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ADDING CONSTRAINTS TO BSDES WITH JUMPS:
AN ALTERNATIVE TO MULTIDIMENSIONAL REFLECTIONS ∗

Romuald Elie1 and Idris Kharroubi1

Abstract. This paper is dedicated to the analysis of backward stochastic differential equations (BS-
DEs) with jumps, subject to an additional global constraint involving all the components of the so-
lution. We study the existence and uniqueness of a minimal solution for these so-called constrained
BSDEs with jumps via a penalization procedure. This new type of BSDE offers a nice and practical
unifying framework to the notions of constrained BSDEs presented in [S. Peng and M. Xu, Preprint.
(2007)] and BSDEs with constrained jumps introduced in [I. Kharroubi, J. Ma, H. Pham and J. Zhang,
Ann. Probab. 38 (2008) 794–840]. More remarkably, the solution of a multidimensional Brownian re-
flected BSDE studied in [Y. Hu and S. Tang, Probab. Theory Relat. Fields 147 (2010) 89–121] and
[S. Hamadène and J. Zhang, Stoch. Proc. Appl. 120 (2010) 403–426] can also be represented via a
well chosen one-dimensional constrained BSDE with jumps. This last result is very promising from a
numerical point of view for the resolution of high dimensional optimal switching problems and more
generally for systems of coupled variational inequalities.
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1. Introduction

Since their introduction by Pardoux and Peng in [18], Backward Stochastic Differential Equations (BSDEs in
short) have been widely studied. In particular, they appear as a very powerful tool to solve partial differential
equations (PDEs) and corresponding stochastic optimization problems. Several generalizations of this notion
are based on the addition of new constraints on the solution. First, El Karoui et al. [11] study the case where
the component Y is forced to stay above a given process, leading to the notion of reflected BSDEs related
to optimal stopping and obstacle problems. Motivated by super replication issues under portfolio constraints,
Buckdahn and Hu [6, 7] followed by Cvitanic et al. [9] consider the case where the other component Z of the
solution is constrained to stay in a fixed convex set. More recently, Kharroubi et al. [17] introduce a constraint
on the jump component U of the BSDE, providing a representation of solutions for a class of PDE, called
quasi-variational inequalities, arising from optimal impulse control problems. The generalization of the results
of El Karoui et al. [11] to oblique reflections in a multi-dimensional framework was first given in a very special
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case (e.g. the generator does not depend on z) by Ramasubramanian [23], who studied a BSDE reflected in an
orthant. Then, Hu and Tang [16] followed by Hamadène and Zhang [14] consider general BSDEs with oblique
reflections and connect them with systems of variational inequalities and optimal switching problems. Our
paper introduces the notion of constrained BSDEs with jumps, which offers in particular a nice and natural
probabilistic representation for these types of switching problems. This new notion essentially unifies and extends
the notions of constrained BSDE without jumps, BSDE with constrained jumps as well as multidimensional
BSDE with oblique reflections.

Let us illustrate our presentation with the example of the following switching problem

sup
α

E

[
gαT (XT ) +

∫ T

0

ψαs(s,Xs)ds+
∑

0<τk≤T
cα

τ
−
k

,ατk

]
, (1.1)

where X is an underlying Itô diffusion process, α is a switching control process valued in I := {1, . . . ,m},
m > 0, and (τk)k denotes the jump times of the control α. This type of stochastic control problem is typically
encountered by an agent maximizing the production rentability of a given good by switching between m possible
modes of production based on different commodities. A switch is penalized by a given cost function c and the
production rentability functions ψ and g depend on the chosen mode of production. As observed in [10], the
solution of problem (1.1) starting in mode i0 ∈ I at time t rewrites Y i0t where (Y i, Zi,Ki)i∈I solves the following
multidimensional reflected BSDE⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Y it = gi(XT ) +

∫ T
t ψi(s,Xs)ds−

∫ T
t 〈Zis, dWs〉 +Ki

T −Ki
t , 0 ≤ t ≤ T, i ∈ I,

Y it ≥ Y jt + ci,j , 0 ≤ t ≤ T, i, j ∈ I,∫ T
0

[Y it − maxj∈I{Yj + ci,j}]dKi
t = 0, i ∈ I.

(1.2)

The main difficulty in the derivation of a one-dimensional BSDE representation for this type of problem relies
on the dependence of the solution in mode i ∈ I with respect to the global solution in all possible modes.
Nevertheless, Tang and Yong [26] interpret the value function associated to this problem as the unique viscosity
solution of a given coupled system of variational inequalities. A clever observation of Bouchard [3] concludes
that this unique viscosity solution represents also the value function of a well suited stochastic target problem
associated to a diffusion with jumps. Using entirely probabilistic arguments, the BSDE representation provided
in this paper heavily relies on this type of correspondence. In our approach, we let artificially the strategy jump
randomly between the different modes of production. Similarly to the approach of Pardoux et al. [19], this
allows to retrieve in the jump component of a one-dimensional backward process, some information regarding
the solution in the other modes of production. Indeed, let us introduce a pure jump process (It)0≤t≤T based
on an independent random measure μ and consider the following constrained BSDE associated to the two
dimensional forward process (I,X) (called transmutation-diffusion process in [19]) and defined on [0, T ] by:⎧⎨

⎩
Ỹt = gIT (XT ) +

∫ T
t
ψIs(s,Xs)ds+ K̃T − K̃t −

∫ T
t
〈Z̃s, dWs〉 −

∫ T
t

∫
I Ũs(i)μ(ds, di),

Ũt(i) ≥ ci,It− , dP ⊗ dt⊗ λ(di) a.e.
(1.3)

This BSDE enters into the class of constrained BSDEs studied in the paper and its unique minimal solution
relates directly to the solution of (1.2) via the relation (Ỹt, Z̃t, Ũt) = (Y Itt , ZItt , {Y it −Y

It−
t− }i∈I) for t ∈ [0, T ]. In

particular, the solution of the switching problem (1.1) starting in mode I0 at time 0 rewrites Ỹ I00 .
In order to unify our results with the one based on multidimensional reflected BSDE considered in [16] or [14],

we extend this approach and introduce the notion of constrained BSDE with jumps whose solution (Y, Z, U,K)
satisfies the general dynamics

Yt = ξ +
∫ T

t

f(s, Ys, Zs, Us)ds+KT −Kt −
∫ T

t

〈Zs, dWs〉 −
∫ T

t

∫
I
Us(i)μ(ds, di), (1.4)
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a.s., for 0 ≤ t ≤ T , as well as the constraint

hi(t, Yt− , Zt, Ut(i)) ≥ 0, dP ⊗ dt⊗ λ(di) a.e., (1.5)

where f and h are given random Lipschitz functions, and h is non-increasing in its last variable. Through a
penalization argument, we provide in Section 2 the existence of a unique minimal solution to the constrained
BSDE with jumps (1.4)–(1.5). This new type of BSDE mainly extends and unifies the existing literature on
BSDEs in three interconnected directions:

• We generalize the notion of BSDE with constrained jumps considered in [17], letting the driver function
f depend on U and considering a general constraint function h depending on all the components of the
solution.

• We add some jumps in the dynamics of constrained BSDE studied in [22] and let the coefficients depend on
the jump component U .

• Via the addition of artificial jumps, a well chosen one-dimensional constrained BSDE with jumps allows to
represent the solution of a multidimensional reflected BSDE, in the framework of [14] or [16].

We believe that the representation of a multidimensional BSDE with oblique reflections by a one-dimensional
constrained BSDE with jumps is also numerically very promising. As developed in [2], it offers the possibility to
solve high-dimensional optimal switching problems via a natural extension of the entirely probabilistic numerical
scheme studied in [4]. Such type of algorithm could also solve high dimensional systems of variational inequalities,
which relate directly to multidimensional BSDEs with oblique reflections, see [16] for more details. The algorithm
as well as the Feynman Kac representation of general constrained BSDEs with jumps are presented in [12].

