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UPPER LARGE DEVIATIONS FOR MAXIMAL FLOWS THROUGH
A TILTED CYLINDER

Marie Theret
1

Abstract. We consider the standard first passage percolation model in Z
d for d ≥ 2 and we study the

maximal flow from the upper half part to the lower half part (respectively from the top to the bottom)
of a cylinder whose basis is a hyperrectangle of sidelength proportional to n and whose height is h(n)
for a certain height function h. We denote this maximal flow by τn (respectively φn). We emphasize the
fact that the cylinder may be tilted. We look at the probability that these flows, rescaled by the surface
of the basis of the cylinder, are greater than ν(v) + ε for some positive ε, where ν(v) is the almost
sure limit of the rescaled variable τn when n goes to infinity. On one hand, we prove that the speed
of decay of this probability in the case of the variable τn depends on the tail of the distribution of the
capacities of the edges: it can decay exponentially fast with nd−1, or with nd−1 min(n, h(n)), or at an
intermediate regime. On the other hand, we prove that this probability in the case of the variable φn

decays exponentially fast with the volume of the cylinder as soon as the law of the capacity of the edges
admits one exponential moment; the importance of this result is however limited by the fact that ν(v)
is not in general the almost sure limit of the rescaled maximal flow φn, but it is the case at least when
the height h(n) of the cylinder is negligible compared to n.
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1. Definitions and main results

Let d ≥ 2. We consider the graph (Zd, Ed) having for vertices Z
d and for edges E

d, the set of pairs of
nearest neighbours for the standard L1 norm. With each edge e in E

d we associate a random variable t(e) with
values in [0, +∞[. We assume that the family (t(e), e ∈ E

d) is independent and identically distributed, with a
common distribution function F : this is the standard model of first passage percolation on the graph (Zd, Ed).
We interpret t(e) as the capacity of the edge e; it means that t(e) is the maximal amount of fluid that can go
through the edge e per unit of time.

The maximal flow φ(F1 → F2 in C) from F1 to F2 in C, for C ⊂ R
d (or by commodity the corresponding

graph C ∩ Z
d) can be defined properly this way. We will say that an edge e = 〈x, y〉 belongs to a subset A

of R
d, which we denote by e ∈ A, if the set {x + t−→xy | t ∈]0, 1[} is included in A. We define Ẽ

d as the set of
all the oriented edges, i.e., an element ẽ in Ẽ

d is an ordered pair of vertices which are nearest neighbours. We
denote an element ẽ ∈ Ẽ

d by 〈〈x, y〉〉, where x, y ∈ Z
d are the endpoints of ẽ and the edge is oriented from x
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towards y. We consider the set S of all pairs of functions (g, o), with g : E
d → [0, +∞[ and o : E

d → Ẽ
d such

that o(〈x, y〉) ∈ {〈〈x, y〉〉, 〈〈y, x〉〉}, satisfying:

• for each edge e in C we have
0 ≤ g(e) ≤ t(e),

• for each vertex v in C � (F1 ∪ F2) we have∑
e∈C : o(e)=〈〈v,·〉〉

g(e) =
∑

e∈C : o(e)=〈〈·,v〉〉
g(e),

where the notation o(e) = 〈〈v, .〉〉 (respectively o(e) = 〈〈., v〉〉) means that there exists y ∈ Z
d such that e = 〈v, y〉

and o(e) = 〈〈v, y〉〉 (respectively o(e) = 〈〈y, v〉〉). A couple (g, o) ∈ S is a possible stream in C from F1 to F2:
g(e) is the amount of fluid that goes through the edge e, and o(e) gives the direction in which the fluid goes
through e. The two conditions on (g, o) express only the fact that the amount of fluid that can go through an
edge is bounded by its capacity, and that there is no loss of fluid in the graph. With each possible stream we
associate the corresponding flow

flow(g, o) =
∑

u∈F2, v/∈C : 〈u,v〉∈Ed

g(〈u, v〉)�o(〈u,v〉)=〈〈u,v〉〉 − g(〈u, v〉)�o(〈u,v〉)=〈〈v,u〉〉.

This is the amount of fluid that crosses C from F1 to F2 if the fluid respects the stream (g, o). The maximal
flow through C from F1 to F2 is the supremum of this quantity over all possible choices of streams

φ(F1 → F2 in C) = sup{flow(g, o) | (g, o) ∈ S}.

