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UNBIASED RISK ESTIMATION METHOD FOR COVARIANCE ESTIMATION
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Abstract. We consider a model selection estimator of the covariance of a random process. Using the
Unbiased Risk Estimation (U.R.E.) method, we build an estimator of the risk which allows to select
an estimator in a collection of models. Then, we present an oracle inequality which ensures that the
risk of the selected estimator is close to the risk of the oracle. Simulations show the efficiency of this
methodology.
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1. Introduction

The estimation of covariance function of stochastic processes lies at the core of many statistical applications,
ranging from geostatistics, financial series to epidemiology for instance (we refer to [15], [10] or [8] for general
references). A large literature exists for parametric methods, see for instance in [8] for a review. Non-parametric
procedures have only recently received attention, see for instance [3–5, 9] and references therein. Besides the
estimation issue, we will focus on estimators which are true covariance functions, preventing the direct use of
usual non-parametric statistical methods.

In this paper, we propose to construct a non-parametric estimator of the covariance function of a stochastic
process by using a model selection procedure based on the Unbiased Risk Estimation (U.R.E.) method. We
work under general assumptions on the process, that is, we do not assume Gaussianity nor stationarity of the
observations.

Consider a stochastic process (X (t))t∈T taking its values in R and indexed by T ⊂ R
d, where d ∈ N. We

assume that E [X (t)] = 0 ∀t ∈ T and we aim at estimating its covariance function σ (s, t) = E [X (s)X (t)] < ∞
for all t, s ∈ T . We assume we observe Xi (tj) where i ∈ {1 . . . n} and j ∈ {1 . . . p}. Note that the observation
points tj are fixed and that the Xi’s are independent copies of the process X . Set xi = (Xi (t1) , . . . , Xi (tp))

� ∀i ∈
{1 . . . n} and denote by Σ the covariance matrix of these vectors. In this work, p is fixed while the asymptotic
depends on n, the number of replications of the process.

Following the methodology presented in [4], we approximate the process X by its projection onto some finite
dimensional model. For this, consider a countable set of functions (gλ)λ∈Λ which may be for instance a basis of
L2 (T ) and choose a collection of models Mn ⊂ P (Λ) allowed to grow with the number n of replications of the
process. For m ⊂ Mn, a finite number of indices, the process can be approximated by

X (t) ≈
∑
λ∈m

aλgλ (t) .
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Such an approximation leads to an estimator of Σ depending on the collection of functions m, denoted by Σ̂m.
Our objective is to select in a data driven way the best model, i.e. the one close to an oracle m0 defined as a
minimizer of the quadratic risk, namely

m0 ∈ arg min
m∈Mn

R (m) = arg min
m∈Mn

E

[∥∥∥Σ − Σ̂m

∥∥∥2
]

,

where ‖A‖ denotes the Frobenius norm of the matrix A. The Frobenius matrix norm provides a meaningful
metric for comparing covariance matrices, widely used in multivariate analysis, in particular in the theory of
principal components analysis. See also [6] and references therein for other applications of this loss function.

A model selection procedure will be performed using the U.R.E. method, which has been introduced in [14]
and fully described in [16]. The idea is to find an estimator R̂ (m) of the risk which is unbiased, and to select m̂
by minimizing this estimator. Hence, if R̂ is close to its expectation, Σ̂m̂ will be an estimator with a small risk,
nearly as the best quantity Σ̂m0 .

In this work, following the U.R.E. method, we build an estimator of the risk which allows to select an
estimator of the covariance function. Then, we present an oracle inequality for the covariance estimator which
ensures that the risk of the selected estimator is not too large with respect to the risk of the oracle.

The paper is organized as follows. In Section 2 we present the statistical framework and recall some useful
algebraic tools for matrices. The following section, Section 3, is devoted to the approximation of the process
and the construction of the covariance estimators. In Section 4 we apply the U.R.E. method to select one of
them, and provide an oracle inequality. Some numerical experiments are exposed in Section 5, while the proofs
are postponed to the Appendix.

