠
= {x ∈ [0, s] : ∃i ∈ I; ti < xi ≤ si} .

We deduce

m([0, s] \ [0, t]) =
∏
i/∈I

|si|
∑
J�I

⎛⎝∏
i∈J

|ti|
∏

i∈I\J

|ti − si|
⎞⎠ .
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In the same way, we get

m([0, t] \ [0, s]) =
∏
i∈I

|si|
∑
J�Ic

⎛⎝∏
i∈J

|ti|
∏

i∈Ic\J

|ti − si|
⎞⎠ .

For all 1 ≤ i ≤ N , we have |a| ≤ |si| ≤ |b| and |a| ≤ |ti| ≤ |b|. Then,

m([0, s] � [0, t]) ≤ |b|#Ic ∑
J�I

|b|#Jd∞(s, t)#(I\J) + |b|#I
∑
J�Ic

|b|#Jd∞(s, t)#(Ic\J)

≤ d∞(s, t)

⎡⎣|b|#Ic ∑
J�I

|b|#Jd∞(s, t)#(I\J)−1 + |b|#I
∑

J�Ic

|b|#Jd∞(s, t)#(Ic\J)−1

⎤⎦
︸ ︷︷ ︸

bounded in [a,b]

≤Ma,b d∞(s, t).

For the lower bound, we write

m([0, s] � [0, t]) ≥ |a|#Ic ∑
J�I

|a|#J
∏

i∈I\J

|ti − si| + |a|#I
∑

J�Ic

|a|#J
∏

i∈Ic\J

|ti − si|

Let ma be the minimum of |a|k for 1 ≤ k ≤ N . We get

m([0, s] � [0, t]) ≥ m2
a

∑
J�I

∏
i∈I\J

|ti − si| +m2
a

∑
J�Ic

∏
i∈Ic\J

|ti − si|. (3.2)

Let us remark that ∑
J�I

∏
i∈I\J

|ti − si| =
∏
i∈I

(1 + |ti − si|) − 1.

Using the expansion

log
∏
i∈I

(1 + |ti − si|) =
∑
i∈I

log (1 + |ti − si|) =
∑
i∈I

|ti − si| + o(|ti − si|2),

which implies ∏
i∈I

(1 + |ti − si|) = 1 +
∑
i∈I

|ti − si| + o(|ti − si|2),

the inequality (3.2) becomes

m([0, s] � [0, t]) ≥ m2
a

∑
1≤i≤N

|ti − si| + o(‖t− s‖∞).

The result follows. �

Lemma 3.2. Let BH = {BH
t ; t ∈ RN

+} be a set-indexed fractional Brownian motion on RN
+ with index

H ∈ (0, 1/2]. The deterministic local Hölder exponent and deterministic local sub-exponent of BH at any t0 ∈ RN
+

are given by �̃X(t0) = �X(t0) = H.



LOCAL REGULARITY AND HAUSDORFF DIMENSION OF GAUSSIAN FIELDS 431

Proof. We prove that �̃X(t0) ≥ H and �X(t0) ≤ H . The result will follow from �̃X(t0) ≤ �X(t0).
Since for all s, t ∈ RN

+ ,

E
[|BH

t − BH
t |2]

‖t− s‖2H
=
(
m([0, s] � [0, t])

d2(s, t)

)2H

,

Lemma 3.1 implies that for all s, t in any interval [a, b],

M1

(
d1(s, t)
d2(s, t)

)2H

≤ E
[|BH

t − BH
t |2]

‖t− s‖2H
≤M2

(
d∞(s, t)
d2(s, t)

)2H

, (3.3)

for some positive constants M1 and M2.
Since the distances d1, d2 and d∞ are equivalent, the inequality (3.3) implies that the quantity

E
[|BH

t − BH
t |2] /‖t − s‖2H is bounded on any interval [a, b]. Consequently, for all t0 ∈ RN

+ , �̃X(t0) ≥ H
and �X(t0) ≤ H , by definition of the deterministic local Hölder exponent and the deterministic local
sub-exponent. �

A direct consequence from Lemma 3.2 is the local regularity of the sample paths of the set-indexed fractional
Brownian motion on RN

+ . In [17], Corollary 3.15 states that for any Gaussian process X such that the function
t 
→ �̃X(t) is continuous and positive, the local Hölder exponents satisfy with probability one: α̃X(t) = �̃X(t)
for all t ∈ RN

+ . Since the deterministic local Hölder exponents of the MpfBm are constant and positive, the
following result comes directly.