The paper is organized as follows. The next section provides the existence of a unique minimal solution for
the new class of constrained BSDEs with jumps (1.4)–(1.5). The connection with multidimensional reflected
BSDEs is detailed in Section 3. We regroup in the last section of the paper some technical results on BSDEs,
mainly extensions of existing results, which are not the main focus of the paper but present some interest in
themselves: we provide a comparison theorem for super-solutions of BSDEs with jumps, as well as viability and
comparison properties for multidimensional constrained BSDEs. We isolate these results in order to present
them in a general framework and to simplify their possible future invocation. All the proofs of the paper only
rely on probabilistic arguments and can be applied in a non-Markovian setting.

Notations. Throughout this paper we are given a finite terminal time T and a probability space (Ω,G,P)
endowed with a d-dimensional standard Brownian motion W = (Wt)t≥0, and a Poisson random measure μ on
R+ × I, where I = {1, . . . ,m}, with intensity measure λ(di)dt for some finite measure λ on I with λ(i) > 0
for all i ∈ I. We set μ̃(dt, di) = μ(dt, di)− λ(di)dt the compensated measure associated to μ. σ(I) denotes the
σ-algebra of subsets of I. For x = (x1, . . . , x�) ∈ R� with 	 ∈ N, we set |x| =

√
|x1|2 + · · · + |x�|2 the Euclidean

norm. We denote by G = (Gt)t≥0 (resp. F = (Ft)t≥0) the augmentation of the natural filtration generated
by W and μ (resp. by W ), and by PG (resp. PF, PG, PF) the σ-algebra of G-predictable (resp. F-predictable
G-progressive, F-progressive) subsets of Ω × [0, T ]. We denote by S2

G
(resp. S2

F
) the set of real-valued càd-làg

G-adapted (resp. continuous F-adapted) processes Y = (Yt)0≤t≤T such that

‖Y ‖S2 :=
(
E
[

sup
0≤t≤T

|Yt|2
]) 1

2

< ∞.

Lp(0,T), p ≥ 1, is the set of real-valued processes φ = (φt)0≤t≤T such that

‖φ‖
Lp(0,T) :=

(
E
[ ∫ T

0

|φt|pdt
]) 1

p

< ∞,

and Lp
F
(0,T) (resp. Lp

G
(0,T)) is the subset of Lp(0,T) consisting of PF-measurable (resp. PG-measurable)

processes. Lp
F
(W) (resp. Lp

G
(W)), p ≥ 1, is the set of Rd-valued PF-measurable (resp. PG-measurable) processes
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Z = (Zt)0≤t≤T ∈ Lp
F
(0,T) (resp. Lp

G
(0,T)). Lp(μ̃), p≥ 1, is the set of P⊗σ(I)-measurable maps U :Ω×[0, T ]×I

→ R such that

‖U‖
Lp(μ̃) :=

(
E
[ ∫ T

0

∫
I
|Ut(i)|pλ(di)dt

]) 1
p

< ∞.

A2
F

(resp. A2
G
) is the closed subset of S2

F
(resp. S2

G
) consisting of nondecreasing processes K = (Kt)0≤t≤T with

K0 = 0. Finally, for t ∈ [0, T ], Tt denotes the set of F-stopping times τ such that τ ∈ [t, T ], P-a.s.. For ease of
notation, we omit in all the paper the dependence in ω ∈ Ω, whenever it is not relevant.

2. Constrained Backward SDEs with jumps

This section is devoted to the presentation of constrained Backward SDEs with jumps, generalizing the
framework considered in [17] or [22]. Namely:

• We allow the driver function to depend on the jump component of the backward process;
• We extend the class of possible constraint functions by letting them depend on all the components of the

solution to the BSDE.

We adapt the arguments developed in [17] in order to derive existence and uniqueness of a minimal solution for
this new type of BSDE. No major difficulty appears for the obtention of these results and, from our point of
view, the nice feature of such constrained BSDE relies on their relation with multidimensional reflected BSDE,
developed in the next section.

2.1. Formulation

A constrained BSDE with jumps is characterized by three objects:

• a terminal condition, i.e. a GT -measurable random variable ξ;
• a driver function, i.e. a map f :Ω×[0, T ]×R×Rd×Rm → R, which is PG⊗B(R)⊗B(Rd)⊗B(Rm)-measurable;
• a constraint function, i.e. a σ(I)⊗PG⊗B(R)⊗B(Rd)⊗B(R)-measurable map h : I×Ω× [0, T ]×R×Rd×R

→ R such that hi(ω, t, y, z, .) is non-increasing for all (i, ω, t, y, z) ∈ I ×Ω × [0, T ]× R × Rd.

Definition 2.1.

(i) A solution to the corresponding constrained BSDE with jumps is a quadruple (Y, Z, U,K) ∈ S2
G
×L2

G
(W)×

L2(μ̃) × A2
G

satisfying

Yt = ξ +
∫ T

t

f(s, Ys, Zs, Us)ds+KT −Kt −
∫ T

t

〈Zs, dWs〉 −
∫ T

t

∫
I
Us(i)μ(ds, di), (2.1)

for 0 ≤ t ≤ T a.s., as well as the constraint

hi(t, Yt− , Zt, Ut(i)) ≥ 0, dP⊗ dt⊗ λ(di) a.e. . (2.2)

(ii) (Y, Z, U,K) is a minimal solution to (2.1)–(2.2) whenever it is solution to (2.1)–(2.2) and for any other
solution (Y̌ , Ž, Ǔ , Ǩ) of (2.1)–(2.2), we have Y ≤ Y̌ a.s.

We notice that for a minimal solution (Y, Z, U,K) to (2.1)–(2.2), the component Y naturally interprets in the
terminology of Peng [20] as the smallest supersolution to (2.1)–(2.2).

Remark 2.1. As in the Brownian setting considered in [22], since the constraint (2.2) involves all the com-
ponents of the solution, the minimality of the solution can not be expressed in general through a Skorohod
condition type. Nevertheless, in a Markovian setting and when the constraint does not involve the Z-component
of the solution, the authors provide in Corollary 2.1 of [12] a Skorokhod condition under an extra regularity
requirement.
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Remark 2.2. In the case where the driver function f does not depend on U and the constraint function h is of
the form hi(u+ c(t, y, z)), observe that this BSDE exactly fits in the framework considered in [17]. Similarly, in
the Brownian case (i.e. no jump component), this type of BSDEs was studied in [22]. Therefore, our framework
generalizes and unifies those considered in [17, 22].

In order to work on this class of BSDE, we require the classical Lipschitz and linear growth conditions on
the coefficients, as well as a control on the way the driver function depends on the jump component U of the
BSDE. We regroup these conditions in the following assumption.
(H0)

(i) There exists a constant k > 0 such that the functions f and h satisfy P-a.s. the uniform Lipschitz property:

|f(t, y, z, u)− f(t, y′, z′, u′)| ≤ k|(y, z, u) − (y′, z′, u′)|,
|hi(t, y, z, ui) − hi(t, y′, z′, u′i)| ≤ k|(y, z, ui) − (y′, z′, u′i)|,

for all {i, t, (y, z, u), (y′, z′, u′)} ∈ I × [0, T ]× [R × Rd × Rm]2.
(ii) The coefficients ξ, f and h satisfy the following integrability condition

E|ξ|2 +
∫ T

0

E|f(t, 0, 0, 0)|2dt+
∑
i∈I

∫ T

0

E|hi(t, 0, 0, 0)|2dt < ∞. (2.3)

(iii) There exist two constants C1 ≥ C2 > −1 such that we can find a PG⊗σ(I)⊗B(R)⊗B(Rd)⊗B(Rm)⊗B(Rm)-
measurable map γ : Ω × [0, T ]× I × R × Rd × Rm × Rm → [C2, C1] satisfying

f(t, y, z, u)− f(t, y, z, u′) ≤
∫
I
(ui − u′i)γ

y,z,u,u′
t (i)λ(di),

for all (i, t, y, z, u, u′) ∈ I × [0, T ]× R × Rd × [Rm]2, P-a.s..

