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MODERATE DEVIATIONS FOR THE DURBIN–WATSON STATISTIC RELATED
TO THE FIRST-ORDER AUTOREGRESSIVE PROCESS

S. Valère Bitseki Penda1, Hacène Djellout2 and Frédéric Pröıa3

Abstract. The purpose of this paper is to investigate moderate deviations for the Durbin–Watson
statistic associated with the stable first-order autoregressive process where the driven noise is also given
by a first-order autoregressive process. We first establish a moderate deviation principle for both the
least squares estimator of the unknown parameter of the autoregressive process as well as for the serial
correlation estimator associated with the driven noise. It enables us to provide a moderate deviation
principle for the Durbin–Watson statistic in the case where the driven noise is normally distributed and
in the more general case where the driven noise satisfies a less restrictive Chen–Ledoux type condition.
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1. Introduction

This paper is focused on the stable first-order autoregressive process where the driven noise is also given
by a first-order autoregressive process. The purpose is to investigate moderate deviations for both the least
squares estimator of the unknown parameter of the autoregressive process as well as for the serial correlation
estimator associated with the driven noise. Our goal is to establish moderate deviations for the Durbin–Watson
statistic [11–13], in a lagged dependent random variables framework. First of all, we shall assume that the driven
noise is normally distributed. Then, we will extend our investigation to the more general framework where the
driven noise satisfies a less restrictive Chen–Ledoux type condition [5, 17]. We are inspired by the recent paper
of Bercu and Pröıa [3], where the almost sure convergence and the central limit theorem are established for
both the least squares estimators and the Durbin–Watson statistic. Our results are proved via an extensive use
of the results of Dembo [6], Dembo and Zeitouni [7] and Worms [24, 25] on the one hand, and of the paper
of Puhalskii [21] and Djellout [8] on the other hand, about moderate deviations for martingales. In order to
introduce the Durbin–Watson statistic, the first-order autoregressive process of interest is as follows, for all

Keywords and phrases. Durbin–Watson statistic, moderate deviation principle, first-order autoregressive process, serial
correlation.
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2 Laboratoire de Mathématiques, CNRS UMR 6620, Université Blaise Pascal, Avenue des Landais, 63177 Aubière, France.
Hacene.Djellout@math.univ-bpclermont.fr
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n ≥ 1, {
Xn = θXn−1 + εn

εn = ρεn−1 + Vn

(1.1)

where we shall assume that the unknown parameters |θ| < 1 and |ρ| < 1 to ensure the stability of the model.
In all the sequel, we also assume that (Vn) is a sequence of independent and identically distributed random

variables with zero mean and positive variance σ2. The square-integrable initial values X0 and ε0 may be
arbitrarily chosen. We have decided to estimate θ by the least squares estimator

θ̂n =
∑n

k=1 XkXk−1∑n
k=1 X2

k−1

· (1.2)

Then, we also define a set of least squares residuals given, for all 1 ≤ k ≤ n, by

ε̂k = Xk − θ̂nXk−1, (1.3)

which leads to the estimator of ρ,

ρ̂n =
∑n

k=1 ε̂kε̂k−1∑n
k=1 ε̂ 2

k−1

· (1.4)

Finally, the Durbin–Watson statistic is defined, for n ≥ 1, as

D̂n =
∑n

k=1(ε̂k − ε̂k−1)2∑n
k=0 ε̂ 2

k

· (1.5)

This well-known statistic was introduced by the pioneer work of Durbin and Watson [11–13], in the middle of
last century, to test the presence of a significative first order serial correlation in the residuals of a regression
analysis. A wide range of literature is available on the asymptotic behavior of the Durbin–Watson statistic,
frequently used in Econometry. While it appeared to work pretty well in the classical independent framework,
Malinvaud [18] and Nerlove and Wallis [19] observed that, for linear regression models containing lagged de-
pendent random variables, the Durbin–Watson statistic may be asymptotically biased, potentially leading to
inadequate conclusions. Durbin [10] proposed alternative tests to prevent this misuse, such as the h-test and
the t-test, then substantial contributions were brought by Inder [15], King and Wu [16] and more recently
Stocker [22]. Lately, a set of results have been established by Bercu and Pröıa in [3] for the first-order autore-
gressive process, and by Pröıa [20] for the autoregressive process of any order, in particular a test procedure
as powerful as the h-test and more accurate than the usual portmanteau tests, and they will be summarized
thereafter as a basis for this paper in the one-dimensional case. This work can be seen as an extension of [3]
in the sense that more powerful convergences are reached and that a better precision than the central limit
theorem is provided for the same random sequences. Hence, the establishment of moderate deviations is the
natural continuation following the proof of central limit theorems and laws of iterated logarithm. We are now
interested in the asymptotic estimation of

P

(√
n

bn

(
Θn − Θ

) ∈ A

)
where Θn denotes the estimator of the unknown parameter of interest Θ, A is a given domain of deviations and
(bn) denotes the scale of deviations. When bn = 1, this is exactly the estimation of the central limit theorem
(CLT). When bn =

√
n, it becomes a large deviation principle (LDP). And when 1 � bn � √

n, this is the
so-called moderate deviation principle (MDP). Usually, an MDP has a simpler rate function inherited from the
approximated gaussian process which does not necessarily depend on the parameters under investigation and
holds for a larger class of dependent random variables than the LDP. Furthermore, an MDP can be seen as a
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refinement of the CLT in the sense that the MDP tells us that the gaussian estimation still holds up to the scale
of large deviations. For the sake of clarity, all useful definitions will be given later.

The paper is organized as follows. First of all, we recall the results recently established by Bercu and Pröıa [3].
In Section 2, we propose moderate deviation principles for the estimators of θ and ρ and for the Durbin–Watson
statistic, given by (1.2), (1.4) and (1.5), under the normality assumption on the driven noise. Section 3 deals
with the generalization of the latter results under a less restrictive Chen–Ledoux type condition on (Vn). Finally,
all technical proofs are postponed to Section 4.