Corollary 3.3. The local Hölder exponent of the set-indexed fractional Brownian motion BH = {BH
t ; t ∈ RN

+}
(with 0 < H ≤ 1/2) satisfies with probability one, α̃BH (t0) = H for all t0 ∈ RN

+ .

As an application of Theorem 2.4, the property of constant local regularity of set-indexed fractional Brownian
motion on RN

+ yields to sharp results about the Hausdorff dimensions of its graph and its range.

Proposition 3.4. Let X = {Xt; t ∈ RN
+} be a multiparameter fractional Brownian field with index H ∈

(0, 1/2], i.e. whose coordinate processes X(1), . . . , X(d) are i.i.d. set-indexed fractional Brownian motions on RN
+

with index H.
With probability one, the Hausdorff dimensions of the graph and the range of the sample paths of X are

∀I = (a, b) ⊂ RN
+ , dimH(GrX(I)) = min{N/H ;N + d(1 −H)},

dimH(RgX(I)) = min{N/H ; d}.

Corollary 3.5. Let BH = {BH
t ; t ∈ RN

+} be a set-indexed fractional Brownian motion with index H ∈ (0, 1/2].
With probability one, the Hausdorff dimensions of the graph and the range of the sample paths of BH are

∀I = (a, b) ⊂ RN
+ , dimH(GrBH (I)) = N + 1 −H,

dimH(RgBH (I)) = 1.

Proposition 3.4 and Corollary 3.5 should be compared to Theorem 1.3 of [5] which states the Hausdorff
dimensions of the range and the graph of the fractional Brownian sheet (result extended by Prop. 1 and Thm. 3
of [36]). In particular, the Hausdorff dimensions of the sample path (range and graph) of the multiparameter
fractional Brownian motion are equal to the respective quantities for the fractional Brownian sheet, when the
Hurst index is the same along each axis.
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3.2. Irregular multifractional Brownian motion

The multifractional Brownian motion (mBm) is an extension of the fractional Brownian motion, where the
self-similarity index H ∈ (0, 1) is substituted with a function H : R+ → (0, 1) (see [8, 30]). More precisely, it
can be defined as a zero mean Gaussian process {X(i)

t ; t ∈ R+} (i = 1, 2) with

X
(1)
t =

∫
R

eitξ − 1
|ξ|H(t)+1/2

.�̂(du), (3.4)

or

X
(2)
t =

∫ t

−∞

[
(t− u)H(t)−1/2 − (−u)H(t)−1/2

]
.�(du) +

∫ t

0

(t− u)H(t)−1/2.�(du),

where � is a Gaussian measure in R and �̂ is the Fourier transform of a Gaussian measure in C. The variety
of the class of multifractional Brownian motions is described in [32].

In the first definitions of the mBm, the different groups of authors used to consider the assumption: H is a
β-Hölder function and H(t) < β for all t ∈ R+. Under this so-called (Hβ)-assumption, the local regularity of
the sample paths was described by

αX(t0) = α̃X(t0) = H(t0) a.s.

where αX(t0) and α̃X(t0) denote the pointwise and local Hölder exponents of X at any t0 ∈ R+. A localization
of the Hausdorff dimension of the graph were also proved: for any t0 ∈ R+,

lim
ρ→0

dimH [GrX (B(t0, ρ))] = 2 −H(t0) a.s.