Remark 2.3. Under Assumption (H0) (i) and (ii), existence and uniqueness of a solution (Y, Z, U,K) to the
BSDE (2.1) with K = 0 follows from classical results on BSDEs with jumps, see Lemma 2.4 in [25]. In order to
add the h-constraint (2.2), one needs as usual to relax the dynamics of Y by injecting the non-decreasing process
K in (2.1). In mathematical finance, the purpose of this new process K is to increase the super replication price
Y of a contingent claim, under additional portfolio constraints. In order to find a minimal solution to the
constrained BSDE (2.1)–(2.2), the nondecreasing property of h is crucial for stating comparison principles
needed in the penalization approach.

Remark 2.4. Part (iii) of Assumption (H0) constrains the dependence of the driver f with respect to the
jump component of the BSDE. It is inspired by [24] and will ensure comparison results for BSDEs driven by
this type of driver, as detailed in Section 4.1.

2.2. Approximation by penalization

This paragraph focuses on the existence of a unique minimal solution for the constrained BSDE with
jumps (2.1)–(2.2). Our approach requires the addition of an increasing component to the comparison results for
BSDEs with jumps, derived by Royer [24]. This comparison theorem for super-solutions of BSDEs with jumps
is reported in Section 4.1.

The proof relies on a classical penalization argument and we introduce the following sequence of BSDEs with
jumps

Y nt = ξ +
∫ T

t

f(s, Y ns , Z
n
s , U

n
s )ds+ n

∫ T

t

∫
I
h−i (s, Y ns , Z

n
s , U

n
s (i))λ(di)ds (2.4)

−
∫ T

t

〈Zns , dWs〉 −
∫ T

t

∫
I
Uns (i)μ(ds, di), 0 ≤ t ≤ T, n ∈ N,
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where h−i (.) := max(−hi(.), 0) is the negative part of the function hi, i ∈ I. Under Assumption (H0), the
Lipschitz property of the coefficients f and h ensures existence and uniqueness of a solution (Y n, Zn, Un) ∈
S2

G
× L2

G
(W) × L2(μ̃) to (2.4), see Theorem 2.1 in [1].

In order to obtain the convergence of the sequence (Y n)n∈N, we require:
(H1) There exists (Y̌ , Ž, Ǔ , Ǩ) ∈ S2

G
× L2

G
(W) × L2(μ̃) × A2

G
solution of (2.1)–(2.2).

This assumption, which may appear restrictive, is rather classical in the framework of BSDE with constraints
on other component of the solution than Y (see e.g. [17, 22]). We present in Section 3 a large class of cases
where (H1) is satisfied, see Example 3.1 for instance.

A first result is that under (H0)–(H1), the sequence (Y n)n∈N converges. More precisely, we have the following
Lemma.

Lemma 2.1. If (H0) holds, the sequence (Y n)n∈N is nondecreasing:

Y nt ≤ Y n+1
t , t ∈ [0, T ], P− a.s.

for all n ∈ N. Moreover, under (H1), the sequence (Y n)n∈N converges increasingly to a process Y ∈ S2
G
:

Y nt −→ Yt, as n→ ∞, t ∈ [0, T ], P − a.s.

Proof. For n ∈ N, we introduce the Lipschitz map fn := f + n
∫
I h

−dλ. Since f satisfies (H0)(iii) and h is
lipschitz and non-increasing, we deduce:

fn(t, y, z, u)− fn(t, y, z, u′) ≤
∫
I
{(ui − u′i)γ

y,z,u,u′
t (i)+n(h−i (t, y, z, ui) − h−i (t, y, z, u′i))}λ(di),

≤
∫
I
(ui − u′i)(γ

y,z,u,u′
t (i) + kn1ui≥u′

i
)λ(di), P- a.s, n ∈ N,

for any (t, y, z, u, u′) ∈ [0, T ]×R×Rd×Rm×Rm. Thus, for any n ∈ N, the coefficients fn and fn+1 satisfy (H0)
as well as fn ≤ fn+1. We deduce from a simplified version of Proposition 4.1 without the additional increasing
process K, that the sequence (Y n)n∈N is non-decreasing.

Furthermore, for any quadruple (Y̌ , Ž, Ǔ , Ǩ) ∈ S2
G
× L2

G
(W) × L2(μ̃) ×A2

G
satisfying (2.1)–(2.2), we obtain

Y n ≤ Y̌ a.s., n ∈ N, applying once again Proposition 4.1 but with coefficients f1 = f2 = fn and K2 = Ǩ.
Therefore, under (H1), the sequence (Y n)n∈N is nondecreasing and upper bounded, ensuring its monotonic
convergence to a process Y with ‖Y ‖S2 <∞. �

We are now ready to study the convergence of the quadruple (Y n, Zn, Un,Kn)n∈N, where the nondecreasing
process Kn ∈ A2

G
is defined by

Kn
t := n

∫ t

0

∫
I
h−i (s, Y ns , Z

n
s , U

n
s (i))λ(di)ds, 0 ≤ t ≤ T, n ∈ N.

We first provide a uniform bound for the sequence (Y n, Zn, Un,Kn)n∈N.

Lemma 2.2. Under (H0) and (H1), there exists a constant C such that

‖Y n‖S2 + ‖Zn‖L2(0,T) + ‖Un‖L2(μ̃) + ‖Kn‖S2 ≤ C,

for all n ∈ N.

Proof. From Lemma 2.1, there exists a constant C such that

sup
n∈N

‖Y n‖S2 ≤ ‖Y 0‖S2 + ‖Y ‖S2 ≤ C. (2.5)



ADDING CONSTRAINTS TO BSDES WITH JUMPS: AN ALTERNATIVE TO MULTIDIMENSIONAL REFLECTIONS 239

Applying Itô’s formula to |Y n|2 and using (H0) (i), we have

E|Y nt |2 = E|Y nT |2 + 2E
∫ T

t

Y ns f(s, Y ns , Z
n
s , U

n
s )ds− E

∫ T

t

|Zns |2ds

−E
∫ T

t

∫
I

(
|Y ns− + Uns (i)|2 − |Y ns− |2

)
μ(di, ds) + 2E

∫ T

t

Y ns dKn
s

≤ E|Y nT |2 + 2E
∫ T

t

|Y ns |
(
f(s, 0, 0, 0) + k|Y ns | + k|Zns | + k|Uns |

)
ds− E

∫ T

t

|Zns |ds

−E
∫ T

t

∫
I

(
2Y ns U

n
s (i) − |Uns (i)|2

)
λ(di)ds+ 2E sup

s∈[0,T ]

|Y ns |
∫ T

t

dKn
s .

Using the inequality 2ab ≤ η|a|2 + |b|2
η for a, b ∈ R and η > 0 together with (H0) (ii), we get the existence of a

constant C such that

E
∫ T

0

|Zns |2ds+ E
∫ T

0

∫
I
|Uns (i)|2λ(di)ds ≤ C

(
E sup
t∈[0,T ]

|Y nt |2 + 1
)

+ 2EKn
T sup
t∈[0,T ]

|Y nt |. (2.6)

Then, since

Kn
T = Y n0 − Y nT −

∫ T

0

f(s, Y ns , Z
n
s , U

n
s )ds+

∫ T

0

〈Zns , dWs〉 +
∫ T

0

∫
I
Uns (i)μ(di, ds),

we have from (H0) (i) the existence of a positive constant C′ such that

E|Kn
T |2 ≤ C′

(
1 + E sup

t∈[0,T ]

|Y nt |2 + E
∫ T

0

|Znt |2dt+ E
∫ T

0

∫
I
|Uns (i)|2λ(di)ds

)
. (2.7)

Applying the inequality 2ab ≤ 2C′|a|2 + |b|2
2C′ for a, b ∈ R, we obtain

2EKn
T sup
t∈[0,T ]

|Y nt | ≤ 1
2
E
∫ T

0

|Zns |2ds+
1
2
E
∫ T

0

∫
I
|Uns (i)|2λ(di)ds+ C′′

(
1 + E sup

t∈[0,T ]

|Y nt |2
)
.

