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WAVELET ESTIMATION OF THE LONG MEMORY PARAMETER
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Abstract. We consider stationary processes with long memory which are non-Gaussian and repre-
sented as Hermite polynomials of a Gaussian process. We focus on the corresponding wavelet coefficients
and study the asymptotic behavior of the sum of their squares since this sum is often used for estimat-
ing the long–memory parameter. We show that the limit is not Gaussian but can be expressed using
the non-Gaussian Rosenblatt process defined as a Wiener–Itô integral of order 2. This happens even if
the original process is defined through a Hermite polynomial of order higher than 2.
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1. Introduction

Wavelet analysis is a popular method for estimating the memory parameter of stochastic processes with long–
range dependence. The idea of using wavelets to estimate the memory parameter d goes back to [15–18,35]. See
also [2, 3, 5, 7, 8]. Wavelet methods are an alternative to the Fourier methods developed by Fox and Taqqu [19]
and Robinson [28, 29]. The case of the Gaussian processes, especially the fractional Brownian motion has been
widely studied. In this paper we will make an analysis of the wavelet coefficients of stationary processes with
long memory which are not Gaussian. The need for non-Gaussian self-similar processes in practice (for example
in hydrology) is already mentioned in [33] based on the study of stochastic modeling for river-flow time series
in [22]. More recently such an approach was used for modeling Internet traffic, see [32], Chapter 3 and 4.

The wavelet analysis of non-Gaussian stochastic processes has been much less treated in the literature. See [4]
for some empirical studies. Bardet and Tudor, in [6], considered the case of the Rosenblatt process which is
a non-Gaussian self-similar process with stationary increments living in the second Wiener chaos, that is, it
can be expressed as a double iterated integral with respect to the Wiener process. It can be also defined as a
Hermite process of order 2, while the fractional Brownian motion is a Hermite process of order 1. We refer to
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Section 3 for the definition of the Rosenblatt process (see also [1, 20, 34]), and to [9, 10, 14, 34] for the definition
and various properties of the Hermite process.

In the present work, we consider processes expressed as a Hermite polynomial of order greater than 1 of a
Gaussian time series. This will allow us to gain insight into more complicated situations. A more general case,
involving processes that can be expressed as (finite or infinite) sum of Hermite polynomials of a Gaussian time
series is studied in our recent work [12]. In this work, we use:

a) wide class of wavelets as in (2.6), instead of “variations”;
b) an input process with long–range dependence, as in (2.2), instead of self-similar processes;
c) a semiparametric setup, as in (1.2), instead of a parametric one.

We derive the limit theorems that are needed for wavelet–based estimation procedures of the memory parameter.
We will investigate the estimation problem in another paper.

Denote by X = {Xt}t∈Z a centered stationary Gaussian process with unit variance and spectral density
f(λ), λ ∈ (−π, π). Such a stochastic process is said to have short memory or short–range dependence if f(λ) is
positive and bounded around λ = 0 and long memory or long–range dependence if f(λ) → ∞ as λ→ 0. We will
suppose that {Xt}t∈Z has long–memory with memory parameter 0 < d < 1/2, that is,

f(λ) ∼ |λ|−2df∗(λ) as λ→ 0 (1.1)

where f∗(λ) is a bounded spectral density which is continuous and positive at the origin. It is convenient to set

f(λ) = |1 − e−iλ|−2df∗(λ), λ ∈ (−π, π]. (1.2)

Since the spectral density of a stationary process is integrable, we require d < 1
2 .

We shall also consider a process {Yt}t∈Z, not necessarily stationary but its difference ΔKY of order K ≥ 0 is
stationary. Moreover, instead of supposing that ΔKY is Gaussian, we will assume that(

ΔKY
)
t
= Hq0(Xt), t ∈ Z, (1.3)

where (ΔY )t = Yt − Yt−1, where X is Gaussian with spectral density f satisfying (1.2) and where Hq0 is the
q0–th Hermite polynomial.

We will focus on the wavelet coefficients of Y = {Yt}t∈Z. Since {Yt}t∈Z is random so will be its wavelet
coefficients which we denote by {Wj,k, j ≥ 0, k ∈ Z}, where j indicates the scale and k the location. These
wavelet coefficients are defined by

Wj,k =
∑
t∈Z

hj(γjk − t)Yt, (1.4)

where γj ↑ ∞ as j ↑ ∞ is a sequence of non–negative scale factors applied at scale j, for example γj = 2j and hj

is a filter whose properties will be listed below. We follow the engineering convention where large values of j
correspond to large scales. Our goal is to find the distribution of the empirical quadratic mean of these wavelet
coefficients at large scales j → ∞, that is, the asymptotic behavior of the scalogram

Sn,j =
1
n

n−1∑
k=0

W 2
j,k, (1.5)

adequately normalized as the number of wavelet coefficients n and j = j(n) → ∞. This is a necessary and im-
portant step in developing methods for estimating the underlying long memory parameter d, see the references
mentioned at the beginning of this section. Indeed, using the wavelet scalogram, there is standard way to con-
struct an estimator of the memory parameter. The asymptotic behavior of the scalogram gives the convergence
rate of this estimator. We provide more details in Section 5.
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When q0 = 1, the behavior of Sn,j has been studied in [31]. In this case, under certain conditions, the limit
as j, n → ∞ of the suitably renormalized sequence Sn,j is Gaussian. If q0 ≥ 2 only few facts are known on the
behavior of the scalogram Sn,j . In [6], the authors have made a wavelet analysis of the Rosenblatt process (see
Def. 3.1 with q = 2). This situation roughly corresponds to the case q0 = 2 (the second Hermite polynomial).
It has been shown that its associated scalogram has a non-Gaussian behavior, that is, after normalization
it converges to a Rosenblatt random variable. Basically, what happens is the following: the random variable
H2(Xt) is, for every t ∈ Z an element of the second Wiener chaos and its square can be decomposed, using
the properties of multiple stochastic integrals, as a sum of a multiple integral in the fourth Wiener chaos and a
multiple integral in the second Wiener chaos. It turns out that the leading term is the one in the second Wiener
chaos which converges to a Rosenblatt random variable (a Rosenblatt process at time 1). Wavelet analysis for
G = Hq with q > 2 has not been done until now. Some intuition can be gained from the study of quadratic
variations of the increments of the Hermite process, in [10]. In this case the starting process is self–similar,
that is, invariant under scaling. Again the limit turns out to be the Rosenblatt random variable. Briefly since
the Hermite process is an element of the qth Wiener chaos, its square (minus the expectation of its square)
can be expressed as a sum of multiple integrals of orders 2,4, until 2q. It turns out that the main term is the
one in the second Wiener chaos which converges to a Rosenblatt random variable. This may suggest that in
our situation one would have perhaps a “reduction theorem” as in [13], stating that it is the lower order term
which dominates. This is not the case however. We will show in a subsequent paper that higher–order Hermite
processes can appear in the limit even when the initial data are a mixture of a Gaussian and non-Gaussian
components. See also [25, 26] for other examples of limit theorems based on the chaos expansion.

The paper is structured as follows. In Section 2 we introduce the wavelet filters and state the assumptions
imposed on them. In Section 3 we state our main result and we introduce the Rosenblatt process which appears
as limit for q0 ≥ 2. This result is stated for a multivariate scalogram considered at a single scale. In Section 4,
we explain how this applies to the asymptotic behavior of the univariate scalogram at multiple scales (in short,
the multiscale asymptotics). Results on the estimation of the long memory parameter are derived in Section 5.
In Section 6 we give the chaos expansion of the scalogram. Sections 7 and 8 describe the asymptotic behavior of
the main terms appearing in the decomposition of the scalogram. The proof of the main results is in Section 9.
Finally, Sections A contains technical lemmas used throughout our paper and Appendix B recalls the basic facts
needed in this paper about Wiener chaos.

2. The wavelet coefficients

The Gaussian sequence X = {Xt}t∈Z with spectral density (1.2) is long–range dependent because d > 0 and
hence its spectrum explodes at λ = 0. Whether {Hq0(Xt)}t∈Z is also long–range dependent depends on the
respective values of q0 and d. We show in [11], that the spectral density of {Hq0(Xt)}t∈Z behaves proportionally
to |λ|−δ+(q0) as λ→ 0, where

δ+(q) = max(δ(q), 0) and δ(q) = qd− (q − 1)/2, q = 1, 2, 3, . . . , (2.1)

and hence δ+(q0) is the memory parameter of {Hq0(Xt)}t∈Z. Therefore, since 0 < d < 1/2, in order for
{Hq0(Xt)}t∈Z, q0 ≥ 1, to be long–range dependent, one needs

δ(q0) > 0 ⇔ (1 − 1/q0)/2 < d < 1/2, (2.2)

that is, d must be sufficiently close to 1/2. Specifically, for long–range dependence,

q0 = 1 ⇒ d > 0, q0 = 2 ⇒ d > 1/4, q0 = 3 ⇒ d > 1/3, q0 = 4 ⇒ d > 3/8 . . .

From another perspective, for all q0 ≥ 1

δ(q0) > 0 ⇔ q0 < 1/(1 − 2d), (2.3)
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and thus {Hq0(Xt)}t∈Z is short–range dependent if q0 ≥ 1/(1 − 2d). In the following, we always assume that
{Hq0(Xt)}t∈Z has long memory, that is,

1 ≤ q0 < 1/(1 − 2d) or, equivalently, 0 < δ(q0) < 1/2. (2.4)

As indicated in the introduction, we consider the process {Yt}t∈Z, where ΔKYt = Hq0(Xt) for any t ∈ Z and for
some K ≥ 0 (see (1.3)). We are interested in the wavelets coefficients of the process {Hq0(Xt)}t∈Z. To obtain
them, one applies a linear filter hj(τ), τ ∈ Z, at each scale j ≥ 0. We shall characterize below the filters hj(τ)
by their discrete Fourier transform:

ĥj(λ) =
∑
τ∈Z

hj(τ)e−iλτ , λ ∈ [−π, π], hj(τ) =
1
2π

∫ π

−π

ĥj(λ)eiλτ dλ, τ ∈ Z. (2.5)

The resulting wavelet coefficients Wj,k, where j is the scale and k the location are defined as

Wj,k =
∑
t∈Z

hj(γjk − t)Yt =
∑
t∈Z

hj(γjk − t)Δ−KHq0(Xt), j ≥ 0, k ∈ Z, (2.6)

where γj ↑ ∞ as j ↑ ∞ is a sequence of non–negative scale factors applied at scale j, for example γj = 2j.
We do not assume that the wavelet coefficients are orthogonal nor that they are generated by a multiresolution
analysis, but only that the filters hj concentrate around the zero frequency as j → ∞ with some uniformity, see
Assumptions (W-b)–(W-c) below.

To study the joint convergence at several scales jointly going to infinity, wavelet coefficients can be considered
as a processWj+m0,k indexed bym0, k and where we let j → ∞ as in [11]. Here we are interested in the scalogram
defined as the empirical square mean (1.5) with n equal to the number of wavelets coefficients at scale j available
from N observations of the original process Y1, . . . , YN . Considering the joint asymptotic behavior at various
scales means that we have to deal with different down-sampling rates γj and different numbers nj of available
wavelet coefficients, both indexed by the scale j. It is shown in [31] that the joint behavior of the scalogram at
multiple scales can be deduced from the joint behavior of the statistic (1.5), viewed as a vector whose components
have the same j and n but different filters h�,j, � = 1, . . . ,m. We shall adopt the multivariate scalogram setup
in our asymptotic analysis. We shall apply it in Section 4 to deduce the multiscale asymptotic behavior of the
univariate scalogram. This will also allow us to contrast the cases q0 > 1 treated in this contribution with the
case q0 = 1 which follows from the result obtained in [30]. Our assumption on the filters h�,j, � = 1, . . . ,m are
the same as in [31], Theorem 1, except that we allow γj �= 2j for the sake of generality, and we assume locally
uniform convergence in the asymptotic behavior in (2.10). These assumptions are satisfied in the standard
wavelet analysis described in [24] and briefly referred to in Section 4.

From now on, the wavelet coefficient Wj,k defined in (2.6) will be supposed to be Rm-valued with hj repre-
senting a m-dimensional vector with entries h�,j, � = 1, . . . ,m. We will use bold faced symbols Wj,k and hj to
emphasize the multivariate setting, thus

Wj,k =
∑
t∈Z

hj(γjk − t)Yt =
∑
t∈Z

hj(γjk − t)Δ−KHq0(Xt), j ≥ 0, k ∈ Z. (2.7)

We shall make the following assumptions on the filters hj :

(W-a) Finite support: For each � and j, {h�,j(τ)}τ∈Z has finite support.
(W-b) Uniform smoothness: There exists M ≥ 0, α > 1/2 and C > 0 such that for all j ≥ 0 and λ ∈ [−π, π],

|ĥj(λ)| ≤ Cγ
1/2
j |γjλ|M

(1 + γj |λ|)α+M
, (2.8)
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where |x| denotes the Euclidean norm of vector x. By 2π-periodicity of ĥj this inequality can be extended
to λ ∈ R as

|ĥj(λ)| ≤ C
γ

1/2
j |γj{λ}|M

(1 + γj |{λ}|)α+M
, (2.9)

where {λ} denotes the element of (−π, π] such that λ− {λ} ∈ 2πZ.
(W-c) Asymptotic behavior: There exist a sequence of phase functions Φj : R → (−π, π] and some function

ĥ∞ : R → Cp such that
lim

j→+∞
γ
−1/2
j ĥj(γ−1

j λ)eiΦj(λ) = ĥ∞(λ), (2.10)

locally uniformly on λ ∈ R.

In (W–c), locally uniformly means that for all r > 0,

sup
|λ|≤r

∣∣∣γ−1/2
j ĥj(γ−1

j λ)eiΦj(λ) − ĥ∞(λ)
∣∣∣→ 0.