2. The statistical framework

Recall that we consider an R—valued stochastic process, X = (X (t))t∈T , where T is some subset of R
d,

d ∈ N. We assume that X has finite moments up to order 4 and zero mean. Our aim is to study the covariance
function of X denoted by σ (s, t) = E [X (s)X (t)].

Let X1, ..., Xn be independent copies of the process X , and assume that we observe these copies at some fixed
points t1, ..., tp in T . We set xi = (Xi (t1) , . . . , Xi (tp))

�, and denote the empirical covariance of the data by

S =
1
n

n∑
i=1

xix�
i

with expectation Σ = (σ (tj , tk))1�j,k�p.
Hence, the observation model can be written, in a matrix regression framework, as

xix�
i = Σ + Ui ∈ R

p×p, 1 � i � n (2.1)

where Ui are independent and identically distributed (i.i.d.) error matrices with E [Ui] = 0.
We now recall some notations related to the study of matrices, which will be used in the following. More

details can be found in [12] and in [11].
For any matrix A = (aij)1�i�s,1�j�t ∈ R

s×t, ‖A‖2 = Tr
(
AA�) is the Frobenius norm of the matrix which

is associated to the inner scalar product 〈A,B〉 = Tr
(
AB�).

A− ∈ R
t×s is a reflexive generalized inverse of A, that is, some matrix such as AA−A = A and A−AA− =

A−.
In the following, we will consider matrix data as a natural extension of the vectorial data, with differ-

ent correlation structure. For this, we introduce a natural linear transformation, which converts any ma-
trix into a column vector. The vectorization of a s × t matrix A = (aij)1≤i≤s,1≤j≤t is the st × 1 column
vector denoted by vec (A), obtained by stacking the columns of the matrix on top of one another, that is
vec(A) = (a11, ..., as1, a12, ..., as2, ..., a1t, ..., ast)�.
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If A =(aij)1≤i≤s,1≤j≤t is a s×t matrix and B =(bij)1≤i≤p,1≤j≤q is a p×q matrix, then the Kronecker product
of the two matrices, denoted by A⊗ B, is the sp × tq block matrix

A⊗ B =

⎡
⎢⎢⎢⎣
a11B . . . a1tB

. . .

. . .

. . .
as1B . . . astB

⎤
⎥⎥⎥⎦ .

For q ∈ N, Sq denotes the linear subspace of R
q×q composed of symmetric matrices. For G ∈R

p×q, S (G) is
the linear subspace of R

p×p defined by

S (G) =
{
GΨG� : Ψ ∈Sq

}
.

This set will be a natural candidate to select covariance estimators.

3. Model selection approach

The estimation procedure is a two-step procedure. First we consider a functional expansion of the process
and approximate it by its projection onto some finite collection of functions. This leads to an estimator of the
covariance of the process depending on the functions of this finite basis. By choosing different basis, we obtain
several covariance estimators. Then, we construct a rule to pick out the best of these estimators among this
collection of estimates, based on the U.R.E. method.

In this section, we explain the construction of a projection based estimator for the covariance of a process
and point out its properties. More details can be found in [4].

Consider a process X with an expansion on a set of functions (gλ)λ∈Λ of the following form

X (t) =
∑
λ∈Λ

aλgλ (t)

where Λ is a countable set, and (aλ)λ∈Λ are the random coefficients in R of the process X .
This situation occurs in large number of cases. If we assume that the process takes its values in L2 (T )

or in a Hilbert space, a natural choice of the functions is given by the corresponding Hilbert basis (gλ)λ∈Λ.
Alternatively, the Karhunen-Loeve expansion of the covariance also provides a natural basis. However, since
it relies on the nature of the process X , this expansion is usually unknown or requires additional information
on the process. We refer to [1] for more references on this expansion. Under other regularity assumptions on
the process, for instance assuming that the paths of the process belong to some R.K.H.S. (Reproducing Kernel
Hilbert Space), other expansions can be considered as in [7] for instance.