Let us notice that this result could not be a direct consequence of Adler’s earlier work [1] since multifractional
Brownian motion does not have stationary increments, on the contrary to classical fractional Brownian motion.

The local Hausdorff dimension of level sets of mBm (as a particular case of multi-fractional Brownian sheet)
have been considered in [28], under regularity Assumption (Hβ). Denoting Γx = {t ∈ R+ : Xt = x}, for any
t0 ∈ R+, there exists ρ0 > 0, such that almost surely,

lim
ρ→0

dimH
(
ΓXt ∩B(t0, ρ)

)
= 1 −H(t0) for a.e. t ∈ B(t0, ρ0).

In [13, 17], the fine regularity of the multifractional Brownian motion has been studied in the irregular case,
i.e. when the function H is only assumed to be β-Hölder continuous with β > 0. In this more general case, the
pointwise and local Hölder exponents of X at any t0 ∈ R+ satisfy respectively

αX(t0) = H(t0) ∧ αH(t0) a.s.

α̃X(t0) = H(t0) ∧ α̃H(t0) a.s.,

where the exponents αH(t0) and α̃H(t0) are given by the following expressions when the functionH is continuous
but not differentiable at t0,

αH(t0) = sup

{
α > 0 : lim sup

ρ→0
sup

s,t∈B(t0,ρ)

|H(t) −H(s)|
ρα

< +∞
}
,

α̃H(t0) = sup

{
α > 0 : lim

ρ→0
sup

s,t∈B(t0,ρ)

|H(t) −H(s)|
|t− s|α < +∞

}

and αH(t0) = α̃H(t0) = 1 when H is differentiable at t0.
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Roughtly speaking, when the function H is irregular, it transmits its local regularity to the sample paths of
the mBm. But in that case, nothing is known about the Hausdorff dimension of the range or the graph of the
process.

In this section, the main results of the paper stated in Section 2.2 are applied to derive informations on these
Hausdorff dimensions, without regularity (Hβ)-assumption on the function H . As for Gaussian processes, we
define the local sub-exponent of H at t0 ∈ R+ by

αH(t0) = inf
{
α > 0 : lim

ρ→0
inf

s,t∈B(t0,ρ)

|H(t) −H(s)|
|t− s|α = +∞

}
= sup

{
α > 0 : lim

ρ→0
inf

s,t∈B(t0,ρ)

|H(t) −H(s)|
|t− s|α = 0

}
.

Proposition 3.6. Let X = {Xt; t ∈ R+} be the multifractional Brownian motion of integral representa-
tion (3.4), with regularity function H : R+ → (0, 1) assumed to be β-Hölder-continuous with β > 0. Let α̃H(t0)
and αH(t0) be respectively the local Hölder exponent and sub-exponent of H at t0 ∈ R+.

In the three following cases, the Hausdorff dimension of the graph of the sample path of X satisfies:

(i) If H(t0) < α̃H(t0) ≤ αH(t0) for t0 ∈ R+, then

lim
ρ→0

dimH(GrX(B(t0, ρ))) = 2 −H(t0) a.s.

(ii) If α̃H(t0) < H(t0) ≤ αH(t0) for t0 ∈ R+, then

2 −H(t0) ≤ lim
ρ→0

dimH(GrX(B(t0, ρ))) ≤ 2 − α̃H(t0) a.s.

(iii) If α̃H(t0) ≤ αH(t0) < H(t0) for t0 ∈ R+, then

2 − αH(t0) ≤ lim
ρ→0

dimH(GrX(B(t0, ρ))) ≤ 2 − α̃H(t0) a.s.

With probability one, the Hausdorff dimension of the range of the sample path of X satisfies:

∀t0 ∈ R+, lim
ρ→0

dimH(RgX(B(t0, ρ))) = 1.

Moreover if the (Hβ)-assumption holds then, with probability one,

∀t0 ∈ R+, lim
ρ→0

dimH(GrX(B(t0, ρ))) = 2 −H(t0).