Combining this last estimate with (2.5) and (2.6), we obtain a constant C such that

‖Y n‖S2 + ‖Zn‖L2(0,T) + ‖Un‖L2(μ̃) ≤ C, n ∈ N.

Then, combining the previous inequality with (2.7), we get

‖Y n‖S2 + ‖Zn‖L2(0,T) + ‖Un‖L2(μ̃) + ‖Kn‖S2 ≤ C, n ∈ N. (2.8)

�

The next theorem states that the sequence (Y n, Zn, Un,Kn)n∈N converges indeed to the minimal solution of
the constrained BSDE (2.1)–(2.2).

Theorem 2.1. Under (H0) and (H1), there exists (Z,U,K) ∈ S2
G
× L2

G
(W) × L2(μ̃) × A2

G
such that

(i) (Y, Z, U,K) is the unique minimal solution in S2
G
× L2

G
(W) × L2(μ̃) × A2

G
to (2.1)–(2.2), with K pre-

dictable;
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(ii) the following convergence holds

‖Y n − Y ‖
L2(0,T)

+ ‖Zn − Z‖
Lp(0,T) + ‖Un − U‖

Lp(μ̃) −→
n→∞ 0, 1 ≤ p < 2.

Moreover, (Z,U,K) is the weak limit of (Zn, Un,Kn)n∈N in L2
G
(W)× L2(μ̃) × L2

G
(0,T) and Kt is the

weak limit of (Kn
t )n∈N in L2(Ω,Gt,P), for all t ∈ [0, T ].

Proof. We prove the statements of the theorem in a reverse order. First, we show the convergence of the sequence
(Y n, Zn, Un,Kn)n∈N. Second, we verify that the limit is a minimal solution to (2.1)–(2.2). Third, we tackle the
uniqueness property.

Step 1. Convergence of (Y n, Zn, Un,Kn)n∈N.
From Lemmata 2.1 and 2.2, we are in position to apply Theorem 3.1 in [13] and we deduce that the sequence
(Y n, Zn, Un,Kn)n∈N converges in the sense specified above. Furthermore, the limit (Y, Z, U,K) ∈ S2

G
×L2

G
(W)×

L2(μ̃) × A2
G

satisfies (2.1) and K is predictable.

Step 2. (Y, Z, U,K) is a minimal solution to (2.1)–(2.2).
Since (Y, Z, U,K) solves (2.1), we now focus on the constraint property (2.2). From the previous convergence
result, we derive in particular that (Y n, Zn, Un)n∈N converges in L1

G
(0,T) × L1

G
(0,T) × L1(μ̃) to (Y, Z, U).

Since h is Lipschitz, we get

E[Kn
T ]

n
= E

[∫ T

0

∫
I
h−i (s, Y ns , Z

n
s , U

n
s (i))λ(di)ds

]
→ E

[∫ T

0

∫
I
h−i (s, Ys, Zs, Us(i))λ(di)ds

]
,

as n goes to infinity. Since (Kn
T )n∈N is uniformly bounded in L1(Ω,GT,P) according to Lemma 2.2, we deduce

that the right hand side of the previous expression equals zero. Hence the constraint (2.2) is satisfied.
As observed in the previous step, for any quadruple (Y̌ , Ž, Ǔ , Ǩ) ∈ S2

G
×L2

G
(W)×L2(μ̃)×A2

G
satisfying (2.1)–

(2.2), the sequence (Y n)n∈N is upper bounded by Y̌ . Passing to the limit, we deduce that (Y, Z, U,K) is a minimal
solution to (2.1)–(2.2).

Step 3. Uniqueness of the minimal solution.
From the minimality condition, the uniqueness for the component Y of the solution is obvious. Suppose now that
we have two solutions (Y, Z, U,K) and (Y, Z ′, U ′,K ′) in S2

G
×L2

G
(W)×L2(μ̃)×A2

G
with K and K ′ predictable.

Then we have ∫ t

0

[f(s, Ys, Zs, Us) − f(s, Ys, Z ′
s, U

′
s)]ds+

∫ t

0

[Z ′
s − Zs]dWs

+
∫ t

0

∫
I
[U ′
s(i) − Us(i)]μ(di, ds) +K ′

t −Kt = 0, 0 ≤ t ≤ T. (2.9)

Since μ is a Poisson measure, it has unaccessible jumps. Recalling that K and K ′ are predictable and removing
the predictable projection of the previous expression (2.9), we compute∫

I
[U ′
t(i) − Ut(i)]μ({t}, di) = 0, 0 ≤ t ≤ T, P − p.s.

Recalling that μ =
∑
k δτk,ξk and taking t = τk in the previous expression, we deduce U ′ = U . Plugging this

identity in (2.9), we deduce

∫ t

0

[f(s, Ys, Zs, Us) − f(s, Ys, Z ′
s, Us)]ds+

∫ t

0

[Z ′
s − Zs]dWs +K ′

t −Kt = 0, (2.10)
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for 0 ≤ t ≤ T . Identifying the finite variation and the Brownian parts in (2.10) we get

∫ T

0

[Z ′
s − Zs]dWs = 0,

which leads to Z = Z ′. The uniqueness of K finally follows from (2.10). �

Remark 2.5. A key argument in the proof of Theorem 2.1 is the monotonic limit theorem for BSDEs with
jumps proved in [13]. Let us mention that this theorem was initially proved by Peng [20] in a Brownian framework
and that the idea of the proof of the extension to the mixed Brownian–Poisson framework was already given in
Royer [24].

Remark 2.6. Observe that the purpose of Assumption (H1) is simply to ensure an upper bound in S2
G

on the
sequence of solutions (Y n)n∈N to the penalized BSDEs. If such an upper bound already exists, there exists a
minimal solution to (2.1)–(2.2) and (H1) is automatically satisfied. Hence, Theorem 2.1 also holds under (H0)
and the uniform estimate

sup
n∈N

‖Y n‖S2 < +∞. (2.11)

Note that, contrary to the case where the constraint only involves the component Y of the solution, we cannot
derive in general the uniform estimate (2.11), see, e.g., the counterexample provided in Remark 3.1 of [17].

Particular cases where Assumption (H1) is satisfied are for instance presented in Theorem 3.1, see Exam-
ple 3.1 below. In a Markovian setting, sufficient conditions for this assumption are also provided in Remark 3.2
of [12].

3. Connection with multidimensional reflected BSDEs

In this section, we prove that one-dimensional constrained BSDEs with jumps offer a nice alternative for
the representation of solutions to multidimensional reflected BSDEs studied in [14,16]. This representation has
practical implications, since, for example, it opens the door to the numerical resolution of multi-dimensional
reflected BSDEs via the approximation of a single one-dimensional constrained BSDE with additional artificial
jumps. The arguments presented here are purely probabilistic and therefore apply in the non Markovian frame-
work considered in [16]. Furthermore, the proofs require precise comparison results for reflected BSDEs based
on viability properties that are reported in Section 4.2 for the convenience of the reader.

3.1. Multidimensional reflected BSDEs

Recall that solving a general multidimensional reflected BSDE consists in finding m triplets (Y i, Zi,Ki)i∈I
∈ (S2

F
× L2

F
(W) × A2

F
)m satisfying, for all i ∈ I,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Y it = ξi +
∫ T
t ψi(s, Y 1

s , . . . , Y
m
s , Zis)ds−

∫ T
t 〈Zis, dWs〉 +Ki

T −Ki
t , 0 ≤ t ≤ T,

Y it ≥ maxj∈Ai hi,j(t, Y
j
t ), 0 ≤ t ≤ T,∫ T

0 [Y it − maxj∈Ai{hi,j(t, Y
j
t )}]dKi

t = 0,

(3.1)

where ψi : Ω × [0, T ] × Rm × Rd → R is an F-progressively measurable map, ξi ∈ L2(Ω,FT ,P), Ai is a
nonempty subset of I and, for any j ∈ Ai ∪ {i}, hi,j : Ω × [0, T ] × R → R is a given PF ⊗ B(R)-measurable
function satisfying hi,i(t, y) = y for all (t, y) ∈ [0, T ]× R.