This is satisfied if the set of filters correspond to a discrete wavelet transform (see Prop. 3 in [24]). Assump-
tions (2.8) and (2.10) imply that for any λ ∈ R,

|ĥ∞(λ)| ≤ C
|λ|M

(1 + |λ|)α+M
· (2.11)

Hence vector ĥ∞ has entries in L2(R). We let h∞ be the vector of L2(R) inverse Fourier transforms of ĥ�,∞,
� = 1, . . . ,m, that is

ĥ∞(ξ) =
∫

R

h∞(t)e−itξ dt, ξ ∈ R. (2.12)

Observe that while ĥj is 2π–periodic, the function ĥ∞ has non–periodic entries on R. For the connection between
these assumptions on hj and corresponding assumptions on the scaling function ϕ and the mother wavelet ψ in

the classical wavelet setting see [24] and [31]. In particular, in the univariate setting m = 1, one has ĥ∞ = ϕ̂(0)ψ̂.
For M ≥ K, a more convenient way to express Wj,k is to incorporate the linear filter Δ−K in (2.7) into the

filter hj and denote the resulting filter h(K)
j . Then

Wj,k =
∑
t∈Z

h(K)
j (γjk − t)Hq0(Xt), (2.13)

where
ĥ(K)

j (λ) = (1 − e−iλ)−K ĥj(λ) (2.14)

is the component wise discrete Fourier transform of h(K)
j . Since {Hq0(Xt), t ∈ Z} is stationary, so is {Wj,k, k ∈ Z}

for each scale j. Using (2.9), we further get,∣∣∣ĥ(K)
j (λ)

∣∣∣ ≤ Cγ
1/2+K
j

|γj{λ}|M−K

(1 + γj |{λ}|)α+M
, λ ∈ R, j ≥ 1. (2.15)

In particular, if M ≥ K, using that (|γj{λ}|/(1 + γj |{λ}|))M ≤ (|γj{λ}|/(1 + γj |{λ}|))K , we get∣∣∣ĥ(K)
j (λ)

∣∣∣ ≤ Cγ
1/2+K
j (1 + γj |{λ}|)−α−K , λ ∈ R, j ≥ 1. (2.16)

By Assumption (2.8), hj has vanishing moments up to order M − 1, that is, for any integer 0 ≤ k ≤M − 1,∑
t∈Z

hj(t)tk = 0. (2.17)
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Observe that ΔKY is centered by definition. However, by (2.17), the definition of Wj,k only depends on ΔMY .
In particular, provided that M ≥ K + 1, its value is not modified if a constant is added to ΔKY , whenever
M ≥ K + 1.

3. Main result

Recall that
(ΔKY )t = Hq0(Xt), t ∈ Z.

The condition (2.4) ensures such that {Hq0(Xt)}t∈Z is long–range dependent (see [11], Lem. 4.1). Our main
result deals with the asymptotic behavior of the scalogram Sn,j, defined in the univariate case m = 1 by (1.5)
as j, n → ∞, that is, as n → ∞ (large sample behavior) with j = j(n) being an arbitrary diverging sequence
(large scale behavior). More precisely, we will study the asymptotic behavior of the sequence

Sn,j =
1
n

n−1∑
k=0

(
W2

j,k − E[W2
j,k]
)

=

[
1
n

n−1∑
k=0

(
W 2

�,j,k − E[W 2
�,j,k]

)]
�=1,...,m

, (3.1)

adequately normalized as j, n→ ∞, where W�,j,k, � = 1, . . . ,m, denote the m entries of vector Wj,k. The limit
will be expressed in terms of the Rosenblatt process which is defined as follows.

Definition 3.1. The Rosenblatt process of index d with

1/4 < d < 1/2, (3.2)

is the continuous time process

Zd(t) =
∫ ′′

R2

ei(u1+u2) t − 1
i(u1 + u2)

|u1|−d|u2|−d dŴ (u1)dŴ (u2), t ∈ R. (3.3)

The multiple integral (3.3) with respect to the complex-valued Gaussian random measure Ŵ is defined in
Appendix B. The symbol

∫ ′′
R2 indicates that one does not integrate on the diagonal u1 = u2. The integral is

well-defined when (3.2) holds because then it has finite L2 norm. This process is self–similar with self-similarity
parameter

H = 2d ∈ (1/2, 1),

that is for all a > 0, {Zd(at)}t∈R and {aHZd(t)}t∈R have the same finite dimensional distributions, see [34].

We now list the assumptions behind our main result:

Assumptions A. {Wj,k, j ≥ 1, k ∈ Z} are the wavelet coefficients defined by (2.7), where

(i) X is a stationary Gaussian process with spectral density f satisfying (1.2) with 0 < d < 1/2;
(ii) Hq0 is the q0 th Hermite polynomial where q0 satisfies condition (2.4);
(iii) the sequence of positive integers (γj)j≥1 is non-decreasing and diverging;
(iv) the wavelet filters hj = [h�,j]�=1,...,m, j ≥ 1, satisfy (W-a)–(W-c).

The definition of Hermite polynomials is recalled in Appendix B. The following theorem gives the limit of (3.1),
suitably normalized, as the number of wavelet coefficients and the scale j = j(n) tend to infinity, in the cases
q0 = 1 and q0 ≥ 2.

Theorem 3.2. Suppose that Assumptions A hold with M ≥ K + δ(q0), where δ(·) is defined in (2.1). Define
the centered multivariate scalogram Sn,j by (3.1) and let (nj) be any diverging sequence of integers.
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(a) Suppose q0 = 1 and that (γj) is a sequence of even integers. Then, as j → ∞,

n
1/2
j γ

−2(d+K)
j Snj ,j

L−→ N (0, Γ ) , (3.4)

where Γ is the m×m matrix with entries

Γ�,�′ = 4π(f∗(0))2
∫ π

−π

∣∣∣∣∣∣
∑
p∈Z

|λ+ 2pπ|−2(K+d)[ĥ�,∞ĥ�′,∞](λ + 2pπ)

∣∣∣∣∣∣
2

dλ, 1 ≤ �, �′ ≤ m . (3.5)

(b) Suppose q0 ≥ 2. Then as j → ∞,

n1−2d
j γ

−2(δ(q0)+K)
j Snj ,j

L−→ f∗(0)q0 Lq0−1 Zd(1), (3.6)

where Zd(1) is the Rosenblatt process in (3.3) evaluated at time t = 1, f∗(0) is the short–range
spectral density at zero frequency in (1.1) and where Lq0−1 is the deterministic m-dimensional vector
[Lq0−1(ĥ�,∞)]�=1,...,m with finite entries defined by

Lp(g) =
∫

Rp

|g(u1 + . . .+ up)|2
|u1 + . . .+ up|2K

p∏
i=1

|ui|−2d du1 · · · dup, (3.7)

for any g : R → C and p ≥ 1.

This theorem is proved in Section 9.

Remark 3.3. Since δ(1) = d we observe that the exponent of γj in the rate of convergence of Sn,j can be written
as −2(δ(q0) + K) for both cases q0 = 1 and q0 ≥ 2, see (3.4) and (3.6), respectively. This corresponds to the
fact that d0 = δ(q0) +K is the long memory parameter of Y , and, as a consequence, E|Wj,0|2 ∼ Cγ

2(δ(q0)+K)
j

as j → ∞, see for example Theorem 5.1 in [11]. In contrast, the exponent of n is always larger in the case
q0 ≥ 2, since this implies 2d − 1 > −1/2 under Condition (2.4). The statistical behavior of the limits are also
very different in the two cases. In (3.4) the limit is Gaussian while in (3.6), the limit is Rosenblatt. Another
difference is that the entries of the limit vector in (3.6) have cross-correlations equal to 1 (they only differ
through a multiplicative constant). In contrast, this typically does not happen in (3.4).

Remark 3.4. While Hq0(Xt) involves a single multiple integral of order q0, W2
j,k and hence Sn,j in (3.1)

involves a sum of multiple integrals of order 0, 2, 4, 6. . . up to 2q0. But the limiting Rosenblatt process in
Theorem 3.2 involves only a double integral, albeit with a non–random factor Lq0−1 expressed as a non–random
multiple integral of order q0 − 1. In view of Theorem 5.1 of [11], the components of Lq0−1 are the asymptotic
variances of the wavelet coefficients applied to Δ−KHq0−1(Xt).

4. From multivariate to multiscale asymptotics

Theorem 3.2 applies to multivariate filters hj which define the scalogram Sn,j. We will use it to obtain in
Theorem 4.1 multiscale asymptotics for univariate filters and corresponding scalograms. This passage between
these two prospectives is explained in the proof of Theorem 4.1. We use dyadic scales here, as in the standard
wavelet analysis described in [24], where the wavelet coefficients are defined as

Wj,k =
∑
t∈Z

gj(2jk − t)Yt, (4.1)

which corresponds to (1.4) with γj = 2j and with (gj) denoting a sequence of filters that satisfies (W-a)–(W-c)
with m = 1, and M and α respectively defined as the number of vanishing moments of the wavelet and its
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Fourier decay exponent. In the case of a multiresolution analysis, gj can be deduced from the associated mirror
filters.

The number nj of wavelet coefficients available at scale j, is related both to the number N of observations
Y1, · · · , YN of the time series Y and to the length T of the support of the wavelet ψ. More precisely, one has

nj = [2−j(N − T + 1) − T + 1] = 2−jN + 0(1), (4.2)

where [x] denotes the integer part of x for any real x. Details about the above facts can be found in [24, 31].
In this context, the scalogram is an empirical measure of the distribution of “energy of the signal” along

scales, based on the N observations Y1, · · · , YN . It is defined as

σ̂2
j =

1
nj

nj−1∑
k=0

W 2
j,k, j ≥ 0, (4.3)

and is identical to Snj ,j defined in (1.5). Note that the sequence (σ̂2
j )j≥0 is indexed by the scale index j but

also depends on the number N of observations through nj . The wavelet spectrum is defined as

σ2
j = E[σ̂2

j ] = E[W 2
j,k] for all k, (4.4)

where the last equality holds for M ≥ K since in this case {Wj,k, k ∈ Z} is weakly stationary. We obtain the
following result which provides asymptotics of the scalogram involving a finite number of different scales at
the same time. We only provide the result for q0 ≥ 2 since the case q0 = 1 can be directly deduced from [31],
Theorem 2.

Theorem 4.1. Suppose that Assumptions A(i)(ii) hold with q0 ≥ 2. Set γj = 2j and let {(gj)j≥0, g∞} be a
sequence of univariate filters satisfying (W-a)–(W-c) with m = 1 and M ≥ δ(q0) +K. Then, as j → ∞,

σ2
j ∼ q0! (f∗(0))q0 Lq0(ĝ∞) 22j(δ(q0)+K). (4.5)

Let now j = j(N) be an increasing sequence such that j → ∞ and N2−j → ∞. Define nj, σ̂2
j and σ2

j as
in (4.2), (4.3) and (4.4), respectively. Then, as N → ∞,{

n1−2d
j

(
σ̂2

j−u

σ2
j−u

− 1

)}
u≥0

fidi−→
{

2(2d−1)u Lq0−1(ĝ∞)
q0!Lq0(ĝ∞)

Zd(1)
}

u≥0

. (4.6)

This theorem is proved in Section 9. Note that the constants Lq0(ĝ∞) and Lq0−1(ĝ∞) appearing in (4.5) and (4.6)

are defined by (3.7). Here fidi−→ means the convergence of finite-dimensional distributions, and since the limit
depends on u only through a deterministic multiplicative constant, we obtain, as in the multivariate case, that
the multiscale limit has cross-correlations equal to 1.

As in the multivariate case, conveniently normalized, the centered multiscale scalogram is asymptotically a
fully correlated Rosenblatt process. We recover the results of [6] where Y is the Rosenblatt process itself. In
other words Theorem 4 in [6] roughly corresponds here to the case q0 = 2. The results in [10] correspond to
the single scale limit for any q0 ≥ 2, which indicate a limit of the scalogram (which corresponds to a wavelet
large scale analysis) similar to that of the variogram (which corresponds to a small scale analysis using discrete
variations).

5. Estimation of the long memory parameter

We now consider the estimation of the long memory parameter of the observed process {Yt}t∈Z under the as-
sumptions of Theorem 4.1, that are supposed to hold all along this section. As already mentioned, {Hq0(Xt)}t∈Z
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has long memory parameter δ(q0). By (1.3), applying the setting of [24] for dealing with processes with stationary
Kth increments, we get that {Yt}t∈Z itself has long memory parameter

d0 = δ(q0) +K. (5.1)

We want to estimate this parameter from a sample Y1, . . . , YN . A typical wavelet estimator of d0 reads

d̂0 =
p−1∑
i=0

wi log σ̂2
j+i, (5.2)

where w0, . . . , wp−1 are weights such that w0 + · · ·+wp−1 = 0, and
∑p−1

i=0 i wi = 1/(2 log 2), see [31]. Indeed, for
this choice of weights and using (4.5) and (5.1), we see that, as j → ∞,

p−1∑
i=0

wi log σ2
j+i =

p−1∑
i=0

wi log
(
q0! (f∗(0))q0 Lq0(ĝ∞) 22jd0

)
+ d0

(
p−1∑
i=0

i wi

)
2 log 2 + o(1)

= d0 + o(1). (5.3)

Replacing σ2
j+i by σ̂2

j+i in the left-hand side of this approximation, we thus obtain an estimator d̂0 of d0.
To obtain the asymptotic behavior of d̂0 as j and N go to infinity, we first evaluate the bias, which is related

to the approximation error in the equivalence (4.5). To this end, we must specify the convergence of f∗(λ)
to f∗(0) as λ→ 0. A standard assumption in the semi-parametric setup is

|f∗(λ) − f∗(0)| ≤ Cf∗(0) |λ|β λ ∈ (−π, π),

where β is some smoothness exponent in (0, 2]. However here f is the spectral density of the original Gaussian
process {Xt}, hence we cannot apply directly the bound

|σ2
j − C122dj| ≤ C2 2(2d−β)j,

which corresponds to Relation (26) in Theorem 1 of [24] (with different notation for constants C1 and C2). In
fact such a bound would contradict (4.5) since d �= d0, see (2.1) and (5.1). We must instead work with the
(generalized) spectral density, say f̃ , of the observed process {Yt}. Applying Lemma 4.1 in [11], we have that
the generalized spectral density f̃ of the process {Yt} = {Δ−KHq0(Xt)} satisfies

f̃(λ) = q0! |1 − e−iλ|−2K f � · · · � f︸ ︷︷ ︸
q0 times

(λ),

where � denotes periodic convolution. Now, by Lemma 8.2 in [11], we get

q0! f � · · · � f(λ) = |1 − e−iλ|−2δ(q0)f̃∗(λ),

where f̃∗ denotes a nonnegative periodic function, continuous and positive at the origin, such that

|f̃∗(λ) − f̃∗(0)| ≤ Cf̃∗(0) |λ|β̃ λ ∈ (−π, π),

where β̃ is any positive number such that β̃ < 2δ(q0) and β̃ ≤ β. Hence, we finally obtain

f̃(λ) = |1 − e−iλ|−2d0 f̃∗(λ),

and we may now apply Theorem 1 of [24] and use (4.5), to obtain that∣∣σ2
j − q0!(f∗(0))q0 Lq0(ĝ∞) 22jd0

∣∣ ≤ C′ 2j(2d0−β̃).
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This yields ∣∣∣∣∣
p−1∑
i=0

wi log σ2
j+i − d0

∣∣∣∣∣ = O
(
2−β̃j

)
, (5.4)

which is a more precise approximation than (5.3). Observe now that d̂0 given in (5.2) satisfies the identity

d̂0 = d0 +
p−1∑
i=0

wi log

{
1 +

(
σ̂2

j+i

σ2
j+i

− 1

)}
+

p−1∑
i=0

wi log σ2
j+i − d0.

