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Abstract. We consider the nonparametric regression estimation problem of recovering an unknown
response function f on the basis of spatially inhomogeneous data when the design points follow a known
density g with a finite number of well-separated zeros. In particular, we consider two different cases:
when g has zeros of a polynomial order and when g has zeros of an exponential order. These two cases
correspond to moderate and severe data losses, respectively. We obtain asymptotic (as the sample
size increases) minimax lower bounds for the L2-risk when f is assumed to belong to a Besov ball,
and construct adaptive wavelet thresholding estimators of f that are asymptotically optimal (in the
minimax sense) or near-optimal within a logarithmic factor (in the case of a zero of a polynomial order),
over a wide range of Besov balls. The spatially inhomogeneous ill-posed problem that we investigate
is inherently more difficult than spatially homogeneous ill-posed problems like, e.g., deconvolution.
In particular, due to spatial irregularity, assessment of asymptotic minimax global convergence rates
is a much harder task than the derivation of asymptotic minimax local convergence rates studied
recently in the literature. Furthermore, the resulting estimators exhibit very different behavior and
asymptotic minimax global convergence rates in comparison with the solution of spatially homogeneous
ill-posed problems. For example, unlike in the deconvolution problem, the asymptotic minimax global
convergence rates are greatly influenced not only by the extent of data loss but also by the degree of
spatial homogeneity of f . Specifically, even if 1/g is non-integrable, one can recover f as well as in
the case of an equispaced design (in terms of asymptotic minimax global convergence rates) when it is
homogeneous enough since the estimator is “borrowing strength” in the areas where f is adequately
sampled.
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1. Introduction

Applicability of majority of techniques for estimation in the nonparametric regression model rests on the
assumption that data is equispaced and complete. These assumptions were mainly adopted by signal processing

Keywords and phrases. Adaptivity, Besov spaces, inhomogeneous data, minimax estimation, nonparametric regression, thresh-
olding, wavelet estimation.

1 Laboratoire Jean Kuntzmann, Universite Joseph Fourier, 38041 Grenoble Cedex 9, France. Anestis.Antoniadis@imag.fr
2 Department of Mathematics, University of Central Florida, Orlando, 32816-1364, USA. Marianna.Pensky@ucf.edu
3 Department of Mathematics and Statistics, University of Cyprus, P.O. Box 20537, CY 1678 Nicosia, Cyprus. fanis@ucy.ac.cy

Article published by EDP Sciences c© EDP Sciences, SMAI 2013

http://dx.doi.org/10.1051/ps/2012024
http://www.esaim-ps.org
http://www.edpsciences.org


2 A. ANTONIADIS ET AL.

community where the signal is assumed to be recorded at equal intervals in time. However, in reality, due
to unexpected losses of data or limitations of data sampling techniques, data may fail to be equispaced and
complete. To this end, we consider the problem of recovering an unknown response function f ∈ L2([0, 1]) on
the basis of irregularly spaced observations, i.e., when one observes yi governed by

yi = f(xi) + σ ξi, i = 1, 2, . . . , n, (1.1)

where xi ∈ [0, 1], i = 1, 2, . . . , n, are fixed (non-equidistant) or random points, ξi, i = 1, 2, . . . , n, are independent
standard Gaussian random variables and σ2 > 0 (the noise level) is assumed to be known and finite. Model (1.1)
can be viewed as a problem of recovering a signal when part of data is lost (e.g., in cell phone use) or unavailable
(e.g., in military applications). Model (1.1) is also intimately connected to the problem of missing data since
points xi, i = 1, 2, . . . , n, can be viewed as the remainder of N equidistant points j/N , j = 1, 2, . . . , N , after
observations at (N −n) points have been lost. However, there is a great advantage in treating the missing data
problem as a particular case of a nonparametric regression problem: with the last two decades seeing tremendous
advancement in the field of nonparametric statistics, a nonparametric regression approach to incomplete data
brings along all the modern tools in this field such as asymptotic minimax convergence rates, Besov spaces,
wavelets and adaptive estimators.

The problem of estimating an unknown response function in the context of wavelet thresholding in the
nonparametric regression setting with irregular design has been now addressed by many authors, see, e.g., Hall
and Turlach [15], Antoniadis and Pham [2], Cai and Brown [5], Sardy et al. [35], Kovac and Silverman [24],
Pensky and Vidakovic [34], Brown et al. [4], Zhang et al. [39], Kohler [22] and Amato et al. [1]. Several tools
were suggested for attacking the problem; here, we shall review only few of them. For instance, the procedure
of Kovac and Silverman [24] relies upon a linear interpolation transformation R to the observed data vector
y = (y1, y2, . . . , yn) that maps it to a new vector of size 2J (2J−1 < n ≤ 2J), corresponding to a new design
with equispaced points. After the transformation, the new vector is multivariate normal with mean Rf and
covariance matrix which is assumed to have a finite bandwidth, so that the computational complexity of their
algorithm is of order n. Cai and Brown [5] attacked the problem by using multiresolution analysis, projection and
wavelet nonlinear thresholding while Sardy et al. [35] applied an isometric method. Pensky and Vidakovic [34]
estimated the conditional expectation E(Y |X) directly by constructing its wavelet expansion, while Amato
et al. [1] applied a reproducing kernel Hilbert space (RKHS) approach in the spirit of Wahba [38]. However,
until very recently, all studies have been carried out under the assumption that the nonequispaced design still
possesses some regularity, namely, the density function g of the design points xi, i = 1, 2, . . . , n, is uniformly
bounded from below, i.e., infx∈[0,1] g(x) ≥ c for some constant c > 0. In this case, asymptotically, model (1.1)
is equivalent to the case of the standard (equispaced) nonparametric regression model, as long as the design
density function g is known (see, e.g., Brown et al. [4]).

Recently, an attempt has been made of more advanced investigations of the problem. Kerkyacharian and
Picard [21] introduced warped wavelets to construct estimators of the unknown response function f under
model (1.1) when the design density function g has zeros of polynomial order. They, however, measured the
error of their suggested estimator in the warped Besov spaces which is, practically, equivalent to measuring
the error of the estimator at the design points only. For this reason, the derived estimators posses the usual
asymptotic (as the sample size increases) minimax global convergence rates which do not depend on the order
of the zeros of the design density function g. This line of investigation was continued by Chesneau [6] who
constructed asymptotic minimax lower bounds over a wide range of Besov balls, under the assumption that the
design density function g is known and that 1/g is integrable, and, furthermore, suggested adaptive wavelet
thresholding estimators for the unknown response function f . However, in Kerkyacharian and Picard [21] and
Chesneau [6], the assumptions on the design density function g are restrictive enough so that the asymptotic
minimax global convergence rates of any estimator coincide with the asymptotic minimax global convergence
rates under the assumption that g is bounded from below, i.e., the corresponding nonparametric estimation
problem is a well-posed problem.
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Gäıffas [9,11] was the first author who considered nonparametric regression estimation on the basis of spatially
inhomogeneous data as an ill-posed problem. In particular, he constructed pointwise adaptive estimators of f
on the basis of local polynomials when 1/g is non-integrable and showed that the asymptotic minimax local
convergence rates of the suggested estimators are slower than in the case when g is bounded from below, hence,
demonstrating that the aforementioned estimation problem is an ill-posed problem. Since his techniques are
intended for local reconstruction and depend on cross-validation at each point, they become too involved when
one tries to adapt them to the whole domain of f . Furthermore, Gäıffas [10, 12] studied asymptotic minimax
uniform convergence rates. However, these rates are expressed in a very complex form which is very hard to
obtain for f belonging to standard functional classes (see Rem. 6.4). Note also that some of his results were
recently extended to the multivariate case by Guillou and Klutchnikoff [14].

Our objective is to study how the zeros of the design density function g affect the asymptotic minimax global
convergence rates of f in model (1.1), and to construct adaptive wavelet thresholding estimators of f which
attain these rates, over a wide range of Besov balls. As we show below (see Rem. 2.2), assessing asymptotic
minimax global convergence rates is a much harder task than assessing asymptotic minimax local convergence
rates. Model (1.1) can be viewed as a spatially inhomogeneous ill-posed problem which is inherently more
difficult than spatially homogeneous ill-posed problems like, e.g., deconvolution, especially in the case when the
unknown response function is spatially homogeneous. To the best of our knowledge, so far, there are no results
for asymptotic minimax global convergence rates in the case of spatially inhomogeneous ill-posed problems
when its solution is spatially homogeneous since this problem is usually avoided by restricting attention to the
case when the estimated function is spatially inhomogeneous, or, at most, belongs to a Sobolev ball (see, e.g.,
Hoffmann and Reiss [17]).

In what follows, we address these issues. In particular, we mainly consider two different cases: when g has
zeros of a polynomial order and when g has zeros of an exponential order. We obtain asymptotic (as the
sample size increases) minimax lower bounds for the L2-risk when f is assumed to belong to a Besov ball, and
construct adaptive wavelet thresholding estimators of f that are asymptotically optimal (in the minimax sense)
or near-optimal within a logarithmic factor (in the case of a zero of a polynomial order), over a wide range of
Besov balls. Due to spatial irregularity, the suggested estimators exhibit very different behavior and asymptotic
minimax global convergence rates in comparison with the solution of spatially homogeneous ill-posed problems
(see Rem. 3.2). Specifically, even if 1/g is non-integrable, one can recover f as well as in the case of an equispaced
design (in terms of asymptotic minimax global convergence rates) when the function is homogeneous enough
since the estimator is “borrowing strength” in the areas where f is adequately sampled. These features lead to
a different structure of estimators of f described in Section 4. The complementary case when 1/g is integrable
has been partially handled by Chesneau [6] who showed that the problem is well-posed (i.e., data loss does not
affect the asymptotic minimax global convergence rates) when f is spatially homogeneous. A complete study of
the case when 1/g is integrable is considered in Section 7. In depth discussion of the differences of the spatial
features in the spatially inhomogeneous ill-posed problem considered in this paper is presented in Section 8.

To address spatial irregularity of the design in the case when the design density function g has a zero of
a polynomial order, we develop a novel, two-stage, adaptive wavelet thresholding estimator. This estimator
consists of a linear part which is taken at a resolution level that is chosen adaptively by Lepski’s method and
which estimates f in the neighborhood of the zero of g. We refer to this as the zero-affected part of the estimator.
The second part is nonlinear (thresholding) and is used outside the immediate neighborhood of the zero of g.
We refer to this as the zero-free part of the estimator. The lowest resolution level of the nonlinear part coincides
with the resolution level of the linear part of the estimator, so that the sum of the two parts represents f
correctly. If 1/g is integrable, then the zero-affected portion of the estimator vanishes and f can be estimated
by an adaptive wavelet thresholding estimator in the spirit of Chesneau [6].

We limit our attention only to the L2-risk since the consideration of a wider class of risk functions will make
the exposition of the present work even longer; all results, however, obtained can be extended to the case of
Lu-risks, 1 ≤ u <∞. Moreover, we consider only the univariate case, leaving generalizations to the multivariate
case for future investigation.
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The rest of the paper is organized as follows. Section 2 discusses the formulation of the nonparametric
regression estimation problem of the unknown response function f on the basis of spatially inhomogeneous
data, in particular when the design density function g has either a zero of a polynomial order or a zero of an
exponential order. Section 3 contains the asymptotic minimax lower bounds for the L2-risk when f is assumed
to belong to a Besov ball. Section 4 talks about estimation strategies when 1/g is non-integrable, in particular,
about partitioning f and its estimator into the zero-affected and zero-free parts. Section 5 elaborates on the
estimation of the zero-affected and the zero-free parts, and is followed by Section 6 which discusses the choice
of adaptive resolution level and derives the asymptotic minimax upper bounds for the L2-risk in the case when
1/g is non-integrable. Section 7 studies the complementary case when g has zeros but 1/g is still integrable.
Section 8 concludes the paper with a discussion. Finally, Section 9 contains the proofs of the statements in the
earlier sections.