Lemma 1.1. Assume that (Vn) is independent and identically distributed with positive finite variance. Then,
we have the almost sure convergence of the autoregressive estimator,

lim
n→∞ θ̂n = θ∗ a.s.

where the limiting value

θ∗ =
θ + ρ

1 + θρ
· (1.6)

In addition, as soon as E[V 4
1 ] < ∞, we also have the asymptotic normality,

√
n
(
θ̂n − θ∗

) L−→ N (
0, σ2

θ

)
where the asymptotic variance

σ2
θ =

(1 − θ2)(1 − θρ)(1 − ρ2)
(1 + θρ)3

· (1.7)

Lemma 1.2. Assume that (Vn) is independent and identically distributed with positive finite variance. Then,
we have the almost sure convergence of the serial correlation estimator,

lim
n→∞ ρ̂n = ρ∗ a.s.

where the limiting value
ρ∗ = θρ θ∗. (1.8)

Moreover, as soon as E[V 4
1 ] < ∞, we have the asymptotic normality,

√
n
(
ρ̂n − ρ∗

) L−→ N (
0, σ2

ρ

)
with the asymptotic variance

σ2
ρ =

(1 − θρ)
(1 + θρ)3

(
(θ + ρ)2(1 + θρ)2 + (θρ)2(1 − θ2)(1 − ρ2)

)
. (1.9)

In addition, we have the joint asymptotic normality,

√
n

(
θ̂n − θ∗
ρ̂n − ρ∗

) L−→ N (
0, Γ

)
where the covariance matrix

Γ =
(

σ2
θ θρσ2

θ
θρσ2

θ σ2
ρ

)
. (1.10)
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Lemma 1.3. Assume that (Vn) is independent and identically distributed with positive finite variance. Then,
we have the almost sure convergence of the Durbin–Watson statistic,

lim
n→∞ D̂n = D∗ a.s.

where the limiting value
D∗ = 2(1 − ρ∗). (1.11)

In addition, as soon as E[V 4
1 ] < ∞, we have the asymptotic normality,

√
n
(
D̂n − D∗

) L−→ N (
0, σ2

D

)
where the asymptotic variance

σ2
D = 4σ2

ρ. (1.12)

Proof. The proofs of Lemma 1.1, Lemmas 1.2 and 1.3 may be found in [3]. �

Our objective is now to establish a set of moderate deviation principles on these estimates in order to get a
better asymptotic accuracy than the central limit theorem.

In the whole paper, for any matrix M , M ′ and ‖M‖ stand for the transpose and the euclidean norm of
M , respectively. In addition, for a sequence of random variables (Zn)n on R

d×p, we say that (Zn)n converges
(an)−superexponentially fast in probability to some random variable Z with an → ∞ if, for all δ > 0,

lim sup
n→∞

1
an

log P

(
‖Zn − Z‖ > δ

)
= −∞.

This exponential convergence with speed an will be shortened as

Zn
superexp−→

an

Z.

The exponential equivalence with speed an between two sequences of random variables (Yn)n and (Zn)n, whose
precise definition is given in Definition 4.2.10 of [7], will be shortened as

Yn
superexp∼

an

Zn.

We start by recalling some useful definitions.

Definition 1.4 (Large Deviation Principle). We say that a sequence of random variables (Mn)n with topological
state space (S,S) satisfies an LDP with speed an and rate function I : S → R

+ if an → ∞ and, for each A ∈ S,

− inf
x∈Ao

I(x) ≤ lim inf
n→∞

1
an

log P

(
Mn ∈ A

)
≤ lim sup

n→∞
1
an

log P

(
Mn ∈ A

)
≤ − inf

x∈Ā
I(x)

where Ao and Ā denote the interior and the closure of A, respectively. The rate function I is lower semicontin-
uous, i.e. all the sub-level sets {x ∈ S | I(x) ≤ c} are closed, for c ≥ 0.

Let (bn) be a sequence of increasing positive numbers satisfying 1 = o(b2
n) and b2

n = o(n),

bn −→ ∞,
bn√
n
−→ 0. (1.13)

Definition 1.5 (Moderate Deviation Principle). We say that a sequence of random variables (Mn)n with
topological state space (S,S) satisfies an MDP with speed b2

n such that (1.13) holds, and rate function I : S → R
+

if the sequence (
√

nMn/bn)n satisfies an LDP with speed b2
n and rate function I.

Formally, our main results about the MDP for a sequence of random variables (Mn)n will be stated as the
LDP for the sequence (

√
nMn/bn)n.
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2. On moderate deviations under the Gaussian condition

In this first part, we focus our attention on moderate deviations for the Durbin–Watson statistic in the easy
case where the driven noise (Vn) is normally distributed. This restrictive assumption allows us to reduce the set
of hypotheses to the existence of t > 0 such that

G1
E

[
exp(tε2

0)
]

< ∞,

G2
E

[
exp(tX2

0 )
]

< ∞.

Theorem 2.1. Assume that there exists t > 0 such that G1 and G2 are satisfied and that (Vn) follows the
N (0, σ2) distribution. Then, the sequence (√

n

bn

(
θ̂n − θ∗

))
n≥1

satisfies an LDP on R with speed b2
n and rate function

Iθ(x) =
x2

2σ2
θ

(2.1)

where σ2
θ is given by (1.7).

Theorem 2.2. Assume that there exists t > 0 such that G1 and G2 are satisfied and that (Vn) follows the
N (0, σ2) distribution. Then, as soon as θ �= −ρ, the sequence(√

n

bn

(
θ̂n − θ∗
ρ̂n − ρ∗

))
n≥1

satisfies an LDP on R
2 with speed b2

n and rate function

K(x) =
1
2
x′Γ−1x (2.2)

where Γ is given by (1.10). In particular, the sequence(√
n

bn

(
ρ̂n − ρ∗

))
n≥1

satisfies an LDP on R with speed b2
n and rate function

Iρ(x) =
x2

2σ2
ρ

(2.3)

where σ2
ρ is given by (1.9).

Remark 2.3. The covariance matrix Γ is invertible if and only if θ �= −ρ since one can see by a straightforward
calculation that its determinant is given by

det(Γ ) =
σ2

θ(θ + ρ)2(1 − θρ)
(1 + ρ2)

·
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Moreover, in the particular case where θ = −ρ, the sequences(√
n

bn

(
θ̂n − θ∗

))
n≥1

and
(√

n

bn

(
ρ̂n − ρ∗

))
n≥1

satisfy LDP on R with speed b2
n and rate functions respectively given by

Iθ(x) =
x2(1 − θ2)
2(1 + θ2)

and Iρ(x) =
x2(1 − θ2)
2θ4(1 + θ2)

·

Theorem 2.4. Assume that there exists t > 0 such that G1 and G2 are satisfied and that (Vn) follows the
N (0, σ2) distribution. Then, the sequence (√

n

bn

(
D̂n − D∗

))
n≥1

satisfies an LDP on R with speed b2
n and rate function

ID(x) =
x2

2σ2
D

(2.4)

where σ2
D is given by (1.12).

Proof. Theorem 2.1, Theorems 2.2 and 2.4 are proved in Section 4. �

3. On moderate deviations under the Chen–Ledoux type condition

Via an extensive use of Puhalskii’s result, we will now focus our attention on the more general framework
where the driven noise (Vn) is assumed to satisfy the Chen–Ledoux type condition. Accordingly, one shall
introduce the following hypothesis, for any a > 0.

CL1(a) Chen–Ledoux.

lim sup
n→∞

1
b2
n

log nP

(
|V1|a > bn

√
n
)

= −∞.

CL2(a)
|ε0|a
bn
√

n

superexp−→
b2n

0.

CL3(a)
|X0|a
bn
√

n

superexp−→
b2n

0.