Expanding log(x) in the neighborhood of x = 1 and using (4.6) and (5.4), we obtain the following result.

Theorem 5.1. Suppose that the assumptions of Theorem 4.1 hold. As N → ∞, if j = j(N) is such that j → ∞
and N2−j → ∞, then

d̂0 = d0 + n2d−1
j OP (1) +O

(
2−β̃j

)
.

Moreover the OP -term converges in distribution to the Rosenblatt variable(
p−1∑
i=0

wi2(1−2d)i

)
Lq0−1(ĝ∞)
q0!Lq0(ĝ∞)

Zd(1). (5.5)

To optimize the asymptotic term (5.5), one should choose weights w0, . . . , wp−1 which minimize the constant in
parentheses. It is interesting to note that this constant vanishes for some well-chosen weights, but that such a
choice depends on the (unknown) parameter d. Observe also that the constant approaches 0 as d approaches 1/2,
since

∑
i wi = 0.

Remark 5.2. To our knowledge, the non-linear semiparametric setting has not been considered before in this
context. The closest reference appears to be [21], where the parametric Whittle estimator is studied for non-
linear subordinated Gaussian processes. The comparison is difficult since, in the parametric approach of [21],
the asymptotic results depend on the parameterization of the spectral density (essentially through the two
constants ρ1 and ρ2 defined in [21]). However similarities can be observed in these results: the limit can be
Rosenblatt, in which case the usual n−1/2 parametric rate of convergence is replaced by n2d−1, see [21], The-
orem 3.1 in the case ρ1 = 0 and ρ2 �= 0. This situation can be compared to Theorem 5.1 above, where the
limit is also Rosenblatt and the usual n−1/2

j semiparametric rate is replaced by n2d−1
j . We thus expect that a

semiparametric Whittle approach would have an asymptotic behavior similar to that of d̂0.

6. Chaos expansion of the scalogram

Here we take m = 1 without loss of generality, since the case m ≥ 2 can be deduced by applying the case
m = 1 to each entry. The purpose of this section is to consider the scalogram Sn,j defined in (1.5). and express
it as a sum of multiple integrals Î(·) (defined in Appendix A) with respect to the Gaussian random measure
Ŵ . Our main tool will be the product formula for multiple Wiener–Itô integrals. In view of (B.7), Wj,k is a
multiple integral of order q0 of some kernel fj,k, that is

Wj,k = Îq0(fj,k). (6.1)

Now, using the product formula for multiple stochastic integrals (B.10), one gets, as shown in Proposition 6.1
that, for any (n, j) ∈ N2,

Sn,j − E(Sn,j) =
1
n

n−1∑
k=0

W 2
j,k − E[W 2

j,0] =
q0−1∑
p=0

p!
(
q0
p

)2

S
(p)
n,j (6.2)
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where, for all 0 ≤ p ≤ q0 − 1,
S

(p)
n,j = Î2q0−2p(gp).

That is, for every j, n, the random variable S(p)
n,j is an element of the chaos of order 2q0−2p. The function gp(ξ),

ξ = (ξ1, . . . , ξ2q0−2p) ∈ R2q0−2p is defined for every p ∈ {0, · · · , q0 − 1} as

gp(ξ) =
1
n

n−1∑
k=0

(fj,k⊗pfj,k), (6.3)

where the contraction ⊗p is defined in (B.11).
Let us formalize the above decomposition of Sn,j and give a more explicit expression for the function gp

in (6.3).

Proposition 6.1. For all non–negative integer j, {Wj,k}k∈Z is a weakly stationary sequence. Moreover, for any
(n, j) ∈ N2,

Sn,j − E(Sn,j) =
q0−1∑
p=0

p!
(
q

p

)2

S
(p)
n,j, (6.4)

where, for all 0 ≤ p ≤ q0 − 1,
S

(p)
n,j = Î2q0−2p(gp), (6.5)

and where, for all ξ = (ξ1, . . . , ξ2q0−2p) ∈ R2q0−2p,

gp(ξ) = Dn(γj (ξ1 + · · · + ξ2q0−2p))

×
2q0−2p∏

i=1

[
√
f(ξi)�(−π,π)(ξi)] × κ̂

(p)
j (ξ1 + · · · + ξq0−p, ξq0−p+1 + · · · + ξ2q0−2p). (6.6)

Here f denotes the spectral density (1.2) of the underlying Gaussian process X and

Dn(u) =
1
n

n−1∑
k=0

eiku =
1 − einu

n(1 − eiu)
, (6.7)

denotes the normalized Dirichlet kernel. Finally, for ξ = (ξ1, ξ2) ∈ R2, if p �= 0,

κ̂
(p)
j (ξ1, ξ2) =

∫
(−π,π)p

(
p∏

i=1

f(λi)

)
ĥ

(K)
j (λ1 + · · · + λp + ξ1)ĥ

(K)
j (λ1 + · · · + λp − ξ2) dpλ, (6.8)

and, if p = 0,

κ̂
(p)
j (ξ1, ξ2) = ĥ

(K)
j (ξ1)ĥ

(K)
j (ξ2). (6.9)

Notation. In (6.8), dpλ refers to p-dimensional Lebesgue measure integration. To simplify the notation, we
shall denote by Σq, the Cq → C function defined, for all q ∈ Z+ and y = (y1, . . . , yq) ∈ Cq, by

Σq(y) =
q∑

i=1

yi, (6.10)

and for any (q1, q2) ∈ Z2
+, we denote by Σq1,q2 the Cq1 ×Cq2 → C2 function defined for all y = (y1, . . . , yq1+q2) ∈

Cq1 × Cq2 by

Σq1,q2(y) =

⎛⎝ q1∑
i=1

yi,

q2∑
i=q1+1

yi

⎞⎠. (6.11)
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With these notations, (6.5)–(6.9) become respectively

S
(p)
n,j = Î2q0−2p

(
Dn ◦Σ2q0−2p(γj × ·) ×

[√
f�(−π,π)

]⊗(2q0−2p)

× κ̂
(p)
j ◦Σq0−p,q0−p

)
, (6.12)

κ̂
(p)
j (ξ1, ξ2) =

⎧⎪⎨⎪⎩
∫
(−π,π)p f

⊗p(λ) ĥ(K)
j (Σp(λ) + ξ1)ĥ

(K)
j (Σp(λ) − ξ2) dpλ if p �= 0,[

ĥ
(K)
j ⊗ ĥ

(K)
j

]
(ξ1, ξ2) if p = 0,

(6.13)

where ◦ denotes the composition of functions, λ = (λ1, · · · , λp) and f⊗p(λ) = f(λ1) · · · f(λp) is written as a
tensor product.

Remark 6.2. The kernel κ̂(p)
j can also be expressed in terms of the the covariance sequence of the process X ,

namely,
κ̂

(p)
j (ξ1, ξ2) =

∑
m∈Z2

h
(K)
j (m1)h

(K)
j (m2) E(Xm2Xm1)

p e−i(m1ξ1+m2ξ2). (6.14)

This follows from the relation
E(Xm2Xm1) =

∫ π

−π

ei(m2−m1)λf(λ)dλ,

and (2.14) and the definition (2.5) of the discrete Fourier transform ĥj .

Proof of Proposition 6.1. By (1.5),

Sn,j =
1
n

n−1∑
k=0

W 2
j,k. (6.15)

Using (6.1) and the product formula for multiple stochastic integrals (B.10) of Proposition B.1, we have

W 2
j,k = Îq0 (fj,k)Îq0 (fj,k) =

q0∑
p=0

p!
(
q0
p

)2

Î2q0−2p (fj,k⊗pfj,k). (6.16)

Therefore,

Sn,j =
1
n

n−1∑
k=0

W 2
j,k =

q0∑
p=0

p!
(
q0
p

)2

Î2q0−2p (gp), (6.17)

where

gp =
1
n

n−1∑
k=0

fj,k⊗pfj,k.

By (B.8), for all ξ = (ξ1, · · · , ξq0) ∈ Rq0 ,

fj,k(ξ) = exp ◦Σq0(ikγjξ)
(
ĥ

(K)
j ◦Σq(ξ)

) (
f⊗q0(ξ)

)1/2
�
⊗q0
(−π,π)(ξ). (6.18)

If, p = 1, 2, . . . , q0 −1, let ξ = (ξ1, · · · , ξ2q0−2p). The contraction fj,k⊗pfj,k defined on R2q0−2p equals by (B.11),

fj,k⊗pfj,k(ξ)

=
∫

Rp

fj,k(ξ1, · · · , ξq0−p, s)fj,k(ξq0−p+1, · · · , ξ2q0−2p,−s)dps

= exp ◦Σ2q0−2p(ikγjξ) ×
[√

f�(−π,π)

]⊗2q0−2p

(ξ)

×
∫

Rp

ĥ
(K)
j (ξ1 + · · · + ξq0−p +Σp(λ))ĥ(K)

j (ξq0−p+1 + · · · + ξ2q0−2p −Σp(λ)) × [f�(−π,π)

]p (λ) dpλ

= exp ◦Σ2q0−2p(ikγjξ) ×
[√

f�(−π,π)

]⊗2q0−2p

(ξ) × κ̂
(p)
j ◦Σq0−p,q0−p(ξ),
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where κ̂(p)
j is defined by (6.8), (6.9), or equivalently by (6.13), (6.9) and where we used that ĥ(K)

j (·) = ĥ
(K)
j (−·).

We therefore get that gp is a function with 2q0 − 2p variables given by

gp(ξ) =
1
n

n−1∑
k=0

exp ◦Σ2q0−2p(ikγjξ) ×
[√

f�(−π,π)

]⊗2q0−2p

(ξ) × κ̂
(p)
j ◦Σq0−p,q0−p(ξ).

The Dirichlet kernel Dn appears when one computes the sum 1
n

∑n−1
k=0 exp ◦Σ2q0−2p(ikγjξ). This implies the

formula (6.6).
The chaos of order zero does not appears in (6.4) where Sn,j − E(Sn,j) is considered. It appears however in

the expression (6.17) of Sn,j in the term with p = q0 where Î2q0−2p = Î0. In this case, we have

q0!Î0(fj,k⊗pfj,k) = q0!‖fj,k‖2
L2(Rq0 ) = E(|Wj,k|2),

corresponding in (6.17) to the deterministic term

1
n

n∑
k=1

E(|Wj,k|2) = E(|Wj,0|2) = E(Sn,j),

by (6.15). Therefore Sn,j − E(Sn,j) can be expressed as (6.4). �

As we can see from (6.4), the random variable Sn,j can be expanded into a sum of multiple stochastic integrals
starting from order zero (which corresponds to the deterministic term E(Sn,j)). The order of the chaos appearing
in the decomposition of Sn,j could be greater or smaller than the critical value 1/(1−2d). This means that Sn,j

may admit summands with long–range dependence (orders smaller than 1/(1−2d)) and short–range dependence
(orders greater than 1/(1−2d)). We will see that these two kind of terms have different behavior. Another issue
concerns p, the order of the contraction in the product formula for multiple integrals. The case p = 0 must be
discussed separately because the function κ̂(p)

j in (6.8) has the special form (6.9) if p = 0.

To study Sn,j as j, n → ∞, we need to study S
(p)
n,j which is given in (6.12). We first estimate the L2 norm

of S(p)
n,j .

7. An upper bound for the L2
norm of the terms S

(p)
n,j

To identify the leading term of the sum Sn,j − E(Sn,j), we will give an upper bound for the L2 norms of the
terms S(p)

n,j 0 ≤ p < q0 defined in (6.5) and (6.12). Then, in Section 8, we investigate the asymptotic behavior of
the leading term of Sn,j . It directly implies the required result about the asymptotic bahavior of the scalogram.
The expression (6.12) of S(p)

n,j involves the kernel κ̂(p)
j in (6.13) which vanishes when ξ1 = 0 or ξ2 = 0 if p = 0

because ĥj(0) = 0 by (2.8). But the expression (6.13) of κ̂(p)
j implies that it does not vanish if p > 0 because

κ̂
(p)
j (0, 0) =

∫
(−π,π)p

(
p∏

i=1

f(λi)

)∣∣∣ĥj(Σp(λ))
∣∣∣2 dpλ > 0.

All these considerations lead one to distinguish the following two cases:

• The case p �= 0.
• The case p = 0.

As for the Rosenblatt process considered by [6], the case p = 0 requires different bounds and thus must be
treated separately.
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7.1. The case p �= 0

Recall the expansion (6.4). In the case p �= 0 we now give an upper bound of ‖S(p)
n,j‖2 = E(|S(p)

n,j |2)1/2 with
0 < p < q0 < 1/(1 − 2d).

Proposition 7.1. Let 0 < p < q0 < 1/(1 − 2d). There exists some C > 0 whose value depends only on p, d, q0
and f∗ such that for all n, j ≥ 2

‖S(p)
n,j‖2 ≤ C(log n)ε n−min(1−2δ(q0−p),1/2) γ

2δ(q0)+2K
j , (7.1)

where ε = 1 if δ(q0 − p) = 1/4 and ε = 0 otherwise.

Proof. Let C,C1, · · · be positive constants that may change from line to line. Set r = q0 − p ≥ 1. We perform
the change of variable y = nγjξ in the integral expression of S(p)

n,j given by (6.12) and deduce that

E

∣∣∣S(p)
n,j

∣∣∣2 =
1

(nγj)2r

∫
R2r

∣∣∣Dn ◦Σ2r

( y
n

)∣∣∣2 ( 2r∏
i=1

(f�(−π,π))(
yi

nγj
)

) ∣∣∣∣κ̂(p)
j ◦Σr,r

(
y

nγj

)∣∣∣∣2 d2ry.