Proof. In [13], an asymptotic behaviour of the incremental variance of the multifractional Brownian motion, in
a neighborhood B(t0, ρ) of any t0 ∈ R+ as ρ goes to 0, is given by: ∀s, t ∈ B(t0, ρ),

E[|Xt −Xs|2] ∼ K(t0) |t− s|H(t)+H(s) + L(t0) [H(t) −H(s)]2, (3.5)

where K(t0) and L(t0) are positive constants.
From (3.5), for any t0 ∈ R+, for all α > 0 and for all s, t ∈ B(t0, ρ),

E[|Xt −Xs|2]
|t− s|2α

∼ K(t0) |t− s|H(t)+H(s)−α + L(t0)
[
H(t) −H(s)

|t− s|α
]2
, (3.6)

when ρ → 0. This expression allows to evaluate the exponents �̃X(t0) (and consequently α̃X(t0)) and �X(t0),
in function of the respective exponents of the function H .
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The local behaviour of H around t0 is described by one of the two following situations:

• Either there exists ρ > 0 such that the restriction H |B(t0,ρ) is increasing or decreasing. In that case,
αH(t0) ∈ R+ ∪ {+∞}.

• Or for all ρ > 0, there exist s, t ∈ B(t0, ρ) such that H(t) = H(s).

In that case, for all α > 0 and for all ρ > 0, inf
s,t∈B(t0,ρ)

|H(t) −H(s)|
|t− s|α = 0 and therefore, αH(t0) = +∞.

Since α̃H(t0) ≤ αH(t0) for all t0 ∈ R+ as noticed in Section 2.1, we distinguish the three following cases:

(i) If H(t0) < α̃H(t0) ≤ αH(t0) for some t0 ∈ R+, then for all 0 < ε < α̃H(t0) − H(t0), there exists ρ0 > 0
such that

∀t ∈ B(t0, ρ0), H(t0) − ε < H(t) < H(t0) + ε,

and thus
∀s, t ∈ B(t0, ρ0), |t− s|2H(t0)+2ε ≤ |t− s|H(s)+H(t) ≤ |t− s|2H(t0)−2ε. (3.7)

Then, expression (3.6) implies H(t0)− ε ≤ �̃X(t0) and �X(t0) ≤ H(t0) + ε, by definition of the exponents.
Letting ε tend to 0, and using �̃X(t0) ≤ �X(t0), we get �̃X(t0) = �X(t0) = H(t0).
Then, Theorem 2.2 (with N > d �X(t0)) implies:

lim
ρ→0

dimH(GrX(B(t0, ρ))) = 2 −H(t0) a.s.

(ii) If α̃H(t0) < H(t0) ≤ αH(t0) for some t0 ∈ R+, then as previously, we consider any 0 < ε < H(t0)− α̃H(t0)
and we show that expression (3.6) and inequalities (3.7) imply �̃X(t0) = α̃H(t0) and �X(t0) = H(t0).
Theorem 2.2 (with N > d �X(t0)) implies:

2 −H(t0) ≤ lim
ρ→0

dimH(GrX(B(t0, ρ))) ≤ 2 − α̃H(t0) a.s.

(iii) If α̃H(t0) ≤ αH(t0) < H(t0) for some t0 ∈ R+, then as previously, we consider any 0 < ε < H(t0)−αH(t0)
and we show that expression (3.6) and inequalities (3.7) imply �̃X(t0) = α̃H(t0) and �X(t0) = αH(t0).
Theorem 2.2 (with N > d �X(t0)) implies:

2 − αH(t0) ≤ lim
ρ→0

dimH(GrX(B(t0, ρ))) ≤ 2 − α̃H(t0) a.s.

Since H is β-Hölder-continuous with β > 0, Theorem 2.3 can be applied with A = R+. In the three previous
case, we observe that �X(u) < 1 for all u ∈ R+. Consequently, N > d lim infu→t0 �X(u) and, with probability
one,

∀t0 ∈ R+, lim
ρ→0

dimH(RgX(B(t0, ρ))) = 1.