Remark 3.1. If the random variable V1 satisfies CL1(2), then

lim sup
n→∞

1
b2
n

log nP

( ∣∣V 2
1 − E[V 2

1 ]
∣∣ > bn

√
n
)

= −∞, (3.1)

which implies in particular that Var(V 2
1 ) < ∞. Moreover, if the random variable V 2

1 has exponential moments,
i.e. if there exists t > 0 such that

E

[
exp (tV 2

1 )
]

< ∞,
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then CL1(2) is satisfied for every increasing sequence (bn). From [1, 2, 14], condition (3.1) is equivalent to say
that the sequence (

1
bn
√

n

n∑
k=1

(
V 2

k − E[V 2
k ]
))

n≥1

satisfies an LDP on R with speed b2
n and rate function

I(x) =
x2

2Var(V 2
1 )

·

Remark 3.2. If we choose bn = nα with 0 < α < 1/2, CL1(2) is immediately satisfied if there exists t > 0
and 0 < β < 1 such that

E

[
exp (tV 2β

1 )
]

< ∞,

which is clearly a weaker assumption than the existence of t > 0 such that

E

[
exp (tV 2

1 )
]

< ∞,

imposed in the previous section.

Remark 3.3. If CL1(a) is satisfied, then CL1(b) is also satisfied for all 0 < b < a.

Remark 3.4. In the technical proofs that will follow, rather than CL1(4), the weakest assumption really
needed is summarized by the existence of a large constant C such that

lim sup
n→∞

1
b2
n

log P

(
1
n

n∑
k=1

V 4
k > C

)
= −∞.

Theorem 3.5. Assume that CL1(4), CL2(4) and CL3(4) are satisfied. Then, the sequence(√
n

bn

(
θ̂n − θ∗

))
n≥1

satisfies the LDP on R stated in Theorem 2.1.

Theorem 3.6. Assume that CL1(4), CL2(4) and CL3(4) are satisfied. Then, as soon as θ �= −ρ, the sequence(√
n

bn

(
θ̂n − θ∗
ρ̂n − ρ∗

))
n≥1

satisfies the LDP on R
2 stated in Theorem 2.2. In particular, the sequence(√

n

bn

(
ρ̂n − ρ∗

))
n≥1

satisfies the LDP on R also stated in Theorem 2.2.

Remark 3.7. We have already seen in Remark 2.3 that the covariance matrix Γ is invertible if and only if
θ �= −ρ. In the particular case where θ = −ρ, the sequences(√

n

bn

(
θ̂n − θ∗

))
n≥1

and
(√

n

bn

(
ρ̂n − ρ∗

))
n≥1

satisfy the LDP on R stated in Remark 2.3.
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Theorem 3.8. Assume that CL1(4), CL2(4) and CL3(4) are satisfied. Then, the sequence(√
n

bn

(
D̂n − D∗

))
n≥1

satisfies the LDP on R stated in Theorem 2.4.

Proof. Theorem 3.5, Theorems 3.6 and 3.8 are proved in Section 4. �

4. Proof of the main results

For a matter of readability, some notations commonly used in the following proofs have to be introduced.
First, for all n ≥ 1, let

Ln =
n∑

k=1

V 2
k . (4.1)

Then, let us define Mn, for all n ≥ 1, as

Mn =
n∑

k=1

Xk−1Vk (4.2)

where M0 = 0. For all n ≥ 1, denote by Fn the σ-algebra of the events occurring up to time n, Fn =
σ(X0, ε0, V1, · · · , Vn). We infer from (4.2) that (Mn)n≥0 is a locally square-integrable real martingale with
respect to the filtration F = (Fn)n≥0 with predictable quadratic variation given by 〈M〉0 = 0 and for all n ≥ 1,
〈M〉n = σ2Sn−1, where

Sn =
n∑

k=0

X2
k . (4.3)

Moreover, (Nn)n≥0 is defined, for all n ≥ 2, as

Nn =
n∑

k=2

Xk−2Vk (4.4)

and N0 = N1 = 0. It is not hard to see that (Nn)n≥0 is also a locally square-integrable real martingale sharing the
same properties than (Mn)n≥0. More precisely, its predictable quadratic variation is given by 〈N〉n = σ2Sn−2.
To conclude, let P0 = 0 and, for all n ≥ 1,

Pn =
n∑

k=1

Xk−1Xk. (4.5)

To smooth the reading of the following proofs, we introduce some relations.

Lemma 4.1. For any η > 0,

n∑
k=0

|Xk| η ≤ (1 + α(η))|X0| η + α(η)β(η)|ε0| η + α(η)β(η)
n∑

k=1

|Vk| η

where
α(η) = (1 − |θ|)−η and β(η) = (1 − |ρ|)−η

.
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In addition,
max

1≤k≤n
X2

k ≤ α(1)X2
0 + α(2)β(1) ε2

0 + α(2)β(2) max
1≤k≤n

V 2
k .

Proof. The proof follows from (1.1). Details are given in the proof of Lemma A.2 in [3]. �

Lemma 4.2. For all n ≥ 2,

Sn

n
− � =

�

σ2

[(
Ln

n
− σ2

)
+ 2θ∗

Mn

n
− 2θρ

Nn

n
+

Rn

n

]
(4.6)

where Ln, Mn, Sn and Nn are respectively given by (4.1), (4.2), (4.3) and (4.4),

Rn = [2(θ + ρ)ρ∗ − (θ + ρ)2 − (θρ)2]X2
n − (θρ)2X2

n−1 + 2ρ∗XnXn−1 + ξ1,

and where the remainder term

ξ1 = (1 − 2θρ − ρ2)X2
0 + ρ2ε2

0 + 2θρX0ε0 − 2ρρ∗(ε0 − X0)X0 + 2ρ(ε0 − X0)V1.

In addition, for all n ≥ 1,

Pn

n
− θ∗

Sn

n
=

1
1 + θρ

Mn

n
+

1
1 + θρ

Rn(θ)
n

− θ∗
X2

n

n
(4.7)

with
Rn(θ) = θρXnXn−1 + ρX0(ε0 − X0).

Proof. The results follow from direct calculation. �

4.1. Proof of Theorem 2.1

Before starting the Proof of Theorem 2.1, we need to introduce some technical tools. Denote by � the almost
sure limit of Sn/n [3], given by

� =
σ2(1 + θρ)

(1 − θ2)(1 − θρ)(1 − ρ2)
· (4.8)

Lemma 4.3. Under the assumptions of Theorem 2.1, we have the exponential convergence

Sn

n

superexp−→
b2n

� (4.9)

where � is given by (4.8).