As detailed in Theorems 3.1 and 4.2 of [14], existence and uniqueness of a solution to (3.1) is ensured by the
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following assumption:
(H2)

(i) For any i ∈ I and j ∈ Ai, we have ξi ≥ hi,j(T, ξj).
(ii) For any i ∈ I, E|ξi|2 + E

∫ T
0 supy∈Rm |ψi(t, y, 0)|21{yi=0}dt < +∞, and ψi is Lipschitz continuous: there

exists a constant kψ ≥ 0 such that

|ψi(t, y, z) − ψi(t, y′, z′)| ≤ kψ(|y − y′| + |z − z′|), (t, y, z, y′, z′) ∈ [0, T ]× [Rm × R
d]2.

(iii) For any i ∈ I, and j �= i, ψi is nondecreasing in its (j+1)−th variable i.e. for any (t, y, y′, z) ∈ I×[Rm]2×Rd

such that yk = y′k for k �= j and yj ≤ y′j , we have

ψi(t, y, z) ≤ ψi(t, y′, z) P − a.s.

(iv) For any (i, t, y) ∈ I × [0, T ]×R and j ∈ Ai, hi,j is continuous, hi,j(t, .) is a 1-Lipschitz increasing function
satisfying hi,j(t, y) ≤ y, P-a.s. and we have hi,j(., 0) ∈ L2(0,T).

(v) For any i ∈ I, j ∈ Ai and l ∈ Aj , we have l ∈ Ai ∪ {i} and

hi,j(t, hj,l(t, y)) < hi,l(t, y), (t, y) ∈ [0, T ]× R.

Remark 3.1. Part (ii) and (iii) of assumption (H2) are classical Lipschitz and monotonicity properties of the
driver. Parts (iv)–(v) ensure a tractable form for the domain of Rm where (Y i)i∈I lies, and (i) implies that the
terminal condition is indeed in the domain. Recent results in [5] allow to relax the monotonicity condition (iii)
for the case of constraint function h associated to switching problems.

Remark 3.2. Under assumption (H2), the increasing property of the functions (hi,j)i,j together with a
straightforward recursive argument allows to generalize Assumption (H2)–(v) to the consideration of tuple
of any size N : for any N ∈ N, and (i1, . . . , iN) ∈ IN with ik ∈ Aik−1 for any k ≤ N , we have

hi1,i2(t, .) ◦ hi2,i3(t, .) ◦ . . . ◦ hiN−1,iN (t, y) < hi1,iN (t, y), (t, y) ∈ [0, T ]× R.

3.2. Corresponding constrained BSDE with jumps

We consider now the following one-dimensional constrained BSDE with jumps : find a minimal quadruple
(Ỹ , Z̃, Ũ , K̃) ∈ S2

G
× L2

G
(0,T) × L2(μ̃) × A2

G
satisfying

Ỹt = ξIT +
∫ T

t

ψI
s− (s, Ỹs + Ũs(1)1I

s− �=1, . . . , Ỹs + Ũs(m)1I
s− �=m, Z̃s)ds+ K̃T − K̃t

−
∫ T

t

〈Z̃s, dWs〉 −
∫ T

t

∫
I
Ũs(i)μ(ds, di), 0 ≤ t ≤ T, a.s. (3.2)

together with the constraint

1AI
t−

(i)
[
Ỹt− − hIt− ,i(t, Ỹt− + Ũt(i))

]
≥ 0, dP ⊗ dt⊗ λ(di) a.e., (3.3)

where the process I is a pure jump process defined by

It = I0 +
∫ t

0

∫
I
(i− Is−)μ(ds, di).

Remark 3.3. If the Poisson measure rewrites
∑

n≥0 δ(κn,Ln), where (κn)n are the jump times and (Ln)n the
jump sizes, the pure jump process I simply coincides with Ln on each [κn, κn+1).
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Considering I as an extra source of randomness, the BSDE (3.2)–(3.3) enters into the class of constrained
BSDEs with jumps of the form (2.1)–(2.2) studied above, with the following correspondence

ξ = ξIT ;
f(t, y, z, u) = ψIt− (t, (y + ui1It− �=i)i∈I , z), (t, y, z, u) ∈ [0, T ]× R × R

d × R
m ;

hi(t, y, z, v) = {y − hIt− ,i(t, y + v)}1i∈AIt− (i, t, y, z, v) ∈ I × [0, T ]× R × R
d × R.

As detailed below, assumption (H2) is sufficient to ensure the existence of a one-dimensional minimal solution
to the BSDE (3.2)–(3.3). Remarkably, we prove hereafter that this one-dimensional solution directly relates with
the multidimensional solution of the reflected BSDE (3.1). Since the new constrained BSDE is one-dimensional,
this alternative BSDE representation is promising for the numerical resolution of optimal switching problems.
An entirely probabilistic numerical scheme for these equations is given in [12].

We are now ready to state the main result of the paper.

Theorem 3.1. Suppose that assumption (H2) is in force and denote by (Y i, Zi,Ki)i∈I the unique solution
of (3.1). Then, the constrained BSDE (3.2)–(3.3) satisfies (H0)-(H1) and its unique corresponding minimal
solution (Ỹ , Z̃, Ũ , K̃) ∈ S2

G
× L2

G
(W) × L2(μ̃) × A2

G
verifies

Ỹt = Y Itt , Z̃t = Z
It−
t , Ũt = (Y it − Y

It−
t− )i∈I , 0 ≤ t ≤ T. (3.4)

Proof. The proof divides in 3 steps. First we prove the existence of a unique minimal solution to (3.2)–(3.3).
Then, we introduce a sequence of penalized BSDEs converging to the solution of the multidimensional reflected
BSDE (3.1). Finally, we prove that a corresponding sequence of penalized BSDEs with jumps, built via a relation
of the form of (3.4), converges indeed to the solution of (3.2)–(3.3).

Step 1. Existence and uniqueness of a minimal solution to (3.2)–(3.3).
In order to use Theorem 2.1, we need to verify that assumptions (H0) and (H1) are satisfied in this context.

First, parts (i) and (ii) of assumption (H0) are direct consequences of (H2)(ii) and (iv). Fix any
(t, y, z, u, u′) ∈ [0, T ]× R × Rd × Rm × Rm, and define v(k) ∈ Rm by

v(k) = (u′1, . . . , u
′
k−1, uk, . . . , um), 1 ≤ k ≤ m+ 1.

From the monotonicity assumption (H2)(iii) on the Lipschitz function ψ we get

f(t, y, z, u)−f(t, y, z, u′)=
m∑
k=1

ψI
t− (t, (y + v

(k)
i 1I

t− �=i)i∈I , z)−ψI
t− (t, (y + v

(k+1)
i 1I

t− �=i)i∈I , z)

≤kψ
m−1∑
k=1

(uk − u′k)1uk≥u′
k
1k �=I

t− .

Taking γy,z,u,u
′

t (i) = kψ
λ(i)1uk≥u′

k
1i�=It− (which is well defined, since λ(i) > 0 for any i ∈ I), we get (H0)–(iii).