2. Formulation of the problem

Consider the nonparametric regression model (1.1). Since the noise level is assumed to be known and finite,
without loss of generality, we set σ = 1. Therefore, from now onwards, we work with observations yi governed by
equation (1.1), where f ∈ L2([0, 1]) is the unknown response function to be recovered, xi ∈ [0, 1], i = 1, 2, . . . , n,
are random design points with the underlying density function g, and ξi, i = 1, 2, . . . , n, are independent
standard Gaussian random variables, independent of xi, i = 1, 2, . . . , n. Furthermore, we assume that the design
density function g is known and has a finite number of zeros which are well-separated, i.e., there exist a constant
δ > 0 such that the distance between two consecutive zeros is at least δ. The last assumption is motivated by
the following considerations. If g vanishes on an interval [a, b] ⊂ [0, 1], a < b, then consistent estimation of f(x),
for x ∈ [a, b], is impossible. Also, g has an infinite number of zeros on [0, 1] only in the case when g is highly
oscillatory, which is not a very likely scenario. Finally, the assumption that g has low values on a part of its
domain but is still separated from zero is not an interesting case to consider, since the lower bound on g will
appear in the constant of the well-known expressions for the asymptotic minimax convergence rates (see, e.g.,
Tsybakov [37], Chapts. 1–2).

Note that the above assumptions are not restrictive. If the noise level σ is unknown, it can be easily estimated
with parametric precision using observations in the region where g is separated from zero. The assumption that
the design points xi, i = 1, 2, . . . , n, are random is not confining either. In fact, with small modifications of
the theory below, one can consider fixed points 0 ≤ x1 < x2 < · · · < xn ≤ 1, generated by an increasing and
continuously differentiable function G such that G(0) = 0, G(1) = 1 and G(xi) = i/n, i = 1, 2, . . . , n. Then, the
function G plays the role of a “surrogate” distribution function with density function g; the design points xi,
i = 1, 2, . . . , n, can be then obtained as xi = G−1(i/n), i = 1, 2, . . . , n.

Moreover, since the design density function g is assumed to be known with a finite number of zeros that are
also well-separated, one can partition the interval [0, 1] into subintervals in such a manner that each subinterval
contains only one zero of g. For this reason, in what follows, without loss of generality, we assume that g has
only one zero x0 ∈ [0, 1], and that the following condition holds.

Assumption A. Let the design density g be a continuous function on the interval [0, 1] with g(x0) = 0,
x0 ∈ [0, 1]. Then, there exists constants α ∈ R, b ≥ 0 (α > 0 if b = 0), β > 0 and Cg > 0 such that, for any x,
with x, x+ x0 ∈ [0, 1],

lim
x→0

g(x0 + x)|x|−α exp(b|x|−β) = Cg. (2.1)

If b = 0, we shall say that x0 is a zero of polynomial order. If b > 0, we shall say that x0 is a zero of exponential
order. Observe that (2.1) implies that there exist some constants 0 < Cg1 < Cg < Cg2 such that for any x, with
x, x + x0 ∈ [0, 1] and x0 ∈ [0, 1], one has

g(x0 + x) ≤ Cg2|x|α exp(−b|x|−β), g(x0 + x) ≥ Cg1|x|α exp(−b|x|−β). (2.2)
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Note that the two cases in Assumption A correspond to the situations of moderate (b = 0) and severe (b > 0)
data losses, respectively. Chesneau [6] showed that in the case of a moderate loss (b = 0) with 0 < α < 1 (i.e.,
1/g is integrable), and for a response function f that is spatially homogeneous, f can be estimated with the
same asymptotic minimax global convergence rates as in the case of b = 0 with α = 0 (i.e., g is uniformly
bounded from below); hence, in this case, the nonparametric regression estimation problem turns out to be a
well-posed problem.

Therefore, we shall be mainly interested only in the complementary situation when 1/g is non-integrable: (i)
moderate losses (i.e., b = 0) with α ≥ 1 and (ii) severe losses (i.e., b > 0) with α ∈ R and β > 0. As we shall see
below, usually in those cases, the asymptotically optimal (in the minimax sense) estimation procedures yield
estimators with lower convergence rates than in the case of equispaced observations, so that the corresponding
nonparametric regression estimation problem under model (1.1) becomes ill-posed (see Rem. 2.1), with the
degree of ill-posedeness growing as α ≥ 1 increases when b = 0 or as β > 0 increases when b > 0.

In what follows, we use the symbol C for a generic positive constant, independent of the sample size n, which
may take different values at different places.

Remark 2.1 (Risk functions and design). As indicated above, we shall measure the precision of any estimator
f̂n of f by its L2-risk, i.e.,

Δ(f̂n) = E‖f̂n − f‖2.

If the design points xi ∈ [0, 1], i = 1, 2 . . . , n, in model (1.1) are treated as fixed (i.e., non-random), then, the
above risk, evaluated at the equispaced design {i/n}, i = 1, 2, . . . , n, corresponds to

Δd(f̂n) =
1
n

n∑
i=1

E[f̂n(i/n) − f(i/n)]2,

and leads to an ill-posed nonparametric regression estimation problem. However, it is instructive to note that if
one measures the precision of an estimator f̂n at the design points xi ∈ [0, 1], i = 1, 2, . . . , n, only, by calculating

Δd
fixed(f̂n, xi) =

1
n

n∑
l=1

E[f̂n(xi) − f(xi)]2,

as it was done in, e.g., Amato et al. [1], then the problem ceases to be ill-posed. Moreover, in this case, no
special treatment is necessary to account for the irregular design. To confirm that, note that model (1.1) can
be re-written as

yi = F (i/n) + ξi, i = 1, 2, . . . , n, (2.3)

where F (x) = f(G−1(x)), x ∈ [0, 1], and G is the “surrogate” distribution function mentioned earlier. Construct
now an estimator F̂n of F using, e.g., any of the standard wavelet thresholding techniques, and set f̂n(x) =
F̂n(G(x)), x ∈ [0, 1]. Then,

F̂n(x) = f̂n(G−1(x)), x ∈ [0, 1],

and Δd
fixed(f̂n, xi) takes the form

Δd
fixed(f̂n, xi) =

1
n

n∑
i=1

E[F̂n(i/n) − F (i/n)]2.

Therefore, if the observed data vector y = (y1, y2, . . . , yn) is treated as if the measurements were carried out at
equispaced design points, then, by using, e.g., available wavelet denoising algorithms, the resulting estimator
F̂n of function F will be adaptive and it will lead to the smallest possible risk Δd

fixed(f̂n, xi). This phenomenon
was noticed earlier by Cai and Brown [5], Sardy et al. [35] and Brown et al. [4].
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Remark 2.2 (Local versus global convergence rates). The nonparametric regression estimation problem of
recovering f globally, on the basis of spatially inhomogeneous data, is a much more difficult task than the
corresponding problem of estimating f locally, say at a given point a. Indeed, if G, the distribution function
associated with the design density function g, is known, then F (G(a)) = f(a) and, hence, one can estimate
F at the point G(a) instead of estimating f at the point a, where F (x) = f(G−1(x)), x ∈ [0, 1], and F is
equispaced sampled, as in (2.3). Hence, local estimation can be reduced to a well-addressed pointwise regression
estimation problem. If g(a) �= 0, then the problem is well-posed and has been extensively studied before. If,
instead, a = x0 is a zero of g, then one can deduce asymptotic minimax pointwise convergence rates directly
from considerations of Remark 2.1 and straightforward calculus. Let, for simplicity, x0 = 0 and g(x) = (α+1)xα,
so that G(x) = xα+1 and G−1(x) = x1/(α+1), x ∈ [0, 1]. Let f satisfy a Hölder condition of order s at x0, i.e.,
|f(x) − f(x0)| ≤ C|x − x0|s. Then, since x0 = 0, F (x) = f(G−1(x)), x ∈ [0, 1], satisfies a Hölder condition of
order s′ = s/(α+ 1) at 0, i.e., for x0 = 0,

|F (x) − F (x0)| = |f(G−1(x)) − f(G−1(x0))| ≤ C|G−1(x) −G−1(x0)|s = C|x − x0|s/(α+1).

Since, for x0 = 0, f(x0) = F (0), one can set f̂(x0) = F̂ (0) and obtain asymptotic minimax pointwise convergence
rates for f̂(x0), on noting that

E‖f̂(x0) − f(x0)‖2 = E‖F̂ (0) − F (0)‖2 ≤ C n− 2s′
2s′+1 = O

(
n− 2s

2s+α+1

)
,

which coincides with the asymptotic minimax pointwise convergence rates obtained by Gaiffas [9]. The whole
argument here rests on the fact that f(x0) = F (G(x0)), x0 ∈ [0, 1], so one can estimate F at G(x0) instead of
estimating f at the x0. This, however, cannot be accomplished when a global estimation procedure is required
since, in such a case, a Taylor expansion is needed, that can be applied only locally.

3. Minimax lower bounds for the L2
-risk over Besov balls

Before constructing an adaptive estimator of the unknown response function f under model (1.1), we first
derive the asymptotic minimax lower bounds for the L2-risk over a wide range of Besov balls.

Among the various characterizations of Besov spaces Bsp,q in terms of wavelet bases, we recall that for an
r-regular multiresolution analysis (see, e.g., Meyer, [31], Chapt. 2, pp. 21–25), with 0 < s < r, and for a Besov
ball Bsp,q(A) defined as

Bsp,q(A) = {f ∈ Lp([0, 1]) : f ∈ Bsp,q, ‖f‖Bsp,q ≤ A},
of radius A > 0 with 1 ≤ p, q ≤ ∞, one has, with s′ = s+ 1/2 − 1/p,

Bsp,q(A) =

⎧⎪⎪⎨⎪⎪⎩f ∈ Lp([0, 1]) :

(
2m−1∑
k=0

|amk|p
)1/p

+

⎛⎜⎝ ∞∑
j=m

2js
′q

⎛⎝2j−1∑
k=0

|bjk|p
⎞⎠q/p

⎞⎟⎠
1/q

≤ A

⎫⎪⎪⎬⎪⎪⎭ , (3.1)

with respective sum(s) replaced by maximum if p = ∞ and/or q = ∞, where s′ = s + 1/2 − 1/p (see, e.g.,
Johnstone et al. [20]). We study below the L2-risk over Besov balls Bsp,q(A) defined as

Rn(Bsp,q(A)) = inf
f̃n

sup
f∈Bsp,q(A)

E‖f̃n − f‖2,

where ‖h‖ is the L2-norm of a function h defined on [0, 1], and the infimum is taken over all possible square-
integrable estimators (i.e., measurable functions) f̃n of f based on observations yi from model (1.1).

The following statement provides the asymptotic minimax lower bounds for the L2-risk.
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Theorem 3.1. Let 1 ≤ p, q ≤ ∞ and max(1/p, 1/2) ≤ s < r, and let Assumption A (with α > 0 if b = 0, and
α ∈ R and β > 0 if b > 0) hold. Then, as n→ ∞,

Rn(Bsp,q(A)) ≥

⎧⎪⎨⎪⎩
C n− 2s

2s+1 if b = 0, αs < s′,

C n− 2s′
2s′+α if b = 0, αs ≥ s′,

C (lnn)−
2s′
β if b > 0.

(3.2)

Note that the asymptotic minimax lower bound for the L2-risk in the first part of (3.2) is obtained by the
arguments in Theorem 3.1 of Chesneau [6].

Remark 3.2 (Global convergence rates). As we shall show below, the asymptotic minimax lower bounds for
the L2-risk obtained in Theorem 3.1 are attainable for b > 0 and are attainable up to a logarithmic factor for
b = 0. If αs = s′, the asymptotic minimax global convergence rates in the first and second parts of (3.2) coincide.
Hence, whenever αs ≤ s′, the aforementioned nonparametric regression estimation problem is not ill-posed but
well-posed, in the sense that the asymptotic minimax global convergence rates are the same as in the case of an
equispaced design. For α ≥ 1, this relation can take place only if 2 ≤ p ≤ ∞, i.e., when the function is spatially
homogeneous. In particular, αs ≤ s′ holds true for any α such that 1 ≤ α ≤ 1+(1/2−1/p)/s, i.e., when f is very
spatially homogeneous (p is large, in particular, when p > 2/(1 − (α− 1)s) provided that 1 < α < 1 + 1/s), so
that even a relatively severe data loss does not lead to the reduction of asymptotic minimax global convergence
rates. If 0 < α < 1, then the considered nonparametric regression estimation problem is always well-posed
whenever f is spatially homogeneous (p ≥ 2) and also when f is spatially inhomogeneous (1 ≤ p < 2) and
0 < α < 1 − (1/p− 1/2)/s. Therefore, even if f is spatially inhomogeneous, the aforementioned nonparametric
regression estimation problem is well-posed whenever data loss is very limited (0 < α < 1 − (1/p− 1/2)/s).