The maximal flow φ(F1 → F2 in C) can be expressed differently thanks to the max-flow min-cut theorem
(see [1]). We need some definitions to state this result. A path on the graph Z

d from v0 to vm is a sequence
(v0, e1, v1, . . . , em, vm) of vertices v0, . . . , vm alternating with edges e1, . . . , em such that vi−1 and vi are neigh-
bours in the graph, joined by the edge ei, for i in {1, . . . , m}. A set E of edges in C is said to cut F1 from F2

in C if there is no path from F1 to F2 in C � E. We call E an (F1, F2)-cut if E cuts F1 from F2 in C and if no
proper subset of E does. With each set E of edges we associate its capacity which is the random variable

V (E) =
∑
e∈E

t(e).

The max-flow min-cut theorem states that

φ(F1 → F2 in C) = min{V (E) |E is a (F1, F2)-cut in C }.

We need now some geometric definitions. For a subset X of R
d, we denote by Hs(X) the s-dimensional Hausdorff

measure of X (we will use s = d− 1 and s = d− 2). If X is a subset of R
d included in an hyperplane of R

d and
of co-dimension 1 (for example a non degenerate hyperrectangle), we denote by hyp(X) the hyperplane spanned
by X , and we denote by cyl(X, h) the cylinder of basis X and of height 2h defined by

cyl(X, h) = {x + tv |x ∈ X, t ∈ [−h, h]},

where v is one of the two unit vectors orthogonal to hyp(X).
Let A be a non degenerate hyperrectangle, i.e., a box of dimension d − 1 in R

d. All hyperrectangles will be
supposed to be closed in R

d. We denote by v one of the two unit vectors orthogonal to hyp(A). For h a positive
real number, we consider the cylinder cyl(A, h). The set cyl(A, h) � hyp(A) has two connected components,
which we denote by C1(A, h) and C2(A, h). For i = 1, 2, let Ah

i be the set of the points in Ci(A, h) ∩ Z
d
n which

have a nearest neighbour in Z
d

� cyl(A, h):

Ah
i = {x ∈ Ci(A, h) ∩ Z

d | ∃y ∈ Z
d

� cyl(A, h), 〈x, y〉 ∈ E
d}.
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Let T (A, h) (respectively B(A, h)) be the top (respectively the bottom) of cyl(A, h), i.e.,

T (A, h) = {x ∈ cyl(A, h) | ∃y /∈ cyl(A, h), 〈x, y〉 ∈ E
d and 〈x, y〉 intersects A + hv}

and
B(A, h) = {x ∈ cyl(A, h) | ∃y /∈ cyl(A, h), 〈x, y〉 ∈ E

d and 〈x, y〉 intersects A − hv}.
For a given realization (t(e), e ∈ E

d) we define the variable τ(A, h) = τ(cyl(A, h), v) by

τ(A, h) = τ(cyl(A, h), v) = φ(Ah
1 → Ah

2 in cyl(A, h)),

and the variable φ(A, h) = φ(cyl(A, h), v) by

φ(A, h) = φ(cyl(A, h), v) = φ(B(A, h) → T (A, h) in cyl(A, h)),

where φ(F1 → F2 in C) is defined previously.
There exist laws of large numbers concerning these two variables. We summarize the results here. The law of

large numbers for τ and for φ in flat cylinders is the following:

Theorem 1.1 (Rossignol and Théret [3]). We suppose that∫
[0,+∞[

xdF (x) < ∞.

Then for every unit vector v, there exists a constant ν(v) = ν(v, d, F ) such that for every non degenerate
hyperrectangle A orthogonal to v, for every function h : N → R

+ satisfying limn→∞ h(n) = +∞, we have

lim
n→∞

τ(nA, h(n))
Hd−1(nA)

= ν(v) in L1.

Moreover, if 0 ∈ A, where 0 is the origin of the graph, or if∫
[0,+∞[

x1+ 1
d−1 dF (x) < ∞,

then
lim

n→∞
τ(nA, h(n))
Hd−1(nA)

= ν(v) a.s.

If limn→∞ h(n)/n = 0, the same convergences (in L1 and a.s.) hold for φ(nA, h(n)) under the same hypotheses.

Thanks to the works of Kesten [2] and Zhang [5], we know that ν(v) > 0 if and only if F (0) < 1− pc(d), where
pc(d) is the critical parameter for the edge percolation on Z

d. Kesten, Zhang, and finally Rossignol and Théret
have proved a law of large numbers for the variable φ(A, h) in straight cylinders, i.e., when A is of the form∏d−1

i=1 [0, ki] × {0} with ki > 0 for all i = 1, . . . , d − 1, for large A and h. Kesten and Zhang have worked in
the general case where the dimensions of the cylinder go to infinity with possibly different speed. We present
here the result stated by Rossignol and Théret in [3], with the best conditions on the moments of F and on the
height function h, but in the more restrictive case where the cylinder we consider is simply cyl(nA, h(n)):

Theorem 1.2 (Rossignol and Théret [3]). We suppose that∫
[0,+∞[

xdF (x) < ∞.