Proof. First of all, (Vn) is a sequence of independent and identically distributed gaussian random variables with
zero mean and variance σ2 > 0. It immediately follows from Cramér–Chernoff’s Theorem, expounded e.g. in [7],
that for all δ ′ > 0,

lim sup
n→∞

1
n

log P

(∣∣∣∣Ln

n
− σ2

∣∣∣∣ > δ ′
)

< 0. (4.10)

Since b2
n = o(n), the latter convergence leads to

Ln

n

superexp−→
b2n

σ2, (4.11)
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ensuring the exponential convergence of Ln/n to σ2 with speed b2
n. Moreover, for all δ > 0 and a suitable t > 0,

we clearly obtain from Markov’s inequality that

P

(
X2

0

n
> δ

)
≤ exp (−tnδ)E

[
exp(tX2

0 )
]
,

which immediately implies via G2,
X2

0

n

superexp−→
b2n

0, (4.12)

and we get the exponential convergence of X2
0/n to 0 with speed b2

n. The same is true for V 2
1 /n, ε2

0/n and more
generally for any isolated term in ξ1 given after (4.6). Let us now focus our attention on X2

n/n. The model (1.1)
can be rewritten in the vectorial form,

Φn = AΦn−1 + Wn (4.13)

where Φn =
(
Xn Xn−1

)′ stands for the lag vector of order 2, Wn =
(
Vn 0

)′ and

A =
(

θ + ρ −θρ
1 0

)
. (4.14)

It is easy to show that the spectral radius of A is given by ρ(A) = max(|θ|, |ρ|) < 1 under the stability conditions.
Then,

‖Φn‖2

n

superexp−→
b2n

0,

according to [23], which is clearly sufficient to deduce that

X2
n

n

superexp−→
b2n

0. (4.15)

The exponential convergence of Rn/n to 0 with speed b2
n is achieved following exactly the same lines. To conclude

the proof of Lemma 4.3, it remains to study the exponential asymptotic behavior of Mn/n. For all δ > 0 and a
suitable y > 0,

P

(
Mn

n
> δ

)
= P

(
Mn

n
> δ, 〈M〉n ≤ y

)
+ P

(
Mn

n
> δ, 〈M〉n > y

)
,

≤ exp
(
−n2δ2

2y

)
+ P

(
〈M〉n > y

)
, (4.16)

by application of Theorem 4.1 of [4] in the case of a gaussian martingale, and Remark 4.2 that follows. From
Lemma 4.1, one can find α and β such that, for a suitable t > 0,

P

(
〈M〉n > y

)
≤ P

(
X2

0 >
y

3ασ2

)
+ P

(
ε2
0 >

y

3βσ2

)
+ P

(
Ln−1 >

y

3βσ2

)
,

≤ 3 max
(

exp
( −yt

3ασ2

)
E

[
exp(tX2

0 )
]
, exp

( −yt

3βσ2

)
E

[
exp(tε2

0)
]
,

P

(
Ln−1 >

y

3βσ2

))
.

Let us choose y = nx, assuming x > 3βσ4. It follows that

1
b2
n

log P

(
〈M〉n > nx

)
≤ log 3

b2
n

+
1
b2
n

max
(−nxt

3ασ2
+ log E

[
exp(tX2

0 )
]
,

−nxt

3βσ2
+ log E

[
exp(tε2

0)
]
, log P

(
Ln−1 >

nx

3βσ2

))
.
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Since b2
n = o(n) and by virtue of (4.10) with δ ′ = x/(3βσ2) − σ2 > 0, we obtain that

lim sup
n→∞

1
b2
n

log P

(
〈M〉n > nx

)
= −∞. (4.17)

It enables us by (4.16) to deduce that for all δ > 0,

lim sup
n→∞

1
b2
n

log P

(
Mn

n
> δ

)
= −∞. (4.18)

The same result is also true replacing Mn by −Mn in (4.18) since Mn and −Mn share the same distribution.
Therefore, we find that

Mn

n

superexp−→
b2n

0. (4.19)

A similar reasoning leads to the exponential convergence of Nn/n to 0, with speed b2
n. Finally, we obtain (4.9)

from Lemma 4.2 together with (4.11), (4.12), (4.15) and (4.19) which achieves the proof of Lemma 4.3. �

Corollary 4.4. By virtue of Lemma 4.3 and under the same assumptions, we have the exponential convergence

Pn

n

superexp−→
b2n

�1 (4.20)

where �1 = θ∗�.

Proof. The proof is immediately derived from previous statements and Lemma 4.2. �

We are now in the position to prove Theorem 2.1. We shall make use of the following MDP for martingales
established by Worms [23].

Theorem 4.5 (Worms). Let (Yn) be an adapted sequence with values in R
p, and (Vn) a gaussian noise with

variance σ2 > 0. We suppose that (Yn) satisfies, for some invertible square matrix C of order p and a speed
sequence (b2

n) such that b2
n = o(n), the exponential convergence for any δ > 0,

lim
n→∞

1
b2
n

log P

(∥∥∥∥∥ 1
n

n−1∑
k=0

YkY ′
k − C

∥∥∥∥∥ > δ

)
= −∞. (4.21)

Then, the sequence (
1

bn
√

n

n∑
k=1

Yk−1Vk

)
n≥1

satisfies an LDP on R
p of speed b2

n and rate function

I(x) =
1

2σ2
x′C−1x. (4.22)

Proof. The proof of Theorem 4.5 is contained in the one of Theorem 5 of [23] with d = 1. �

Proof of Theorem 2.1. Let us consider the decomposition
√

n

bn

(
θ̂n − θ∗

)
=

n

〈M〉n An + Bn, (4.23)

with

An =
(

σ2

1 + θρ

)
Mn

bn
√

n
and Bn =

√
n

bn

(
1

1 + θρ

)
Rn(θ)
Sn−1

,
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that can be obtained by a straighforward calculation, where the remainder term Rn(θ) is defined after (4.7).
First, by using the same methodology as in convergence (4.12), we obtain that for all δ > 0 and for a suitable
t > 0,

lim sup
n→∞

1
b2
n

log P

(
X2

0

bn
√

n
> δ

)
≤ lim

n→∞

(
−tδ

√
n

bn

)
+ lim

n→∞
1
b2
n

log E

[
exp(tX2

0 )
]
,

= −∞, (4.24)

since bn = o(
√

n), and the same is true for any isolated term in (4.23) of order 2 whose numerator does not
depend on n. Moreover, under the gaussian assumption on the driven noise (Vn), it is not hard to see that

1
bn
√

n
max

1≤k≤n
V 2

k
superexp−→

b2n

0. (4.25)

As a matter of fact, for all δ > 0 and for all t > 0,

P

(
max

1≤k≤n
V 2

k ≥ δbn

√
n

)
= P

(
n⋃

k=1

{
V 2

k ≥ δbn

√
n
})

≤
n∑

k=1

P

(
V 2

k ≥ δbn

√
n
)
,

≤ n exp
(−tδbn

√
n
)

E

[
exp

(
tV 2

1

) ]
.