Now consider the projection of the process onto a finite number of functions. For this, let m be a finite subset
of Λ and consider the corresponding approximation of the process in the following form

X̃ (t) =
∑
λ∈m

aλgλ (t) . (3.1)

We note Gm ∈ R
p×|m| where (Gm)jλ = gλ (tj) and am the random vector of R

|m| with coefficients (aλ)λ∈m.
Hence, we obtain that

x̃ =
(
X̃ (t1) , ..., X̃ (tp)

)�
= Gmam

and
x̃x̃� = Gmama�

mG�
m.

Thus, approximating the process X by X̃ its projection onto the model m implies approximating the covariance
matrix Σ by GmΨG�

m, where Ψ = E
[
ama�

m

] ∈ R
|m|×|m| is some symmetric matrix. With previous definitions,

that amounts to saying that we want to choose an estimator in the subset S (Gm) for some subset m of Λ.
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Assume that the subset m is fixed. The best approximation of Σ in S (Gm) for the Frobenius norm is its
projection denoted by Σm. Since Σ is unknown, we consider the estimator built using the projection of S onto
S (Gm). We denote this quantity by Σ̂m.

Proposition 3.1 in [4] gives an explicit form for these projections. We recall it for sake of completeness.

Proposition 3.1 (Description of the projected covariance).
Let A in R

p×p and G ∈ R
p×|m|. The infimum

inf {‖A − Γ‖ ;Γ ∈ S (G)}

is achieved at

Γ̂ = G
(
G�G

)−
G�

(
A + A�

2

)
G
(
G�G

)−
G�.

In particular, if A ∈ Sp, the projection of A on S (G) is ΠAΠ with the projection matrix Π = G
(
G�G

)−
G� ∈

R
p×p.
It amounts to saying that inf

{∥∥A − GΨG�∥∥ ;Ψ ∈ S|m|
}

is reached at

Ψ̂ =
(
G�G

)−
G�

(
A + A�

2

)
G
(
G�G

)−
.

Remark 3.2. Thanks to the properties of the reflexive generalized inverse given in [11], the projection of a non–
negative definite matrix A ∈ Sp on S (G) will be also a non–negative definite matrix. Moreover, the matrix Π
does not depend on the choice of the generalized inverse.

With this result, the projection of Σ on S (Gm) can be characterized as

Σm = ΠmΣΠm (3.2)

and the same for S (that is, our candidate for estimating Σ)

Σ̂m = ΠmSΠm (3.3)

where Πm = Gm

(
G�

mGm

)−
G�

m.
Note that the previous remark implies that the estimator Σ̂m is a covariance matrix. Now, our aim is to

choose the best subset m among a collection of candidates.

4. Model selection with the U.R.E. method

Let Mn be a finite collection of models m whose size may grow with the number n of replications of the
process. In this section, we focus on picking the best model among this collection by following the U.R.E.
method. Since the law of

∥∥∥Σ− Σ̂m

∥∥∥ is unknown, we thus aim at finding an estimator of its expectation.
We consider that the best subset m is m0 defined by

m0 ∈ arg min
m∈Mn

E

[∥∥∥Σ− Σ̂m

∥∥∥2
]

.

Then the oracle is defined as the best estimate knowing all the information, namely Σ̂m0 .

Set R(m) = E

[∥∥∥Σ− Σ̂m

∥∥∥2
]
. First, we compute this quantity.
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Proposition 4.1.

E

[∥∥∥Σ − Σ̂m

∥∥∥2
]

= ‖Σ− ΠmΣΠm‖2 +
Tr ((Πm ⊗ Πm)Φ)

n
(4.1)

where Φ = V ar
(
vec

(
xx�)).