4. Estimation strategies when 1/g is non-integrable

We consider a scaling function ϕ∗ and a mother wavelet ψ∗ that generate an orthonormal wavelet basis in
L2(R), as those obtained from, e.g., an r-regular multiresolution analysis of L2(R), for some r > 0. We shall
also assume that ϕ∗ and ψ∗ are both compactly supported, with integer bounds on their supports so that, for
some Lϕ∗ , Uϕ∗ , Lψ∗ , Uψ∗ ∈ Z, with Lϕ∗ < Uϕ∗ , Lψ∗ < Uψ∗ ,

supp(ϕ∗) = [Lϕ∗ , Uϕ∗ ], supp(ψ∗) = [Lψ∗ , Uψ∗ ], Lϕ∗ ≤ 0, Uϕ∗ ≥ 0, Uϕ∗ − Lϕ∗ ≥ 4.

(For instance, the Daubechies or Symmlets scaling functions ϕ∗ and mother wavelets ψ∗, with filter number
(number of vanishing moments) N ≥ 3, satisfy (4.2) with Lϕ∗ = 0, Uϕ∗ = 2N − 1, Lψ∗ = 1 −N and Uψ∗ = N ,
see, e.g., Mallat [30], Sect. 7.2).

We then obtain a periodized version of the wavelet basis on the unit interval, i.e., for j ≥ 0 and k =
0, 1, . . . , 2j − 1, as

ϕjk(x) =
∑
i∈Z

2j/2ϕ∗(2j(x + i) − k), ψjk(x) =
∑
i∈Z

2j/2ψ∗(2j(x+ i) − k), x ∈ [0, 1],

so that, for any m ≥ 0, the set

{ϕmk, ψjk : j ≥ m, k = 0, 1, . . . , 2j − 1},
where

ϕmk(x) = 2m/2ϕ(2mx− k), ψjk(x) = 2j/2ψ(2jx− k), x ∈ [0, 1],

forms an orthonormal wavelet basis for L2([0, 1]) (see, e.g., Mallat [30], Thm. 7.16). Hence, for any m ≥ 0, any
f ∈ L2([0, 1]), can be expanded as

f(x) =
2m−1∑
k=0

amkϕmk(x) +
∞∑
j=m

2j−1∑
k=0

bjkψjk(x), x ∈ [0, 1], (4.1)
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where

amk =
∫ 1

0

f(x)ϕmk(x) dx, k = 0, 1, . . . , 2m − 1,

bjk =
∫ 1

0

f(x)ψjk(x) dx, j ≥ m, k = 0, 1, . . . , 2j − 1.

Denote by Lϕ, Uϕ, Lψ and Uψ the support bounds of the periodic scaling function ϕ and mother wavelet ψ.
Note that the supports of ϕ∗

mk and ϕmk coincide if and only if 2m > Uϕ∗ − Lϕ∗ , and, similarly, the supports
of ψ∗

jk and ψjk coincide if and only if 2m > Uψ∗ − Lψ∗ . Choose the lowest resolution level m1 such that
2m1 > max (Uϕ∗ − Lϕ∗ , Uψ∗ − Lψ∗), so that supports of periodic and non-periodic wavelets coincide. In this
case, we obtain that

Lϕ∗ = Lϕ, Uϕ∗ = Uϕ, Lψ∗ = Lψ, Uψ∗ = Uψ, Lϕ ≤ 0, Uϕ ≥ 0, Uϕ − Lϕ ≥ 4. (4.2)

For any integer l ≥ 1, denote k0l = 2lx0. (Note that k0l is not necessarily a rational quantity and can take any
value). At each resolution level, we partition the set of all indices into the indices which are zero-affected and
zero–free. In particular, let Kϕ

0m and Kψ
0j be the sets such that, for any integer m ≥ m1 and j = m,m+ 1, . . .,

Kϕ
0m = {k : 0 ≤ k ≤ 2m − 1, Lϕ − 1 < k0m − k < Uϕ + 1} ,
Kψ

0j =
{
k : 0 ≤ k ≤ 2j − 1, Lψ − 1 < k0j − k < Uψ + 1

}
and let

Kϕ
0mc = {k : 0 ≤ k ≤ 2m − 1, k /∈ Kϕ

0m} , Kψ
0jc =

{
k : 0 ≤ k ≤ 2m − 1, k /∈ Kψ

0j

}
.

Simple calculations yield that k ∈ Kϕ
0mc and k ∈ Kψ

0jc imply that x0 �∈ supp ϕmk and x0 �∈ supp ψjk, respectively,
so that the sets Kϕ

0mc and Kψ
0jc are zero–free while the sets Kϕ

0m and Kψ
0j are zero-affected.

With the above notation it is easy to see that, for any m ≥ m1 and j = m,m+ 1, . . ., f can be partitioned
as the sum of zero-affected and zero–free parts, i.e.,

f(x) = f0,m(x) + fc,m(x), x ∈ [0, 1],

where

f0,m(x) =
∑

k∈Kϕ
0m

amkϕmk(x) +
∞∑
j=m

∑
k∈Kψ

0j

bjkψjk(x), x ∈ [0, 1], (4.3)

fc,m(x) =
∑

k∈Kϕ
0mc

amkϕmk(x) +
∞∑
j=m

∑
k∈Kψ

0jc

bjkψjk(x), x ∈ [0, 1]. (4.4)

We then construct estimators f̂0,m and f̂c,m of f0,m and fc,m, respectively, and estimate f by

f̂m(x) = f̂0,m(x) + f̂c,m(x), x ∈ [0, 1]. (4.5)

(We emphasize the unusual feature in the construction of f̂m: as we shall see below, f̂0,m is a linear wavelet
estimator while f̂c,m is a nonlinear (thresholding) wavelet estimator with the lowest resolution levelm determined
by the linear part).

By observing that, for any function u ∈ L2[0, 1], we have∫ 1

0

u(x)f(x)dx = E

(
f(X)u(X)
g(X)

)
,
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when the random variable X ∼ g, and setting, for any m ≥ m1 and j = m,m + 1, . . ., u(x) = ϕmk(x) and
u(x) = ψjk(x), x ∈ [0, 1], in turn, similarly to (3.3) in Chesneau [6], we estimate amk, k ∈ Kϕ

0mc, and bjk,
k ∈ Kψ

0jc, respectively, by

âmk =
1
n

n∑
i=1

ϕmk(xi)yi
g(xi)

, k ∈ Kϕ
0mc, b̃jk =

1
n

n∑
i=1

ψjk(xi)yi
g(xi)

, k ∈ Kψ
0jc. (4.6)

Hence, we can construct an estimator f̂c,m of fc,m by estimating amk, k ∈ Kϕ
0mc, and bjk, k ∈ Kψ

0jc, by âmk,
k ∈ Kϕ

0mc, and b̃jk, k ∈ Kψ
0jc, respectively, given in (4.6), along with a thresholding step (see below).

Note that since 1/g is non-integrable, the estimators given in (4.6) would have infinite variances if k ∈ Kϕ
0m

or k ∈ Kψ
0j, so that one cannot construct an analogous estimator f̂0,m of f0,m by direct estimation of the

appropriate scaling and wavelet coefficients. Instead, in this case, we shall use a linear estimator with the lowest
resolution level m estimated from the data. In what follows, we shall consider the estimation of f0,m and fc,m
separately.

5. Estimation of the zero-free and the zero-affected parts

Consider first the estimation of the zero-free part. In order to estimate fc,m, we construct a wavelet thresh-
olding estimator f̂c,m as

f̂c,m(x) =
∑

k∈Kϕ
0mc

âmkϕmk(x) +
J−1∑
j=m

∑
k∈Kψ

0jc

b̂jkψjk(x), m1 ≤ m ≤ J − 1, x ∈ [0, 1], (5.1)

where âmk are given in (4.6), J is defined below in (5.3), while the coefficients b̂jk are thresholded estimators
of the wavelet coefficients bjk defined as

b̂jk =
{
b̃jk I(b̃2jk > d2n−1 lnn 2jα |k − k0j |−α) if b = 0,
b̃jk I(|k − k0j | > 2j−m) if b > 0.

(5.2)

Here, d > 0 is a constant, b̃jk are defined by (4.6) and m is such that m1 ≤ m ≤ J − 1, where

2m1 = max (Uϕ∗ − Lϕ∗ , Uψ∗ − Lψ∗) + 1, 2J =
{

(n/ lnn)1/(α+1) if b = 0,
(lnn)2/β if b > 0.

(5.3)

Consider now the estimation of the zero-affected part. Since the estimators âmk of amk, given in (4.6), have
infinite variances when k ∈ Kϕ

0m, we estimate those coefficients by solving a system of linear equations. Note
that there is a finite known number of indices in Kϕ

0m, at most, wφ = Uϕ − Lϕ indices. For any given m, such
that m1 ≤ m ≤ J − 1, denote

fm(x) =
2m−1∑
k=0

amkϕmk(x), εm(x) =
∞∑
j=m

2j−1∑
k=0

bjkψjk(x), x ∈ [0, 1], (5.4)

and observe that f(x) = fm(x) + εm(x), so that∑
k∈Kϕ

0m

amkϕmk(x) = fm(x) − εm(x) −
∑

k∈Kϕ
0mc

amkϕmk(x), x ∈ [0, 1]. (5.5)

Denote Ωδ = [Lϕ + δb, Uϕ − δb], and choose δb such that

δb =
{

0 < δb < 1/2, ϕ(Lϕ + δb) �= 0, ϕ(Uϕ − δb) �= 0, if b > 0,
0, if b = 0. (5.6)
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Introduce also a finite set of indices

K∗
0m = {k : 0 ≤ k ≤ 2m − 1, 2Lϕ − Uϕ ≤ k0m − k < Lϕ or Uϕ < k0m − k ≤ 2Uϕ − Lϕ} . (5.7)

Now, multiply both sides of formula (5.5) by g(x)ϕml(x) I(2mx − l ∈ Ωδ), l ∈ Kϕ
0m, where I(x ∈ Ω) is the

indicator of set Ω, and integrate. As a result, obtain the following system of linear equations

A(m)u(m) = c(m) − ε(m) − B(m)v(m). (5.8)

Here, matrices A(m) and B(m) and vectors c(m), ε(m), u(m) and v(m) have, respectively, elements

A
(m)
lk =

∫ 1

0

ϕmk(x)ϕml(x)g(x) I(2mx− l ∈ Ωδ)dx, k, l ∈ Kϕ
0m, (5.9)

B
(m)
lk =

∫ 1

0

ϕmk(x)ϕml(x)g(x) I(2mx− l ∈ Ωδ)dx, l ∈ Kϕ
0m, k ∈ K∗

0m, (5.10)

c
(m)
l =

∫ 1

0

f(x)ϕml(x)g(x) I(2mx− l ∈ Ωδ)dx, l ∈ Kϕ
0m, (5.11)

ε
(m)
l =

∫ 1

0

εm(x)ϕml(x)g(x) I(2mx− l ∈ Ωδ)dx, l ∈ Kϕ
0m, (5.12)

u
(m)
k = amk, k ∈ Kϕ

0m, v
(m)
k = amk, k ∈ K∗

0m. (5.13)

(Note that the matrices A(m) and B(m) are completely known, and also observe that B(m)
lk �= 0 only if k ∈ K∗

0m,
since, for k �∈ K∗

0m, one has ϕmk(x)ϕml(x) = 0).
Since K∗

0m ⊂ Kϕ
0mc, it follows from (5.13) that components v(m)

k of vector v(m) can be estimated by

v̂
(m)
k = âmk, k ∈ Kϕ

0mc,

using (4.6). We also estimate c(m)
l by

ĉ
(m)
l =

1
n

n∑
i=1

yi ϕml(xi) I(2mxi − l ∈ Ωδ), l ∈ Kϕ
0m, (5.14)

and ignore vector ε in (5.8), thus, replacing (5.8) by the following system of linear equations

A(m)û(m) = ĉ(m) − B(m)v̂(m). (5.15)

Since matrix A(m) is a positive definite matrix of non-asymptotic size, det(A(m)) �= 0 and we obtain the solution

û(m) = (A(m))−1(ĉ(m) − B(m)v̂(m))

of the system of linear equations (5.15).
Finally, for any given m, such that m1 ≤ m ≤ J − 1, we set âmk = û

(m)
k , k ∈ Kϕ

0m, and estimate f0,m by the
following linear wavelet estimator

f̂0,m(x) =
∑

k∈Kϕ
0m

âmkϕmk(x), x ∈ [0, 1]. (5.16)

The following statement provides the asymptotic upper bounds for the bias and the variance of the estimator
f̂0,m given in (5.16).
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Lemma 5.1. Denote f0,m(x) =
∑
k∈Kϕ

0m
amkϕmk(x) and let m = m(n) be a non-random, non-negative integer,

quantity, such that m(n) → ∞ as n→ ∞. Let the estimator f̂0,m be defined by (5.16). Then, as n→ ∞,

‖Ef̂0,m − f0,m‖2 = O
(
2−2ms′

)
, E‖f̂0,m − Ef̂0,m‖2 = O

(
n−12mα exp(b 2mβ[2β+1 + 1])

)
. (5.17)

Moreover, if b = 0, then, as n→ ∞, E‖f̂0,m − Ef̂0,m‖4 = o(1).