When the (Hβ)-assumption holds, �̃X(t0) = α̃H(t0) = �X(t0) for all t0 ∈ R+, and by continuity of H ,

lim inf
u→t0

�̃X(u) = lim inf
u→t0

�X(u) = H(t0).

Then, Theorem 2.3 implies: With probability one,

∀t0 ∈ R+, lim
ρ→0

dimH(GrX(B(t0, ρ))) = 2 −H(t0). �

According to Proposition 3.6, the general theorems of Section 2.2 fail to derive sharp values for the Hausdorff
dimensions of the sample paths of the multifractional Brownian motion when the (Hβ)-assumption for the
function H is not satisfied. This is due to the fact that the irregularity of H is not completely controlled by the
exponents α̃H(t0) and αH(t0). A deeper analysis of the function H is required in order to determine the exact
Hausdorff dimensions of the mBm.
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3.3. Generalized Weierstrass function

The local regularity of the Weierstrass function WH , defined by

t 
→WH(t) =
∞∑

j=1

λ−jH sinλjt,

where λ ≥ 2 and H ∈ (0, 1), has been deeply studied in the literature (e.g. see [12]). When λ is large enough, the
box-counting dimension of the graph of WH is known to be 2−H . Nevertheless the exact value of the Hausdorff
dimension remains unknown at this stage.

Different stochastic versions of the Weierstrass function have been considered in [3, 12, 17, 18, 25] and their
geometric properties have been investigated. In this section, we consider the generalized Weierstrass function
(GW), defined as the 2nd-order stochastic process X = {Xt; t ∈ R+},

∀t ∈ R+, Xt =
∞∑

j=1

Zj λ
−jH(t) sin(λjt+ θj) (3.8)

where

• λ ≥ 2,
• t 
→ H(t) takes values in (0, 1),
• (Zj)j≥1 is a sequence of N (0, 1) i.i.d. random variables,
• and (θj)j≥1 is a sequence of uniformly distributed on [0, 2π) random variables independent of (Zj)j≥1.

In the specific case of θj = 0 for all j ≥ 1, Theorem 4.9 of [17] determines the local regularity of the sample
path of the GW through its 2-microlocal frontier, when the function H is β-Hölder continuous with β > 0 and
when assumption (Hβ) holds, i.e. H(t) < β for all t ∈ R+. In particular, the deterministic local Hölder exponent
is proved to be �̃X(t0) = H(t0) for all t0 ∈ R+ and the local Hölder exponent satisfies, with probability one,

∀t0 ∈ R+, α̃X(t0) = H(t0).

Moreover, when H is constant and θj = 0 for all j ≥ 1, the Hausdorff dimension of the graph of the sample
path of the GW is proved to be equal to 2−H , as a particular case of Theorem 5.3.1 of [25]. In the sequel, we
use Theorem 2.3 to extend this result when H is no longer constant and the θj ’s are not equal to 0.

The two following lemmas are the key results to determine the deterministic local Hölder exponent and sub-
exponent of the GW, in the general case. Their proofs of are sketched in [12] when (θj)j≥1 are independent and
uniformly distributed on [0, 2π); for sake of completeness, we detail them in this section without requiring the
independence of the θj ’s, before considering the case of a non-constant function H .

Lemma 3.7. Let {Xt; t ∈ R+} be the stochastic Weierstrass function defined by (3.8). Then, the incremental
variance between u, v ∈ R+ is given by

E[|Xu −Xv|2] = 2
∑
j≥1

λ−2jH(u) sin2

(
λj u− v

2

)
+
∑
j≥1

(
λ−jH(v) − λ−jH(u)

)2

. (3.9)

Proof. For all u, v ∈ R+, we compute

Xu −Xv =
∑
j≥1

Zj λ
−jH(u)

[
sin(λju+ θj) − sin(λjv + θj)

]
+
∑
j≥1

Zj

[
λ−jH(v) − λ−jH(u)