We now use the expression of f given by (1.2), the boundedness of f∗, the bound of Dirichlet kernel given by
Lemma A.3 and the bound of κ̂(p)

j given by Lemma A.1. Hence one deduces that there exists some C1 > 1
depending only on p, d such that

E

∣∣∣S(p)
n,j

∣∣∣2 ≤ C1γ
−2r(1−2d)
j γ

4(δ(p)+K)
j In,j = C1γ

−2+4δ(r)+4δ(p)
j γ4K

j In,j , (7.2)

where

In,j =
∫

(−nγjπ,nγjπ)2r

n−2r(1−2d)
∣∣∣g ◦Σr,r( y

nγj
)
∣∣∣2 d2ry

(1 + n |{Σ2r(n−1y)}|)2∏2r
i=1 |yi|2d

,

with
g(z1, z2) =

1
(1 + γj |{z1}|)δ(p)(1 + γj |{z2}|)δ(p)

·

We now bound the integral In,j . To this end, perform the successive change of variables

u1 =
y1 + . . .+ yr

n
, . . . , ur =

yr

n
, v1 =

yr+1 + . . .+ y2r

n
, . . . , vr =

y2r

n
,

so that

yi = n(ui − ui+1) for 1 ≤ i ≤ r − 1, yr = nur,

yi = n(vi−r − vi−r+1) for r + 1 ≤ i ≤ 2r − 1, y2r = nur.

In addition, observe that for any m ∈ Z+ \ {0}, (y1, . . . , ym) ∈ (−nγjπ, nγjπ)m, implies that y1 + . . . + ym ∈
(−m(nγj)π,m(nγj)π). Hence, there exists some constant C depending only on r, d such that

In,j ≤ C

∫ γjπr

−γjπr

∫ γjπr

−γjπr

Jr,γjπ(u1; 2d1r)Jr,γjπ(v1; 2d1r)du1dv1

(1 + n |{u1 + v1}|)2(1 + γj

∣∣∣{u1
γj
}
∣∣∣)2δ(p)(1 + γj

∣∣∣{ v1
γj
}
∣∣∣)2δ(p)

, (7.3)

where we used the definition of Jm,a(s;β) in Lemma A.6 with the notation 1r for the r-dimensional vector with
all entries equal to 1, that is, we set m = r, a = γjπ, β1 = · · · = βm = 2d in (A.14). We now apply Lemma A.6.
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Since m = r < 1/(1 − 2d), we are in Case (i) and we get that there exists some C > 0 depending only on r, d
such that

Jr,γjπ(s; 2d1r) ≤ C|s|−2δ(r) for all s ∈ R.

Then there exists some constant C2 > 1 depending only on r, d such that

In,j ≤ C2

∫ γjπr

−γjπr

∫ γjπr

−γjπr

|u1|−2δ(r)|v1|−2δ(r)du1 dv1

(1 + n |{u1 + v1}|)2
(
1 + γj

∣∣∣{u1
γj

}∣∣∣)2δ(p) (
1 + γj

∣∣∣{v1
γj

}∣∣∣)2δ(p)
· (7.4)

Now use the inequality |{x}| ≤ |x| valid on x ∈ R. Since δ(r) ≥ 0,

In,j ≤ C2

∫ γjπr

−γjπr

∫ γjπr

−γjπr

|γj

{
u1
γj

}
|−2δ(r)|γj

{
v1
γj

}
|−2δ(r)du1dv1

(1 + n |{u1 + v1}|)2
(
1 + γj

∣∣∣{u1
γj

}∣∣∣)2δ(p) (
1 + γj

∣∣∣{v1
γj

}∣∣∣)2δ(p)
·

By 2π–periodicity of x �→ {x}, the integrand is (2γjπ)-periodic with respect to both variables u1 and v1 and we
get that

In,j ≤ C3

∫ γjπ

−γjπ

∫ γjπ

−γjπ

|u1|−2δ(r)|v1|−2δ(r)du1 dv1
(1 + n |{u1 + v1}|)2(1 + |u1|)2δ(p)(1 + |v1|)2δ(p)

· (7.5)

To deal with the fractional parts, we now partition (−γjπ, γjπ)2 using the following domains

Δ
(s)
j = {(u1, v1) ∈ (−γjπ, γjπ)2, |u1 + v1 − 2πs| ≤ π},

with s ∈ {−γj, . . . , γj}, so that In,j = A+ 2B with

A =
∫

Δ
(0)
j

|u1|−2δ(r)|v1|−2δ(r)du1 dv1
(1 + n |u1 + v1|)2(1 + |u1|)2δ(p)(1 + |v1|)2δ(p)

,

and

B =
γj∑

s=1

∫
Δ

(s)
j

|u1|−2δ(r)|v1|−2δ(r)du1 dv1
(1 + n |u1 + v1 − 2πs|)2(1 + |u1|)2δ(p)(1 + |v1|)2δ(p)

·

Let us now bound separately A and B. To bound A, we distinguish two cases: 4δ(r) > 1 and 4δ(r) ≤ 1. In the
first case, observe that (1+ |u|)2δ(p) ≥ 1 holds on R and perform the change of variables u′1 = nu1 and v′1 = nv1.
Then

A ≤ n−2+4δ(r)

∫
R2

|u′1|−2δ(r)|v′1|−2δ(r)du′1 dv′1
(1 + |u′1 + v′1|)2

≤ Cn−2+4δ(r), (7.6)

since the integral is bounded. This follows from Lemma 8.4 of [11] applied with M1 = 2, M2 = 0, q = 2, a = 0,
β1 = β2 = 2δ(r).

In the case where 4δ(r) ≤ 1, setting t1 = u1 + v1, we get that

A ≤
∫ −π

−π

dt1
(1 + n|t1|)2

[∫ γjπ

−γjπ

|t1 − v1|−2δ(r)|v1|−2δ(r)dv1
(1 + |t1 − v1|)2δ(p)(1 + |v1|)2δ(p)

]
·

We now split the integral in brackets into two terms∫
|v1|≤2|t1|

|t1 − v1|−2δ(r)|v1|−2δ(r)dv1
(1 + |t1 − v1|)2δ(p)(1 + |v1|)2δ(p)

+
∫

2|t1|≤|v1|≤γjπ

|t1 − v1|−2δ(r)|v1|−2δ(r)dv1
(1 + |t1 − v1|)2δ(p)(1 + |v1|)2δ(p)
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Consider the first integral. Since 4δ(r) ≤ 1, Lemma A.6 (case (ii) or (iv)) applied with m = 2, a = 2|t1|, s1 = t1,
β1 = β2 = 2δ(r) then implies that for some C > 0 depending on r, d∫

|v1|≤2|t1|

|t1 − v1|−2δ(r)|v1|−2δ(r)dv1
(1 + |t1 − v1|)2δ(p)(1 + |v1|)2δ(p)

≤
∫
|v1|≤2|t1|

|t1 − v1|−2δ(r)|v1|−2δ(r)dv1

≤ C|t1|1−4δ(r).

Now consider the second integral. Note that |v1| ≥ 2|t1| implies |v1 − t1| ≥ |v1| − |t1| ≥ |v1|/2. We get that∫
2|t1|≤|v1|≤γjπ

|t1 − v1|−2δ(r)|v1|−2δ(r)dv1
(1 + |t1 − v1|)2δ(p)(1 + |v1|)2δ(p)

≤ C

∫ γjπ

2|t1|

|v1|−2δ(r)|v1|−2δ(r)dv1
(1 + |v1|)2δ(p)(1 + |v1|)2δ(p)

≤ C

∫ γjπ

2|t1|

|v1|−4δ(r)dv1
(1 + |v1|)4δ(p)

= O ((1 + | log |t1||)ε),

where we used that −4δ(r) ≥ −1 with equality if and only if ε = 1 and that 4(δ(r) + δ(p)) = 4δ(q0) + 2 > 2.
Hence, if 4δ(r) ≤ 1

A ≤ C

(∫ π

−π

(1 + | log |t1||)ε dt1
(1 + n|t1|)2

)
≤ Cn−1 (log n)ε. (7.7)

To sum up Equations (7.6) and (7.7), we can write

A ≤ C (logn)ε n−min(2−4δ(r),1). (7.8)

To bound B observe that, on R2, if |u1| ≤ |u1 + v1|/2 then

|v1| = |(u1 + v1) − u1| ≥ |u1 + v1| − |u1| ≥ |u1 + v1|/2.

Hence either |u1| ≥ |u1 + v1|/2 or |v1| ≥ |u1 + v1|/2. Set

Δ
(s,1)
j =

{
(u1, v1) ∈ Δ

(s)
j , |u1| ≥ |u1 + v1|/2

}
,

and its symmetric set
Δ

(s,2)
j =

{
(u1, v1) ∈ Δ

(s)
j , |v1| ≥ |u1 + v1|/2

}
.

Then, since δ(r), δ(p) > 0, for any s ∈ {−γj, . . . ,−1, 1, . . . , γj},

B(s,1) =
∫

Δ
(s,1)
j

|u1|−2δ(r)|v1|−2δ(r)du1 dv1
(1 + n |{u1 + v1}|)2(1 + |u1|)2δ(p)(1 + |v1|)2δ(p)

≤ C

∫
Δ

(s,1)
j

|u1|−2(δ(r)+δ(p))|v1|−2δ(r)du1 dv1
(1 + n |{u1 + v1}|)2(1 + |v1|)2δ(p)

≤ C

∫
Δ

(s,1)
j

|u1 + v1|−2(δ(r)+δ(p))|v1|−2δ(r)du1 dv1
(1 + n |{u1 + v1}|)2(1 + |v1|)2δ(p)

·

Setting t1 = n(u1 + v1), we get that

B(s,1) ≤ Cn−1+2δ(r)+2δ(p)

(∫ 2πns+πn

t1=2πns−πn

|t1|−2δ(r)−2δ(p)dt1
(1 + |t1 − 2πns|)2

)(∫ γjπ

−γjπ

|v1|−2δ(r)dv1
(1 + |v1|)2δ(p)

)
·
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Set w1 = t1 − 2πns. Since s �= 0, we have

B(s,1) ≤ Cn−1+2δ(r)+2δ(p)(n(2|s| − 1))−2δ(r)−2δ(p)

(∫
R

(1 + |w1|)−2dw1

)(∫ γjπ

−γjπ

|v1|−2δ(r)dv1
(1 + |v1|)2δ(p)

)
,

and the same bound holds on B(s,2) by symmetry. Hence

B =
γj∑

s=1

(B(s,1) +B(s,2)) ≤ Cn−1

⎛⎝ γj∑
|s|=1

(2|s| − 1)−2δ(r)−2δ(p)

⎞⎠(∫ γjπ

−γjπ

|v1|−2δ(r)dv1
(1 + |v1|)2δ(p)

)
· (7.9)

Using 2δ(p) + 2δ(r) = δ(q0) + 1 > 1, we deduce from (7.9) that B = O(n−1) and, with (7.8), In,j = A + B =
O((log n)ε n−min(2−4δ(r),1)). With (7.2) and δ(p) + δ(r) = δ(q0) + 1/2, we obtain (7.1). �

7.2. The case p = 0

Here the situation is different from the previous case p �= 0 since the kernel κ̂(p)
j involved in the definition

of S(p)
n,j has a different expression when p = 0 and vanishes when ξ1 = 0 or ξ2 = 0. It implies that the bound in

Proposition 7.2 involves n−1/2 instead of n−1+δ(q0) as could be expected from the case p > 0 in Proposition 7.1.
Further, an additional assumption on the moments of the wavelet is required which is consistent with the results
proved in the Gaussian case in [24] (corresponding to q0 = 1) where M is assumed to be greater than K + d.

Proposition 7.2. Assume that M ≥ δ(q0)+K. Then there exists some C > 1 whose values depend only on q0, d
such that for any n, j

‖S(0)
n,j‖L2(Ω) = E

(
|S(0)

n,j |2
)1/2

≤ C n−1/2γ
2δ(q0)+2K
j . (7.10)

Proof. We denote by C a positive constant that may change at each appearance, but whose value does neither
depend on n nor j. Since p = 0, κ̂(0)

j = ĥ
(K)⊗2
j by (6.9). Then, setting y = (nγj)−1ξ in (6.12), we get

E

∣∣∣S(0)
n,j

∣∣∣2 (7.11)

=
1

(nγj)2q0

∫
R2q0

∣∣∣Dn ◦Σ2q0

( y
n

)∣∣∣2 (f�(−π,π))⊗(2q0)

(
y

nγj

) ∣∣∣∣ĥ(K)⊗2
j ◦Σq0,q0

(
y

nγj

)∣∣∣∣2 d2q0y.

We now use the bound of the Dirichlet kernel given by Lemma A.3, the definition of f given by Equation (1.2)
with the boundedness of f∗, the bound of ĥ(K)

j given by Equation (2.15). Then we deduce that

E[|S(0)
n,j |2] ≤ C γ

−2q0(1−2d)
j γ

2(2K+1)
j In,j = Cγ

4(δ(q0)+K)
j In,j , (7.12)

where δ(·) is defined by (2.1) and where for any j, n

In,j = n−2q0(1−2d)

∫
(−nγjπ,nγjπ)2q0

g ◦Σq0,q0(
y

n
)

(
2q0∏
i=1

|yi|−2d

)
dy1 . . . dy2q0 ,

with, for all (ξ1, ξ2) ∈ R2,

g(ξ1, ξ2) = (1 + |n{ξ1 + ξ2}|)−2 |γj{ξ1/γj}|2(M−K) |γj{ξ2/γj}|2(M−K)

[(1 + |γj{ξ1/γj}|)(1 + |γj{ξ2/γj}|)]2(M+α)
· (7.13)

We now bound the integral In,j . Observe that for any y = (y1, . . . , y2q0) ∈ (−nγjπ, nγjπ)2q0

|yi + · · · + yq0 | ≤ nγj(q0 − i+ 1)π and |yq0+i + · · · + y2q0 | ≤ nγj(q0 − i+ 1)π.
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Thereafter, we set

u1 =
y1 + . . .+ yq0

n
, . . . , uq0 =

yq0

n
, v1 =

yq0+1 + . . .+ y2q0

n
, . . . , vq0 =

y2q0

n
·

Then

In,j ≤ c0

∫ q0γjπ

u1=−q0γjπ

∫ q0γjπ

v1=−q0γjπ

g(u1, v1) Jq0,γjπ(u1; 2d1q0)Jq0,γjπ(v1; 2d1q0)du1dv1,

where we used the definition of Jm,a(s;β) in Lemma A.6 with the notation 1q0 for the q0-dimensional vector
with all entries equal to 1, that is, we set m = q0, a = γjπ, β1 = . . . = βm = 2d in (A.14). We now apply
Lemma A.6. Since q0 < 1/(1 − 2d), we are in Case (i) of and we obtain

Jq0,γjπ(z; 2d1q0) ≤ C |z|−2δ(m), z ∈ R,

for some constant C > 0. This bound with the inequality |{u}| ≤ |u| and the expression of g given by (7.13)
yields

In,j ≤ C

∫ q0γjπ

−q0γjπ

∫ q0γjπ

−q0γjπ

|γj{u1/γj}|2(M−K−δ(q0)) |γj{v1/γj}|2(M−K−δ(q0)) du1dv1
(1 + n|{u1 + v1}|)2 [(1 + |γj{u1/γj}|)(1 + |γj{v1/γj}|)]2(M+α)

·

By 2π–periodicity of u �→ {u}, we observe that the integrand is (2πγj)-periodic with respect to both variables
u1 and v1. Thus the integral on (−q0γjπ, q0γjπ)2 equals q20 times the integral on (−γjπ, γjπ)2. We get that

In,j ≤ C

∫ γjπ

u1=−γjπ

∫ γjπ

v1=−γjπ

|u1|2(M−K−δ(q0)) |v1|2(M−K−δ(q0)) du1dv1
(1 + n|{u1 + v1}|)2 (1 + |u1|)2(M+α) (1 + |v1|)2(M+α)

·

By assumption 2(M −K − δ(q0)) ≥ 0, then for any t ∈ R,

|t|2(M−K−δ(q0)) ≤ (1 + |t|)2(M−K−δ(q0)) ≤ (1 + |t|)2(M−K) .