Define m0 to be such that

2m0 =

{
n

1
2s′+α if b = 0,(
b−12−(β+2) lnn

) 1
β if b > 0.

(5.18)

It follows from Lemma 5.1 that, ifm = m0, the error E‖f̂0,m−f0,m‖2 of the estimator f̂0,m attains the asymptotic
minimax lower bounds for the L2-risk obtained in Theorem 3.1. Since α, b and β in (5.18) are known, the value
of m0 is also known in the case of b > 0. Therefore, one can select m0 as the lowest resolution level in the
estimator of the zero-free part (5.1).

On the other hand, the following lemma demonstrates that the wavelet thresholding estimator f̂c,m, defined
in (5.1) with m = m0 given in (5.18), attains the asymptotic minimax lower bounds for the L2-risk obtained in
Theorem 3.1, in the case of b > 0.

Lemma 5.2. Let 1 ≤ p, q ≤ ∞ and max (1/2, 1/p) ≤ s < r, and let Assumption A (with b > 0, β > 0 and
α ∈ R) hold. Let the estimator f̂c,m be defined by (5.1) with m = m0 given in (5.18), Then, as n→ ∞,

sup
f∈Bsp,q(A)

E‖f̂c,m0 − fc,m0‖2 ≤ C (lnn)−
2s′
β . (5.19)

Unfortunately, this idea cannot be implemented in the case of b = 0. Indeed, though α in (5.18) is known, the
value of s′ is unknown and, therefore, the estimator f̂0,m, defined in (5.1) with m = m0 given in (5.18), is not
realizable if b = 0. In this case, we need to adequately choose a resolution level, say m̂, which approximates
m0 in some sense, and then estimate f by f̂(x) = f̂0,m̂(x) + f̂c,m̂(x). The choice of such resolution level is a
rather difficult task. On the one hand, m̂ should not be too small since, otherwise, the linear portion of the
estimator would have bias that will be too large. On the other hand, since f̂0,m is the linear estimator, in order
to represent f = f0,m̂ + fc,m̂ adequately, m̂ has to be used as the lowest resolution level in f̂c,m.

The following lemma provides the asymptotic minimax upper bounds for the L2-risk of the wavelet thresh-
olding estimator f̂c,m, defined in (5.1), in the case of b = 0. In particular, it shows that this risk contains the
component n−1 2mα, so that in order to attain the asymptotic minimax lower bounds for the L2-risk in the case
of b = 0, obtained in Theorem 3.1 (up to a logarithmic factor), one needs m̂ ≤ m0 with high probability.

Lemma 5.3. Let 1 ≤ p, q ≤ ∞ and max (1/2, 1/p) ≤ s < r, and let Assumption A (with b = 0 and α ≥ 1)
hold. Let the estimator f̂c,m be defined by (5.1), where m is such that m1 ≤ m ≤ J − 1, with m1 and J defined
in (5.3). Let b̂jk be given by (5.2) with d > 4Cd, where Cd is given by

Cd = 8CψC−1
g1 max

(
2, 2‖f‖2

∞, ‖f‖∞‖ψ‖∞/3, ‖ψ‖∞
)

with Cψ = [2 max(|Lψ|, |Uψ|)]α. (5.20)

Then, as n→ ∞,

sup
f∈Bsp,q(A)

E‖f̂c,m − fc,m‖2 ≤
{
C (n−1 2mα (lnn)I(α=1) + n− 2s

2s+1 (lnn)μ1) if b = 0, αs < s′,

C (n−1 2mα (lnn)I(α=1) + n− 2s′
2s′+α (lnn)μ2) if b = 0, αs ≥ s′,

(5.21)

where,

μ1 =
2s(1 + I(α = 1))

2s+ 1
and μ2 =

2s′(1 + I(α = 1))
2s′ + α

+ I

(
s′

s
= α > 1

)
.
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Moreover, as n→ ∞,
E‖f̂c,m − fc,m‖4 = o (1) . (5.22)

Remark 5.4 (The case of an unknown design density). So far, we have made the assumption that the design
density function g is known. In many practical situations, however, this may not be true. Nevertheless, the sug-
gested method can be applied to the case of an unknown g. In particular, one should start with the construction
of lower and upper confidence limits ĝL and ĝU , respectively, for the unknown g. This can be accomplished by
using a variety of nonparametric methodologies for constructing simultaneous confidence intervals of a proba-
bility density function (see, e.g., Tribouley [36], Bissantz et al. [3] and Giné and Nickl [13]). The lower estimator
confidence limit ĝL allows to assess the areas where g vanishes. If there are several distinct areas like that, we
partition the interval [0, 1] into subintervals, so that each of the intervals contains only one zero of g. After
that, we can estimate the location of the zero of g as the middle of the interval where the lower confidence
bound for g is equal to zero. From this point onwards, without loss of generality, we assume that g vanishes at
only one point of the interval [0, 1]. We shall also limit our attention to the case of zero of a polynomial order,
since, in the case of exponential zero, data loss around zero is so severe that in practice f cannot be adequately
estimated. In order to implement our estimators, we need to assess the value of α and the constants Cg1 and
Cg2 in (2.2). For this purpose, note that whenever z is small, one has the following relation for the distribution
function G of g

G(x0 + z) −G(x0 − z) ≈ 2Cg(α+ 1)−1zα+1.

Therefore, α + 1 and Cg can be recovered using linear regression of log[Ĝ(x0 + z) − Ĝ(x0 − z)] onto log z for
small values of z (i.e., using observations surrounding x0), where Ĝ is the empirical distribution function of G
based on x1, x2, . . . , xn. As the value of α has been estimated by α̂, the constants Cg1 and Cg2 can be estimated
by

Ĉg1 = min
1≤i≤n

|Ĝ(xi) − Ĝ(x0)|(α̂+ 1)
|xi − x0|α̂+1

, Ĉg2 = max
1≤i≤n

|Ĝ(xi) − Ĝ(x0)|(α̂+ 1)
|xi − x0|α̂+1

·

Note that the estimated values α̂, Ĉg1 and Ĉg2 of α, Cg1 and Cg2, respectively, are necessary for finding the
highest resolution level J and for the construction of the involved thresholds. Once the above estimates haven
been obtained, we then estimate the zero-affected part of f . This procedure is relatively easy to generalize to
the case of an unknown g: one just needs to replace the elements A(m)

lk and B
(m)
lk of the matrices A(m) and

B(m), given by (5.9) and (5.10), respectively, by their corresponding unbiased estimators

Â
(m)
lk = n−1

n∑
i=1

ϕmk(xi)ϕml(xi), k, l ∈ Kϕ
0m,

B̂
(m)
lk = n−1

n∑
i=1

ϕmk(xi)ϕml(xi), l ∈ Kϕ
0m, k ∈ K∗

0m,

to solve the corresponding system of linear equations for various values of m and to carry out Lepski’s procedure
(see Sect. 6) to choose a suitable value of m̂. Subsequently, we estimate the wavelet coefficients using an estimator
ĝ of g in (4.6). Note that we only need to evaluate ĝ at the points where g cannot vanish. Moreover, since we
need to use ĝ only for the “zero-free” part, we need estimators of g away from its zero where the density of
observations is reasonably high.

6. Adaptive estimation and the minimax upper bounds for the L2
-risk when 1/g

is non-integrable

In order to construct an adaptive wavelet estimator of f in the case of b = 0, we shall use the technique of
optimal tuning parameter selection pioneered by Lepski [26,27] and further exploited in Lepski and Spokoiny [29]
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and Lepski et al. [29]. The idea behind this technique is to construct estimators for various values of the tuning
parameter in question (m, in our case), and then choose an optimal value of the tuning parameter by regulating
the differences between the estimators constructed with different values of the parameter.

In particular, if b = 0, for various values of m, we construct versions of the system of equations (5.15), where
the estimators v̂(m) are constructed as before, solve those systems and obtain the estimators (5.16), where
âmk = û

(m)
k , k ∈ Kϕ

0m. We then construct an estimator f̂m of f using formula (4.5), where f̂0,m and f̂c,m are
given by (5.16) and (5.1), respectively, where m is the lowest resolution level of f̂c,m. The choice of the optimal
resolution level is driven by the zero-affected part of f rather than the zero-free part. For this reason, for any
resolution level m > 0, we define a neighborhood Ξm of x0 as

Ξm =
{
x : 2−m[min(Lϕ, Lψ) − Uϕ] < x− x0 < 2−m[max(Uϕ, Uψ) − Lϕ]

}
(6.1)

and observe that Ξm is designed so that supp(f0,m) ⊆ Ξm, supp(f̂0,m) ⊆ Ξm and Ξj ⊂ Ξm if j > m.
For b = 0, choose m = m̂ such that m1 ≤ m ≤ J − 1, where m1 and J are defined in (5.3) and

m̂ = min
{
m : ‖(f̂m − f̂j)I(Ξm)‖2 ≤ λ2 2jα n−1 lnn for all j, m < j ≤ J − 1

}
, (6.2)

where λ > 0 is a constant to be defined below. For completeness, define

m̂ = m0 if b > 0, (6.3)

where m0 is defined in (5.18).
The construction of m̂ for b = 0 is based on the following idea. Note that, when m̂ ≤ m0, then, for m = m̂,

one has
E‖f̂m − f‖2 ≤ 2

[
E‖f̂m − f̂m0‖2 + E‖f̂m0 − f‖2

]
. (6.4)

The first component in (6.4) is small due to definition of the resolution level m̂ while the second component is
calculated at the optimal resolution level m0 and, hence, tends to zero at the optimal (in the minimax sense)
global convergence rate (up to a logarithmic factor). On the other hand, if m = m̂ > m0, then there exists
j > m0 such that ‖(f̂m0 − f̂j)I(Ξm0)‖2 > λ2 2jα n−1 lnn.

The following lemma shows that, if λ is large enough, the probability of the above-mentioned event is in-
finitesimally small. (Here, ||h||∞ is the uniform norm of a bounded function h defined on [0, 1]).

Lemma 6.1. Let b = 0 and let m0 and m̂ be given by (5.18) and (6.2), respectively. Denote

Cλ0 = 4
√

2(Uϕ − Lϕ + 1), Cλ1 = Cλ0(
√

2Cg2)−1 ‖(A∗)−1‖, Cλ2 = Cλ0 ‖(A∗)−1B∗‖. (6.5)

Let Cd be given by (5.20) and
Cλ = max (2Cu, CτCλ0) , (6.6)

where

Cu = max (Cλ1Cκ, Cλ2Cτ ) , (6.7)
Cτ = 8CϕC−1

g1 max
(
2, 2‖f‖2

∞, ‖f‖∞‖ϕ‖∞/3, ‖ϕ‖∞
)
, (6.8)

Cκ = min
a>0

max
(

16CϕCg2‖f‖∞, 16a,
8‖f‖∞‖ϕ‖∞

3
, 16CϕCg2,

4CϕCg2‖ϕ‖∞
a2

,
4‖ϕ‖2

∞
3a

)
, (6.9)

Cg1 and Cg2 are defined by (2.2) and Cϕ = [2 max(|Lϕ|, |Uϕ|)]α. If λ ≥ max (Cλ1, Cλ2), then, as n→ ∞,

P (m̂ > m0) = O
(
n
− λ
Cλ

)
+O

(
n

1
α+1− d

2Cd

)
. (6.10)
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Lemma 6.1 confirms that indeed m = m̂ can be chosen as the lowest resolution level in the nonlinear part of
the estimator, so that we estimate f by

f̂(x) = f̂0,m̂(x) + f̂c,m̂(x), x ∈ [0, 1], (6.11)

where f̂0,m(x) and f̂c,m(x) are defined in (5.16) and (5.1), respectively.
The following statement confirms that, when 1/g is non-integrable, the adaptive wavelet thresholding esti-

mator f̂ defined by (6.11) attains (up to a logarithmic factor if b = 0) the asymptotic minimax lower bounds
for the L2-risk obtained in Theorem 3.1.