Here we can note the similarity with the usual risk for standard estimation models. For instance, assume that
we observe a Gaussian model with observations a vector Y ∈ R

n such as

Y = θ + εξ ξ ∼ N (0, In)

where ε ∈ R and θ ∈ R
n is the unknown quantity to estimate, using the projection θ̂m of the vector Y onto

some subspace Sm. If the subspace dimension is denoted by Dm, the risk of such an estimator is given by

E

[∥∥∥θ − θ̂m

∥∥∥2
]

= ‖θm − θ‖2 + ε2Dm.

We thus recognize the same kind of decomposition with a bias term and with Tr((Πm⊗Πm)Φ)
n playing the role of

the variance term Dm/n with ε = 1/
√

n. Hence it is natural to extend the Unbiased Risk Estimation procedure
of previous Gaussian model to the matrix model obtained by the vectorization of Model (2.1).

Now, we present an estimator of the risk. We assume n � 3, and we set:

γ̂2
m =

1
n − 1

n∑
i=1

∥∥∥Πmxix�
i Πm − Σ̂m

∥∥∥2

Proposition 4.2.
∥∥∥S− Σ̂m

∥∥∥2

+2 γ̂2
m

n +C is an unbiased estimator of the risk, where C does not depend on m.
More precisely:

E

[∥∥∥S − Σ̂m

∥∥∥2

+ 2
γ̂2

m

n

]
= E

[∥∥∥Σ− Σ̂m

∥∥∥2
]

+
Tr (Φ)

n
·

Note that the constant Tr(Φ)
n is unknown but does not depend on m. So in the U.R.E. procedure, minimizing∥∥∥S− Σ̂m

∥∥∥2

+ 2 γ̂2
m

n with respect to m is equivalent to minimizing
∥∥∥S− Σ̂m

∥∥∥2

+ 2 γ̂2
m

n + C which is unbiased.

Then we can define the estimator Σ̂ of Σ by

Σ̂ = Πm̂SΠm̂ = Σ̂m̂

with m̂ ∈ arg min
m∈Mn

(∥∥∥S− Σ̂m

∥∥∥2

+ 2
γ̂2

m

n

)
·

The next theorem establishes an oracle inequality for this estimator.

Theorem 4.3. For all ε > 0, we have:

E

[∥∥∥Σ̂− Σ
∥∥∥2
]

�
(
1 + ε−1

)
inf

m∈Mn

E

[∥∥∥Σ− Σ̂m

∥∥∥2
]

+
Tr (Φ)

n
(4 + ε).

Recall that Φ = Var
(
vec

(
xx�)) ∈ R

p2×p2
which does not depend on Mn nor n. More precisely, some

standard computations leads to Tr (Φ) =
∑p

j=1

∑p
i=1 Var (X (ti) X (tj)). Hence, increasing the collection of

models does not affect the remainder term in the oracle inequality. So increasing the size of Mn leads to a better
estimation. However, this may lead to computational problems since the estimator Σ̂ is built by minimizing
some functional on Mn.
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Hence we have obtained a model selection procedure which enables to recover the best covariance model among
a given collection. This method works without strong assumptions on the process, in particular stationarity is
not assumed, but at the expense of replicate i.i.d observations of the process. Hence, this study requires a large
number of replications n with respect to the number of observation points p and it is illustrated by the previous
remarks on the penalty term Tr(Φ)

n · Actually our method is not designed to tackle the problem of covariance
estimation in the high dimensional case p 
 n. This topic has received a growing attention over the past years
and we refer to [2] and references therein for a survey.

We also stress that, in this work, an appropriate data-based subset of indices m ∈ Mn is chosen in order to
obtain a good approximation for the covariance. This dimension corresponds to Model (2.1) and is very distinct
in Model (3.1). Indeed, model selection for (3.1) depends on the variability of the vectors xi’s while for (2.1), it
depends on the variability of the matrices xix�

i ’ s.
The proof of these results are using the vectorization of the matrices involved here. That is why we must deal

with the matrix Φ = Var
(
vec

(
xx�)). It is postponed to the appendix.