In addition, as soon as 0 < t < 1/(2σ2), E
[
exp(tV 2

1 )
]

< ∞. Consequently,

1
b2
n

log P

(
max

1≤k≤n
V 2

k ≥ δbn

√
n

)
≤

√
n

bn

⎛⎝ log n

bn
√

n
− tδ +

log E

[
exp

(
tV 2

1

) ]
bn
√

n

⎞⎠
which clearly leads to (4.25). Then, we deduce from (4.24), (4.25) and Lemma 4.1 that

1
bn
√

n
max

1≤k≤n
X2

k
superexp−→

b2n

0, (4.26)

which of course imply the exponential convergence of X2
n/(bn

√
n) to 0, with speed b2

n. Therefore, we obtain that

Rn(θ)
bn
√

n

superexp−→
b2n

0. (4.27)

We infer from Lemma 4.3 and Lemma 2 of [23] that the following convergence is satisfied,

n

Sn

superexp−→
b2n

1
�

(4.28)

where � > 0 is given by (4.8). According to (4.27), the latter convergence and again Lemma 2 of [23], we deduce
that

Bn
superexp−→

b2n

0. (4.29)

Hence, we obtain from (4.28) that the same is true for

An

(
n

〈M〉n − 1
σ2�

)
superexp−→

b2n

0, (4.30)

since Lemma 4.3 together with Theorem 4.5 with p = 1 directly show that (Mn/(bn
√

n)) satisfies an LDP with
speed b2

n and rate function given, for all x ∈ R, by

J(x) =
x2

2�σ2
· (4.31)
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As a consequence, √
n

bn

(
θ̂n − θ∗

)
superexp∼

b2n

1
�(1 + θρ)

Mn

bn
√

n
, (4.32)

and this implies that both of them share the same LDP, see Theorem 4.2.13 in [7]. One shall now take advantage
of the contraction principle ([7], Thm. 4.2.1), to establish that (

√
n(θ̂n − θ∗)/bn) satisfies an LDP with speed

b2
n and rate function Iθ(x) = J(�(1 + θρ)x) given by (2.1), that is

Iθ(x) =
x2

2σ2
θ

,

which achieves the Proof of Theorem 2.1. �

4.2. Proof of Theorem 2.2

We need to introduce some more notations. For all n ≥ 2, let

Qn =
n∑

k=2

Xk−2Xk. (4.33)

In addition, for all n ≥ 1, denote

Tn = 1 + θ∗ρ∗ −
(
1 + ρ∗(θ̂n + θ∗)

) Sn

Sn−1
+
(
2ρ∗ + θ̂n + θ∗

) Pn

Sn−1
− Qn

Sn−1
, (4.34)

where Sn and Pn are respectively given by (4.3) and (4.5). Finally, for all n ≥ 0, let

Jn =
n∑

k=0

ε̂ 2
k (4.35)

where the residual sequence (ε̂n) is given in (1.3). A set of additional technical tools has to be expounded to
make the Proof of Theorem 2.2 more tractable.

Corollary 4.6. By virtue of Lemma 4.3 and under the same assumptions, we have the exponential convergence

Qn

n

superexp−→
b2n

�2

where �2 = ((θ + ρ)θ∗ − θρ)�.

Proof. The Proof of Corollary 4.6 immediately follows from the relation

Qn

n
− ((θ + ρ)θ∗ − θρ)

Sn

n
= θ∗

Mn

n
+

Nn

n
+

ξQ
n

n
(4.36)

where ξQ
n is a residual term made of isolated terms such that

ξQ
n

n

superexp−→
b2n

0,

see e.g. the proof of Theorem 3.2 in [3] where more details are given on ξQ
n . �
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Lemma 4.7. Under the assumptions of Theorem 2.2, we have the exponential convergence

An
superexp−→

b2n

A

where

An =
n

1 + θρ

⎛⎜⎜⎝
1

Sn−1
0

Tn

Jn−1
− (θ + ρ)

Jn−1

⎞⎟⎟⎠ , (4.37)

and

A =
1

�(1 + θρ)(1 − (θ∗)2)

(
1 − (θ∗)2 0
θρ + (θ∗)2 −(θ + ρ)

)
. (4.38)

Proof. Via (4.28), we directly obtain the exponential convergence,

1
(1 + θρ)

n

Sn−1

superexp−→
b2n

1
�(1 + θρ)

· (4.39)

The combination of Lemma 4.3, Corollary 4.4, Corollary 4.6 and Lemma 2 of [23] shows, after a simple calcu-
lation, that

Tn
superexp−→

b2n

(θ∗)2 + θρ. (4.40)

Moreover, Jn given by (4.35) can be rewritten as

Jn = Sn − 2θ̂nPn + θ̂ 2
n Sn−1,

which leads, via Lemma 2 of [23], to
Jn

n

superexp−→
b2n

�(1 − (θ∗)2). (4.41)

Convergences (4.40) and (4.41) imply(
n

1 + θρ

)
Tn

Jn−1

superexp−→
b2n

(θ∗)2 + θρ

�(1 + θρ)(1 − (θ∗)2)
, (4.42)

and consequently, (
n

1 + θρ

)
θ + ρ

Jn−1

superexp−→
b2n

θ + ρ

�(1 + θρ)(1 − (θ∗)2)
· (4.43)

Finally, (4.39) together with (4.42) and (4.43) achieve the proof of Lemma 4.7. �

Proof of Theorem 2.2. We shall make use of the decomposition
√

n

bn

(
θ̂n − θ∗
ρ̂n − ρ∗

)
=

1
bn
√

n
AnZn + Bn, (4.44)

where An is given by (4.37), (Zn)n≥0 is the 2-dimensional vector martingale given by

Zn =
(

Mn

Nn

)
, (4.45)

and where the remainder term

Bn =
1

(1 + θρ)

√
n

bn

⎛⎜⎜⎝
Rn(θ)
Sn−1

Rn(ρ)
Jn−1

⎞⎟⎟⎠ . (4.46)
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The first component Rn(θ) is given in (4.7) while Rn(ρ), whose definition may be found in the proof of
Theorem 3.2 in [3], is made of isolated terms. Consequently, (4.24) and (4.27) are sufficient to ensure that

Rn(θ)
bn
√

n

superexp−→
b2n

0 and
Rn(ρ)
bn
√

n

superexp−→
b2n

0.