Theorem 6.2. Let 1 ≤ p, q ≤ ∞ and max(1/2, 1/p) ≤ s < r, and let Assumption A (with α ≥ 1 if b = 0
and α ∈ R if b > 0) hold. Let f̂ be the estimator defined by (6.11) with λ > max (2Cλ, Cλ1, Cλ2) in (6.2) and
d > 2(α+1)−1(2α+3)Cd, where Cλ is defined in (6.6), Cλ1, Cλ2 are defined in (6.5), and Cd is defined in (5.20).
Then, as n→ ∞,

sup
f∈Bsp,q(A)

E‖f̂ − f‖2 ≤

⎧⎪⎪⎨⎪⎪⎩
C n− 2s

2s+1 (lnn)
2s(1+I(α=1))

2s+1 if b = 0, αs < s′,

C n− 2s′
2s′+α (lnn)

2s′(1+I(α=1))
2s′+α +I

(
s′
s =α>1

)
if b = 0, αs ≥ s′,

C (lnn)−
2s′
β if b > 0.

Remark 6.3 (Adaptivity). Theorems 3.1 and 6.2 demonstrate that, for severe data losses (b > 0), the adaptive
wavelet thresholding estimator f̂ given by (6.11) attains the asymptotically optimal (in the minimax sense) global
convergence rates. For moderate data losses (b = 0 with α ≥ 1), however, the adaptive wavelet thresholding
estimator f̂ given by (6.11) is asymptotically near-optimal (up to a logarithmic factor). Moreover, if p is large
and α > 1 is relatively small (1 < α < (1/2 − 1/p)/s), then data loss does not affect the asymptotic minimax
global convergence rates and they coincide with the asymptotic minimax global convergence rates obtained in
the absence of data losses.

Remark 6.4 (Relation to local and uniform convergence rates). The suggested estimation of the zero-affected
part of f is somewhat similar to the procedure of Gäıffas [9,11], with the difference that he used local polynomials
while we are using wavelets. However, the significant difference is that we use this estimator only for the zero-
affected part and not for the whole function f . Another difference between our and Gäıffas’ studies is that,
first, we are able to formulate the asymptotic minimax convergence rates explicitly, in a simple meaningful
way, and, due to the fact that we are using thresholding of wavelet coefficients rather than solution of the
system of equations as in Gäıffas, our estimator can adapt to the case when the estimated function is spatially
inhomogeneous. Moreover, we should point out that our asymptotic minimax convergence rates are global and
over a wide range of Besov balls compare to Gaiffas that are local or uniform and only for Hölder spaces.
In particular, Gäıffas [9, 11] deals only with estimation of f at x0, the zero of the design density function g.
The asymptotic minimax local convergence rates of his estimator can be expressed explicitly via α and the
parameters of the Hölder ball that f belongs. However, as we pointed out in Remark 2.2, this problem is
much easier than the global estimation problem we considered and can be solved by straightforward calculus.
Furthermore, Gäıffas [10, 12] studied asymptotic minimax uniform convergence rates. The derived convergence
rates are formulated in terms of a solution of a nonlinear equation, and there are no explicit expressions for
these rates in a general situation. For instance, the only example, which appears in Gäıffas [12], is produced
for the simplest situation when σ = 1, f belongs to a Hölder class with parameters s = L = 1 and the design
density g is of the form g(x) = 4|x−1/2|, i.e., α = 1. In this case, the asymptotic minimax uniform convergence
rates are given by

rn(x) = (log n/n)αn(x),
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where

αn(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1
3

(
1 − 1−2x)

log(log n/n)

)
, x ∈ [0, 0.5 − (logn/2n)1/4),

([(x−0.5)4+4 log n/n]1/2−(x−0.5)2)−log 2

2 log(logn/n) , x ∈ [0.5 − (log n/2n)1/4, 0.5 − (log n/2n)1/4],
1
3

(
1 − 2x−1)

log(log n/n)

)
, x ∈ (0.5 + (logn/2n)1/4, 1].

On the other hand, in the case when α > 1 or in the case when α is not an integer, a solution of the corresponding
equation which produces the asymptotic minimax uniform convergence rates, as well as derivation of the explicit
expression for these rates, require very nontrivial investigation.

7. Adaptive estimation and the minimax upper bounds for the L2
-risk when 1/g

is integrable

The case when 1/g is integrable, i.e., when g has a zero of a polynomial order α, 0 < α < 1, has been
considered by Chesneau [6] who demonstrated that the problem is well-posed when f is spatially homogeneous,
i.e., when p ≥ 2. However, the lower bounds in Theorem 3.1 show that the problem becomes ill-posed when
αs > s′, i.e., when 1 ≤ p < (s(1 − α) + 1/2)−1. Hence, by considering only spatially homogeneous regression
functions (p ≥ 2), Chesneau [6] missed the “elbow rate” when f is spatially inhomogeneous and the fact that
the problem becomes ill-posed in this case. However, since the estimators (4.6) (of the scaling and wavelet
coefficients) have finite variances for 0 < α < 1, one can construct an adaptive estimator, similar to the one
considered in Chesneau [6], by simply thresholding wavelet coefficients. In particular, set

f̂(x) =
2m1−1∑
k=0

âm1kϕm1k +
J−1∑
j=m1

2j−1∑
k=0

b̂jkψjk(x), (7.1)

where âmk and b̂jk are defined in (5.2), and m1 and J are defined in (5.3) with b = 0.
The following statement confirms that estimator (7.1) attains (up to a logarithmic factor) the asymptotic

minimax lower bounds for the L2-risk obtained in Theorem 3.1.

Theorem 7.1. Let 1 ≤ p <∞, 1 ≤ q ≤ ∞, max(1/2, 1/p) ≤ s < r, and let d in (5.2) satisfy

d >
2Cd(3α+ 5)

(1 − α)(1 + α)
, (7.2)

where Cd is given by (5.20). Let Assumption A (with b = 0 and 0 < α < 1) hold, and let f̂ be the estimator
defined by (7.1). Then, as n→ ∞,

sup
f∈Bsp,q(A)

E‖f̂ − f‖2 ≤
{
C n− 2s

2s+1 (lnn)
2s

2s+1 if αs < s′,

C n− 2s′
2s′+α (lnn)

2s′
2s′+α+I(αs=s′) if αs ≥ s′.

(7.3)

Theorem 7.1 shows that, for b = 0 and 0 < α < 1, the aforementioned estimation problem is well-posed as long
as p > (s(1 − α) + 1/2)−1 and it becomes ill-posed when p < (s(1 − α) + 1/2)−1. Therefore, even when data
loss is very moderate (b = 0 and 0 < α < 1), the estimation problem becomes ill-posed whenever f is rather
spatially inhomogeneous (p < (s(1 − α) + 1/2)−1).

Remark 7.2 (Integrable and non-integrable design density). For b = 0, the asymptotic minimax global con-
vergence rates in Theorems 2 and 3 are the same, except for α = 1. The reason for this lies in the fact that
these rates are not driven by the fact whether 1/g is integrable (b = 0 and 0 < α < 1) or non-integrable (b = 0
and α ≥ 1) but by the relation between αs and s′. This clearly follows from Theorem 3.1 which establishes the
asymptotic minimax lower bounds for the L2-risk.
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8. Discussion

We considered the nonparametric regression estimation problem of recovering an unknown response function
f on the unit interval [0, 1] on the basis of incomplete data when the design density function g is known and
has a zero x0 ∈ [0, 1] of a polynomial or an exponential order. We investigated the asymptotic (as the sample
size increases) global estimation (in the minimax sense and for an L2-risk) of f over a wide range of Besov balls
Bsp,q(A) of radius A > 0, where 1 ≤ p, q ≤ ∞ and max(1/p, 1/2) ≤ s < r, where r > 0 is the regularity parameter
associated with the wavelet system. The aforementioned global nonparametric regression estimation problem is
a much harder problem than the local nonparametric regression estimation problem studied by Gaiffas [9, 11],
since it cannot be reduced to the estimation of a related regularly-sampled function (see Rems. 2.1 and 2.2). As
a spatially inhomogeneous ill-posed problem, the resulting estimators demonstrate completely different patterns
of behavior in comparison with spatially homogeneous ill-posed problems like, e.g., deconvolution.

We studied various regimes of data loss, ranging from relatively minor data losses (when g has a zero of
polynomial order 0 < α < 1, so that 1/g is integrable) to moderate data losses (when g has a zero of polynomial
order α ≥ 1 and, hence, 1/g is non-integrable) and, last, to severe data losses (when g has a zero of exponential
order, so that 1/g is non-integrable).

Asymptotic minimax global convergence rates in the case of minor data losses (0 < α < 1) were studied by
Chesneau [6] who showed that the problem is well-posed (the asymptotic minimax global convergence rates are
the same as in the absence of data loss) whenever the regression function f is spatially homogeneous (p ≥ 2).
As our study shows, the problem remains well-posed even if f is spatially inhomogeneous as long as the data
loss is very minor (0 < α < 1 − (1/p − 1/2)/s) or the function is relatively smooth (p > (1/2 − s(α − 1))−1).
When α ≥ 1 − (1/p− 1/2)/s (p ≤ (1/2 − s(α− 1))−1), the problem becomes ill-posed.

Now, consider the situation when data loss is moderate (b = 0 and the zero of g is of a polynomial order
α ≥ 1). The problem is now ill-posed if α ≥ (1/2 − 1/p)/s, i.e., it is always ill-posed when f is spatially
inhomogeneous (1 ≤ p < 2). However, as Remark 3.2 points out, when f is very spatially homogeneous (p is
rather large) and data loss is relatively moderate (1 < α < (1/2 − 1/p)/s), the estimation problem of f ceases
to be ill-posed and exhibits asymptotic minimax global convergence rates observed when g is bounded from
below. Thus, in the case when f is very spatially homogeneous, the estimator of f is “borrowing strength” in
the areas where f is adequately sampled and exhibits asymptotic minimax global convergence rates common
for regularly spaced regression estimation problems. This is very dissimilar to spatially homogeneous ill-posed
problems (e.g., deconvolution) where there is a change point in the asymptotic minimax global convergence
rates (the, so-called, elbow effect) when f is spatially inhomogeneous (1 ≤ p < 2) and they are independent
of p when it is spatially homogeneous (2 ≤ p ≤ ∞). On the contrary, in the case of spatially inhomogeneous
ill-posed problems, like the one considered herein, the asymptotic minimax global convergence rates depend on
p even when the function is spatially homogeneous (2 < p ≤ ∞) as long as α ≥ (1/2− 1/p)/s. Thus, the elbow
effect occurs when p > 2, in particular, when p > 2/(1 − (α − 1)s) provided that 1 < α < 1 + 1/s.

In the case when data loss is severe (b > 0 and the zero of g is of an exponential order β > 0), the asymptotic
minimax global convergence rates grow with p, i.e., the more spatially homogeneous f is, the better it can
be estimated. This is unlike spatially homogeneous ill-posed problems (e.g., deconvolution) where the minimax
global convergence rates improve when p is growing when 1 < p < 2 and are independent of p when f is spatially
homogeneous (2 ≤ p ≤ ∞) (see Pensky and Sapatinas [32, 33]).

The unusual behavior of the asymptotic minimax global convergence rates in the case of the spatially inho-
mogeneous ill-posed problem considered above calls for different adaptive estimation strategies. In particular,
whenever data loss is moderate or severe, we partition f into zero-affected and zero-free parts. First, we construct
a linear wavelet estimator of the zero-affected part where the lowest resolution level m = m̂ is independent of
the unknown parameters of the Besov ball that f is assumed to belong and, therefore, known when b > 0, and is
chosen using Lepski’s method when b = 0. After that, we construct a nonlinear (thresholding) wavelet estimator
of the zero-free part of f starting from the lowest resolution level m = m̂. Note that the nonlinear estimator
is required even if g has a zero of exponential order (b > 0). This is very different from the case of spatially
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homogeneous ill-posed problems (e.g., deconvolution), where in the case of exponentially growing eigenvalues,
a linear estimator usually attains asymptotically optimal (in the minimax sense) global convergence rates (see
Pensky and Sapatinas [32, 33]).

We should also mention that there is a significant difference between asymptotic minimax local and asymptotic
minimax global convergence rates. Note that asymptotic minimax local convergence rates at a zero of g are
always affected by loss of data, even for moderate data losses. The asymptotic minimax global convergence rates,
however, are not affected when data loss is limited and the regression function is very spatially homogeneous
(1 < α < 1 + 1/s and p > 2/(1 − (α− 1)s).