In order to prove that (H1) holds, one needs to verify the existence of a solution to (3.2)–(3.3). We indeed
check hereafter that the candidate (Ỹ , Z̃, Ũ) defined in (3.4) satisfies (3.2) as well as (3.3). Let define Nt :=
μ(I × [0, t]) for t ∈ [0, T ], the (random) number of stopping times κn, associated to the random measure μ,
which satisfy κn ∈ [0, t]. Then, since Y is a solution of the reflected BSDE (3.1), we have

Y
LNT
κNT

= ξLNT +
∫ T

κNT

ψLNT (s, (Y
LNT
s + Us(i)1i�=LNT )i∈I , Z

LNT
s )ds

−
∫ T

κNT

Z
LNT
s dWs +K

LNT
T −K

LNT
κNT

.
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Then, still using the equation (3.1) and identifying the jumps at time κNT , we compute:

Y
LNT−1
κNT−1 = Y

LNT
κNT

+
∫ κNT

κNT−1

ψLNT−1(s, (Y
LNT−1
s + Us(i)1i�=LNT−1)i∈I , Z

LNT−1
s )ds

−
∫ κNt

κNt−1

Z
LNT−1
s dWs +K

LNT−1
κNT

−K
LNT−1
κNT−1 + (Y

LNT−1
κNT

− Y
LNT
κNT

)

= ξIT +
∫ T

κNT−1

ψI
s− (s, (Y Iss + Us(i)1i�=I

s− )i∈I , Z
Is−
s )ds−

∫ T

κNT−1

Z
Is−
s dWs

−
∫ T

κNT−1

∫
I
Us(i)μ(di, ds) +K

LNT
T −K

LNT
κNT

+K
LNT−1
κNT

−K
LNT−1
κNT−1 .

Repeating this procedure until time κNt+1 for t ∈ [0, T ], we get

Y
LNt+1
κNt+1 = ξIT +

∫ T

κNt+1

ψIs− (s, (Y Iss + Us(i)1i�=Is− )i∈I , Z
Is−
s )ds−

∫ T

κNt+1

Z
Is−
s dWs

−
∫ T

κNt+1

∫
I
Us(i)μ(di, ds) +K

LNT
T −K

LNT
κNT

+K
LNT−1
κNT

−K
LNT−1
κNT−1

+ . . .+K
LNt+1
κNt+2 −K

LNt+1
κNt+1 .

Combining this last expression with the equation satisfied by Y LNt between t and κNt+1, we deduce the exis-
tence of a square integrable increasing process K̃ such that (Ỹ , Z̃, Ũ , K̃) satisfies equation (3.2). The reflection
constraint in (3.1) together with the identification (3.4) imply directly that (Ỹ , Z̃, Ũ , K̃) satisfies the con-
straint (3.3).

Therefore (H0) and (H1) hold for (3.2)–(3.3) and the existence of a unique minimal solution follows from
Theorem 2.1.

Step 2. Penalization of the multidimensional BSDE (3.1).
We now introduce the following sequence of multidimensional penalized BSDEs: for n ∈ N, find m couples
(Y i,n, Zi,n)i∈I ∈ (S2

F
× L2

F
(W))m satisfying

Y i,nt = ξi +
∫ T

t

ψni (s, Y 1,n
s , . . . , Y m,ns , Zns )ds−

∫ T

t

〈Zi,ns , dWs〉, 0 ≤ t ≤ T, i ∈ I, (3.5)

where the random map ψn is defined on [0, T ]× Rm × [Rd]m by

ψni (t, y, z) = ψi(t, y, zi) + n
∑
j∈Ai

[yi − hi,j(t, yj)]−λ(j), (i, t, y) ∈ I × [0, T ]× R
d.

For any n ∈ N, the existence of a unique solution to (3.5) is given in the seminal paper [18] and we prove
now that the sequence of solutions to these BSDEs converges to the solution of the multidimensional reflected
BSDE (3.1).

In order to prove that the sequence (Y i,n)n∈N is nondecreasing and convergent for any i ∈ I, we shall appeal to
the multidimensional comparison theorem for reflected BSDEs presented in Section 4.2 of the paper. First, since
ψni ≤ ψn+1

i for any i ∈ I and n ∈ N, Theorem 2.1 in [15] implies that the sequence (Y .,n)n∈N is nondecreasing
componentwise. Second, we compute from the Lipschitz property of ψ that

−2〈y, ψn(t, y′, z) − ψn(t, y′, z′)〉 = −2〈y, ψ(t, y′, z) − ψ(t, y′, z′)〉 ≤ k2
ψ |y|2 +

m∑
i=1

|zi − z′i|2,
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P-a.s., for any {t, y, y′, (z, z′)} ∈ [0, T ] × [R+]m × Rm × [Rd×m]2 and n ∈ N. Therefore, since ψn(t, Yt, Zt) =
ψ(t, Yt, Zt) for t ∈ [0, T ], we deduce from Proposition 4.3 below that

Y i,nt ≤ Y it , for all (i, t, n) ∈ I × [0, T ]× N. (3.6)

Introducing the sequence of processes Ki,n := n
∫ .
0

∫
Ai

[Y i,ns − hi,j(s, Y j,ns )]−λ(dj)ds, for i ∈ I and n ∈ N, we
deduce from Peng’s monotonic limit theorem [20] the existence of:

• Ŷ 1, . . . , Ŷ m F-adapted càdlàg processes with ‖Ŷ i‖S2 <∞ for all i ∈ I,
• Ẑ1, . . . , Ẑm ∈ L2

F
(W),

• K̂1, . . . , K̂m F-adapted nondecreasing càdlàg processes with K̂i
0 = 0 and ‖K̂i‖S2 <∞, for all i ∈ I,

such that Y i,n ↑ Ŷ i a.e., Y i,n → Ŷ i in L2
F
(0,T), Zi,n → Ẑi in L2

F
(W) weakly, Ki,n

T → K̂i
T in L2(Ω,FT,P)

weakly and {
Ŷ it = ξi +

∫ T
t
ψi(s, Ŷ 1

s , . . . , Ŷ
m
s , Ẑis)ds−

∫ T
t
〈Ẑis, dWs〉 + K̂i

T − K̂i
t , i ∈ I,

Ŷ it ≥ maxj∈Ai hi,j(t, Ŷ
j
t ), 0 ≤ t ≤ T, i ∈ I.

(3.7)

Observe that the last inequality in (3.7) is not a direct consequence of Peng’s monotonic limit theorem but
follows instead from a similar argument as the one used in Step 2 of the proof of Theorem 2.1 above: for i ∈ I,
since the sequence (Ki,n)n is uniformly bounded in L1(Ω,FT,P) we have

0 = lim
n→∞

E[|Ki,n
T |]
n

= lim
n→∞E

[∫ T

0

∫
Ai

[Y i,ns − hi,j(s, Y j,ns )]−λ(dj)ds

]

= E

[∫ T

0

∫
Ai

[Ŷ is − hi,j(s, Ŷ js )]−λ(dj)ds

]
, i ∈ I,

which easily rewrites as the constraint inequality in (3.7). It still remains to prove that (Ŷ , Ẑ, K̂) also satisfies
the minimality property of (3.1).

For this purpose, we consider the following RBSDE whose unique solution (Ỹ , Z̃, K̃) in (S2
F
×L2

F
(W)×A2

F
)m

exists according to Theorem 2.1 in [21]:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Ỹ it = ξi +
∫ T
t
ψi(s, Ŷ 1

s , . . . , Ŷ
i−1
s , Ỹ is , Ŷ

i+1
s . . . , Ŷ ms , Z̃is)ds

−
∫ T
t 〈Z̃is, dWs〉 + K̃i

T − K̃i
t ,

Ỹ it ≥ maxj∈Ai hi,j(t, Ŷ
j
t ), 0 ≤ t ≤ T, i ∈ I,∫ T

0
[Ỹ it− − maxj∈Ai hi,j(t, Ŷ

j
t−)]dK̃j

t = 0, i ∈ I.

(3.8)

We note that (3.7) and (3.8) have the same lower barrier. For any i ∈ I, since Ỹ i is the smallest ψi-
supermartingale with lower barrier maxj∈Ai h(., Ŷ j. ), we know from Theorem 2.1 in [21] that Ỹ i ≤ Ŷ i.