Therefore, we obtain that
Bn

superexp−→
b2n

0. (4.47)

In addition, it follows from Lemma 4.7 and Theorem 4.5 with p = 2 that (Zn/(bn
√

n)) satisfies an LDP on R
2

with speed b2
n and rate function given, for all x ∈ R

2, by

J(x) =
1

2σ2
x′Λ−1x, (4.48)

where

Λ = �

(
1 θ∗
θ∗ 1

)
, (4.49)

since we have the exponential convergence

〈Z〉n
n

superexp−→
b2n

σ2Λ (4.50)

by application of Lemma 4.3 and Corollary 4.4. One observes that Λ is invertible. As a consequence,

1
bn
√

n
(An − A)Zn

superexp−→
b2n

0, (4.51)

and we deduce from (4.44) that √
n

bn

(
θ̂n − θ∗
ρ̂n − ρ∗

)
superexp∼

b2n

1
bn
√

n
AZn. (4.52)

This of course implies that both of them share the same LDP, see Theorem 4.2.13 in [7]. The contraction principle
([7], Thm. 4.2.1) enables us to conclude that the rate function of the LDP on R

2 with speed b2
n associated with

equivalence (4.52) is given, for all x ∈ R
2, by K(x) = J(A−1x), that is

K(x) =
1
2
x′Γ−1x,

where Γ = σ2AΛA′ is given by (1.10), and where we shall suppose that θ �= −ρ to ensure that A is invertible.
In particular, the latter result also implies that the rate function of the LDP on R with speed b2

n associated
with (

√
n(ρ̂n − ρ∗)/bn) is given, for all x ∈ R, by

Iρ(x) =
x2

2σ2
ρ

,

where σ2
ρ is the last element of the matrix Γ . This achieves the Proof of Theorem 2.2. �

4.3. Proof of Theorem 2.4

For all n ≥ 1, denote by fn the explosion coefficient associated with Jn given by (4.35), that is

fn =
Jn − Jn−1

Jn
=

ε̂ 2
n

Jn
· (4.53)
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It follows from decomposition (C.4) in [3] that
√

n

bn

(
D̂n − D∗

)
= −2

√
n

bn

(
1 − fn

)(
ρ̂n − ρ∗

)
+

√
n

bn
ζn, (4.54)

where the remainder term ζn is made of negligible terms, that is

ζn = 2(ρ∗ − 1)fn +
ε̂ 2

n − ε̂ 2
0

Jn
·

From the definition of (ε̂n) in (1.3), from (4.26), (4.41) and considering that ε̂0 = X0, we clearly have that
√

n

bn
ζn

superexp−→
b2n

0 and fn
superexp−→

b2n

0.

As a consequence, √
n

bn

(
D̂n − D∗

)
superexp∼

b2n

−2
√

n

bn

(
ρ̂n − ρ∗

)
, (4.55)

and this implies that both of them share the same LDP. The contraction principle [7] enables us to conclude
that the rate function of the LDP on R with speed b2

n associated with equivalence (4.55) is given, for all x ∈ R,
by ID(x) = Iρ(−x/2), that is

ID(x) =
x2

2σ2
D

,

which achieves the Proof of Theorem 2.4.

4.4. Proofs of Theorem 3.5, Theorems 3.6 and 3.8

We shall now propose a technical lemma ensuring that all results already proved under the gaussian assump-
tion still hold under the Chen–Ledoux type condition.

Lemma 4.8. Under CL1(4), CL2(4) and CL3(4), all exponential convergences of Lemma 4.3, Corollary 4.4,
Corollary 4.6 and Lemma 4.7 still hold.

Proof. Following the same methodology as the one used to establish (4.27), we get

P

(
max

1≤k≤n
V 2

k ≥ δbn

√
n

)
≤

n∑
k=1

P

(
V 2

k ≥ δbn

√
n
)

= n P

(
V 2

1 ≥ δbn

√
n
)
.

Via CL1(2), CL2(2), CL3(2) and the same reasoning,

X2
n

bn
√

n

superexp−→
b2n

0, (4.56)

and Cauchy–Schwarz inequality implies that this is also the case for any isolated term of order 2, such as
XnXn−1/(bn

√
n). This allows us to control each remainder term. Note that under CL2(4) and CL3(4) and

using (4.56), ε4
0/n, X4

0/n, ε2
0/n, X2

0/n and X2
n/n also exponentially converge to 0, since bn

√
n = o(n). Moreover,

it follows from Theorem 2.2 of [14] under CL1(2), that

Ln

n

superexp−→
b2n

σ2. (4.57)
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Furthermore, since (Mn) is a locally square integrable martingale, we infer from Theorem 2.1 of [4] that for all
x, y > 0,

P

(
|Mn| > x, 〈M〉n + [M ]n ≤ y

)
≤ 2 exp

(
−x2

2y

)
, (4.58)

where the predictable quadratic variation 〈M〉n = σ2Sn−1 is described in (4.3) and the total quadratic variation
is given by [M ]0 = 0 and, for all n ≥ 1, by

[M ]n =
n∑

k=1

X2
k−1V

2
k . (4.59)

According to (4.58), we have for all δ > 0 and a suitable b > 0,

P

( |Mn|
n

> δ

)
≤ P

(
|Mn| > δn, 〈M〉n + [M ]n ≤ nb

)
+ P

(
〈M〉n + [M ]n > nb

)
,

≤ 2 exp
(
−nδ2

2b

)
+ P

(
〈M〉n + [M ]n > nb

)
.

Consequently,

lim sup
n→∞

1
b2
n

log P

( |Mn|
n

> δ

)
≤ lim sup

n→∞
1
b2
n

log P

(
〈M〉n + [M ]n > nb

)
. (4.60)

Moreover, for all n ≥ 1, let us define

Tn =
n∑

k=0

X4
k and Γn =

n∑
k=1

V 4
k .

From Lemma 4.1 and for n large enough, one can find γ > 0 such that

Tn ≤ γ Γn

under CL2(4) and CL3(4). According to Theorem 2.2 of [14] under CL1(4), we also have the exponential
convergence,

Γn

n

superexp−→
b2n

τ4, (4.61)

where τ4 = E[V 4
1 ], leading, via Cauchy–Schwarz inequality, to

lim sup
n→∞

1
b2
n

log P

(
[M ]n

n
> δ

)
≤ lim sup

n→∞
1
b2
n

log P

(
Γn

n
>

δ√
γ

)
,

= −∞, (4.62)

where δ > τ4√γ. Exploiting (4.57) and again Lemma 4.1, the same result can be achieved for 〈M〉n/n under
CL1(2) and δ > σ4γ. As a consequence, it follows from (4.62) that

lim sup
n→∞

1
b2
n

log P

( 〈M〉n + [M ]n
n

> b

)
= −∞, (4.63)

as soon as b > σ4γ + τ4√γ. Therefore, the exponential convergence of Mn/n to 0 with speed b2
n is obtained

via (4.60) and (4.63), that is, for all δ > 0,

lim sup
n→∞

1
b2
n

log P

( |Mn|
n

> δ

)
= −∞. (4.64)
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Explicitly, (4.64) is equivalent of (4.19) which was the main element for the proof of Lemma 4.3, and the same
obviously holds for Nn/n. In consequence, one can proceed similarly to establish Corollary 4.4, Corollary 4.6
and Lemma 4.7. Indeed, hypotheses CL2(4) and CL3(4) together with exponential convergences (4.56), (4.57)
and (4.64) are sufficient to achieve the proof of Lemma 4.8. �

Let us introduce a simplified version of Puhalskii’s result [21] applied to a sequence of martingale differences,
and two technical lemmas that shall help us to prove our results.