5. Numerical examples

In this section we illustrate the behaviour of the covariance estimator Σ̂ with programs implemented using
SCILAB. We want to assess whether our procedure selects the best model, that is the model minimizing the
risk.

Recall that n is the number of copies of the process and p is the number of points at which we observe these
copies. Here, we consider the case where T = [0; 1] and Λ is a subset of N. For sake of simplicity, we identify m
and the set {1, . . . , m}. Moreover, the points (tj)1�j�p are equi-spaced in [0; 1].

For a given process X , we must start by the choice of the functions of its expansion. Their knowledge is
needed for the matrix Gm: recall that (Gm)jλ = gλ (tj).

The method is the following: first, we simulate a sample for p and n given. Second, for m between 1 to some
integer M , we compute the unbiased risk estimator related to the model m. Finally, we pick out a m̂ minimizing
this estimator and we compute the model selection estimator Σ̂.

For each example, we plot the curve of the risk function (respectively the curve of the estimator of the risk)
and give the value where it reaches its minimum m0 (respectively m̂). Next we compare the true covariance
and the estimator. Finally, we repeat the computation procedure for estimating m̂ by simulating 100 different
samples. The histogram of the empirical distribution of our estimator illustrates its asymptotic behaviour.

Example 1. Here we work with the numerical examples of [4]. We choose the Fourier basis functions

gλ(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1√
p if λ = 1

√
2 1√

p cos(2π λ
2 t) if λ is even

√
2 1√

p sin(2π λ−1
2 t) if λ is odd

and we study the following process

X(t) =
m�∑
λ=1

aλgλ(t)

where aλ are independent Gaussian variables with mean zero and variance V (aλ). Let D(V) the diagonal matrix
in m� × m� such as D(V )λλ = V (aλ). Then we have

Σ = Gm�D(V)G�
m� .

Here are the results for V (aλ) = 0.0475 + 0.95λ ∀ λ, and m� = 35 = p, n = 60, M = 34. The figures show
that m0 = m̂ = 18 for the sample considered for the estimation of Σ.
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Figure 1. Risk function

R (m) = E

[∥∥∥Σ − Σ̂m

∥∥∥2
]
.
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Figure 2. Estimator of
the risk function R̂ (m) =∥∥∥S − Σ̂m

∥∥∥2

+ 2 γ̂2
m

n .
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Figure 3. Covariance Σ.
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Figure 4. Estimator Σ̂.
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Figure 5. Distribution of m̂.

Example 2. Now we test our estimator with the process studied in [7].
We consider the functions

gλ(t) = cos(λπt)

and the process X studied is

X(t) =
m�∑
λ=1

aλζλgλ(t)
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where aλ are i.i.d. random variables following the uniform law on
[−√

3;
√

3
]

and ζλ = (−1)λ+1

λ2 · If D is the
diagonal matrix with entries Dλλ = 1

λ4 , as before we have that

Σ = Gm�DG�
m� .

Here we choose m� = 50, n = 1000, p = 40 and M = 20. We found m0 = 4 = m̂ for the sample used for the
estimation.
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Figure 6. Risk
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]
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Figure 10. Distribution of m̂.
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Example 3. Here we consider the case of the Brownian bridge with its Karhunen Loeve expansion. Indeed,
this expansion

X(t) =
∑
λ�1

Zλ
√

νλgλ(t)

is computed in ([13], p. 213–215): νλ =
(

1
λπ

)2, and gλ(t) =
√

2 sin(λπt).

Recall that the covariance function of the Brownian bridge is K(s, t) = s(1 − t) for s � t.

Here n = 100, p = 35 and M = 20. We found m0 = 5 = m̂.