It implies that

In,j ≤ C

∫ γjπ

u1=−γjπ

∫ γjπ

v1=−γjπ

du1dv1
(1 + n|{u1 + v1}|)2(1 + |u1|)2(K+α)(1 + |v1|)2(K+α)

·

We now apply Lemma A.8 with
S = 2(K + α), β1 = β2 = 0.

By assumption S > 1. Then In,j ≤ C n−1 and the conclusion follows from (7.12). �

8. The leading term of the scalogram and its asymptotic behavior

Suppose q0 ≥ 2. We will show that the leading term of Sn,j is S(q0−1)
n,j defined in (6.5). It is an element of the

chaos of order 2q0 − 2(q0 − 1) = 2 and after renormalization it will converge to a Rosenblatt random variable.
We first study the asymptotic behavior of Sn,j − S

(q0−1)
n,j which is a sum of random variables in chaoses 4,6 up

to 2q0. We actually show in the next result that, under the normalization of S(q0−1)
n,j , this term is negligible.

Corollary 8.1. Assume q0 ≥ 2 and M ≥ δ(q0) +K. Then, as j, n→ ∞,

n1−2dγ
−2(δ(q0)+K)
j

(
q0−2∑
p=0

p!
(
q0
p

)2

‖S(p)
n,j‖2

)
→ 0, (8.1)
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Proof. The limit (8.1) is a direct consequence of Propositions 7.1 and 7.2, observing that 1 − 2d = 1 − 2δ(1) <
1 − 2δ(q0 − p) for all p = 1, 2, . . . , q0 − 2 and that δ(q0) > 0 and q0 ≥ 2 imply 1 − 2d < 1/2. �

We consider the limit in distribution of the corresponding term n1−2dγ
−2(δ(q0)+K)
j S

(q0−1)
n,j . With Corollary 8.1,

this will provide the proof of Theorem 3.2 in the case q0 ≥ 2. However, to cover the m-dimensional case with
m ≥ 2, we need to define a multivariate S(p)

n,j that will be denoted by S(p)
n,j . Let 0 < p < q0. Define a Cm–valued

function κ̂
(p)
j by applying (6.8) component-wise with hj replaced by h�,j, � = 1, . . . ,m. Define a Cm–valued

function gp by (6.6) with κ̂
(p)
j replaced by κ̂

(p)
j . Finally define S(p)

n,j as a m-dimensional random vector defined
by (6.5) with gp replaced by gp.

Proposition 8.2. Assumptions A hold with 2 ≤ q0 < 1/(1−2d) and M ≥ K. Then, for any diverging sequence
(nj), as j → ∞, we have

n1−2d
j γ

−2(δ(q0)+K)
j S(q0−1)

nj ,j
L−→ f∗(0)q0 Lq0−1 Zd(1). (8.2)

where Zd(1) and Lq0−1 are the same as in Theorem 3.2.

Proof. Using (6.12) component-wise with p = q0 − 1, observing that 2q0 − 2p = 2 and making the change of
variable y = nγjξ in the multiple stochastic integral, we get, using the self-similarity of the Wiener process,

S(q0−1)
n,j = Î2

(
Dn ◦Σ2(γj × ·) ×

[√
f�(−π,π)

]⊗2

× κ̂
(q0−1)
j

)
d=

1
nγj

Î2

(
Dn ◦Σ2

(
n−1 × ·)× �

⊗2
(−γjπ,γjπ)

(
n−1 × ·)× fj

)
, (8.3)

where, for all ξ ∈ R2,
fj(nγjξ) =

√
f
⊗2

(ξ) × κ̂
(q0−1)
j (ξ). (8.4)

Here d= means that the two vectors have same distributions for all n, j ≥ 1. We will use Lemma A.3 which
involves fractional parts. Let us express 1⊗2

(−γjπ,γjπ) as a sum of indicator functions on the following pairwise
disjoint domains,

Γ
(s)
j = {t = (t1, t2) ∈ (−γjπ, γjπ)2, |t1 + t2 − 2πs| < π}, s ∈ Z.

Hence we obtain
S(q0−1)

n,j
d=

1
nγj

∑
s∈Z

I(s)
n,j . (8.5)

I(s)
n,j = Î2

(
Dn ◦Σ2

(
n−1 × ·)× �

Γ
(s)
j

(
n−1 × ·)× fj

)
. (8.6)

Proposition 8.2 follows from the following three convergence results, valid for all fixed m ∈ Z.

(a) If s = 0, then, as j → ∞,

(njγj)−2dγ
−2(δ(q0−1)+K)
j I(0)

nj ,j

L2(Ω)−→ (f∗(0))q0 Lq0−1 Zd(1). (8.7)

(b) We have, as j → ∞,

sup
s
=0

E

[
(njγj)−4dγ

−4(δ(q0−1)+K)
j

∣∣∣I(s)
nj ,j

∣∣∣2]→ 0. (8.8)

(c) We have, as j → ∞, ∑
s
∈γjZ

E

[
(njγj)−4dγ

−4(δ(q0−1)+K)
j

∣∣∣I(s)
nj ,j

∣∣∣2]→ 0. (8.9)
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To show that this is sufficient to prove the proposition, observe that, for any t = (t1, t2) ∈ Γ
(s)
j , we have

2π|s| − π < 2π|s| − |t1 + t2 − 2πs| ≤ |t1 + t2| < 2γjπ.

Hence the domain Γ (s)
j is empty if |s| > γj + 1/2. We use (8.8) for the two values s = γj and s = −γj and (8.9)

for the values s /∈ γjZ. Thus (8.8) and (8.9) imply

(nγj)−2dγ
−2(δ(q0−1)+K)
j

∑
s
=0

I(s)
n,j

L2(Ω)−→ 0.

Observe also that the normalizing factor in the left-hand side of (8.2) can be written as

n1−2dγ
−2(δ(q0)+K)
j = (nγj)

(
(nγj)−2dγ

−2(δ(q0−1)+K)
j

)
,

by using the definition of δ in (2.1). The last two displays, (8.5) and (8.7) yield (8.2).
It only remains to prove (8.7)–(8.9).
a) We first show (8.7). Since I(0)

n,j and Zd(1) are defined as stochastic integrals of order 2, (8.7) is equivalent to
the L2(R2) convergence of the normalized corresponding kernels. We show the latter by a dominated convergence
argument. These kernels are given in (8.6) and (3.3) respectively. Observe that, as n → ∞, Dn(θ/n) → (eiθ −
1)/(iθ) by (6.7), for all y ∈ R2,

Dn

(
n−1(y1 + y2)

)→ exp(i(y1 + y2)) − 1
(i(y1 + y2))

·

By (1.1), we have, as (nγj) → ∞, for all y ∈ R2,√
f
⊗2

(y/(nγj)) ∼ f∗(0) (nγj)2d |y1|−d|y2|−d.

Now applying Lemma A.2 to the m entries of κ̂
(p)
j with p = q0 − 1, we get that, as j → ∞, for all y ∈ R2,

γ
(q0−1)(1−2d)−(2K+1)
j κ̂

(q0−1)
j (y/(njγj)) → (f∗(0))q0−1 Lq0−1.

The last three convergences and 2δ(q0 − 1) = 1 − (q0 − 1)(1 − 2d) yield the pointwise convergence of the
normalized kernels defining the stochastic integrals appearing in the left-hand side of (8.7) towards the kernel
of the right-hand side.

It remains to bound these kernels by an L2(R2) function not depending on j, n. We may take m = 1 without
loss of generality for this purpose, since component-wise bounds are sufficient. If y/n ∈ Γ

(0)
j , we have, by

Lemma A.3,
|Dn((y1 + y2)/n)| ≤ C (1 + |y1 + y2|)−1, (8.10)

for some constant C > 0. By (1.1), since f∗ is bounded, we have, for all y = (y1, y2) ∈ (−nγjπ, nγjπ)∣∣∣(nγj)−2d
√
f
⊗2

(y/(nγj))
∣∣∣ ≤ C |y1|−d |y2|−d, (8.11)

where C is a constant. Since q0 − 1 < 1/(1− 2d), Lemma A.1 implies that, for all ζ ∈ R2 and some constant C,∣∣∣γ−2(δ(q0−1)+K)
j κ̂

(q0−1)
j (ζ)

∣∣∣ ≤ C. (8.12)

The bounds (8.10)–(8.12) imply that (nγj)−2dγ
−2(δ(q0−1)+K)
j I

(0)
n,j = Î2(g) with

|g(y)|2 ≤ C(1 + |y1 + y2|)−2 |y1|−2d|y2|−2d, y = (y1, y2) ∈ R2,
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for some positive constant C. Since we assumed 2 < 1/(1−2d). Then, applying Lemma A.5 with M1 = 2, q = 2,
and a = 0, we obtain that this function is integrable and the convergence (8.7) follows.

b) Let us now prove (8.8). Again we may take m = 1 without loss of generality since the bound can be
applied component-wise to derive the case m ≥ 2. Observe that the bounds (8.11) and (8.12) can be used for
y/n ∈ Γ

(s)
j , while the bound (8.10) becomes

|Dn((y1 + y2)/n)|2 ≤ C (1 + |y1 + y2 − 2πns|)−2, (8.13)

Hence in this case, we obtain that (nγj)−2dγ
−2(δ(q0−1)+K)
j I

(s)
n,j = Î2(g) with

|g(y)|2 ≤ C(1 + |y1 + y2 − 2πns|)−2 |y1|−2d |y2|−2d, y = (y1, y2) ∈ R2, (8.14)

for some positive constant C. Using the assumption 2 < 1/(1 − 2d), from Lemma A.5 applied with q = 2,
a = 2πns and M1 = 2, we get (8.8).

c) Finally we prove (8.9) with m = 1. We need to further partition Γ s
j into

Γ
(s,σ)
j = {t ∈ Γ s

j , t/γj − 2πσ ∈ (−π, π)2}, σ ∈ Z2.

Note that for all t = (t1, t2) ∈ Γ
(s,σ)
j , we have, for any i = 1, 2,

|2πσi| ≤ |ti/γj − 2πσi| + |ti/γj| < 2π.

Hence Γ (s,σ)
j = ∅ for all σ out of the integer rectangle R = {−1, 0, 1}2. Then we obtain

(nγj)−2dγ
−2(δ(q0−1)+K)
j I

(s)
n,j =

∑
σ∈R

Î2(g(s)
σ ),

where, for all y ∈ R2,

g(s)
σ (y) = (nγj)−2dγ

−2(δ(q0−1)+K)
j Dn ◦Σ2(y/n) × �

Γ
(s,σ)
j

(y/n) × fj(y).

Since R is a finite set, to obtain the limit (8.9), it is sufficient to show that, for any fixed σ ∈ R, as j, n→ ∞,∑
s
∈γjZ

∫ ∣∣∣g(s)
σ (y)

∣∣∣2 d2y → 0. (8.15)

For ζ ∈ 2πσ + (−π, π)2, we use a sharper bound than (8.12), namely, by Lemma A.1,∣∣∣γ−2(δ(q0−1)+K)
j κ̂

(q0−1)
j (ζ)

∣∣∣2 ≤ C k⊗2
j (ζ − 2πσ) where kj(u) = (1 + γj |u|)−2δ(q0−1). (8.16)

With (8.11) and (8.13), it follows that

∣∣∣g(s)
σ (y)

∣∣∣2 ≤ C
k⊗2

j (y/(nγj) − 2πσ)
(1 + |y1 + y2 − 2πns|)2 |y1|−2d |y2|−2d, y = (y1, y2) ∈ R2. (8.17)

Let us set w = (w1, w2) with w1 = y1/(nγj) − 2πσ1 and w2 = y2/(nγj) − 2πσ2. Using the bound (8.17) and
that y/n ∈ Γ

(s,σ)
j implies w ∈ Δ

(s,σ)
j with

Δ
(s,σ)
j = {(w1, w2) ∈ (−π, π)2, |γj(w1 + w2) − 2π(s− γj(σ1 + σ2))| < π},
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we get ∫ ∣∣∣g(s)
σ (y)

∣∣∣2 d2y ≤ C(nγj)2(1−2d)

∫
Δ

(s,σ)
j

k⊗2
j (w) |w1 + 2πσ1|−2d|w2 + 2πσ2|−2d

(1 + n|γj(w1 + w2) − 2π(s− γj(σ1 + σ2))|)2 d2w,

Since |wi ± 2π| > π > |wi| for w ∈ Δ
(s,σ)
j , we have for σ ∈ R,∫ ∣∣∣g(s)

σ (y)
∣∣∣2 d2y ≤ C(nγj)2(1−2d)

∫
Δ

(s,σ)
j

k⊗2
j (w) |w1|−2d|w2|−2d

(1 + n|γj(w1 + w2) − 2π(s− γj(σ1 + σ2))|)2 d2w. (8.18)

We shall apply Lemma A.5 after having conveniently bounded kj in the numerator of the previous ratio. Let
β < 1 to be set later arbitrarily close to 1. Since 2δ(q0 − 1) ≥ β − 2d+ 2δ(q0), we have

kj(u) = (1 + γj |u|)−2δ(q0−1)

≤ (1 + γj |u|)2d−β(1 + γj |u|)−2δ(q0).

Observe that, for all w ∈ Δ
(s,σ)
j we have

γj(|w1| ∨ |w2|) ≥ γj |(w1 + w2)/2| ≥ π(|s− γj(σ1 + σ2)| − 1/2) ≥ π|s− γj(σ1 + σ2)|/2.
In the last inequality, we used that s �∈ γjZ and that s, γj , σ1 and σ2 are integers so that |s− γj(σ1 + σ2)| ≥ 1.