]
sin(λjv + θj)

=2
∑
j≥1

Zj λ
−jH(u) sin

(
λj u− v

2

)
cos
(
λj u+ v

2
+ θj

)
+
∑
j≥1

Zj

[
λ−jH(v) − λ−jH(u)

]
sin(λjv + θj).
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In the expression of E[|Xu −Xv|2], the three following terms appear:

• E
[
ZjZk cos

(
λj u+ v

2
+ θj

)
cos
(
λk u+ v

2
+ θk

)]
,

• E
[
ZjZk sin

(
λjv + θj

)
sin
(
λkv + θk

)]
• and E

[
ZjZk cos

(
λj u+ v

2
+ θj

)
sin
(
λkv + θk

)]
,

where j, k ≥ 1.
The first two terms are treated in the same way. For the second one, we have

E [ZjZk sin
(
λjv + θj

)
sin
(
λkv + θk

)]
= E

(
E
[
ZjZk sin

(
λjv + θj

)
sin
(
λkv + θk

) | Zj , Zk

])
= E[ZjZk] E

[
sin
(
λjv + θj

)
sin
(
λkv + θk

)]
,

using the independence of (θj , θk) with (Zj, Zk). Then, since E[ZjZk] = �j=k and

E[sin2(λjv + θj)] =
1
2π

∫
[0,2π)

sin2(λjv + x) dx =
1
2
,

we get

E
[
ZjZk sin

(
λjv + θj

)
sin
(
λkv + θk

)]
=

1
2
.�j=k.

In the same way, we prove that

E
[
ZjZk cos

(
λj u+ v

2
+ θj

)
cos
(
λk u+ v

2
+ θk

)]
=

1
2
.�j=k.

For the third term, we compute as previously

E
[
ZjZk cos

(
λj u+ v

2
+ θj

)
sin
(
λkv + θk

) ]
= E[ZjZk] E

[
cos
(
λj u+ v

2
+ θj

)
sin
(
λkv + θk

)]
= �j=k.E

[
cos
(
λj u+ v

2
+ θj

)
sin
(
λjv + θj

)]
= �j=k.

1
2π

∫
[0,2π)

cos
(
λj u+ v

2
+ x

)
sin
(
λjv + x

)
dx = 0,

by a parity argument. The result follows. �

Lemma 3.8. Let {Xt; t ∈ R+} be the stochastic Weierstrass function defined by (3.8), where the function H
is assumed to be constant.

Then, for all compact subset I ⊂ R+, there exists two constants C1 > 0 and C2 > 0 such that for all u, v ∈ I,

0 < C1 ≤ E[|Xu −Xv|2]
|u− v|2H

≤ C2 < +∞. (3.10)
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Proof. According to Lemma 3.7, the incremental variance of X is given by

E[|Xu −Xv|2] = 2
∑
j≥1

λ−2jH sin2

(
λj u− v

2

)
. (3.11)

Let N be the integer such that λ−(N+1) ≤ |u− v| < λ−N .

For all j ≤ N , λj u− v

2
≤ 1

2
. Since x2 − x4

3
≤ sin2 x ≤ x2 for all x ∈ [0, 1], expression (3.11) implies

E[|Xu −Xv|2] ≤ 2
N∑

j=1

λ−2jHλ2j

(
u− v

2

)2

+ 2
∑

j≥N+1

λ−2jH

≤ 2
N∑

j=1

λ2j(1−H)

(
u− v

2

)2

+
2 |u− v|2H

1 − λ−2H
(3.12)

and

E[|Xu −Xv|2] ≥ 2
N∑

j=1

λ−2jHλ2j

(
u− v

2

)2

− 2
3

N∑
j=1

λ−2jHλ4j

(
u− v

2

)4

≥ 2
N∑

j=1

λ2j(1−H)

(
u− v

2

)2

− 1
24
λ−4N

N∑
j=1

λj(4−2H)

≥ 2
N∑

j=1

λ2j(1−H)

(
u− v

2

)2

− 1
24

λ4

λ4−2H − 1
|u− v|2H . (3.13)

Now, it remains to compare the term
N∑

j=1

λ2j(1−H)

(
u− v

2

)2

with |u− v|2H .