Let v0 = (0, . . . , 0, 1). For every hyperrectangle A of the form
∏d−1

i=1 [0, ki]×{0} with ki > 0 for all i = 1, .., d−1,
and for every function h : N → R

+ satisfying limn→∞ h(n) = +∞ and limn→∞ log h(n)/nd−1 = 0, we have

lim
n→∞

φ(nA, h(n))
Hd−1(nA)

= ν(v) a.s. and in L1.
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We investigate the upper large deviations of the variables φ and τ . We will prove the following theorem
concerning τ :

Theorem 1.3. Let A be a non degenerate hyperrectangle, and v one of the two unit vectors normal to A.
Let h : N → R

+ be a height function satisfying limn→∞ h(n) = +∞. The upper large deviations of
τ(nA, h(n))/Hd−1(nA) depend on the tail of the distribution of the capacities. Indeed, we obtain that:
i) if the law of the capacity of the edges has bounded support, then for every λ > ν(v) we have

lim inf
n→∞

−1
Hd−1(nA)min(h(n), n)

log P

[
τ(nA, h(n))
Hd−1(nA)

≥ λ

]
> 0 ; (1.1)

the upper large deviations are then of volume order for height functions h such that h(n)/n is bounded, and of
order nd if limn→∞ h(n)/n = +∞.
ii) if the capacity of the edges follows the exponential law of parameter 1, then there exists n0(d, A, h), and for
every λ > ν(v) there exists a positive constant D depending only on d and λ such that for all n ≥ n0 we have

−1
Hd−1(nA)

log P

[
τ(nA, h(n))
Hd−1(nA)

≥ λ

]
≤ D. (1.2)

iii) if the law of the capacity of the edges satisfies

∀θ > 0
∫

[0,+∞[

eθxdF (x) < ∞,

then for all λ > ν(v) we have

lim
n→∞

−1
Hd−1(nA)

log P

[
τ(nA, h(n))
Hd−1(nA)

≥ λ

]
= +∞. (1.3)

We also prove the following partial result concerning the variable φ:

Theorem 1.4. Let A be a non degenerate hyperrectangle in R
d, of normal unit vector v, and h : N → R

+ be
a function satisfying limn→∞ h(n) = +∞. We suppose that the law of the capacities of the edges admits an
exponential moment:

∃θ > 0
∫

[0,+∞[

eθx dF (x) < ∞.

Then for every λ > ν(v), we have

lim inf
n→∞

−1
Hd−1(nA)h(n)

log P[φ(nA, h(n)) ≥ λHd−1(nA)] > 0.

Remark 1.5. We recall the reader that the asymptotic behaviour of φ(nA, h(n))/Hd−1(nA) for large n is
not known in general. For straight cylinders, i.e., cylinders of basis A of the form

∏d−1
i=1 [ai, bi] × {c} with real

numbers ai, bi and c, we know thanks to the works of Kesten [2], Zhang [6] and Rossignol and Théret [3] that
φ(nA, h(n))/Hd−1(nA) converges a.s. towards ν((0, . . . , 0, 1)) when n goes to infinity, and in this case the upper
large deviations of φ(nA, h(n))/Hd−1(nA) have been studied by Théret in [4]: they are of volume order, and the
corresponding large deviation principle was even proved. For tilted cylinders, we do not know the asymptotic
behaviour of this variable in general, but looking at the trivial case where t(e) = 1 for every edge e, we can
easily see that τ(nA, h(n)) and φ(nA, h(n)) do not have the same behaviour for large n. However, in the case
where limn→∞ h(n)/n = 0, we also know that limn→∞ φ(nA, h(n))/Hd−1(nA) = ν(v) almost surely under the
same hypotheses as for the variable τ(nA, h(n)), so in this case we really study here the upper large deviations
of the variable φ(nA, h(n)).
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Remark 1.6. We were not able to prove a large deviation principle from above for the variables τ , or φ in
tilted cylinders. The idea used in [4] to prove a large deviation principle for the variable φ(nA, h(n)) in straight
cylinders is the following: we pile up cylinders, and we let a large amount of flow cross the cylinders one after
each other, using the fact that the top of a cylinder, i.e. the area through which the water goes out of this
cylinder, is exactly the bottom of the cylinder above, i.e. the area through which the water can go into that
cylinder. We cannot use the same method to prove a large deviation principle for τ(nA, h(n)), even in straight
cylinders, because in this case we cannot glue together the entire area through which the water goes out of
a cylinder with the entire area through which the water goes into the cylinder above. In the case of tilted
cylinders we even loose the symmetry of the graph with regard to the hyperplanes spanned by the faces of the
cylinder. These symmetries were of huge importance in the proof of the large deviation principle from above for
φ(nA, h(n))/Hd−1(nA) in [4].