Using 0 < q0 < 1/(1−2d), we have 2δ(q0) > 0, and, choosing β close enough to 1, we have β−2d > 0. Hence,
the last two displays yield, for all w ∈ Δ

(s,σ)
j with s �∈ γjZ,

k⊗2
j (w) ≤ |γjw1|2d−β|γjw2|2d−β(1 + π|s− γj(σ1 + σ2)|/2)−2δ(q0). (8.19)

Inserting this bound in (8.18) and setting t = nγjw, we obtain∫ ∣∣∣g(s)
σ (y)

∣∣∣2 d2y ≤ C
n−4d+2β

|s− γj(σ1 + σ2)|2δ(q0)

∫
R2

|t1t2|−β

(1 + |t1 + t2 − 2πn(s− γj(σ1 + σ2))|)2 d2t.

For β close enough to 1, we may apply Lemma A.5 with q = 2, d = β/2, M1 = 2 and a = 2πn(s−γj(σ1 +σ2)) to
bound the previous integral. Using again that s �∈ γjZ and that s, γj , σ1 and σ2 are integers, we have |a| ≥ 2πn
and thus 1 + |a| � |a|. We get, for all s �∈ γjZ∫ ∣∣∣g(s)

σ (y)
∣∣∣2 d2y ≤ Cn1−4d |s− γj(σ1 + σ2)|1−2δ(q0)−2β ,

where C is some positive constant.
Now choose β close enough to 1 so that 2δ(q0) + 2β − 1 > 1. It follows that∑

k 
=0

|k|1−2δ(q0)−2β <∞.

Since our assumptions imply d > 1/4, the last two displays imply (8.15) and the proof is finished. �

9. Proof of the main results

Proof Theorem 3.2. We first prove the result in Case a. In this case q0 = 1 and thus Hq0(Xt) = Xt. Let (v(s))s∈Z

be the Fourier coefficients of
√

2πf , so that the convergence√
2π f(λ) = v̂(λ) =

∑
s∈Z

v(s)e−iλs



64 M. CLAUSEL ET AL.

holds in L2(−π, π). It follows that {Xt}t∈Z can be represented as

Xt =
∑
s∈Z

v(t− s)ξs, t ∈ Z,

where {ξt}t∈Z is an i.i.d. sequence of standard Gaussian r.v.’s. Applying (2.13) with Hq0(Xt) = Xt we obtain
that

Wj,k = γd+K
j

⎡⎢⎣ Z1,j,k

...
Zm,j,k

⎤⎥⎦ , (9.1)

where
Z�,j,k =

∑
t∈Z

v�,j(γjk − t)ξt

with
v�,j(u) = γ−d−K

j

∑
s∈Z

h
(K)
�,j (u− s) v(s), u ∈ Z.

Hence
v̂�,j(λ) = γ−d−K

j ĥ
(K)
�,j (λ)v̂(λ) = γ−d−K

j

√
2π f(λ) ĥ(K)

�,j (λ), λ ∈ (−π, π).

Observe that (1.1)–(2.14) imply, for some positive constant C,

|v̂�,j(λ)| ≤ Cγ
1/2
j

|γjλ|M−(K+d)

(1 + γj |λ|)α+M
, λ ∈ (−π, π).

On the other hand, (1.1), (2.10) and (2.14) imply

lim
j→+∞

γ
−1/2
j v̂�,j(γ−1

j λ)eiΦj(λ) =
√

2πf∗(0)|λ|−(K+d)ĥ�,∞(λ), λ ∈ R, � = 1, . . . ,m.

Thus, if M ≥ K + d, Assumption A implies Condition B in [30] with N = m, δ = α+K + d, λi,j = λi,∞ = 0,
Φi,j = Φj , v∗i,j = (2π)−1/2v̂i,j and v∗i,∞(λ) =

√
f∗(0)|λ|−(K+d)ĥi,∞(λ) for i = 1, . . . , N and j ≥ 1. Moreover we

may apply Theorem 1 in [30] and obtain, as j → ∞,

n
−1/2
j

nj−1∑
k=0

⎡⎢⎣ Z2
1,j,k − E[Z2

1,j,k]
...

Z2
N,j,k − E[Z2

N,j,k]

⎤⎥⎦ L−→ N (0, Γ ) ,

where Γ is the m ×m covariance matrix defined by (3.5). Since, by (3.1) and (9.1), n1/2
j γ

−2(d+K)
j Snj ,j is the

left-hand side of the last display, we get (3.4).
We now consider Case b. Applying the basic decomposition (6.2) to each entries of Sn,j, Corollary 8.1 and

Proposition 8.2 show that the leading term is obtained for p = q0 − 1. Moreover the latter proposition specifies
the limit. �

Proof of Theorem 4.1. We first prove (4.5). Applying (4.4), (B.7) (with hj replaced by gj) and the isometry
property (B.5), we have

σ2
j = q0!

∫
(−π,π)q0

|ĝj ◦Σq0(ξ)|2
|1 − e−iΣq0(ξ)|2K

f⊗q0(ξ) dq0ξ.

Setting ξ = 2−jλ, we get

σ2
j = q0!2−j(q0−1)

∫
(−2jπ,2jπ)q0

∣∣2−j/2ĝj ◦Σq0(2−jλ)
∣∣2

|1 − e−iΣq0(2−jλ)|2K
f⊗q0(2−jλ) dq0λ.
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Using Assumption (W-b) on gj , and Condition (1.2) with f∗ bounded, the integrand is bounded, up to a
multiplicative constant, by

22j(K+dq0)(1 + |Σq0(λ)|)−2(α+K)

q0∏
i=1

|λi|−2d ,

since (|x|/(1 + |x|))M ≤ (|x|/(1 + |x|))K and |1− e−ix| � |x|. The displayed bound is integrable by Lemma A.5
with M1 = 2(α+K), q = q0 and a = 0. By dominated convergence, Assumption (W-c) on (gj) and continuity
of f∗ at zero, we get, as j → ∞,

2−2j(K+dq0−(q0−1)/2)σ2
j → q0! (f∗(0))q0

∫
Rq0

|ĝ∞ ◦Σq0(λ)|2
|Σq0(λ)|2K

q0∏
i=1

|λi|−2d dq0λ.

Using (2.1) and the definition Lq0(ĝ∞) in (3.7), we obtain (4.5).
To prove the convergence of the scalogram, we shall apply Theorem 3.2(b) with a sequence of multivariate

filters (hj)j≥0. To illustrate how this is done, suppose, for example, that we want to study the joint behavior of
Wj−u,k for u ∈ {0, 1}. Recall that j − 1 is a finer scale than j. Following the framework of [31], we consider the
multivariate coefficients Wj,k = (Wj,k, Wj−1,2k, Wj−1,2k+1), since, in addition to the wavelet coefficients Wj,k

at scale j, there are twice as many wavelet coefficients Wj−1,2k, Wj−1,2k+1 at scale j − 1. These coefficients can
be viewed as the output of a multidimensional filter hj defined as hj(τ) = (hj(τ), hj−1(τ), hj−1(τ + 2j−1)).
These three entries correspond to (u, v) equal to (0, 0), (1, 0) and (1, 1), respectively, in the general case below.

In the general case, each hj is defined as follows. For all, j ≥ 0, u ∈ {0, . . . , j} and v ∈ {0, . . . , 2u − 1}, let
� = 2u + v and define a filter h�,j by

h�,j(t) = gj−u(t+ 2j−uv), t ∈ Z. (9.2)

Applying this definition and (4.1) with γj = 2j, we get

Wj−u,2uk+v =
∑
t∈Z

h�,j(2jk − t)Yt.

These coefficients are stored in a vector Wj,k = [W�,j,k]�, say of length m = 2p − 1,

W�,j,k = Wj−u,2uk+v, � = 2u + v = 1, 2, . . . ,m , (9.3)

which corresponds to the multivariate wavelet coefficient (2.7) with hj(t) having components h�,j(t), � =
1, 2, . . . ,m defined by (9.2). This way of proceeding allows us to express the vector [σ̂2

j−u − σ2
j−u]u=0,...,p−1

as a linear function, up to a negligible remainder, of the vector Snj ,j defined by (3.1). Indeed observe that (4.2)
implies, for any fixed u

nj−u = 2unj +O(1). (9.4)

Hence (4.3) and (4.4) imply, for any fixed u,

σ̂2
j−u − σ2

j−u =
1

nj−u

nj−u∑
k=0

(
W 2

j−u,k − E[W 2
j−u,k ]

)
=

1
nj−u

2unj−1∑
k=0

(
W 2

j−u,k − E[W 2
j−u,k ]

)
+OP (σ2

j−u/nj−u), j ≥ u.
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Expanding
∑2unj−1

k=0 as
∑2u−1

v=0

∑nj−1
k′=0 with k = k′2u + v and applying (9.3) and the last display, we obtain, for

all j ≥ p,

σ̂2
j−u − σ2

j−u =
1

nj−u

2u−1∑
v=0

nj−1∑
k′=0

(
W 2

2u+v,j,k − E[W 2
2u+v,j,k]

)
+OP (σ2

j−u/nj−u)

=
nj

nj−u

2u−1∑
v=0

Snj ,j(2u + v) +OP (σ2
j−u/nj−u), u = 0, . . . , p− 1, (9.5)

where we denoted the entries of Snj ,j in (3.1) as [Snj ,j(�)]�=1,...,m.
Let us now check that (hj) satisfies the assumptions of Theorem 3.2. By hypothesis {gj} verifies Assumptions

(W-a)–(W-c). Hence, by (9.2), {hj} satisfies (W-a). We further have that, for � = 2u + v with u ∈ {0, . . . , p−1}
and v ∈ {0, . . . , 2u − 1},

ĥ�,j(λ) = ĝj−u(λ)ei2j−uvλ, λ ∈ (−π, π).

Hence (W-b) follows from the assumption on gj . Using that γj = 2j, Condition (W-c) also follows with Φj ≡ 0
and

ĥ�,∞(λ) = 2−u/2ĝ∞(2−uλ)ei2−uvλ. (9.6)

We can thus apply Theorem 3.2 and obtain (3.6), that is,

n1−2d
j 2−2j(δ(q0)+K)Snj ,j

L−→ f∗(0)q0 Lq0−1 Zd(1).

with Lq0−1 = [Lq0−1(ĥ�,∞)]�=1,...,m. By (9.6) and (3.7), it turns out that, for � = 2u + v with u ∈ {0, . . . , p− 1}
and v ∈ {0, . . . , 2u − 1},

Lq0−1(ĥ�,∞) =
∫

Rq0−1

|2−u/2ĝ∞(2−u(t1 + . . .+ tp))|2
|u1 + . . .+ uq0−1|2K

q0−1∏
i=1

|ti|−2d dt1 . . .dtq0−1

= 2−u−2Ku−2d(q0−1)u+u(q0−1)Lq0−1(ĝ∞)

= 2−2u(δ(q0)+K)+u(2d−1)Lq0−1(ĝ∞),

after the change of variables si = 2−uti, i = 1, . . . , q0 − 1 and the definition of δ(q0) in (2.1). Using the last two
displays, we obtain that, as j → ∞,{

n1−2d
j 2−2(j−u)(δ(q0)+K)Snj ,j(2u + v)

}
u,v

fidi−→
{
2u(2d−1) Lq0−1(ĝ∞)f∗(0)q0 Zd(1)

}
u,v

,

where (u, v) take values u = 0, . . . , p− 1 and v = 0, . . . , 2u − 1. Note that the right-hand side does not depend
on v. By (4.2), we have nj/nj−u ∼ 2−u and by (9.5), we have σ2

j−u ∼ q0! (f∗(0))q0 Lq0(ĝ∞) 22(j−u)(δ(q0)+K).
Thus the last display yields{

n1−2d
j

1
σ2

j−u

nj

nj−u

2u−1∑
v=0

Snj ,j(2u + v)

}
u

fidi−→
{

2u(2d−1) Lq0−1(ĝ∞)
q0!Lq0(ĝ∞)

Zd(1)
}

u

,

where u = 0, . . . , p− 1. Applying (9.5), we have

n1−2d
j

(
σ̂2

j−u

σ2
j−u

− 1

)
= n1−2d

j

1
σ2

j−u

(
σ̂2

j−u − σ2
j−u

)
= n1−2d

j

1
σ2

j−u

nj

nj−u

2u−1∑
v=0

Snj ,j(2u + v) +OP (n1−2d
j /nj−u).

By (9.4), n1−2d
j /nj−u ∼ 2un−2d

j → 0 since u is constant. Hence (4.6) follows from the last two displays. �
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Appendix A. Technical lemmas

A.1. Asymptotic behavior of the kernel κ̂
(p)
j

The following result provides a bound of κ̂(p)
j defined in (6.8), in the case where p > 0. It is used in the proof

of Proposition 7.1.

Lemma A.1. Suppose that Assumptions A hold with m = 1 and M ≥ K, and let 0 < p < 1/(1 − 2d). Then
there exists some C1 > 0 such that for all (ξ1, ξ2) ∈ R2 and j ≥ 0,

|κ̂(p)
j (ξ1, ξ2)| ≤ C1

γ
2(δ(p)+K)
j

(1 + γj |{ξ1}|)δ(p)(1 + γj |{ξ2}|)δ(p)
· (A.1)

Proof. By (2π)-periodicity of κ̂(p)
j (ξ1, ξ2) along both variables ξ1 and ξ2, we may take ξ1, ξ2 ∈ [−π, π]. Set for

all i ∈ {1, . . . , p},
μi = γj (λi + . . .+ λp),

in the integral (6.13). Then by (1.2) and (2.16), there exists a constant C independent of j such that for all
(ξ1, ξ2) ∈ [−π, π]2,

|κ̂(p)
j (ξ1,−ξ2)| ≤ C‖f∗‖p

∞γ
2K+2δ(p)
j

∫ γjpπ

−γjpπ

Jp,γjπ(μ1; 2d)dμ1∏2
i=1 (1 + γj |{μ1/γj + ξi}|)K+α

,

where Jp,a is defined in Lemma A.6. Applying Lemma A.6 (β = 2d, a = γjπ), there exists some constant C > 0
depending only on p, d such that for any μ1 ∈ R∗,

Jp,γjπ(μ1, 2d) ≤ C|μ1|−(p(1−2d)−1) = C|μ1|−2δ(p). (A.2)

Hence there exists C1 > 0 such that, for all (ξ1, ξ2) ∈ [−π, π]2,

|κ̂(p)
j (ξ1,−ξ2)| ≤ C1γ

2K+2δ(p)
j

∫ pγjπ

−pγjπ

|μ1|−2δ(p)dμ1∏2
i=1 (1 + γj |{μ1/γj + ξi}|)K+α

·

Using the Cauchy–Schwartz inequality yields

|κ̂(p)
j (ξ1,−ξ2)| ≤ C1γ

2(K+δ(p))
j

2∏
i=1

(∫ pγjπ

−pγjπ

|μ1|−2δ(p)dμ1

(1 + |γj {μ1/γj + ξi}|)2(K+α)

)1/2

. (A.3)

We now use that∫ pγjπ

−pγjπ

|μ1|−2δ(p) dμ1

(1 + |γj {μ1/γj + ξ}|)2(K+α)
≤

∑
|s|<(p+1)/2

∫
I(s)

|μ1|−2δ(p) dμ1

(1 + |μ1 + γj(ξ − 2πs)|)2(K+α)
,

where I(s) denotes the interval −γjξ+2πsγj + [−γjπ, γjπ]. Since we have here supposed that δ(p) > 0, we may
apply Lemma A.5 with d = δ(p), q = 1, a = −γj(ξ − 2πs) and M1 = 2(K + α). We get∫ pγjπ

−pγjπ

|μ1|−2δ(p) dμ1

(1 + |γj {μ1/γj + ξ}|)2(K+α)
≤ C

∑
|s|<(p+1)/2

(1 + γj |ξ − 2πs|)−2δ(p),

for some positive constant C. Since |ξ| ≤ π, we have, for any non-zero integer s, |ξ−2πs| ≥ (2|s|−1)π ≥ π ≥ |ξ|.
Hence all the terms in the last sum are at most equal to the term corresponding to s = 0. This, with (A.3),
yields (A.1). �
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Next we derive the limit of κ̂(p)
j , rescaled and normalized, as j → ∞. The result is used in the proof of

Proposition 8.2.