Finally, we point out that some of the logarithmic factors which appear in Theorems 1–3 could be possibly
removed by using block thresholding rather than the considered term-by-term thresholding of wavelet coeffi-
cients. Furthermore, due to its construction, the suggested adaptive wavelet thresholding estimator is not easily
computable, so it is of limited practical use. Therefore, it is desirable to construct an alternative, more compu-
tational feasible, adaptive estimator which attains the asymptotic minimax global convergence rates, that was
the aim of this work. This is the project for future work that we hope to address elsewhere.

9. Proofs

Since the paper contains a large number of statements, below we give a road map of Section 9. Section 9.1
contains the proof of the asymptotic minimax lower bounds for the L2-risk. Theorem 6.2, which provides the
asymptotic minimax upper bounds for the L2-risk of an adaptive estimator of f in the case of α ≥ 1 if b = 0 and
α ∈ R if b > 0, is proved in Section 9.7. The Proof of Theorem 6.2 is based on Lemmas 5.1–6.1. In particular,
Lemma 5.1, which is proved in Section 9.5, gives an asymptotic minimax upper bound for the L2-risk of the
zero-affected portion of the estimator at a fixed resolution level m. Lemmas 5.2 and 5.3 provide asymptotic
minimax upper bounds for the L2-risk of the zero-free part of the estimator when estimation is carried out
(in the case of an exponential zero) or is started (in the case of a polynomial zero) at a fixed resolution level
chosen in advance. Last, Lemma 6.1 proves that, with high probability, the resolution level chosen by Lepski’s
procedure is not higher than the optimal resolution level. The Proof of Lemma 5.1 is included in Section 9.5
while the proofs of Lemmas 5.2 and 5.3 are given in Section 9.6. Section 9.4 contains the Proof of Lemma 6.1 as
well as large deviation results for a wavelet or scaling coefficient (Lem. 9.6) or the right-hand side of the system
of linear equations (Lem. 9.7).

Sections 9.2 and 9.3 contain supplementary statements which are used in the proofs of Lemmas 5.1–5.3. In
particular, Lemma 9.2, proved in Section 9.2, provides upper bounds for moments and covariances of wavelet
and scaling coefficients. In Section 9.3, Lemma 9.3 contains a purely technical auxiliary result, while Lemma 9.4
provides upper and lower bounds for the entries of the matrices which appear in the system of linear equations
which is used for the construction of the zero-affected part of the estimator.

Finally, Theorem 7.1, which delivers the asymptotic minimax upper bounds for the L2-risk of an adaptive
estimator of f in the case of b = 0 and 0 < α < 1, is proved in Section 9.8. The proof of this theorem requires
a technical result provided by Lemma 9.9 which precedes Theorem 7.1 in Section 9.8.

9.1. Proof of the asymptotic minimax lower bounds for the L2-risk

Proof of Theorem 3.1. On noting that the asymptotic minimax lower bounds for the L2-risk in Theorem 3.1 of
Chesneau [6] is also true when b = 0 and 1/g is non-integrable (α ≥ 1), the asymptotic minimax lower bounds
for the L2-risk in the first part of (3.2) can be obtain by the arguments of Chesneau [6] and, hence, we need
to prove only the asymptotic minimax lower bounds for the L2-risk in the second and third parts of (3.2). For
this purpose, we consider functions fjk be of the form fjk = γjψjk and let f0 ≡ 0. Note that by (3.1), in order
fjk ∈ Bsp,q(A), we need γj ≤ A2−js

′
. Set γj = c2−js

′
, where c is a positive constant such that c < A, and apply

the following classical lemma on lower bounds:

Lemma 9.1 (Härdle, Kerkyacharian, Picard & Tsybakov [16], Lem. 10.1). Let V be a functional space, and let
d(·, ·) be a distance on V . For f, g ∈ V , denote by Λn(f, g) the likelihood ratio Λn(f, g) = dP

X
(f)
n
/dP

X
(g)
n

, where
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dP
X

(h)
n

is the probability distribution of the process Xn when h is true. Let V contains the functions f0, f1, . . . , fℵ
such that

(a) d(fk, fk′) ≥ δ > 0 for k = 0, 1, . . . ,ℵ, k �= k′;
(b) ℵ ≥ exp(λn) for some λn > 0;
(c) lnΛn(f0, fk) = unk − vnk, where vnk are constants and unk is a random variable such that there exists

π0 > 0 with Pfk(unk > 0) ≥ π0;
(d) supk vnk ≤ λn.

Then, for an arbitrary estimator f̂ ,

sup
f∈V

P
X

(f)
n

(
d(f̂ , f) ≥ δ/2

) ≥ π0/2.

Let now V = {fjk : |k − k0j | ≤ K/2}, where K > 2 is a fixed positive constant, so that ℵ = K. Choose
d(f, g) = ‖f − g‖, where, as before, ‖ · ‖ denotes the L2-norm on the interval [0, 1]. Then, d(fjk, f0) = γj = δ.
Let vnk = λn = lnK and unk = lnΛn(f0, fjk) + lnK. Now, in order to apply Lemma 9.1, we need to show that
for some π0 > 0, uniformly for all fjk, we have

Pfjk(unk > 0) = Pfjk (lnΛn(f0, fjk) > − lnK) ≥ π0 > 0.

Since, by Chebychev’s inequality,

Pfjk (lnΛn(f0, fjk) > − lnK) ≥ 1 − Efjk

∣∣ lnΛn(f0, fjk)∣∣
lnK

,

we need to find a uniform upper bound for Efjk | lnΛn(f0, fjk)|.
Note that

−2 lnΛn(f0, fjk) =
n∑
i=1

γ2
jψ

2
jk(xi) + 2

n∑
i=1

γjψjk(xi)ξi

where ξi, i = 1, 2, . . . , n, are independent standard Gaussian random variables. Thus,

E| − 2 lnΛn(f0, fjk)| ≤ An + 2Bn,

where

An = E|
n∑
i=1

γ2
jψ

2
jk(xi)| = nγ2

j

∫ 1

0

ψ2
jk(x)g(x)dx, Bn = E|

n∑
i=1

γjψjk(xi)ξi|.

Note that by Jensen’s inequality,

Bn = E

{
E

[∣∣∣ n∑
i=1

γjψjk(xi)ξi
∣∣∣ ∣∣∣∣∣x1, x2, . . . , xn

]}

≤ E

⎧⎨⎩E

⎡⎣( n∑
i=1

γjψjk(xi)ξi

)2 ∣∣∣∣∣x1, x2, . . . , xn

⎤⎦⎫⎬⎭
1/2

=
√
An,

so that one needs uniform upper bounds for An only.
If j is large enough, An can be presented as

An = nγ2
j

∫ Uψ

Lψ

ψ2(z)g(x0 + 2−j(z + k − k0j))dz,
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where k0j = 2jx0. Observe that condition (2.1) implies that one has

g(x0 + x) ≤ C|x|α exp(−b|x|−β).
Let Mψ = max(|Lψ|, |Uψ|). Then, for a finite value of K, one has

An ≤ Cnγ2
j 2

−jα (Mα
ψ +Kα) exp

(−b2jβ(Mψ +K)−β
)
.

Now, recall that γj = c2−js
′

and choose the smallest possible value of j such that An are uniformly bounded.
Simple calculation yield that

An = O

(
2−j(2s

′+α) exp
(
− b2jβ [Mψ +K]−β

))
,

so that 2j = O
(
n1/(2s′+α)

)
if b = 0 and 2j = O

(
(lnn)1/β

)
if b > 0. Now, applying Lemma 9.1 and Chebyshev

inequality, we finally obtain

inf
f̃n

sup
f∈Bsp,q(A)

E‖f̃n − f‖2 ≥ inf
f̃n

sup
f∈V

(γ2
j /4) P(‖f̃n − f‖ > γj/2) ≥ π0γ

2
j /8,

which, on noting that
2s′

2s′ + α
<

2s
2s+ 1

if and only if s′ < αs, (9.1)

completes the proof of the theorem. �

9.2. Properties of the estimators of scaling and wavelet coefficients

Consider the quantity

Jmkl =
∫

2m|ϕ(2mx− k)ϕ(2mx− l)| g−1(x) dx. (9.2)

Lemma 9.2. Let m = m(n) be a non-random, non-negative integer, quantity, with m(n) → ∞ as n→ ∞, and
let âmk be defined by (4.6). Then, for k, l ∈ Kϕ

0mc, as n→ ∞,

|Cov(âmk, âml)| = O
(
n−1 (Jmkl + 1)

)
, (9.3)

where
Jmkl = O

(
n−1 2mα|k − k0m|−α exp(b2mβ|k − k0m|−β)) if |k − l| ≤ Uϕ − Lϕ, (9.4)

and Jmkl = 0 otherwise. Moreover, if b = 0, then, as n→ ∞,

Var(âmk) = O
(
n−1 2mα|k − k0m|−α) ,

E(âmk − amk)4 = O
(
n−3 2m(3α+1)|k − k0m|−3α

)
+O

(
n−2 22mα|k − k0m|−2α

)
. (9.5)

Similarly, if k, l ∈ Kψ
0jc and b = 0, then b̃jk, defined in (4.6), satisfy, as n→ ∞,

Var(b̃jk) = O
(
n−1 2jα |k − k0j |−α

)
, (9.6)

E(b̃jk − bjk)4 = O
(
n−3 2j(3α+1)|k − k0j |−3α

)
+O

(
n−2 22jα|k − k0j |−2α

)
, (9.7)

E(b̃jk − bjk)6 = O
(
n−5 2j(5α+2)|k − k0j |−5α

)
+O

(
n−4 2j(4α+1)|k − k0j |−4α

)
(9.8)

+ O
(
n−3 23jα|k − k0j |−3α

)
.
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Proof of Lemma 9.2. Let us first prove formula (9.4). Changing variables z = 2m(x−x0) in the integral in (9.2),
and using inequality (2.2), derive that

Jmkl ≤ 2mα

Cg1

∫ Uϕ

Lϕ

|ϕ(z)||ϕ(z + k − l)| dz
|z + k − k0m|α exp (−b2mβ|z + k − k0m|−β) ·

It is easy to note that Jmkl = 0 if |k − l| > Uϕ − Lϕ. Also, k ∈ Kψ
0jc implies that k0m − k ≤ Lϕ − 1 or

k0m − k ≥ Uϕ + 1, so that one has |z + k − k0m| ≥ 1 and, hence, |z + k − k0m| ∝ |k − k0m| which proves (9.4).
Now, by direct calculations we obtain that

Cov(âmk, âml) = n−1

{∫
[σ2 + f2(x)] ϕmk(x)ϕml(x)g−1(x)dx − amkaml

}
,

so that (9.3) is valid.
Since the proofs for the scaling and the wavelet coefficients in Lemma 9.2 are similar, we shall prove only

formulae (9.6)-(9.8). Observe that, due to (2.2) and the fact that k ∈ Kψ
0jc implies k0j − k ≤ Lψ − 1 or

k0j − k ≥ Uψ + 1, by considerations similar to the ones provided above, for integers r1, r2 > 0, one has∫
(g(x))−r2 (ψjk(x))2r1 dx ≤ C 2j(r1−1) 2jr2α |k − k0j |−r2α. (9.9)

Now, to complete the proof of (9.6)–(9.8), as n→ ∞, apply (9.9) to the following formulae

Var(b̃jk) = O

(
n−1

∫
g−1(x)ψ2

jk(x)dx
)
,

E(b̃jk − bjk)4 = O

(
n−3

∫
g−3(x)ψ4

jk(x)dx + n−2

[∫
g−1(x)ψ2

jk(x)dx
]2
)
,

E(b̃jk − bjk)6 = O

(
n−5

∫
g−5(x)ψ6

jk(x)dx + n−3

[∫
g−1(x)ψ2

jk(x)dx
]3

+ n−4

∫
g−3(x)ψ4

jk(x)dx
∫
g−1(x)ψ2

jk(x)dx
)
. �

9.3. Proofs of the supplementary statements used in the Proof of Lemma 5.1.

Lemma 9.3. Let δ0 = 0.5 3β+1 (2 3β+1 + (2M)β+1)−1, where β > 0 and M > 0, and let 0 < δ < δ0 and
a, b ∈ [2 − δ,M ]. Let c > 0 be such that c ≤ min(a, b) + δ and c ≤ max(a, b) − (1 − 2δ). Then,

a−β + b−β − 2c−β ≤ −0.5 βM−(β+1).

Proof of Lemma 9.3. Note that δ0 < 1/2 and that δ < δ0 implies δ < 1/2. Let, without loss of generality, a ≤ b.
Then, c ≤ a+ δ, c ≤ b− (1 − 2δ) and

a−β − c−β ≤ a−(β+1)βδ ≤ (2 − δ)−(β+1)βδ

b−β − c−β ≤ b−β − (b− 1 + 2δ)−β ≤ −βM−(β+1) (1 − 2δ).