2. Upper large deviations for the rescaled variable τ

2.1. Geometric construction

To study these upper large deviations, we will use the same idea as in the proof of the strict positivity of the
rate function of the large deviation principle we proved in [4] for the variable φ(nA, h(n)) in straight cylinders.
Thus the main tool is the Cramér Theorem in R. We will consider two different scales on the graph, i.e., cylinders
of two different sizes indexed by n and N , with N very large compared to n. We want to divide the cylinder
cyl(NA, h(N)) into images of cyl(nA, h(n)) by integer translations, i.e., translations whose vectors have integer
coordinates, and to compare the maximal flows through these cylinders. In fact, we will first fill cyl(NA, h(N))
with translates of cyl(nA, h(n)) and then move slightly these translates to obtain integer translates. The problem
is that we want to obtain disjoint small cylinders so that the associated flows are independent, therefore we
need some extra space between the different images of cyl(nA, h(n)) in order to move them separately and to
obtain disjoint cylinders. Then we add some edges to glue together the different cutsets in the small cylinders
to obtain a cutset in the big one.

The last remark we have to make before the beginning of the complete proof is that we may not divide the
entire cylinder cyl(NA, h(N)) into slabs, but a possibly smaller one, cyl(NA, Mh(n)) with a not too large M .
Indeed, we will see that the upper large deviations of τ(NA, h(N)) are related to the behaviour of the edges of
the cylinder that are “not too far” from NA, because the cutset is pinned at the boundary of NA so it cannot
explore regions too far away from NA in cyl(NA, h(N)).

We consider a fixed non degenerate hyperrectangle A. Let (u1, . . . , ud−1) be an orthonormal basis of hyp(A)
such that the sides of A are parallel to these vectors. Thus (u1, . . . , ud−1, v) is an orthonormal basis of R

d. We
denote by d∞ the l∞ distance according to this basis. The r-neighbourhood V(X, r) of a subset X of R

d for the
the distance d∞ is defined by

V(X, r) = {y ∈ R
d | d∞(y, X) < r}.

Let λ > ν(v) and ε > 0 such that λ > ν(v) + 3ε. We take an h as in Theorem 1.3, a large N , and a smaller n.
We fix ζ = 2d. We define cyl′(nA, h(n)) as

cyl′(nA, h(n)) = V(cyl(nA, h(n)), ζ/2).

We fix an M = M(n, N) such that M(h(n) + ζ/2) ≤ h(N). We divide cyl(NA, M(h(n) + ζ/2)) into slabs Si,
i = 1, . . . , M(n, N), of the form

Si = {x + tv |x ∈ NA, t ∈ Ti}

where
Ti = [−M(h(n) + ζ/2) + (i − 1)(2h(n) + ζ),−M(h(n) + ζ/2) + i(2h(n) + ζ)]

(see Fig. 1). By a Euclidean division of the dimensions of Si, we divide then each Si into m translates of
cyl′(nA, h(n)), which we denote by S′

i,j , j = 1, . . . , m, plus a remaining part S′
i,m+1. Here m is smaller than
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2h(n) + ζ

Si

cyl(NA, h(N))
2ζ

2h(N)

: E1

M(n, N)(2h(n) + ζ)

Figure 1. cyl(NA, h(N)) and Si.

M(n, N) = �Hd−1(NA)/Hd−1(nA)�, where �x� is the integer part of x. Each S′
i,j is a translate of cyl′(nA, h(n)),

which contains cyl(nA, h(n)), and so we denote by Di,j the corresponding translate of cyl(nA, h(n)) by the same
translation (Di,j ⊂ S′

i,j). See Figure 2 which illustrates these definitions.
For all (i, j) there exists a vector wi,j in R

d such that ‖wi,j‖∞ < 1 (where the norm ‖ · ‖∞ is taken according
to the basis (u1, . . . , ud−1, v)) and Bi,j = Di,j + wi,j is the image of cyl(nA, h(n)) by an integer translation,
i.e., a translation whose vector has integer coordinates; moreover since ζ/2 ≥ 1 we have Bi,j ⊂ S′

i,j , so the Bi,j

are disjoint. We define τi = τ(Si, v) and τi,j = τ(Bi,j , v). We denote by E1 the set of the edges which belong to
E1 ⊂ R

d defined by

E1 = {x + tv |x ∈ NA, d∞(x, ∂(NA)) ≤ 2ζ and t ∈ [−M(h(n) + ζ/2), M(h(n) + ζ/2)]}.