Lemma A.2. Suppose that Assumptions A hold with m = 1 and M ≥ K, and let 0 < p < 1/(1 − 2d). Let
(zj)j≥1 be a sequence in R2 converging to the origin. Then, as j → ∞,

γ
p(1−2d)−(2K+1)
j κ̂

(p)
j (zj/γj) → (f∗(0))p Lp(ĥ∞),

where Lp(ĥ∞) is the finite positive constant defined by (3.7).

Proof. From (2.11) and (3.7) withM ≥ K we get that |ĥ∞(λ)|/|λ|K ≤ (1+|λ|)−α−K . The fact that Lp(ĥ∞) <∞
follows from Lemma A.5 applied with a = 0, p = q and M1 = 2(α+K). Setting ζ = γjλ in (6.13), we get

γ
p(1−2d)−(2K+1)
j κ̂

(p)
j (ξ) =

∫
(−γjπ,γjπ)p

f
(K,p)
j (ζ; ξ) dpζ, (A.4)

where, for all j ≥ 0, λ ∈ Rp and ξ = (ξ1, ξ2) ∈ R2,

f
(K,p)
j (γjλ; ξ) = γ

−2dp−(2K+1)
j f⊗p(λ) ĥ(K)

j (Σp(λ) + ξ1)ĥ
(K)
j (Σp(λ) − ξ2).

Using (1.1), (2.10), (2.14) and zj → 0, we have, as j → ∞,

f
(K,p)
j (ζ; zj/γj) → (f∗(0))p |ĥ∞(ζ1 + . . .+ ζp)|2

|ζ1 + . . .+ ζp|2K

p∏
i=1

|ζi|−2d. (A.5)

It turns out, however, that f (K,p)
j (ζ; zj/γj) cannot be uniformly bounded by an integrable function over the whole

integral domain (−γjπ, γjπ)p, but only on a specific subdomain, as we will show below. By (1.1) and (2.16), we
have, for some constant C > 0,∣∣∣f (K,p)

j (ζ; zj/γj)
∣∣∣ ≤ C

p∏
i=1

|ζi|−2d sup
|u|≤|zj|

(1 + |γj{(Σp(ζ) + u)/γj}|)−2(α+K). (A.6)

The domains are defined using an integer s by taking ζ such that {(Σp(ζ) + u)/γj} = (Σp(ζ) + u)/γj − 2πs. In
fact we will use smaller domains that do not depend on u ∈ [−|zj|, |zj |], namely,

Γ
(s)
j = {ζ ∈ (−γjπ, γjπ)p, −π + 2πs+ |zj|/γj < Σp(ζ)/γj < π + 2πs− |zj|/γj}.

We note indeed that, for all ζ ∈ Γ
(s)
j and u ∈ [−|zj|, |zj |], {(Σp(ζ) + u)/γj} = (Σp(ζ) + u)/γj − 2πs. The

following set completes the partition of (−γjπ, γjπ)p.

Δj = {ζ ∈ (−γjπ, γjπ)p : d (Σp(ζ)/γj , π + 2πZ) ≤ |zj |/γj} ,
where d(x,A) denotes the distance between a real x and the set A. We will prove below the following facts.

(i) As j → ∞, we have ∫
Γ

(0)
j

f
(K,p)
j (ζ; zj/γj) dζ → (f∗(0))p Lp. (A.7)

(ii) If |s| ≥ (p+ 1)/2, for j large enough, Γ (s)
j is an empty set.

(iii) For all s �= 0, as j → ∞, ∫
Γ

(s)
j

f
(K,p)
j (ζ; zj/γj) dζ → 0. (A.8)
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(iv) As j → ∞, ∫
Δj

f
(K,p)
j (ζ; zj/γj) dζ → 0. (A.9)

To conclude the proof, we show (i), (ii), (iii) and (iv) successively.
First consider (i). It follows from (A.6), the definition of Γ (0)

j and |zj| → 0 that, for j large enough,

�
Γ

(0)
j

(ζ)
∣∣∣f (K,p)

j (ζ; zj/γj)
∣∣∣ ≤ C

p∏
i=1

|ζi|−2d (1/2 + |Σp(ζ)|)−2(α+K).

Observe that, by Lemma A.4, and since α > 1/2, K ≥ 0 and p(1 − 2d) < 1, the right-hand side of the last
display is integrable. Then (A.7) follows from (A.5) and the dominated convergence theorem.

Assertion (ii) follows from the definition of Γ (s)
j .

We now prove (iii) and thus take s �= 0. Using (A.6) and |zj | → 0, we get, for all ζ ∈ Γ
(s)
j and j large enough,

∣∣∣f (K,p)
j (ζ; zj/γj)

∣∣∣ ≤ C

p∏
i=1

|ζi|−2d (1/2 + |Σp(ζ) − 2πsγj |)−2(α+K).

The limit (A.8) then follows from Lemma A.5 applied with q = p, M1 = 2(K + α) and a = 2πγjs.
Finally we prove Assertion (iv). In this case, we observe that (A.6) and implies

|f (K,p)
j (ζ; zj/γj)| ≤ C

p∏
i=1

|ζi|−2d.

This bound and Lemma A.4 yields∫
Δj

f
(K,p)
j (ζ; zj/γj) dζ ≤ C

∫ pγjπ

−pγjπ

�d(t/γj ,π+2πZ)≤|zj|/γj
dt = O(|zj |).

Hence, since |zj| → 0, we obtain (A.9) and the proof is achieved. �

A.2. Other technical lemmas

Lemma A.3. Define the Dirichlet kernel Dn as in (6.7). Then

sup
θ∈R

sup
n≥1

(1 + |n{θ/n}|) |Dn(θ/n)| <∞. (A.10)

Proof. We observe that |eiλ − 1| ≥ 2|{λ}|/π. Hence, for all θ ∈ R,

|Dn(θ/n)| ≤ π

2
|eiθ − 1|
|n{θ/n}| =

π

2
|ein{θ/n} − 1|
|n{θ/n}| ·

(We use the usual continuous extension convention (ei0 − 1)/0 = 1). Now, using that |eiu − 1| ≤ 2|u|/(1 + |u|)
on u ∈ R, we get (A.10). �

Lemma A.4. Let p be a positive integer and f : R → R+. Then, for any β ∈ Rq,∫
Rq

f(y1 + . . .+ yq)
q∏

i=1

|yi|βi dy1 . . .dyq = Γ ×
∫

R

f(s)|s|q−1+β1+...+βqds, (A.11)
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where, for all i ∈ {1, . . . , q}, Bi = βi + . . .+ βq and

Γ =
q∏

i=2

(∫
R

|t|q−i+Bi |1 − t|βi−1dt
)
.

(We note that Γ may be infinite in which case (A.11) holds with the convention ∞× 0 = 0).

Proof. This follows from Lemma 8.3 in [11]. �

Lemma A.5. Let d ∈ (0, 1/2) and q be a positive integer such that q < 1/(1 − 2d). Let M1 > 1. Set for any
a ∈ R,

Jq(a;M1; d) =
∫

Rq

(1 + |Σq(ζ) − a|)−M1

q∏
i=1

|ζi|−2d dζ.

Then one has
sup
a∈R

(1 + |a|)1−q(1−2d)Jq(a;M1; d) <∞. (A.12)

In particular,
Jq(0;M1; d) <∞,

and
Jq(a;M1; d) = O(|a|−(1−q(1−2d)) as a→ ∞.

Proof. This follows from Lemma 8.4 of in [11]. �

Lemma A.6. Define, for all a > 0 and β1 ∈ (0, 1),

J1,a(s1;β1) = |s1|−β1 , s1 ∈ R, (A.13)

and, for any integer m ≥ 2 and β = (β1, . . . , βm) ∈ (0, 1)m,

Jm,a(s1;β) =
∫ (m−1)a

s2=−(m−1)a

. . .

∫ a

sm=−a

m∏
i=2

|si−1 − si|−βi−1 |sm|−βm dsm . . . ds2, s1 ∈ R. (A.14)

Then

(i) if β1 + · · · + βm > m− 1, one has

Cm(β) = sup
a>0

sup
s1∈R

(
|s1|−(m−1−(β1+···+βm))Jm,a(s1;β)

)
<∞,

(ii) if β1 + · · · + βm = m− 1, one has

Cm(β) = sup
a>0

sup
|s1|≤ma

(
1

1 + log(ma/|s1|)Jm,a(s1;β)
)
<∞,

(iii) if there exists q ∈ {2, . . . ,m} such that βq + · · · + βm = m− q, one has

Cm(β) = sup
a>0

sup
|s1|≤ma

(
a−(q−1−(β1+···+βq−1))

1 + log(ma/|s1|) Jm,a(s1;β)
)
<∞,

(iv) if β1 + · · · + βm < m− 1 and for all q ∈ {1, . . . ,m− 1}, we have βq + · · · + βm �= m− q, one has

Cm(β) = sup
a>0

sup
|s1|≤ma

(
a−(m−1−(β1+···+βm))Jm,a(s1;β)

)
<∞.
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Remark A.7. We observe that Cases (ii),(iii) and (iv) can be put together as the following formula, valid for
all β ∈ (0, 1)m such that β1 + · · · + βm ≤ m− 1,

Cm(β) = sup
a>0

sup
|s1|≤ma

(
a−(q−1−(β1+···+βq−1))

{1 + log(ma/|s1|)}ε
Jm,a(s1;β)

)
<∞, (A.15)

where ε = 1 if there exists q ∈ {1, . . . ,m} such that βq + · · · + βm = m− q, and ε = 0 otherwise. We may also
include case (i) as follows,

Cm(β) = sup
a>0

sup
|s1|≤ma

(
a−(m−1−(β1+···+βm))+ |s1|(m−1−(β1+···+βm))−

{1 + log(ma/|s1|)}ε
Jm,a(s1;β)

)
<∞, (A.16)

where ε is as above, and a+ = max(a, 0) and a− = max(−a, 0) denote the positive and negative parts of a,
respectively.

Proof. Observe first that for all m ≥ 1,

Jm,a(s1;β) =
∫ (m−1)a

s2=−(m−1)a

|s2 − s1|−β1 Jm−1,a(s2;β′) ds2, (A.17)

where β′ = (β2, . . . , βm). The bounds Cm(β) in the different cases will follow by induction on m.
Let us first prove the result for m = 1 and m = 2. If m = 1, β = β1 ∈ (0, 1) only satisfies the condition of

Case (i) and, since J1,a is given by (A.13), the result holds for m = 1. Assume now that m = 2 and s1 �= 0 and
set s2 = v|s1|. Then

J2,a(s1;β) = |s1|1−(β1+β2)

∫ a/|s1|

−a/|s1|

dv
|1 − v|β1 |v|β2

. (A.18)

In the case β1 + β2 > 1, we are in Case (i). Since
∫

R

dv
|1−v|β1 |v|β2 is finite, the required upper bound holds. If

β1 + β2 ≤ 1, we are either in Case (ii) or (iv) and the result follows from the following bounds valid for some
constant c depending only on β, if β1 + β2 < 1 and x ≥ 1/2,∫ x

−x

dv
|1 − v|β1 |v|β2

≤ cx1−(β1+β2),

and, if β1 + β2 = 1 and x ≥ 1/2, ∫ x

−x

dv
|1 − v|β1 |v|β2

≤ C(1 + log(2x)).

This prove the result for m = 2 because x = a/|s1| ≥ 1/2.
Let us now assume that the result holds for some positive integer m− 1 and prove it for m. We consider two

different cases.

1. If β satisfies the conditions of Case (i), Case (ii), or Case (iv) then β′ satisfies the conditions of Case (i) or
(iv). Then by (A.17) and the induction assumption,

Jm,a(s1;β) ≤ Cm−1(β′)a[m−2−Σm−1(β
′)]+
∫ (m−1)a

−(m−1)a

|s2 − s1|−β1 |s2|−[Σm−1(β
′)−(m−2))]+ds2,

where Σm−1(β′) = β2 + · · · + βm and [x]+ = max(x, 0). If Σm−1(β′) < m − 2 (so that β satisfies (iv)), the
conclusion follows from the following bound valid for some constant c depending only on β and all x ≥ |s1|/2,∫ x

−x

|s2 − s1|−β1ds2 = |s1|1−β1

∫ x/|s1|

−x/|s1|
|u− 1|−β1du ≤ cx1−β1 .
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Now if Σm−1(β′) > m− 2, we observe that∫ (m−1)a

−(m−1)a

|s2 − s1|−β1 |s2|−[β2+...+βm−(m−2)]ds2 = J2,(m−1)a(s1;β1, β2 + . . .+ βm − (m− 2)).

The upper bound of Jm,a(s1;β) then follows from the case m = 2.
2. If β satisfies the condition of Case (iii), then β′ either satisfies the conditions of Case (ii) or (iii). The proof

is exactly similar to this just above up to a logarithmic correction. �

Lemma A.8. Let S > 1 and (β1, β2) ∈ [0, 1)2 such that β1 + β2 < 1, and set gi(t) = |t|−βi(1 + |t|)βi−S. Then

sup
ν≥0

(
ν

∫
R2

(1 + ν|{w1 + w2}|)−2g1(w1)g2(w2) dw
)
<∞. (A.19)

Proof. Denote by J(ν) the quantity in parentheses in (A.19). We denote here by C a positive constant that
may change from line to line, but whose value does not depend on ν. Setting u = w1 + w2 in the integral with
respect to w1 and then integrating with respect to w2, Lemma 8.1 in [11] yields

J(ν) ≤ Cν

∫
u∈R

(1 + ν|{u}|)−2 (1 + |u|)−Sdu.