By definition of the integer N , we have

λ−2(N+1)

4

N∑
j=1

λ2j(1−H) ≤
N∑

j=1

λ2j(1−H)

(
u− v

2

)2

≤ λ−2N

4

N∑
j=1

λ2j(1−H). (3.14)

But

λ−2N

4

N∑
j=1

λ2j(1−H) =
λ−2N

4
λ2(1−H) λ

2N(1−H) − 1
λ2(1−H) − 1

=
λ2(1−H)

4(λ2(1−H) − 1)
(
λ−2NH − λ−2N

)
.

Using the definition of N , we get

|u− v|2H − λ2 |u− v|2 ≤ λ−2NH − λ−2N ≤ λ2H |u− v|2H − |u− v|2.
Then there exists two constants c1 > 0 and c2 > 0 such that for all u, v ∈ I,

c1 |u− v|2H ≤ λ−2N

4

N∑
j=1

λ2j(1−H) ≤ c2 |u− v|2H .

Then, the result follows from (3.12), (3.13) and (3.14). �
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When the function H : R+ → (0, 1) is β-Hölder continuous (and no longer constant), the double inequal-
ity (3.10) can be improved by the following result.

Proposition 3.9. Let X = {Xt; t ∈ R+} be a generalized Weierstrass function defined by (3.8), where the
function H is assumed to be β-Hölder-continuous with β > 0.

Then, for any t0 ∈ R+, for all ε > 0, there exist ρ0 > 0 and positive constants c1, c2, c3, c4 such that for all
u, v ∈ B(t0, ρ0),

c1 |u− v|2H(t0)+ε + c3 [H(u) −H(v)]2 ≤ E[|Xu −Xv|2] (3.15)

and E[|Xu −Xv|2] ≤ c2 |u− v|2H(t0)−ε + c4 [H(u) −H(v)]2. (3.16)

Proof. Since the function H : R+ → (0, 1) is continuous, for all t0 ∈ R+ and all ε > 0, there exists ρ0 > 0 such
that

∀u, v ∈ B(t0, ρ0), H(u), H(v) ∈ (H(t0) − ε;H(t0) + ε).

Then, the first term of the expression (3.9) for E[|Xu −Xv|2] satisfies

2
∑
j≥1

λ−2jH(u) sin2

(
λj u− v

2

)
≤ 2
∑
j≥1

λ−2j(H(t0)−ε) sin2

(
λj u− v

2

)
and

2
∑
j≥1

λ−2jH(u) sin2

(
λj u− v

2

)
≥ 2
∑
j≥1

λ−2j(H(t0)+ε) sin2

(
λj u− v

2

)
·

Then, according to Lemma 3.8, there exist two constants c1 > 0 and c2 > 0 such that for all u, v ∈ B(t0, ρ0),

c1 |u− v|2(H(t0)+ε) ≤ 2
∑
j≥1

λ−2jH(u) sin2

(
λj u− v

2

)
≤ c2 |u− v|2(H(t0)−ε). (3.17)

For the second term of the expression (3.9) for E[|Xu −Xv|2], we consider the function ψλ,j : x 
→ λ−jx =
e−jx ln λ of derivative ψ′

λ,j(x) = −j lnλ λ−jx.
From the finite increment theorem, for all u, v ∈ B(t0, ρ0), there exists huv between H(u) and H(v) (i.e. in

either (H(u), H(v)) or (H(v), H(u))) such that

|λ−jH(u) − λ−jH(v) | = |H(u) −H(v)| j lnλ λ−jhuv .