We denote also by E0,i the set of the edges which belong to E0,i ⊂ R
d defined by

E0,i = {x + tv |x ∈ NA, t ∈ T ′
i } ∩

⎛
⎝ m⋃

j=1

V(∂S′
i,j , 3ζ) ∪ S′

i,m+1

⎞
⎠,



UPPER LARGE DEVIATIONS FOR MAXIMAL FLOWS THROUGH A TILTED CYLINDER 123

S′
i,j

3ζ

3ζ

ζ/2

S′
i,m+1

: E0,i

Si

Di,j

Figure 2. The slab Si.

where

T ′
i = [−h(N) + (i − 1/2)(2h(n) + ζ) − 3ζ,−h(N) + (i − 1/2)(2h(n) + ζ) + 3ζ].

For all i ∈ {1, . . . , M(n, N)}, if we denote by Fi,j a set of edges that cuts the lower half part from the upper
half part of the cylinder Bi,j (j ∈ {1, . . . , m}), then ∪m

j=1Fi,j ∪E0,i ∪E1 separates the lower half part from the
upper half part of cyl(NA, h(N)). Thus we obtain that

∀i ∈ {1, . . . , M(n, N)}, τ(NA, h(N)) ≤
m∑

j=1

τi,j + V (E1 ∪ E0,i),

so

P

[
τ(NA, h(N)) ≥ λHd−1(NA)

]

≤ P

⎡
⎣∀i ∈ {1, . . . , M(n, N)},

m∑
j=1

τi,j + V (E1 ∪ E0,i) ≥ λHd−1(NA)

⎤
⎦

≤ P

⎡
⎣∀i ∈ {1, . . . , M(n, N)},

m∑
j=1

τi,j ≥ (λ − ε)Hd−1(NA)

⎤
⎦

+ P
[
V (E1) ≥ εHd−1(NA)/2

]
+ P

[
∃i ∈ {1, . . . , M(n, N)}, V (E0,i) ≥ εHd−1(NA)/2

]
. (2.1)

We study the different probabilities appearing here separately.

• Let

α(n, N) = P

⎡
⎣∀i ∈ {1, . . . , M(n, N)},

m∑
j=1

τi,j ≥ (λ − ε)Hd−1(NA)

⎤
⎦ .
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Since the families (τi,j , j = 1, . . . , m) for i ∈ {1, . . . , M(n, N)} are i.i.d. we have

α(n, N) = P

⎡
⎣ m∑

j=1

τ1,j ≥ (λ − ε)Hd−1(NA)

⎤
⎦

M(n,N)

≤ P

⎡
⎣M(n,N)∑

j=1

τn(j) ≥ (λ − ε)Hd−1(NA)

⎤
⎦

M(n,N)

≤ P

⎡
⎣ 1
M(n, N)

M(n,N)∑
j=1

τ
(j)
n

Hd−1(nA)
≥ λ − ε

⎤
⎦

M(n,N)

,

where we remember that
M(n, N) = �Hd−1(NA)/Hd−1(nA)�,

and (τ (j)
n , j ∈ N) is a family of independent and identically distributed variables with τ

(j)
n = τ(nA, h(n)) in law.

We know that E(τ(nA, h(n)))/Hd−1(nA) converges to ν(v) when n goes to infinity as soon as E[t(e)] < ∞, so
there exists n0 large enough to have for all n ≥ n0

E(τ(nA, h(n)))
Hd−1(nA)

≤ ν(v) + ε < λ − ε.