On the other hand, we deduce from (H2) (iii) that

ψni (s, Ŷ 1
s , . . . , Ŷ

i−1
s , y, Ŷ i+1

s , . . . , Ŷ ms ) ≥ ψni (s, Y 1,n
s , . . . , Y i−1,n

s , y, Y i+1,n
s , . . . , Y m,ns ),

for all (i, s, y, n) ∈ I × [0, T ]× R × N, P − a.s.. For i ∈ I, since Ỹ i ≥ maxj∈Ai hi,j(., Y j. ), combining (H2) (iv)
and a comparison theorem for one dimensional reflected BSDEs, we get Y i,n ≤ Ỹ i for any n ∈ N, and, sending
n to infinity, deduce Ŷ i ≤ Ỹ i.

Therefore Ŷ = Ỹ and (Ŷ , Ẑ, K̂) satisfies⎧⎪⎪⎨
⎪⎪⎩
Ŷ it = ξi +

∫ T
t ψi(s, Ŷs, Ẑis)ds−

∫ T
t 〈Ẑis, dWs〉 + K̂i

T − K̂i
t , 0 ≤ t ≤ T, i ∈ I,

Ŷ it ≥ maxj∈Ai hi,j(t, Ŷ
j
t ), 0 ≤ t ≤ T, i ∈ I,∫ T

0 [Ŷ it− − maxj∈Ai hi,j(t, Ŷ
j
t−)]dK̂j

t = 0, i ∈ I.

(3.9)
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Notice that the minimality condition in (3.9) differs from the expected one in (3.1). Nevertheless, those two
coincide whenever Ŷ is continuous, property that we verify now.

Suppose on the contrary that Ŷ i1t �= Ŷ i1t− for some fixed (i1, t) ∈ I × [0, T ]. Then, we deduce from (3.9) that
Ŷ i1t − Ŷ i1t− = K̂i1

t− − K̂i1
t < 0, which further implies

Ŷ i1t− = max
j∈Ai

hi1,j(t, Ŷ
j
t−) = hi1,i2(t, Ŷ

i2
t−),

for some i2 �= i1. Using the constraint satisfied by Ŷ , we get

hi1,i2(t, Ŷ
i2
t−) = Ŷ i1t− > Ŷ i1t ≥ max

i∈Ai1
hi1,i(t, Ŷ

i
t ) ≥ hi1,i2(t, Ŷ

i2
t ).

Thus Ŷ i2t < Ŷ i2t− . Repeating this argument we get a finite cyclic sequence (ik)1≤k≤N such that iN = i1 and

Ŷ
ik−1

t− = hik−1,ik(t, Ŷ
ik
t− ), 2 ≤ k ≤ N.

Since hi1,iN (t, Ŷ i1t−) ≤ Ŷ i1t− according to (H2) (iv), we deduce that

hi1,iN (t, Ŷ i1t−) ≤ hi1,i2(t, .) ◦ hi2,i3(t, .) ◦ . . . ◦ hiN−1,iN (t, Ŷ i1t−), t ∈ [0, T ],

which contradicts (H2) (v), see Remark 3.2.

Step 3. Link between solutions of BSDE (3.1) and BSDE (3.2)–(3.3).
For n ∈ N, define the process (Y I,n, ZI,n, U I,n) ∈ S2

G
× L2

G
(W) × L2(μ̃) by

Y I,nt := Y It,nt , ZI,nt := Z
It− ,n
t and U I,nt := (Y i,nt − Y I,nt− )i∈I , 0 ≤ t ≤ T. (3.10)

In order to obtain the correspondence (3.4), it only remains to prove that (Y I,n, ZI,n, U I,n)n converges to
(Ỹ , Z̃, Ũ).

As in Step 1, writing the dynamics of (3.5) between each successive stopping times associated to the random
measure μ, we easily check that (Y I,n, ZI,n, U I,n) is the unique solution of the following penalized BSDE

Y I,nt = ξIT +
∫ T

t

ψIs− (s, Y I,ns + U I,ns (1)1Is− �=1, . . . , Y
I,n
s + U I,ns (m)1Is− �=m, ZI,ns )ds

−
∫ T

t

〈ZI,ns , dWs〉 + n

∫ T

t

∫
I
h−i (s, Y I,ns− , ZI,ns , U I,ns (i))λ(di)ds +

∫ T

t

∫
I
U I,ns (i)μ(ds, di),

for 0 ≤ t ≤ T . Therefore, Step 1 ensures that we can apply Theorem 2.1 and we get

‖Y I,n − Ỹ ‖
L2(0,T)

+ ‖ZI,n − Z̃‖
Lp(0,T) + ‖U I,n − Ũ‖

Lp(μ̃) −→ 0, p < 2, (3.11)

where we recall that (Ỹ , Z̃, Ũ) is the minimal solution to (3.2)–(3.3). Combining this result with (3.10) and
Step 2 concludes the proof. �

Example 3.1. Let consider the case of optimal switching problem developed in [16] where the constraint
function h is given by hi,j : yj �→ yj − cij for i, j ∈ I and the cost matrix c satisfies

cij + cjk ≥ cik, i, j, k ∈ I.

Then, if the driver vector function ψ satisfies the requirements of assumption (H2), Theorem 2.1 in [16] ensures
the existence of a solution to the BSDE (3.1). Thus, the corresponding constrained BSDE with jumps (3.2)–(3.3)
has a solution. This framework provides hereby a practical example of interest where assumption (H1) is
satisfied.
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4. Subsidiary technical points

This section regroups technical properties which are mainly extensions of existing results but that we could
not find as such in the literature. They are not the main focus of the paper but still present some interest
in themselves. This dissociation allows to present them in a more abstract setting and simplifies their possible
future quotation. We provide a comparison theorem for super-solutions to BSDEs with jumps, as well as viability
and comparison properties for multidimensional reflected BSDEs.

4.1. A comparison theorem for super-solutions to BSDEs with jumps

We present here a general comparison theorem for super-solutions to BSDEs with jumps. This extends the
results of Theorem 2.5 in [24] obtained in the non-reflected case.

Proposition 4.1. Let f1, f2 : Ω × [0, T ]× R × Rd × Rm → R two generators satisfying assumption (H0) and
ξ1, ξ2 ∈ L2(Ω,GT ,P). Let (Y 1, Z1, U1) ∈ S2

G
× L2

G
(W) × L2(μ̃) satisfying on [0, T ]

Y 1
t = ξ1 +

∫ T

t

f1(s, Y 1
s , Z

1
s , U

1
s )ds−

∫ T

t

〈Z1
s , dWs〉 −

∫ T

t

∫
I
U1
s (i)μ(ds, di), (4.1)

and (Y 2, Z2, U2,K2) ∈ S2
G
× L2

G
(W) × L2(μ̃) × A2

G
satisfying on [0, T ]

Y 2
t = ξ2 +

∫ T

t

f2(s, Y 2
s , Z

2
s , U

2
s )ds−

∫ T

t

〈Z2
s , dWs〉 −

∫ T

t

∫
I
U2
s (i)μ(ds, di) +K2

T −K2
t . (4.2)

If ξ1 ≤ ξ2 and f1(t, Y 1
t , Z

1
t , U

1
t ) ≤ f2(t, Y 1

t , Z
1
t , U

1
t ) for all t ∈ [0, T ], then we have

Y 1
t ≤ Y 2

t , 0 ≤ t ≤ T.

Proof. We notice that the scheme of the proof of Theorem 2.5 in [24] applies directly: the linearization of the
BSDE satisfied by Y 2 −Y 1 provides a representation of the process Γ (Y 2 −Y 1) as a supermartingale for a well
chosen Doléans–Dade exponential process Γ . Since the additional process K2 is increasing, this representation
still holds and gives a positive sign for Y 2 − Y 1. �

4.2. Viability and comparison property for multi-dimensional BSDEs

We generalize in this paragraph some viability and comparison properties for multidimensional BSDEs in a
closed convex cone C of R2m, whenever we add some reflections on the Y -component of the BSDE. The two
following propositions are respectively extensions of Theorem 2.5 in [8] and a simplifying version of Theorem 2.1
in [15]. Their derivations do not present major difficulty and we choose to detail them for sake of completeness.