Therefore, taking into account that 2 − δ > 3/2 and 0 < δ < δ0, we obtain

a−β + b−β − 2c−β ≤ (2 − δ)−(β+1)βδ − βM−(β+1) (1 − 2δ)

< −βM−(β+1)(3/2)−(β+1)[(3/2)β+1 − δ0(Mβ+1 + 2(3/2)β+1)] = −0.5βM−(β+1),

which proves the lemma. �
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Lemma 9.4. Let A
(m)
kl , B

(m)
kl , c

(m)
l and ĉ

(m)
l be given by (5.9)–(5.14), respectively. Then, Var(ĉ(m)

k ) =

O
(
n−1A

(m)
kk

)
, and, for some constants C1 > 0 and C2 > 0, one has

C12−mα exp(−b2β(m+1)) ≤ A
(m)
kk ≤ C22−mα exp(−bM−β

ϕ 2mβ), (9.10)

where Mϕ = Uϕ −Lϕ + max(|Uϕ|, |Lϕ|). Moreover, if b > 0 and 0 < δb < δ0 for δ0 = 0.5 3β+1 [2 3β+1 + (Uϕ +
Lϕ)β+1]−1, then

|A(m)
kl |√

A
(m)
kk

√
A

(m)
ll

≤ C exp
(
−0.25 b (Uϕ + Lϕ)−(β+1) 2mβ

)
. (9.11)

In addition, if b = 0 and m1 ≤ m ≤ J − 1, then, as n→ ∞,

‖B(m)‖ = O
(
2−mα/2

)
, E(ĉ(m)

k − c
(m)
k )4 = O

(
n−22−2mα

)
, (9.12)

where ‖B(m)‖ is the spectral norm of matrix B(m).

Proof of Lemma 9.4. First, note that, by (5.9), one has

Var(ĉ(m)
k ) = n−1

∫
ϕ2
mk(x)(f

2(x) + σ2)g(x) I(2mx− l ∈ Ωδ)dx = O
(
n−1A

(m)
kk

)
.

If b = 0, then

E(ĉ(m)
k − c

(m)
k )4 = O

(
n−3

∫
ϕ4
mk(x)g(x)dx + n−2

[∫
ϕ2
mk(x)g(x)dx

]2
)

= O
(
n−3 2m2−mα + n−22−2mα

)
= O

(
n−22−2mα

)
,

since n−12m(1+α) < 1 for m1 ≤ m ≤ J −1, which completes the proof of the second half of (9.12). Now, observe
that, as n→ ∞,

A
(m)
kl =

∫
ϕ(z + k0m − k)ϕ(z + k0m − l)g(x0 + 2−mz)I(z + k0m − l ∈ Ωδ)dz (9.13)

∼ Cg 2−mα
∫
ϕ(z + k0m − k)ϕ(z + k0m − l)|z|α exp(−b2mβ|z|−β) dz, k, l ∈ Kϕ

0m, (9.14)

and B
(m)
kl has a similar expression, just with k ∈ K∗

0m and l ∈ Kϕ
0m, where K∗

0m is defined in (5.7). Recalling
that b = 0 and the quantities |k− k0m| and |l− k0m| are uniformly bounded for k ∈ Kϕ

0mc and l ∈ Kϕ
0m, obtain

(for b = 0) that |B(m)
kl | = O(2−mα), so that the first statement in (9.12) is true due to the fact that matrix B(m)

is finite dimensional.
Now, let b > 0 and let us prove (9.10). Observe that Lϕ ≤ z + k0m − k ≤ Uϕ and k ∈ Kϕ

0m imply |z| ≤ Mϕ.
Hence, the upper bound in (9.10) follows from (2.2) and (9.13). In order to prove the lower bound in (9.10),
note that

A
(m)
kk ≥ Cg12−mα

∫
Ω∗
δ

ϕ2(z)|z − (k0m − k)|α exp(−b2mβ|z − (k0m − k)|−β) dz

where Ω∗
δ = (Lϕ+δb, (Lϕ+Uϕ−1)/2)∪((Lϕ+Uϕ+1)/2, Uϕ−δb) and δb is defined in (5.6). Since |z−(k0m−k)| ≥

1/2 for z ∈ Ω∗
δ , and by (4.2), (Lϕ + Uϕ − 1)/2 − (Lϕ + δb) ≥ 1 and (Uϕ − δb) − (Lϕ + Uϕ + 1)/2 ≥ 1, one has

A
(m)
kk ≥ Cg12−α(m+1) exp

(
−b2β(m+1)

)
min

(∫ (Lϕ+Uϕ−1)/2

Lϕ+δb

ϕ2(z)dz,
∫ Uϕ−δb

(Lϕ+Uϕ+1)/2

ϕ2(z)dz

)
,

which completes the proof of (9.10).
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Finally, let us prove (9.11). Note that asymptotic value of the integral in (9.13) is defined by the value
at a point which maximizes the argument of the exponential function. Recall that (see, e.g., Dingle [8]) if
F (λ) =

∫ b
a h(x) exp(λS(x))dx, where maxS(x) is achieved at x = a and S(x) is a decreasing function of x, and

if the functions f(x) and S(x) are continuous for x ∈ [a, b] and infinitely differentiable in the neighborhood of
x = a with S′(a) �= 0, then, as λ→ ∞, F (λ) has the following asymptotic expression

F (λ) ∼ exp(λS(a))
∞∑
k=o

ckλ
−(k+1) with ck = −Dk(h(x)/S′(x)), (9.15)

where D is the differential operator of the form D = − 1
S′(x)

d
dx ·

It is easy to calculate that exp(−b2mβ|z|−β) takes its maximum value at z = z
(l,k,δ)
max = max(uδ, vδ), where

u
(l,k)
δ = max(Lϕ + k − k0m, Lϕ + δb + l − k0m), v(l,k)

δ = min(Uϕ + k − k0m, Uϕ − δb + l − k0m) and Lϕ ≤
k − k0m, l − k0m ≤ Uϕ. In what follows, we shall drop the superscripts whenever it does not cause confusion.

First, consider the case of k = l. Then, by examining the cases k0m−l ≤ (Lϕ+Uϕ)/2 and k0m−l > (Lϕ+Uϕ)/2
separately, one can easily conclude that

z(l,l,δ)
max =

{ |Lϕ + δb + l − k0m|, if k0m − l > (Lϕ + Uϕ)/2,
|Uϕ − δb + l − k0m|, if k0m − l ≤ (Lϕ + Uϕ)/2, (9.16)

where, by (4.2), z(l,l,δ)
max ≥ (Uϕ−Lϕ− 2δb)/2 ≥ 2− δb > 1 in both cases. Hence, since ϕ(z(l,l,δ)

max ) �= 0 by definition
of δb, formula (9.15) yields

A
(m)
ll ∼ Cg(bβ)−1ϕ2(z(l,l,δ)

max + k0m − l) |z(l,l,δ)
max |α 2−m(α+β) exp(−b2mβ|z(l,l,δ)

max |−β)
≥ K12−m(α+β) exp(−b2mβ|z(l,l,δ)

max |−β). (9.17)

If k �= l, then |k − l| ≥ 1 and one has four cases, depending on whether k0m − k and k0m − l are smaller or
greater than (Lϕ +Uϕ)/2. We shall consider two of those since the other two cases are similar. In what follows,
we denote by z(k,k,0)

max the value of z(k,k,δ)
max obtained if δ = δb = 0.

If k0m− l ≤ (Lϕ+Uϕ)/2 and k0m−k ≤ (Lϕ+Uϕ)/2 then |z(l,l,δ)
max | = Uϕ−δb+ l−k0m, |z(k,k,0)

max | = Uϕ+k−k0m

and, since δb < 1/2,

|z(l,k,δ)
max | =

{
Uϕ − δb + l − k0m, if l > k
Uϕ + k − k0m, if l < k.

Therefore, taking into account that |z(k,k,δ)
max | = |z(k,k,0)

max | − δb, one derives that

max
(∣∣∣z(l,l,δ)

max

∣∣∣ , ∣∣∣z(k,k,δ)
max

∣∣∣)− |z(l,k,δ)
max | ≥ 1 − 2δb. (9.18)

Now, consider the case when k0m − l ≤ (Lϕ + Uϕ)/2 and k0m − k > (Lϕ + Uϕ)/2. In this situation, |z(l,l,δ)
max | =

Uϕ − δb + l − k0m, |z(k,k,0)
max | = k0m − k − Lϕ and |z(l,k,δ)

max | = max(|Uϕ + k − k0m|, |Lϕ + δb + l − k0m|), so that
relation (9.18) is again true. Cases when k0m − l > (Lϕ + Uϕ)/2 can be examined in a similar manner and it
can be shown that (9.18) is valid.

The asymptotic expression for A(m)
kl as m→ ∞ can be obtained using formula (9.15)

A
(m)
kl ∼ CgK(ϕ, b, β, zmax) 2−m(α+β) 2−mβr

∗
exp(−b2mβ|zmax|−β), (9.19)

where K(ϕ, b, β, zmax) depends on ϕ, b, β and zmax only and, hence, uniformly bounded, r∗ = 0 if zmax does not
coincide with Lϕ or Uϕ and r∗ = r0 + 1 if it does. (Here, r0 is the number of continuous derivatives of ϕ).

We are now ready to complete the proof of the lemma. Recall that

|z(l,k,δ)
max | ≤ min(|z(l,l,δ)

max |, |z(k,k,0)
max |) ≤ min(|z(l,l,δ)

max |, |z(k,k,δ)
max |) + δb,



NONPARAMETRIC REGRESSION WITH SPATIALLY INHOMOGENEOUS DATA 23

and, by (9.18), that
|z(l,k,δ)

max | ≤ max(|z(l,l,δ)
max |, |z(k,k,δ)

max |) − (1 − 2δb).

Since |z(l,l,δ)
max | > 2−δb and |z(k,k,δ)

max | > 2−δb, an application of Lemma 9.3, with δ = δb, a = |z(l,l,δ)
max |, b = |z(k,k,δ)

max |,
c = |z(l,k,δ)

max | and M = (Lϕ + Uϕ)/2, completes the proof of the lemma. �

Lemma 9.5. Let A be the matrix with the entries given by (5.9) with g satisfying Assumption A and let D be
the diagonal matrix D =

√
diag(A). Denote Q = D−1AD−1. Then, for any b ≥ 0, one has ‖Q−1‖ = O(1) as

m→ ∞, where ‖ · ‖ denotes the spectral norm. Moreover, if b > 0, then Q−1 = I + H, where

‖H‖ = O
(
exp(−0.125 bδ202

mβ)
)
, m→ ∞,

and δ0 is defined in Lemma 9.4, i.e., Q−1 = I (1 + o(1)) as m→ ∞.

Proof of Lemma 9.5. Note that matrix Q is an (Uϕ − Lϕ + 1)-dimensional positive definite matrix with a unit
main diagonal and smaller off-diagonal entries, so that, it has a non-asymptotic bounded inverse Q−1 with
‖Q−1‖ = O(1).

If b > 0, then Qkk = 1, so that Q = I + H. Here, by Lemma 9.4, H is a finite dimen-
sional matrix with elements Hlk = O

(
exp

{−0.25 b (Uϕ + Lϕ)−(β+1) 2mβ
})

, as m → ∞. Hence, ‖H‖ ≤
CH exp

{−0.25 b (Uϕ + Lϕ)−(β+1) 2mβ
}

for some CH > 0, so that ‖H‖ → 0 as m → ∞. To complete the
proof of the lemma, it suffices to note that

Q−1 = I +
∞∑
k=1

(−1)kHk, where

∥∥∥∥∥
∞∑
k=1

(−1)kHk

∥∥∥∥∥ ≤
∞∑
k=1

‖H‖k = O (‖H‖) → 0 (m→ ∞). �

9.4. Proofs of the large deviation results

Denote
�n = n−1/2

√
lnn. (9.20)

In order to prove Lemma 6.1, we need the following three large deviation results (Lems. 9.6–9.8). (We note that
the slightly unusual formulation of Lemma 9.6 is due to the fact that we are planning to use it with both w = ϕ
and w = ψ).