In the three cases presented in Theorem 1.3, the law of the capacity of the edges admits at least one exponential
moment, and by an easy comparison between τ(nA, h(n)) and the capacity of a fixed flat cutset in cyl(nA, h(n)),
we obtain that τ(nA, h(n)) admits an exponential moment. We can then apply the Cramér theorem to obtain
that for fixed n ≥ n0 and λ there exists a constant c (depending on the law of τ(nA, h(n)), λ and ε) such that

lim sup
N→∞

1
M(n, N)

log P

⎡
⎣ 1
M(n, N)

M(n,N)∑
j=1

τ
(j)
n

Hd−1(nA)
≥ λ − ε

⎤
⎦ ≤ c < 0,

and so for all n ≥ n0 and λ there exists a constant c′ (depending on the law of τ(nA, h(n)), λ and ε) such that

lim sup
N→∞

1
M(n, N)Hd−1(NA)

log α(n, N) < c′ < 0. (2.2)

• To study the two other terms, we can study more generally the behaviour of

γ(n, N) = P

⎡
⎣l(n,N)∑

i=1

ti ≥ εHd−1(NA)/2

⎤
⎦ ,

where (ti, i ∈ N) is a family of i.i.d. random variables of common distribution function F . We know that there
exists a positive constant C depending on d, A and ζ such that

card(E0,i) ≤ C

(
Nd−1

n
+ Nd−2n

)
(2.3)

and
card(E1) ≤ CNd−2M(n, N)h(n). (2.4)

Thus the values of l(n, N) we have to consider are

l0(n, N) = C(Nd−1n−1 + Nd−2n) and l1(n, N) = CNd−2M(n, N)h(n),
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and we denote by γi(n, N), i = 0, 1, the corresponding versions of γ(n, N). Inequality (2.1) implies that

P[τ(NA, h(N)) ≥ λHd−1(NA)] ≤ α(n, N) + γ1(n, N) + M(n, N) γ0(n, N). (2.5)

The behaviour of the quantities γi(n, N) depends on the law of the capacity of the edges.

2.2. Bounded capacities

We suppose that the capacity of the edges is bounded by a constant K. Then as soon as

2Kl(n, N) < εHd−1(NA), (2.6)

we know that γ(n, N) = 0. It is obvious that there exists a n1 such that for all fixed n ≥ n1, for all large N
(how large depending on n), equation (2.6) is satisfied by l0(n, N). Moreover, for all n there exists a constant
κ(n, A, d, F ) such that if M(n, N) ≤ κN , then equation (2.6) is also satisfied by l1(n, N). We choose M(n, N)
to be as large as possible according to the condition we have just mentioned, and the fact that M(n, N) ≤
h(N)(h(n) + ζ/2)−1; we define κ′(n) = (h(n) + ζ/2)−1 and we choose

M(n, N) = min(�κ(n)N�, �κ′(n)h(N)�).

Thus, for a fixed n ≥ n1, for all N large enough, we obtain that

γ1(n, N) + M(n, N) γ0(n, N) = 0

and then thanks to equations (2.2) and (2.5) we obtain that

lim sup
N→∞

1
Hd−1(NA)min(N, h(N))

log P

[
τ(NA, h(N))
Hd−1(NA)

≥ λ

]
< 0,

so equation (1.1) is proved.

Remark 2.1. The term Hd−1(nA)min(n, h(n)) can seem strange in (1.1). It is in fact the right order of the
upper large deviations in the case of bounded capacities. We try here to explain where it comes from. From the
point of view of minimal cutsets, the heuristic is that a cutset in cyl(nA, h(n)) separating the two half cylinders
is pinned along the boundary of nA, so it cannot explore domains of cyl(nA, h(n)) that are too far away from
nA, i.e., at distance of order larger than n. Thus it is located in a box of volume of order nd−1 min(n, h(n)).
We think it is this point of view that gives the best intuitive idea of how things work, but actually it is very
difficult to study the position of a minimal cutset in the cylinder. From the point of view of the maximal flow,
we can also understand why this term appears. In fact, we can find of the order of nd−1 disjoint paths (i.e.,
with no common edge) that cross cyl(nA, h(n)) from its upper half part to its lower half part using only the
edges located at distance smaller than Kn of nA for some constant K (thus all the edges of the box if h(n)/n
is bounded). If h(n)/n is bounded, we can consider paths that cross the cylinder from its top to its bottom,
and if h(n) ≥ n, we can consider paths that form a part of a loop around a point of ∂(nA) - so they join
two points of cyl(∂(nA), Kn) that are on the same side of cyl(nA, h(n)) and that are symmetric one to each
other by the reflexion of axis the intersection of ∂(nA) with this side (see Fig. 3 that shows these paths in
dimension 2). Thus, if all the edges at distance smaller that Kn of nA in the cylinder have a big capacity, then
the variable τ(nA, h(n))/Hd−1(nA) is abnormally big. The number of such edges is of order nd−1 min(n, h(n)).
We emphasize here the fact that φ(nA, h(n)) does not have these properties, this is the reason why we expect
for this variable upper large deviations of volume order for all functions h.
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2Kn

nA

nHd−1(A)

cyl(nA, h(n))

2h(n)
∼ nd−1 disjoint
paths

Figure 3. Disjoint paths near nA in dimension two.