Using the fact thatH(u) andH(v) belong to the interval (H(t0)−ε,H(t0)+ε) impliesH(t0)−ε < huv < H(t0)+ε,
we get

|H(u) −H(v)| j lnλ λ−j(H(t0)+ε) ≤ |λ−jH(u) − λ−jH(v)|
and |λ−jH(u) − λ−jH(v)| ≤ |H(u) −H(v)| j lnλ λ−j(H(t0)−ε).

Since
∑

j≥1 jλ
−j(H(t0)−ε) < +∞ and

∑
j≥1 jλ

−j(H(t0)+ε) < +∞, the second term of (3.9) is bounded by

c3 [H(u) −H(v)]2 ≤
∑
j≥1

[
λ−jH(u) − λ−jH(v)

]2
≤ c4 [H(u) −H(v)]2. (3.18)

The result follows from (3.9), (3.17) and (3.18). �
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The following result shows that Theorem 2.3 allows to derive the Hausdorff dimensions of the graph of the
generalized Weierstrass function.

Corollary 3.10. Let X = {Xt; t ∈ R+} be a generalized Weierstrass function defined by (3.8), where the
function H is assumed to be β-Hölder-continuous with β > 0 and satisfies the (Hβ)-assumption.

Then, the local Hölder exponents and sub-exponents of X are given by

∀t0 ∈ R+, �̃X(t0) = �X(t0) = H(t0).

Consequently, the Hausdorff dimensions of the graph and the range of the sample path of X satisfy: With
probability one,

∀t0 ∈ R+, lim
ρ→0

dimH(GrX(B(t0, ρ))) = 2 −H(t0),

lim
ρ→0

dimH(RgX(B(t0, ρ))) = 1.

Proof. According to the (Hβ)-assumption, H(t0) < β for all t0 ∈ R+.
Let us fix t0 ∈ R+ and consider any 0 < ε < 2(β − H(t0)). From Proposition 3.9 and the fact that H is

β-Hölder continuous with 2H(t0) − ε < 2H(t0) + ε < 2β, there exist ρ0 > 0 and two constants C1 > 0 and
C2 > 0 such that for all u, v ∈ B(t0, ρ0),

C1 |u− v|2H(t0)+ε ≤ E[|Xu −Xv|2] ≤ C2 |u− v|2H(t0)−ε.

From the definitions of the deterministic local Hölder exponent and sub-exponent �̃X(t0) and �X(t0), we get

∀0 < ε < 2(β −H(t0)), �̃X(t0) ≥ H(t0) − ε/2,
�X(t0) ≤ H(t0) + ε/2

and therefore, H(t0) ≤ �̃X(t0) ≤ �X(t0) ≤ H(t0) leads to �̃X(t0) = �X(t0) = H(t0).
Since the generalized Weierstrass function X is not strictly a Gaussian process, Theorem 2.3 cannot be

applied directly. However, the proofs of upper and lower bounds for the Hausdorff dimensions, which rely on the
comparison of E

[|Xt −Xs|α
]

with
(
E
[|Xt −Xs|2

])α/2, can be extended to X (which is Gaussian, conditionally
on the filtration generated by the phases).

Consequently, by continuity of the function H , we can conclude: With probability one,

∀t0 ∈ R+, lim
ρ→0

dimH(GrX(B(t0, ρ))) = 2 −H(t0),

lim
ρ→0

dimH(RgX(B(t0, ρ))) = 1. �

Remark 3.11. Proposition 3.10 should be compared to Theorem 1 of [18], where the Hausdorff dimension of
the graph of the process {Yt; t ∈ R+} defined by

∀t ∈ R+, Yt =
+∞∑
n=1

λ−nH sin(λnt+ θn),

where λ ≥ 2, H ∈ (0, 1) and (θn)n≥1 are independent random variables uniformly distributed on [0, 2π), is
proved to be D = 2 −H .

The generalized Weierstrass function X differs from the process Y , in the form of the random serie (the θn’s
in the definition of Yt cannot be all equal) and in the fact that the exponent H is constant in the definition
of Y , on the contrary to X .
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