Since the integral is bounded independently of ν, J is bounded on compact subsets of [0,∞), hence we may
consider ν ≥ 2 in the remainder of the proof. We shall use the bound 1 + x ≥ max(1, x) for x ≥ 0. Splitting
the integral of the last display on the two domains defined by the position of |{u}| with respect to ν−1, we get
J(ν) ≤ C(J1(ν) + J2(ν)), with

J1(ν) = ν

∫
|{u}|≤ν−1

(1 + |u|)−S du,

and
J2(ν) = ν−1

∫
|{u}|≥ν−1

|{u}|−2 (1 + |u|)−S du.

We have

J1(ν) = ν
∑
k∈Z

∫ 2kπ+ν−1

2kπ−ν−1
(1 + |u|)−Sdu.

For ν ≥ 2 the integral in the parentheses of the last display is less than 2ν−1(1/2 + |2kπ|)−S . Since S > 1, we
get that J1(u) is bounded over the domain ν ≥ 2.

It remains to prove that J2(ν) is bounded for ν large enough. We have, setting v = u− 2kπ for each k,

J2(ν) = ν−1
∑
k∈Z

∫
ν−1≤|v|≤π

|v|−2(1 + |2kπ + v|)−S dv.

Now since
sup
v∈R

∑
k∈Z

(1/2 + |2kπ + v|)−S <∞,

we get by inverting the integral with the summation,

J2(ν) ≤ Cν−1

∫
ν−1≤|v|≤π

|v|−2 dv.

Hence J2 is bounded over the domain ν ≥ 2, completing the proof. �
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Appendix B. Integral representations

It is convenient to use an integral representation in the spectral domain to represent the random processes
(see for example [23, 27]). The stationary Gaussian process {Xk, k ∈ Z} with spectral density (1.2) can be
written as

X� =
∫ π

−π

eiλ�f1/2(λ)dŴ (λ) =
∫ π

−π

eiλ�f∗1/2(λ)
|1 − e−iλ|d dŴ (λ), � ∈ Z. (B.1)

This is a special case of

Î(g) =
∫

R

g(x)dŴ (x), (B.2)

where Ŵ (·) is a complex–valued Gaussian random measure satisfying, for any Borel sets A and B in R,

E(Ŵ (A)) = 0, E(Ŵ (A)Ŵ (B)) = |A ∩ B| and Ŵ (A) = Ŵ (−A). The integral (B.2) is defined for any func-
tion g ∈ L2(R) and one has the isometry

E(|Î(g)|2) =
∫

R

|g(x)|2dx.

The integral Î(g), moreover, is real–valued if g(x) = g(−x).
We shall also consider multiple Itô–Wiener integrals

Îq(g) =
∫ ′′

Rq

g(λ1, . . . , λq)dŴ (λ1) . . .dŴ (λq)

where the double prime indicates that one does not integrate on hyperdiagonals λi = ±λj , i �= j. The inte-
grals Îq(g) are handy because we will be able to expand our non–linear functions G(Xk) introduced in Section 1
in multiple integrals of this type.

These multiples integrals are defined for g ∈ L2(Rq,C), the space of complex valued functions defined on Rq

satisfying

g(−x1, . . . ,−xq) = g(x1, . . . , xq) for (x1, . . . , xq) ∈ Rq, (B.3)

‖g‖2
L2 :=

∫
Rq

|g(x1, . . . , xq)|2 dx1 . . . dxq <∞. (B.4)

The integral Îq(g) is real valued and verifies Îq(g) = Îq(g̃), where

g̃(x1, . . . , xq) =
1
q!

∑
σ

g(xσ(1), . . . , xσ(q)).

Here the sum is over all permutations of {1, . . . , q}.

E(Îq(g1)Îq′ (g2)) =

{
q!〈g̃1, g̃2〉L2 if q = q′

0 if q �= q′.
(B.5)

Hermite polynomials are related to multiple integrals as follows: if X =
∫

R
g(x)dŴ (x) with E(X2) =∫

R
|g(x)|2dx = 1 and g(x) = g(−x) so that X has unit variance and is real–valued, then

Hq(X) = Îq(g⊗q) =
∫ ′′

Rq

g(x1) . . . g(xq)dŴ (x1) . . . dŴ (xq). (B.6)



74 M. CLAUSEL ET AL.

Since X has unit variance, one has for any � ∈ Z,

Hq(X�) = Hq

(∫ π

−π

eiξ�f1/2(ξ)dŴ (ξ)
)

=
∫ ′′

(−π,π]q
ei�(ξ1+...+ξq) ×

(
f1/2(ξ1) × . . .× f1/2(ξq)

)
dŴ (ξ1) . . .dŴ (ξq).

Then by (2.13), we have
Wj,k =

∑
�∈Z

h
(K)
j (γjk − �)Hq0(X�) = Îq0 (f

(q0)
j,k ) (B.7)

with
f

(q)
j,k (ξ1, . . . , ξq) = eikγj(ξ1+...+ξq) × ĥ

(K)
j (ξ1 + . . .+ ξq)f1/2(ξ1) . . . f1/2(ξq)�

⊗q
(−π,π)(ξ), (B.8)

because by (2.5), ∑
�∈Z

ei�(ξ1+...+ξq)h
(K)
j (γjk − �) = eiγjk(ξ1+...+ξq)

∑
u∈Z

e−iu(ξ1+...+ξq)h
(K)
j (u)

= eiγjk(ξ1+...+ξq)ĥ
(K)
j (ξ1 + . . .+ ξq).

Observe now that since we have defined the Fourier transform of a function f ∈ L2(Rq) as

f̂(ξ) =
∫

Rq

f(x)e−ixξdx ∈ L2(Rq),

we have by Parseval
‖f̂‖2

L2(Rq)
= (2π)q ‖f‖2

L2(Rq).

Since moreover, E(Iq(f̂)2) = ‖f̂‖2
L2(Rq)

and E(Îq(f)2) = ‖f‖2
L2(Rq), we have

Iq(f̂)
(L)
= (2π)q/2Îq(f). (B.9)

The following proposition is an extension to our complex–valued setting of a corresponding result in [27] for
multiple integrals in a real–valued setting. Since it plays an essential role, we provide a proof for the convenience
of the reader.

Proposition B.1. Let (q, q′) ∈ N2. Assume that f, g are two symmetric functions belonging respectively
to L2(Rq) and L2(Rq′

) then the following product formula holds:

Îq(f)Îq′(g) =
q∧q′∑
p=0

p!
(
q
p

)(
q′
p

)
Îq+q′−2p(f⊗pg), (B.10)

where f⊗0g = f ⊗ g is the usual tensor product and, for any p ∈ {1, . . . , q ∧ q′},

(f⊗pg)(t1, . . . , tq+q′−2p) =
∫

Rp

f(t1, . . . , tq−p, s)g(tq−p+1, . . . , tq+q′−2p,−s)dps. (B.11)

Proof. We first assume that f and g are of the form

f = f1 ⊗ f2, g = g1 ⊗ g2,
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where f1, f2, g1, g2 belong respectively to L2(Rq−p,C), L2(Rq′−p,C), L2(Rp,C), L2(Rp,C). In that special case,
using that for any q ≥ 1 and any f ∈ L2(Rq), Îq(f) = (2π)−q/2Iq(f̂) by (B.9), one has

Îq(f)Îq′ (g) = Îq(f1 ⊗ f2)Îq′ (g1 ⊗ g2) = (2π)−(q+q′)/2Iq(f̂1 ⊗ f̂2)Iq′ (ĝ1 ⊗ ĝ2). (B.12)

The assumptions on functions f1, f2, g1, g2 imply that their Fourier transform f̂1, f̂2, ĝ1, ĝ2 are real–valued func-
tions belonging respectively to L2(Rq−p,R), L2(Rq′−p,R), L2(Rp,R) and L2(R�,R). Then one can apply the
usual product formula for multiple Wiener–Itô integrals (see for example [27]) and deduce that:

Iq(f̂1 ⊗ f̂2)Iq′ (ĝ1 ⊗ ĝ2) =
q∧q′∑
p=0

p!
(
q
p

)(
q′
p

)
Iq+q′−2p((f̂1 ⊗ f̂2) ⊗p (ĝ1 ⊗ ĝ2)). (B.13)

Note now that for any p

(f̂1 ⊗ f̂2) ⊗p (ĝ1 ⊗ ĝ2) =
∫

Rp

f̂1(t1, . . . , tq−p)f̂2(s)ĝ1(tq−p+1, . . . , tq+q′−2p)ĝ2(s)ds

= f̂1(t1, . . . , tq−p)ĝ1(tq−p+1, . . . , tq+q′−2p)
∫

Rp

f̂2(s)ĝ2(s)ds

= f̂1(t1, . . . , tq−p)ĝ1(tq−p+1, . . . , tq+q′−2p)(2π)p

∫
Rp

f2(t)g2(t)dt

= f̂1(t1, . . . , tq−p)ĝ1(tq−p+1, . . . , tq+q′−2p)(2π)p

∫
Rp

f2(t)g2(−t)dt,

since g2(t) = g2(−t) and using the Parseval’s formula. Hence

Iq+q′−2p((f̂1 ⊗ f̂2) ⊗p (ĝ1 ⊗ ĝ2)) = (2π)p

(∫
Rp

f2(t)g2(−t)dt
)
× Iq+q′−2p(f̂1 ⊗ ĝ1)

= (2π)p

(∫
Rp

f2(t)g2(−t)dt
)
× Iq+q′−2p(f̂1 ⊗ g1)

= (2π)p

(∫
Rp

f2(t)g2(−t)dt
)
× (2π)(q+q′−2p)/2Îq+q′−2p(f1 ⊗ g1)

= (2π)(q+q′)/2

(∫
Rp

f2(t)g2(−t)dt
)
Îq+q′−2p(f1 ⊗ g1)

= (2π)(q+q′)/2Îq+q′−2p(f⊗pg).

Using the last equality and equations (B.12), (B.13),we get the claimed results for this special case. The con-
clusion for general f and g follows using the density of L2(Rq−p,R) ⊗ L2(Rp,R) in L2(Rq,R). �

References

[1] P. Abry and V. Pipiras, Wavelet-based synthesis of the Rosenblatt process. Eurasip Signal Processing 86 (2006) 2326–2339.

[2] P. Abry and D. Veitch, Wavelet analysis of long–range-dependent traffic. IEEE Trans. Inform. Theory 44 (1998) 2–15.

[3] P. Abry, D. Veitch and P. Flandrin, Long-range dependence: revisiting aggregation with wavelets. J. Time Ser. Anal. 19 (1998)
253–266. ISSN 0143-9782.

[4] P. Abry, Helgason H. and V. Pipiras, Wavelet-based analysis of non-Gaussian long–range dependent processes and estimation
of the Hurst parameter. Lithuanian Math. J. 51 (2011) 287–302.

[5] J.-M. Bardet, Statistical study of the wavelet analysis of fractional Brownian motion. IEEE Trans. Inform. Theory 48 (2002)
991–999.

[6] J.-M. Bardet and C.A. Tudor, A wavelet analysis of the Rosenblatt process: chaos expansion and estimation of the self-similarity
parameter. Stochastic Process. Appl. 120 (2010) 2331–2362.



76 M. CLAUSEL ET AL.

[7] J.-M. Bardet, G. Lang, E. Moulines and P. Soulier, Wavelet estimator of long–range dependent processes. 19th “Rencontres
Franco-Belges de Statisticiens” (Marseille, 1998). Stat. Inference Stoch. Process. 3 (2000) 85–99.

[8] J.M. Bardet, H. Bibi and A. Jouini, Adaptive wavelet based estimator of the memory parameter for stationary gaussian
processes. Bernoulli 14 (2008) 691–724.

[9] J.-C. Breton and I. Nourdin, Error bounds on the non-normal approximation of hermite power variations of fractional brownian
motion. Electron. Commun. Probab. 13 (2008) 482–493.

[10] A. Chronopoulou, C. Tudor and F. Viens, Self-similarity parameter estimation and reproduction property for non-gaussian
Hermite processes. Commun. Stoch. Anal. 5 (2011) 161–185.

[11] M. Clausel, F. Roueff, M.S. Taqqu and C. Tudor, Large scale behavior of wavelet coefficients of non-linear subordinated
processes with long memory. Appl. Comput. Harmonic Anal. 32 (2012) 223–241.

[12] M. Clausel, F. Roueff, M.S. Taqqu and C. Tudor, High order chaotic limits of wavelet scalograms under long–range dependence.
Technical report, Hal–Institut Telecom (2012). http://hal-institut-telecom.archives-ouvertes.fr/hal-00662317.

[13] R.L. Dobrushin and P. Major, Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. Verw.
Gebiete 50 (1979) 27–52.

[14] P. Embrechts and M. Maejima, Selfsimilar processes. Princeton University Press, Princeton, New York (2002).

[15] P. Flandrin, On the spectrum of fractional Brownian motions. IEEE Trans. Inform. Theory IT-35 (1989) 197–199.

[16] P. Flandrin, Some aspects of nonstationary signal processing with emphasis on time-frequency and time-scale methods. Edited
by J.M. Combes, A. Grossman and Ph. Tchamitchian, Wavelets. Springer-Verlag (1989) 68–98.

[17] P. Flandrin, Fractional Brownian motion and wavelets. Edited by M. Farge, J.C.R. Hung and J.C. Vassilicos, Fractals and
Fourier Transforms-New Developments and New Applications. Oxford University Press (1991).

[18] P. Flandrin, Time-Frequency/Time-scale Analysis, 1st edition. Academic Press (1999).

[19] R. Fox and M.S. Taqqu. Large-sample properties of parameter estimates for strongly dependent stationary Gaussian time
series. Ann. Statist. 14 (1986) 517–532.

[20] L. Giraitis and D. Surgailis, Central limit theorems and other limit theorems for functionals of gaussian processes. Z. Wahrsch.
verw. Gebiete 70 (1985) 191–212.

[21] L. Giraitis and M.S. Taqqu, Whittle estimator for finite-variance non-gaussian time series with long memory. Ann. Statist. 27
(1999) 178–203.

[22] A.J. Lawrance and N.T. Kottegoda, Stochastic modelling of riverflow time series. J. Roy. Statist. Soc. Ser. A 140 (1977) 1–47.
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