2.3. Capacities of exponential law

The goal of this short study is to emphasize the fact that the condition of having one exponential moment
for the law of the capacity of the edges is not sufficient to obtain the speed of decay that we have with bounded
capacities. We will consider a particular law, namely the exponential law of parameter 1, and show that we do
not have upper deviations of volume order in this case.

We suppose that the law of the capacity of the edges is the exponential law of parameter 1. We know that
E(exp(θt)) < ∞ for all θ < 1. Let x0 be a fixed point of the boundary ∂(nA). We know that there exists a
path from the lower half cylinder (nA)h(n)

2 to the upper half cylinder (nA)h(n)
1 in cyl(nA, h(n)) that is included

in the neighbourhood of x0 of diameter ζ = 2d for the euclidean distance, as soon as n ≥ n0(d, A, h), where
n0(d, A, h) is the infimum of the n such that all the sidelengths of the cylinder cyl(nA, h(n)) are larger than ζ

(see Fig. 4). Thus for all n ≥ n0, every set of edges that cuts the upper half cylinder (nA)h(n)
1 from the lower

half cylinder (nA)h(n)
2 in cyl(nA, h(n)) must contain at least one of the edges of this neighbourhood of x0. The

number of such edges is at most K, where K is a constant depending only on d. Thus the probability that all
of them have a capacity bigger than λHd−1(nA) for a λ > ν(v) is greater than exp(−KλHd−1(nA)). We obtain
that for all n ≥ n0(d, A, h),

P
[
τ(nA, h(n)) ≥ λHd−1(nA)

]
≥ exp(−KλHd−1(nA)),

thus equation (1.2) is proved with D = Kλ.

2.4. Capacities with exponential moments of all orders

We suppose that the capacity of the edges admits exponential moments of all order, i.e., for all θ > 0 we
have E(exp(θt(e))) < ∞. We start again from equation (2.5). If the following hypothesis (H1) is satisfied:

(H1) ∀n ∈ N, lim
N→∞

M(n, N) = 0,
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nA
Hd−1(nA)

2h(n)

x0

ζ

path of edges

Figure 4. Path of edges included in a neighbourhood of x0.

then by equation (2.2) we obtain that there exists n0 such that for all n ≥ n0, we have

lim sup
N→∞

1
Hd−1(NA)

log α(n, N) = −∞. (2.7)

We have to deal with the terms γ1 and γ0 in equation (2.5). By a simple application of the Markov’s inequality,
we obtain that

γ(n, N) ≤ exp
[
−Hd−1(NA)

(
θε

2
− l(n, N) log E(exp(θt(e)))

Hd−1(NA)

)]
(2.8)

(where γ stands for γi and l for li, i = 0, 1). We want to be able to choose the term

θε

2
− l(n, N) log E(exp(θt(e)))

Hd−1(NA)

as big as we want. For a fixed R > 0, we can take θ > 0 large enough to have θε ≥ 4R. If there exists n2 such
that for all fixed n ≥ n2, for all N sufficiently large (how large depends on n), we have

l(n, N)
Hd−1(NA)

log E(eθt(e)) ≤ R, (2.9)

then for all fixed n ≥ n2, for all large N , we would obtain

γ(n, N) ≤ exp
(
−RHd−1(NA)

)
,

thus for all n ≥ n2,

lim sup
N→∞

1
Hd−1(NA)

log γ(n, N) = −∞. (2.10)

Concerning γ0(n, N), it is obvious that for a given R, there exists n2 such that for all fixed n ≥ n2, for all large N ,
the condition (2.9) is satisfied by l0(n, N), thus for all n ≥ n2, equation (2.10) holds for γ = γ0. Looking at
γ1(n, N), we realize that we have to impose an other condition on M(n, N). If the following hypothesis (H2) is
satisfied:

(H2) ∀n ∈ N, lim
N→∞

M(n, N)
N

= 0,
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then for all n ∈ N, for all large N , l1(n, N) satisfies the condition (2.9) and thus for all n ∈ N, equation (2.10)
holds for γ = γ1. Moreover, hypothesis (H2) implies that for all n ∈ N,

lim
N→∞

log M(n, N)
Hd−1(NA)

= 0. (2.11)

Combining equations (2.5)–(2.10) for γ1 and γ0, and (2.11), we obtain that if (H1) and (H2) are satisfied, for
all n ≥ max(n0, n2),

lim sup
N→∞

1
Hd−1(NA)

log P

[
τ(NA, h(N))
Hd−1(NA)

≥ λ

]
= −∞,

thus equation (1.3) is proved. The last thing we have to do is to prove that we can choose M(n, N) smaller than
or equal to

⌊
h(N)

h(n)+ζ/2

⌋
and that satisfies (H1) and (H2). We can simply choose

M(n, N) = min
(√

N,

⌊
h(N)

h(n) + ζ/2

⌋)
.