Theorem 4.9 (Puhalskii). Let (mn
j )1≤j≤n be a triangular array of martingale differences with values in R

d,
with respect to a filtration (Fn)n≥1. Let (bn) be a sequence of real numbers satisfying (1.13). Suppose that there
exists a symmetric positive-semidefinite matrix Q such that

1
n

n∑
k=1

E

[
mn

k (mn
k )′

∣∣Fk−1

]
superexp−→

b2n

Q. (4.65)

Suppose that there exists a constant c > 0 such that, for each 1 ≤ k ≤ n,

|mn
k | ≤ c

√
n

bn
a.s. (4.66)

Suppose also that, for all a > 0, we have the exponential Lindeberg’s condition

1
n

n∑
k=1

E

[
|mn

k |2 I{ |mn
k |≥ a

√
n

bn

} ∣∣Fk−1

]
superexp−→

b2n

0. (4.67)

Then, the sequence (
1

bn
√

n

n∑
k=1

mn
k

)
n≥1

satisfies an LDP on R
d with speed b2

n and rate function

Λ∗(v) = sup
λ∈Rd

(
λ′v − 1

2
λ′Qλ

)
·

In particular, if Q is invertible,

Λ∗(v) =
1
2

v′Q−1v. (4.68)

Proof. The proof of Theorem 4.9 is contained e.g. in the proof of Theorem 3.1 in [21]. �

Lemma 4.10. Under CL1(a), CL2(a) and CL3(a) for any a > 2, we have for all δ > 0,

lim sup
R→∞

lim sup
n→∞

1
b2
n

log P

(
1
n

n∑
k=1

X2
k I{|Xk|>R} > δ

)
= −∞.

Remark 4.11. Lemma 4.10 implies that the exponential Lindeberg’s condition given by (4.67) is satisfied.

Proof. From Lemma 4.1, for any η > 0 and n large enough, one can find γ > 0 such that

n∑
k=0

|Xk|2+η ≤ γ

n∑
k=1

|Vk|2+η (4.69)
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under CL2(2 + η) and CL3(2 + η). If we suppose that CL1(2 + η) holds, then it follows that, for R > 0,

R η
n∑

k=1

X2
k−1 I{|Xk−1|>R} ≤

n∑
k=1

|Xk−1|2+η ≤ γ

n∑
k=1

|Vk|2+η,

for n large enough and η > 0, leading to

1
b2
n

log P

(
1
n

n∑
k=1

X2
k−1 I{|Xk−1|>R} > δ

)
≤ 1

b2
n

log P

(
1
n

n∑
k=1

|Vk|2+η >
δ

γ
R η

)
.

Using Theorem 2.2 of [14] and letting R go to infinity, we immediately reach the end of the proof of
Lemma 4.10. �

Remark 4.12. The same result can be achieved under the less restrictive CL1(2) condition, via a techni-
cal proof using the empirical measure associated with the geometric ergodic Markov chain (Xn)n≥0. A same
reasoning can be found in [9].

Lemma 4.13. Under CL1(4), CL2(4) and CL3(4), the sequence(
Mn

bn
√

n

)
n≥1

satisfies an LDP on R with speed b2
n and rate function

J(x) =
x2

2�σ2
(4.70)

where � is given by (4.8).

Proof. From now on, in order to apply Puhalskii’s result concerning MDP for martingales, we introduce the
following modification of the martingale (Mn)n≥0, for r > 0 and R > 0,

M (r,R)
n =

n∑
k=1

X
(r)
k−1V

(R)
k (4.71)

where, for all 1 ≤ k ≤ n,

X
(r)
k = Xk I{|Xk|≤ r

√
n

bn

} and V
(R)
k = Vk I{|Vk|≤R

} − E

[
Vk I{|Vk|≤R

}]. (4.72)

Then, we have to prove that for all r > 0 the sequence (M (r,R)
n ) is an exponentially good approximation of (Mn)

as R goes to infinity, see e.g. Definition 4.2.14 in [7]. This approximation, in the sense of the large deviations,
is described by the following convergence, for all r > 0 and all δ > 0,

lim sup
R→∞

lim sup
n→∞

1
b2
n

log P

(
|Mn − M

(r,R)
n |

bn
√

n
> δ

)
= −∞. (4.73)

From Lemma 4.8, and since 〈M〉n = σ2Sn−1, we have

〈M〉n
n

superexp−→
b2n

σ2�. (4.74)
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From Lemma 4.10 and Remark 4.11, we also have for all r > 0,

1
n

n∑
k=0

X2
k I{ |Xk|> r

√
n

bn

} superexp−→
b2n

0. (4.75)

We introduce the following notations,

σ2
R = E

[
(V (R)

1 )2
]

and S(r)
n =

n∑
k=0

(X(r)
k )2.

Then, we easily transfer properties (4.74) and (4.75) to the truncated martingale (M (r,R)
n )n≥0. We have for all

R > 0 and all r > 0,

〈M (r,R)〉n
n

= σ2
R

S
(r)
n−1

n
= −σ2

R

(
Sn−1

n
− S

(r)
n−1

n

)
+ σ2

R

Sn−1

n

superexp−→
b2n

σ2
R�

which ensures that (4.65) is satisfied for the martingale (M (r,R)
n )n≥0. Note also that Lemma 4.8 and Remark 4.11

work for the martinagle (M (r,R)
n )n≥0. So, for all r > 0, the exponential Lindeberg’s condition and thus (4.67)

are satisfied for (M (r,R)
n )n≥0. By Theorem 4.9, we deduce that (M (r,R)

n /bn
√

n) satisfies an LDP on R with speed
b2
n and rate function

JR(x) =
x2

2σ2
R�

· (4.76)

We intend to transfer the MDP result for the martingale (Mn)n≥0 by proving relation (4.73). For that purpose,
let us now introduce the following decomposition,

Mn − M (r,R)
n = L(r)

n + F (r,R)
n

where

L(r)
n =

n∑
k=1

(
Xk−1 − X

(r)
k−1

)
Vk and F (r,R)

n =
n∑

k=1

(
Vk − V

(R)
k

)
X

(r)
k−1.