In each case, the curve of the risk R and its estimator R̂ have the same form but differ by a translation along
the vertical axis. In fact, the parameter of this translation corresponds to the quantity Tr(Φ)

n in the equation

E

[
R̂(m)

]
= R(m) + Tr(Φ)

n of Proposition 4.2. Moreover, even in the case where the size of the sample is not so
large (the first and the last example), yet the covariance estimator shows good performances.
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Figure 11. Risk function
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Figure 13. Covariance Σ.
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Figure 15. Distribution of m̂.

6. Appendix

In the proofs, we will use the following results of linear algebra where A, B and C some real matrices

vec (ABC) =
(
C� ⊗ A

)
vec (B)

‖A‖ = ‖vec (A)‖ = ‖vec (A)‖�2

(A ⊗ B) (C⊗ D) = (AC) ⊗ (BD)

(A ⊗ B)� = A� ⊗ B�. (6.1)

We refer to [12] for their proofs.
Recall that Σm = ΠmΣΠm, Σ̂m = ΠmSΠm and

γ̂2
m =

1
n − 1

n∑
i=1

∥∥∥Πmxix�
i Πm − Σ̂m

∥∥∥2

.

We start by proving Proposition 4.1.

Proof. Using the orthogonality, we have∥∥∥Σ− Σ̂m

∥∥∥2

= ‖Σ − Σm‖2 +
∥∥∥Σm − Σ̂m

∥∥∥2

.

With the equalities (6.1) we deduce∥∥∥Σm − Σ̂m

∥∥∥2

=
∥∥∥vec(Σm − Σ̂m)

∥∥∥2

=
∥∥(Π�

m ⊗ Πm

)
vec (Σ− S)

∥∥2
,

and since Πm is a projection matrix,∥∥∥Σm − Σ̂m

∥∥∥2

= Tr
(
(Πm ⊗ Πm) vec (Σ − S) vec (Σ− S)�

)
.

Hence

E

[∥∥∥Σ − Σ̂m

∥∥∥2
]

= ‖Σ− Σm‖2 + E

[
Tr
(
(Πm ⊗ Πm) vec (Σ − S) vec (Σ− S)�

)]
= ‖Σ − Σm‖2 + Tr

(
(Πm ⊗ Πm) E

[
vec (Σ− S) vec (Σ− S)�

])

= ‖Σ − Σm‖2 +
Tr
(
(Πm ⊗ Πm) E

[
vec

(
Σ − xx�) vec

(
Σ − xx�)�])

n
· �
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Proof of Proposition 4.2.

Proof. We start by the proof of the following lemma.

Lemma 6.1. γ̂2
m is an unbiased estimator of Tr ((Πm ⊗ Πm)Φ).

Proof. We deduce from the equations (6.1) and the fact that Πm is a projection matrix that

(n − 1)E
[
γ̂2

m

]
=

n∑
i=1

E

[∥∥∥vec
(
Πmxix�

i Πm

)− vec
(
Σ̂m

)∥∥∥2
]

=
n∑

i=1

E

[∥∥(Πm ⊗ Πm)
(
vec

(
xix�

i

)− vec (S)
)∥∥2

]

=
n∑

i=1

E

[
Tr
(
(Πm ⊗ Πm)

(
vec

(
xix�

i

)− vec (S)
) (

vec
(
xix�

i

)− vec (S)
)�

(Πm ⊗ Πm)�
)]

=
n∑

i=1

Tr
(
(Πm ⊗ Πm) E

[(
vec

(
xix�

i

)− vec (S)
) (

vec
(
xix�

i

)− vec (S)
)�])

.

But if (vi)1�i�n, are some i.i.d. vectors with covariance matrix V and mean v̄ = 1
n

∑n
i=1 vi, we have

E

[
(vi − v̄) (vi − v̄)�

]
=

1
n2

n∑
j,k=1

E

[
(vi − vk) (vi − vj)

�
]

=
1
n2

n∑
j,k=1
j,k �=i

E

[
(vi − vk) (vi − vj)

�]

=
1
n2

{
(n − 1) E

[
(v1 − v2) (v1 − v2)

�]+ (n − 2) (n − 1) E

[
(v1 − v2) (v1 − v3)

�]}

=
1
n2

{(n − 1) 2V + (n − 2) (n − 1)V}

=
1
n2

((n − 1)nV) .