This ends the proof of Theorem 1.3.

Remark 2.2. This result is used in [3] in the proof of the lower large deviation principle for the variable
τ(nA, h(n)).

3. Partial result concerning the upper large deviations

for φ through a tilted cylinder

We have already written the main part of the proof of Theorem 1.4 in the previous section. We keep all the
notations introduced previously. The proof of Theorem 1.3 was based on the following inequality:

∀i ∈ {1, . . . , M(n, N)}, τ(NA, h(N)) ≤
m∑

j=1

τi,j + V (E1 ∪ E0,i).

We recall that this inequality was obtained by noticing that if Fi,j is a cutset that separates the upper half part
from the lower half part of Bi,j , then ∪m

j=1Fi,j ∪E0,i ∪E1 separates the upper half part from the lower half part
of cyl(NA, h(N)). Here we want to construct a cutset that separates the bottom from the top of cyl(NA, h(N)).
We have no need to add the set of edges E1 in this context because we do not need to obtain a cutset that is
pinned at ∂(NA). Thus for all i, ∪m

j=1Fi,j ∪ E0,i cuts the top from the bottom of cyl(NA, h(N)), and we have

∀i ∈ {1, . . . , M(n, N)}, φ(NA, h(N)) ≤
m∑

j=1

τi,j + V (E0,i).

We obtain that for a fixed λ > ν(v), and ε such that λ ≥ ν(v) + 3ε, we have by independence

P[φ(NA, h(N)) ≥ λHd−1(NA)]

≤ P

⎡
⎣M(n,N)⋂

i=1

⎧⎨
⎩

m∑
j=1

τi,j + V (E0,i) ≥ λHd−1(NA)

⎫⎬
⎭
⎤
⎦

≤
M(n,N)∏

i=1

⎛
⎝P

⎡
⎣ m∑

j=1

τi,j ≥ (λ − ε)Hd−1(NA)

⎤
⎦ + P

[
V (E0,i) ≥ εHd−1(NA)

]⎞⎠ . (3.1)



UPPER LARGE DEVIATIONS FOR MAXIMAL FLOWS THROUGH A TILTED CYLINDER 129

We consider here the maximal M(n, N), i.e.,

M(n, N) =
⌊

h(N)
h(n) + ζ/2

⌋
·

Indeed, we do not need to make any restriction on M(n, N) because we do not have to consider the set of
edges E1 whose cardinality depends on M(n, N).

From now on we suppose that the capacity of the edges admits an exponential moment. Thanks to the
application of the Cramér theorem we have already done to obtain (2.2), we know that for all n ≥ n0 there
exists a positive c′ (depending on the law of τ(nA, h(n)), λ and ε) such that

lim sup
N→∞

1
Hd−1(NA)

log P

⎡
⎣ m∑

j=1

τi,j ≥ (λ − ε)Hd−1(NA)

⎤
⎦ ≤ c′ < 0. (3.2)

On the other hand, let θ > 0 be such that E(exp(θt(e))) < ∞. Thanks to equation (2.3) and (2.8), obtained by
the Chebyshev inequality, we have for this fixed θ:

P[V (E0,i) ≥ εHd−1(NA)] ≤ γ0(n, N)

≤ exp
[
−Hd−1(NA)

(
θε

2
− l0(n, N) log E(exp(θt(e)))

Hd−1(NA)

)]
·

Since l0(n, N) ≤ C(Nd−1n−1 + Nd−2n), we know that there exists n3 such that for all n ≥ n3, for all N large
enough (how large depending on n), we have

l0(n, N) log E(exp(θt(e)))
Hd−1(NA)

≤ θε

4
,

and then

P[V (E0,i) ≥ εHd−1(NA)] ≤ exp
(
−Hd−1(NA)

θε

4

)
. (3.3)

Combining equations (3.1), (3.2) and (3.3), since limN→∞ M(n, N)/h(N) is a constant for all fixed n,
Theorem 1.4 is proved.
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