One has to show that for all r > 0,
L

(r)
n

bn
√

n

superexp−→
b2n

0, (4.77)

and, for all r > 0 and all δ > 0, that

lim sup
R→∞

lim sup
n→∞

1
b2
n

log P

(
|F (r,R)

n |
bn
√

n
> δ

)
= −∞. (4.78)

Via inequality (4.69), for n large enough,

|L(r)
n |

bn
√

n
=

1
bn
√

n

∣∣∣∣∣
n∑

k=1

Xk−1 I{|Xk−1|> r
√

n
bn

}Vk

∣∣∣∣∣ ,
≤ 1

bn
√

n

(
r

√
n

bn

)−η
(

n∑
k=1

|Xk−1|2+η

)1/2 ( n∑
k=1

V 2
k |Xk−1| η

)1/2

,

≤ λ(r, η, γ)
(

bn√
n

)η−1 1
n

n∑
k=1

|Vk|2+η (4.79)
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by virtue of Hölder’s inequality, where λ(r, η, γ) > 0 can be easily evaluated. As a consequence, for all δ > 0,

lim sup
n→∞

1
b2
n

log P

(
|L(r)

n |
bn
√

n
> δ

)
≤ lim sup

n→∞
1
b2
n

log P

(
1
n

n∑
k=1

|Vk|2+η >
δ

λ(r, η, γ)

(√
n

bn

)η−1
)

,

= −∞, (4.80)

as soon as η > 1, by application of Theorem 2.2 of [14] under CL1(2 + η), since

lim
n→∞

(√
n

bn

)η−1

= ∞.

We deduce that
L

(r)
n

bn
√

n

superexp−→
b2n

0, (4.81)

which achieves the proof of (4.77), under CL1(2 + η), CL2(2 + η) and CL3(2 + η) for η > 1. On the other
hand, (F (r,R)

n )n≥0 is a locally square-integrable real martingale whose predictable quadratic variation is given
by 〈F (r,R)〉0 = 0 and, for all n ≥ 1, by

〈F (r,R)〉n = E

[(
V1 − V

(R)
1

)2
]

S
(r)
n−1.

To prove (4.78), we will use Theorem 1 of [8]. For R large enough and all k ≥ 1, we have

P

( ∣∣∣X(r)
k−1

(
Vk − V

(R)
k

)∣∣∣ > bn

√
n
∣∣∣Fk−1

)
≤ P

(∣∣∣Vk − V
(R)
k

∣∣∣ >
b2
n

r

)
,

= P

(∣∣∣V1 − V
(R)
1

∣∣∣ >
b2
n

r

)
= 0.

This implies that

lim sup
n→∞

1
b2
n

log

(
n ess sup

k≥1
P

( ∣∣∣X(r)
k−1

(
Vk − V

(R)
k

)∣∣∣ > bn

√
n
∣∣∣Fk−1

))
= −∞. (4.82)

For all ν > 0 and all δ > 0, we obtain from Lemma 4.10 and Remark 4.11, that

lim sup
n→∞

1
b2
n

log P

(
1
n

n∑
k=1

(
X

(r)
k−1

)2

I{ |X(r)
k−1|> ν

√
n

bn

} > δ

)
≤

lim sup
n→∞

1
b2
n

log P

(
1
n

n∑
k=1

X2
k−1I{|Xk−1|> ν

√
n

bn

} > δ

)
= −∞.

Finally, from Lemma 4.8, Lemma 4.10 and Remark 4.11, it follows that

〈F (r,R)〉n
n

= QR

S
(r)
n−1

n
= −QR

(
Sn−1

n
− S

(r)
n−1

n

)
+ QR

Sn−1

n

superexp−→
b2n

QR�

where

QR = E

[(
V1 − V

(R)
1

)2
]

,
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and � is given by (4.8). Moreover, it is clear that QR converges to 0 as R goes to infinity. Consequently, we infer
from Theorem 1 of [8] that (F (r,R)

n /(bn
√

n)) satisfies an LDP on R of speed b2
n and rate function

IR(x) =
x2

2QR�
·

In particular, this implies that for all δ > 0,

lim sup
n→∞

1
b2
n

log P

(
|F (r,R)

n |
bn
√

n
> δ

)
= − δ2

2QR�
, (4.83)

and letting R go to infinity clearly leads to the end of the proof of (4.78). We are able to conclude now that
(M (r,R)

n /(bn
√

n)) is an exponentially good approximation of (Mn/(bn
√

n)). By application of Theorem 4.2.16
in [7], we find that (Mn/(bn

√
n)) satisfies an LDP on R with speed b2

n and rate function

J̃(x) = sup
δ>0

lim inf
R→∞

inf
z∈Bx,δ

JR(z),

where JR is given in (4.76) and Bx,δ denotes the ball {z : |z − x| < δ}. The identification of the rate function
J̃ = J , where J is given in (4.70) is done easily, which concludes the proof of Lemma 4.13. �

Lemma 4.14. Under CL1(4), CL2(4) and CL3(4), the sequence(
1

bn
√

n

(
Mn

Nn

))
n≥1

satisfies an LDP on R
2 with speed b2

n and rate function

J(x) =
1

2σ2
x′Λ−1x (4.84)

where Λ is given by (4.49).

Proof. We follow the same approach as in the proof of Lemma 4.13. We shall consider the 2-dimensional vector
martingale (Zn)n≥0 defined in (4.45). In order to apply Theorem 4.9, we introduce the following truncation of
the martingale (Zn)n≥0, for r > 0 and R > 0,

Z(r,R)
n =

(
M

(r,R)
n

N
(r,R)
n

)

where M
(r,R)
n is given in (4.71) and where N

(r,R)
n is defined in the same manner, that is, for all n ≥ 2,

N (r,R)
n =

n∑
k=2

X
(r)
k−2V

(R)
k (4.85)

with X
(r)
n and V

(R)
n given by (4.72). The exponential convergence (4.50) still holds, by virtue of Lemma 4.8,

which immediately implies hypothesis (4.65). In addition, Lemma 4.10 ensures that, for all r > 0,

1
n

n∑
k=0

X2
k I{ |Xk|> r

√
n

bn

} superexp−→
b2n

0, (4.86)
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justifying hypothesis (4.67). Via Theorem 4.9, (Z(r,R)
n /(bn

√
n)) satisfies an LDP on R

2 with speed b2
n and rate

function JR given by

JR(x) =
1

2σ2
R

x′Λ−1x. (4.87)

Finally, it is straightforward to prove that (Z(r,R)
n /(bn

√
n)) is an exponentially good approximation of

(Zn/(bn
√

n)). By application of Theorem 4.2.16 in [7], we deduce that (Zn/(bn
√

n)) satisfies an LDP on R
2

with speed b2
n and rate function given by

J̃(x) = sup
δ>0

lim inf
R→∞

inf
z∈Bx,δ

JR(z),

where JR is given in (4.87) and Bx,δ denotes the ball {z : |z − x| < δ}. The identification of the rate function
J̃ = J is done easily, which concludes the proof of Lemma 4.14. �

Proofs of Theorem 3.5, Theorems 3.6 and 3.8. The residuals appearing in the decompositions (4.23), (4.44)
and (4.54) still converge exponentially to zero under CL1(4), CL2(4) and CL3(4), with speed b2

n, as it was
already proved. Therefore, for a better readability, we may skip the most accessible parts of these proofs whose
development merely consists in following the same lines as those in the proofs of Theorem 2.1, Theorem 2.2
and Theorem 2.4, taking advantage of Lemmas 4.13 and 4.14, and applying the contraction principle given e.g.
in [7]. �
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