Let (Y, Z) ∈ (S2
F
× L2

F
(W))2m satisfying

Yt = YT +
∫ T

t

F (s, Ys, Zs)ds−
∫ T

t

〈Zs, dWs〉 +KT −Kt, 0 ≤ t ≤ T, (4.3)

where F : Ω × [0, T ]×R2m ×R2m×d → R2m is a progressively measurable function satisfying (H2) (ii) and K
is an R2m-valued finite variation process such that

Kt =
∫ t

0

ksd|K|s,

with kt ∈ C and |K|s the variation of K on [0, s]. We denote by dC the distance to C, i.e. dC : x �→ miny∈C |x−y|,
and introduce ΠC the projection operator onto C.
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Proposition 4.2. Suppose YT ∈ C and there exists a constant C0 such that F satisfies

4〈y −ΠC(y), F (t, y, z)〉 ≤ 〈D2|dC |2(y)z, z〉+ 2C0|dC |2(y) P − a.s., (4.4)

for any (t, y, z) ∈ [0, T ]× R2m × R2m×d such that |dC |2 is twice differentiable at the point y. Then, we have

Yt ∈ C, 0 ≤ t ≤ T, P − a.s.

Proof. The proof presented here is an adaptation of the one of Theorem 2.5 in [8], allowing to tackle the
additional difficulty due to the dK term in the dynamics of Y .

Let η ∈ C∞(R2m) be a non-negative function, with support in the unit ball, such that
∫

R2m η(x)dx = 1. For
δ > 0 and x ∈ R2m, we define

ηδ(x) :=
1
δ2m

η
(x
δ

)
and φδ(x) :=

∫
R2m

|dC(x− y)|2ηδ(y)dy.

Via direct computation, one can verify that φδ ∈ C∞(R2m) and

⎧⎪⎨
⎪⎩

0 ≤ φδ(x) ≤ (dC(x) + δ)2,

Dφδ(x) =
∫

R2m D|dC(y)|2ηδ(x− y)dy and |Dφδ(x)| ≤ 2(dC(x) + δ),

D2φδ(x) =
∫

R2m D
2|dC(y)|2ηδ(x− y)dy and 0 ≤ |D2φδ(x)| ≤ 2I2m,

(4.5)

for any x ∈ R2m. An application of Itô’s formula to φδ(Y ), combined with these estimates and dC(YT ) = 0,
leads to

Eφδ(Yt) = Eφδ(YT ) + E
∫ T

t

〈Dφδ(Ys), F (s, Ys, Zs)〉ds−
1
2
E
∫ T

t

〈D2φδ(Ys)Zs, Zs〉ds

+E
∫ T

t

〈Dφδ(Ys), ks〉d|K|s

≤ δ2 + E
∫ T

t

∫
R2m

[
〈D|dC(y)|2, F (s, y, Zs)〉 −

1
2
〈D2|dC(y)|2Zs, Zs〉

]
ηδ(Ys − y)dyds

−E
∫ T

t

∫
R2m

〈D|dC(y)|2, F (s, y, Zs) − F (s, Ys, Zs)〉ηδ(Ys − y)dyds

+E
∫ T

t

∫
R2m

〈D|dC(y)|2, ks〉ηδ(Ys − y)dyd|K|s, 0 ≤ t ≤ T. (4.6)

Since k is valued in the closed convex cone C, we observe that

〈D|dC(y)|2, ks〉 ≤ 0, 0 ≤ s ≤ T, y ∈ R
2m.

Then, plugging this expression, (4.4) and inequality 2dc(.) ≤ 1 + dc(.)2 in (4.6), we get

Eφδ(Yt) ≤ δ2 + C0E
∫ T

t

∫
R2m

|dC(y)|2ηδ(y − Ys)dyds

+ 2E
∫ T

t

∫
R2m

dC(y)ηδ(Ys − y) max
y′: |y′−Ys|≤δ

|F (s, y′, Zs) − F (s, Ys, Zs)|dyds

≤ δ2 + C0

∫ T

t

Eφδ(Ys)ds+ E
∫ T

t

(1 + φδ(Ys)) max
y′: |y′−Ys|≤δ

|F (s, y′, Zs) − F (s, Ys, Zs)|ds,
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for any t ∈ [0, T ]. Using the uniform Lipschitz property of F , we deduce

Eφδ(Yt) ≤ C

{
δ2 + δ +

∫ T

t

Eφδ(Ys)ds

}
, 0 ≤ t ≤ T, δ > 0,

and Gronwall’s lemma leads to

Eφδ(Yt) ≤ C(δ2 + δ), 0 ≤ t ≤ T, δ > 0.

Finally, from Fatou’s Lemma, we have

E|dC(Yt)|2 ≤ lim inf
δ→0

Eφδ(Yt) = 0, 0 ≤ t ≤ T,

which concludes the proof. �

We now turn to the obtention of a multidimensional comparison result for BSDEs, whenever the dominating
BSDE suffers additional reflections. This proposition also simplifies the results of Theorem 2.1 in [15] in the
case where the ith component of each driver only depends on the ith component of Z, for any i ≤ d.

Consider (Y 1, Z1,K1) ∈ (S2
F
× L2

F
(W) × A2

F
)m satisfying

Y 1
t = Y 1

T +
∫ T

t

F1(s, Y 1
s , Z

1
s )ds−

∫ T

t

〈Z1
s , dWs〉 +K1

T −K1
t , 0 ≤ t ≤ T,

and (Y 2, Z2) ∈ (S2
F
× L2

F
(W))m satisfying

Y 2
t = Y 2

T +
∫ T

t

F2(s, Y 2
s , Z

2
s )ds−

∫ T

t

〈Z2
s , dWs〉, 0 ≤ t ≤ T,

where F1 and F2 are two driver functions satisfying (H2) (ii) and such that the ith component of each driver
only depends on the ith component of the corresponding Z, for any i ≤ d.

Proposition 4.3. Suppose Y 1
T ≥ Y 2

T and the existence of a constant C1 such that

− 2〈y, F1(t, y′, z) − F2(t, y′, z′)〉 ≤ C1|y|2 +
m∑
i=1

|zi − z′i|2 P− a.s., (4.7)

for any (t, y, y′, z, z′) ∈ [0, T ]× (R+)m × Rm × [Rm×d]2. Then Y 1
t ≥ Y 2

t , for all t ∈ [0, T ].

Proof. The process (Y 1 − Y 2, Y 2) is valued in R2m and solution of a BSDE of the form (4.3) associated to the
driver

F : (t, (y, y′), (z, z′)) �→ (F1(t, y + y′, z + z′) − F2(t, y′, z′), F2(t, y′, z′)),

for any {t, (y, y′), (z, z′)} ∈ [0, T ]×R2m×R2m×d. Introducing the closed convex cone C := (R+)m×Rm of R2m,
we see that dC(y, y′) = |y−| for (y, y′) ∈ R

2m. Therefore, we deduce from the Lipschitz property of F1 and (4.7)
that

4〈(y, y′) −ΠC(y, y′), F (t, (y, y′), (z, z′))〉
= 4〈−y−, F1(t, y + y′, z + z′) − F1(t, y′, z + z′)〉 + 4〈−y−, F1(t, y′, z + z′) − F2(t, y′, z′)〉

≤ 4k|y−|2 + 2
m∑
i=1

1yi<0|zi|2 + 2C1|y−|2

= 〈D2|dC |2(y, y′)(z, z′), (z, z′)〉 + (2C1 + 4k)|dC |2(y, y′) P− a.s.,

for any {t, (y, y′), (z, z′)} ∈ [0, T ]×R2m×R2m×d. Applying Proposition 4.2 with C0 = C1 + 2k, we deduce that
the process (Y 1 − Y 2, Y 2) is valued in C and complete the proof. �
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