Hence

E

[
(vi − v̄) (vi − v̄)�

]
=

1
n

((n − 1)V) ,

and this identity gives

(n − 1)E
[
γ̂2

m

]
=

n∑
i=1

Tr
(

(Πm ⊗ Πm)
1
n

((n − 1)Φ)
)

.

Finally
E
[
γ̂2

m

]
= Tr ((Πm ⊗ Πm)Φ) . �



262 H. LESCORNEL ET AL.

Now, it remains to show that

E

[∥∥∥S − Σ̂m

∥∥∥2
]

= ‖Σ − ΠmΣΠm‖2 − Tr ((Πm ⊗ Πm)Φ)
n

+
Tr (Φ)

n
·

We have that ∥∥∥S− Σ̂m

∥∥∥2

= ‖S− Σ‖2 + 2
〈
S − Σ,Σ− Σ̂m

〉
+
∥∥∥Σ− Σ̂m

∥∥∥2

,

and using the orthogonality we deduce

∥∥∥S− Σ̂m

∥∥∥2

= ‖S− Σ‖2 + 2
〈
S− Σ,Σ − Σ̂m

〉
+ ‖Σ − Σm‖2 +

∥∥∥Σm − Σ̂m

∥∥∥2

.

For the same reason 〈
S − Σ,Σ− Σ̂m

〉
= 〈S− Σ,Σ− Σm〉 +

〈
S − Σ,Σm − Σ̂m

〉

= 〈S − Σ,Σ− Σm〉 −
∥∥∥Σm − Σ̂m

∥∥∥2

,

and because the expectation of S is equal to Σ we obtain that

E

[∥∥∥S− Σ̂m

∥∥∥2
]

= ‖Σ− Σm‖2 + E

[
‖S − Σ‖2

]
− E

[∥∥∥Σm − Σ̂m

∥∥∥2
]

.

First

E

[
‖S− Σ‖2

]
=

1
n2

E

⎡
⎣ n∑

i,j=1

〈
xix�

i − Σ,xjx�
j − Σ

〉⎤⎦ =
1
n

E

[∥∥xx� − Σ
∥∥2
]
.

With the properties of the Frobenius norm

E

[∥∥xx� − Σ
∥∥2
]

= E

[∥∥vec
(
xx� − Σ

)∥∥2
]

= Tr
(
E

[(
vec

(
xx�)− vec (Σ)

) (
vec

(
xx�)− vec (Σ)

)�])
,

then we derive that
E

[∥∥xx� − Σ
∥∥2
]

= Tr (Φ) ,

thus

E

[
‖S − Σ‖2

]
=

Tr (Φ)
n

. (6.2)

Second

E

[∥∥∥Σm − Σ̂m

∥∥∥2
]

=
1
n2

E

⎡
⎣ n∑

i,j=1

〈
Πm

(
xix�

i − Σ
)
Πm,Πm

(
xjx�

j − Σ
)
Πm

〉⎤⎦

=
1
n

E
[〈

Πm

(
xx� − Σ

)
Πm,Πm

(
xx� − Σ

)
Πm

〉]
=

1
n

E

[∥∥Πm

(
xx� − Σ

)
Πm

∥∥2
]
,
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and using the equalities (6.1) and the specificity of Πm, we obtain that

E

[∥∥Πm

(
xx� − Σ

)
Πm

∥∥2
]

= E

[∥∥vec
(
Πm

(
xx� − Σ

)
Πm

)∥∥2
]

= E

[∥∥Πm ⊗ Πm

(
vec

(
xx� − Σ

))∥∥2
]

= E

[
Tr
(
Πm ⊗ Πm

(
vec

(
xx� − Σ

) (
vec

(
xx� − Σ

))�
(Πm ⊗ Πm)�

))]

= E

[
Tr
(
(Πm ⊗ Πm)

(
vec

(
xx� − Σ

)) (
vec

(
xx� − Σ

))�)]
.

Hence
E

[∥∥Πm

(
xx� − Σ

)
Πm

∥∥2
]

= Tr ((Πm ⊗ Πm)Φ) ,

and we obtain

E

[∥∥∥Σm − Σ̂m

∥∥∥2
]

=
Tr ((Πm ⊗ Πm)Φ)

n
· (6.3)

Finally, we have

E

[∥∥∥S− Σ̂m

∥∥∥2
]

= ‖Σ− Σm‖2 − Tr ((Πm ⊗ Πm)Φ)
n

+
Tr (Φ)

n
· �

Proof of Theorem 4.3.

Proof. As γ̂2
m

n � 0, we have

E

[∥∥∥Σ̂− Σ
∥∥∥2
]

� E

[∥∥∥Σ̂ − S
∥∥∥2

+ 2
γ̂2

m̂

n

]
+ 2E

[〈
Σ̂ − S,S− Σ

〉]
+ E

[
‖S − Σ‖2

]
.

Let m0 ∈ arg min
m∈Mn

E

[∥∥∥Σ− Σ̂m

∥∥∥2
]

an oracle. By definition of m̂,

∥∥∥S− Σ̂m̂

∥∥∥2

+ 2
γ̂2

m̂

n
�
∥∥∥S − Σ̂m0

∥∥∥2

+ 2
γ̂2

m0

n

then

E

[∥∥∥Σ̂ − Σ
∥∥∥2
]

� E

[∥∥∥S− Σ̂m0

∥∥∥2

+ 2
γ̂2

m0

n

]
+ E

[
‖S − Σ‖2

]
+ 2E

[〈
Σ̂− S,S − Σ

〉]
.

We derive from the previous proposition and (6.2)

E

[∥∥∥Σ̂ − Σ
∥∥∥2
]

� E

[∥∥∥Σ− Σ̂m0

∥∥∥2
]

+ 2
Tr (Φ)

n
+ 2E

[〈
Σ̂− S,S − Σ

〉]
.

Moreover by the Cauchy–Schwarz inequality we have that〈
Σ̂− S,S − Σ

〉
�
∥∥∥Σ̂ − S

∥∥∥ ‖S − Σ‖

and using again this inequality

E

[〈
Σ̂− S,S − Σ

〉]
�
√

E

[∥∥∥Σ̂− S
∥∥∥2
]√

E

[
‖S − Σ‖2

]

�
√

E

[∥∥∥Σ̂− S
∥∥∥2

+ 2
γ̂2

m̂

n

]√
Tr (Φ)

n
.
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For the same reasons as before we obtain

E

[〈
Σ̂ − S,S− Σ

〉]
�
√

E

[∥∥∥Σ− Σ̂m0

∥∥∥2
]

+
Tr (Φ)

n

√
Tr (Φ)

n

� Tr (Φ)
n

+

√
E

[∥∥∥Σ− Σ̂m0

∥∥∥2
]√

Tr (Φ)
n

.

Thus

E

[∥∥∥Σ̂− Σ
∥∥∥2
]

� E

[∥∥∥Σ− Σ̂m0

∥∥∥2
]

+ 4
Tr (Φ)

n
+ 2

√
E

[∥∥∥S − Σ̂m0

∥∥∥2
]√

Tr (Φ)
n

.

With the following inequality which holds ∀a, b ∈ R and ∀ε > 0

2ab � a2

ε
+ εb2

we obtain for all A > 0:

E

[∥∥∥Σ̂− Σ
∥∥∥2
]

� E

[∥∥∥Σ− Σ̂m0

∥∥∥2
] (

1 + ε−1
)

+
Tr (Φ)

n
(4 + ε) .

The definition of m0 gives the result. �
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