Lemma 9.6. Let b = 0. Let w be a bounded function with a compact support [W1,W2] and a unit L2-norm.
Denote wjk(x) = 2j/2w(2jx− k) and set

βjk =
∫
wjk(x)f(x)dx, β̂jk = n−1

n∑
l=1

wjk(xi)yi
g(xi)

,

where f is the unknown response function in model (1.1). Let Cg1 be defined in (2.2), and let

Cw = [2 max(|W1|, |W2|)]]α, Cτ = 8CwC−1
g1 max

(
2, 2‖f‖2

∞, ‖f‖∞‖w‖∞/3, ‖w‖∞
)
. (9.21)

Let m1 and J be defined by (5.3), let �n be defined by (9.20), and let

Kw
0jc =

{
k : 0 ≤ k ≤ 2j − 1, x0 /∈ supp wjk

}
.

Then, for m1 ≤ j ≤ J − 1, k ∈ Kw
0jc and τ ≥ 1, as n→ ∞,

P

(
|β̂jk − βjk| > τ �n 2jα/2|k − k0j |−α/2

)
= O

(
n− τ

Cτ

)
. (9.22)
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Proof of Lemma 9.6. The proof of the lemma is based on ideas presented in Chesneau [6]. Observe that

P

(
|β̂jk − βjk| > τ �n 2jα/2|k − k0j |−α/2

)
≤ P1 + P2,

where

P1 = P

(∣∣∣∣∣n−1
n∑
i=1

[g(xi)]−1 wjk(xi)f(xi) − βjk

∣∣∣∣∣ > 0.5 τ �n 2jα/2|k − k0j |−α/2
)
,

P2 = P

(∣∣∣∣∣n−1
n∑
i=1

[g(xi)]−1 wjk(xi)ξi

∣∣∣∣∣ > 0.5 τ �n 2jα/2|k − k0j |−α/2
)
.

The proof of the statement is now based on Bernstein’s inequality, that we recall for completeness,

P

(∣∣∣∣∣n−1
n∑
i=1

ηi

∣∣∣∣∣ > z

)
≤ 2 exp

(
− nz2

2(σ2 + ‖η‖∞ z/3)

)
, (9.23)

where ηi, i = 1, 2, . . . , n, are independent and identically distributed random variables with Eηi = 0, Eη2
i = σ2

and ‖ηi‖ ≤ ‖η‖∞ < ∞. First, let us construct an upper bound for P1. Note that, for k ∈ Kw
0jc, and for

i = 1, 2, . . . , n, one has, for xi ∈ suppwjk,

g(xi) ≥ C−1
w Cg12−jα|k − k0j |α. (9.24)

Let ηi = [g(xi)]−1 wjk(xi)f(xi) − βjk. Then, Eηi = 0, and, by (9.24), we derive ‖η‖∞ ≤ CwC
−1
g1 |k −

k0j |−α 2j(α+1/2) ‖w‖∞‖f‖∞, so that

Eη2
i =

∫
w2
jk(x)f

2(x)
g(x)

dx ≤ ‖f‖2
∞

Cg1

∫ W2

W1

w2(t)2jα

|t+ k − k0j |α dt ≤
‖f‖2

∞ 2jαCw
Cg1 |k − k0j |α ·

Now, applying Bernstein’s inequality and recalling that m1 ≤ j ≤ J − 1, 2J(α+1) = n/ lnn and |k − k0j | ≥ 1,
we obtain

P1 ≤ 2 exp
(
− Cg1 τ

2 lnn
8Cw ‖f‖∞(‖f‖∞ + ‖w‖∞ τ/6)

)
·

Using the inequality a/(b+ c) ≥ min (a/(2b), a/(2c)), where a, b, c > 0, and taking into account that τ2 ≥ τ for
τ ≥ 1, we obtain

P1 ≤ 2 exp(−τ lnn/D1) with D1 = 8CwC−1
g1 max(2‖f‖2

∞, ‖f‖∞‖w‖∞/3). (9.25)

In order to construct an upper bound for P2, note that, conditionally on (x1, x2, . . . , xn), one has, for xi ∈
suppwjk ,

n−1
n∑
i=1

(g(xi))−1 wjk(xi)ξi ∼ N (0, s2jk),

where, by (9.24) and σ = 1,

s2jk =
1
n2

n∑
i=1

w2
jk(xi)
g2(xi)

≤ Cw2jα

Cg1|k − k0j |α n2

n∑
i=1

w2
jk(xi)
g(xi)

·

Hence, conditionally on (x1, x2, . . . , xn),

P

(∣∣∣∣∣n−1
n∑
i=1

[g(xi)]−1 wjk(xi) ξi

∣∣∣∣∣ > τ �n 2jα/2

2 |k − k0j |α/2
∣∣∣∣∣x1, x2, . . . , xn

)
≤ exp

(
− τ22jα lnn

8n|k − k0j |αs2jk

)
·
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Now, consider the following two sets:

Ωυ(x1, x2, . . . , xn) =

{
(x1, x2, . . . , xn) :

∣∣∣∣∣n−1
n∑
i=1

w2
jk(xi)
g(xi)

− 1

∣∣∣∣∣ ≥ υ

}
,

and its complementary, Ωcυ(x1, x2, . . . , xn). Then, P2 ≤ P21 + P22, where

P21 = E

[
P

(∣∣∣∣∣n−1
n∑
i=1

(g(xi))−1 wjk(xi)ξi

∣∣∣∣∣ > τ �n 2jα/2

2 |k − k0j |α/2
∣∣∣∣∣x1, x2, . . . , xn

)
I(Ωcυ(x1, x2, . . . , xn))

]
,

P22 = E [ I(Ωυ(x1, x2, . . . , xn)) ] ,

and I(Ω) is the indicator of the set Ω. Since, for Ωcυ(x1, x2, . . . , xn), we have

n−1
n∑
i=1

[g(xi)]−1 w2
jk(xi) ≤

(
1 +

∣∣∣∣∣n−1
n∑
i=1

[g(xi)]−1 w2
jk(xi) − 1

∣∣∣∣∣
)

≤ υ + 1,

it is easy to check that

P21 ≤ exp(−τ2 lnn/D2) with D2 = 8CwC−1
g1 (υ + 1). (9.26)

In order to find an upper bound for P22, we apply Bernstein’s inequality with Zi = [g(xi)]−1 w2
jk(xi) − 1. Note

that EZi = 0, EZ2
i ≤ CwC

−1
g1 ‖w‖∞2j(α+1)|k − k0j |−α, ‖Z‖∞ ≤ 2CwC−1

g1 ‖w‖∞2j(α+1)|k − k0j |−α. Application
of (9.23) with z = υ, yields

P22 ≤ 2 exp(−υ2 lnn/D3) with D3 = 2 ‖w‖2
∞CwC

−1
g1 (1 + 2υ/3). (9.27)

Now, set υ = 0.5 τ‖w‖∞ and observe that, for τ ≥ 1, one has

4‖w‖−2
∞ (1 + 2υ/3)−1 υ2 ≥ τ2/(υ + 1) ≥ τ · min(1/2, ‖w‖−1

∞ ).

To complete the proof, we only need to combine (9.25)–(9.27). �

Lemma 9.7. Let b = 0, Cϕ = [2 max(|Lϕ|, |Uϕ|)]α and Cg2 be defined in (2.2). Let m be an integer such that
m1 ≤ m ≤ J − 1, and let k ∈ Kϕ

0m. Let �n be defined ny (9.20) and let Cκ be given by (6.9). Then, for c(m)
l and

ĉ
(m)
l given by (5.11) and (5.14), respectively, and an arbitrary constant κ ≥ 1,

P

(
|ĉ(m)
l − c

(m)
l | > κ�n 2−

mα
2

)
= O

(
n− κ

Cκ

)
, n→ ∞. (9.28)

Proof of Lemma 9.7. The proof is very similar to the Proof of Lemma 9.6, therefore, we shall just provide its
outline. Partition the probability in (9.28) into P1 and P2 with

P1 = P

(∣∣∣∣∣n−1
n∑
i=1

ϕmk(xi)f(xi) − c
(m)
k

∣∣∣∣∣ > 0.5 κ �n 2−
mα
2

)
,

P2 = P

(∣∣∣∣∣n−1
n∑
i=1

ϕmk(xi)ξi

∣∣∣∣∣ > 0.5 κ �n 2−
mα
2

)
.

An upper bound for P1, obtained by applying Bernstein’s inequality, is of the form

P1 ≤ 2 exp(−κ lnn/D4) with D4 = 8 ‖f‖∞ max(2Cg2Cϕ, ‖ϕ‖∞/3). (9.29)
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In order to derive an upper bound for P2, introduce a set

Θv(x1, x2, . . . , xn) =

{
(x1, x2, . . . , xn) :

∣∣∣∣∣n−1
n∑
i=1

ϕ2
mk(xi) −

∫
ϕ2
mk(x)g(x)dx

∣∣∣∣∣ ≥ v2−mα
}
,

and its complementary, Θcv(x1, x2, . . . , xn). Then, similarly to the Proof of Lemma 9.6, obtain P2 ≤ P21 + P22,
where

P21 = E

[
P

(∣∣∣∣∣n−1
n∑
i=1

ϕmk(xi)ξi

∣∣∣∣∣ > 0.5 κ �n 2−mα/2
∣∣∣∣∣x1, x2, . . . , xn

)
I(Θcv(x1, x2, . . . , xn))

]

≤ exp
(
− κ2 lnn

8(v + CϕCg2)

)
·

Also, application of (9.23) with ηi =
(
ϕ2
mk(xi) −

∫
ϕ2
mk(x)g(x)dx

)
, yields

P22 = E [I(Θv(x1, x2, . . . , xn))] ≤ 2 exp
(
− nv2 2−m(1+α)

2‖ϕ‖2∞(CϕCg2 + v/3)

)
·

Setting v = aκ, noting that for any A,B,C > 0 one has A/(B+C) ≥ min(A/(2B), A/(2C)), and recalling that
κ ≥ 1 and n2−m(1+α) ≥ lnn by (5.3), we derive

P2 ≤ 2 exp(−κ lnn/D5) with D5 = max
(

16a, 16CϕCg2,
4CϕCg2‖ϕ‖∞

a
,
4‖ϕ‖2∞

3a

)
. (9.30)

To complete the proof, it suffices to note that a > 0 is arbitrary. �

Lemma 9.8. Let b = 0, let m0 and m̂ be given by (5.18) and (6.2), respectively. Consider the non-asymptotic
finite dimension matrices A∗ and B∗ with elements

A∗
kl =

∫
ϕ(z + k0m − k)ϕ(z + k0m − l)|z|αdz, k, l ∈ Kϕ

0m, (9.31)

B∗
lk =

∫
ϕ(z + k0m − k)ϕ(z + k0m − l)|z|αdz, l ∈ Kϕ

0m, k ∈ K∗
0m. (9.32)

Let û(m) be the solution of the system of equations (5.15). Let Cλ1 and Cλ2 be defined by (6.5) and let Cu be
defined by (6.7). If λ ≥ max (Cλ1, Cλ2), then, as n→ ∞,

P

(
‖û(m) − Eû(m)‖ > λ�n 2mα/2

)
= O

(
n− 2λ

Cu

)
. (9.33)

Proof of Lemma 9.8. Observe that for any m, by (5.15), one has

‖û(m) − Eû(m)‖ ≤ ‖(A(m))−1(ĉ(m) − c(m))‖ + ‖(A(m))−1B(m)(v̂(m) − v(m))‖,

so that

P

(
‖û(m) − Eû(m)‖ > λ�n 2mα/2

)
≤ P

(
‖(A(m))−1(ĉ(m) − c(m))‖ > 0.5λ�n 2mα/2

)
+ P

(
‖(A(m))−1B(m)(v̂(m) − v(m))‖ > 0.5λ�n 2mα/2

)
≡ P1 + P2.

Now note that, by assumption (2.1) and the dominated convergence theorem, as n → ∞, one has A(m) =
Cg2−mαA∗(1 + o(1)) and B(m) = Cg2−mαB∗(1 + o(1)), where the matrices A∗ and B∗, defined in (9.31)
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and (9.32), are independent of m, since the sets Kϕ
0m and K∗

0m are defined in terms of k − k0m and l − k0m.
Therefore, ‖(A(m))−1‖ = C−1

g 2mα ‖(A∗)−1‖(1 + o(1)) and ‖(A(m))−1B(m)‖ = ‖(A∗)−1 B∗‖(1 + o(1)). Hence,
setting κ = C−1

λ1 λ in Lemma 9.7, where Cλ1 is defined in (6.5), and taking into account that the set Kϕ
0m

contains no more than Uϕ − Lϕ + 1 indices, we obtain

P1 ≤ P

(
‖ĉ(m) − c(m)‖ > Cg2 λ�n 2−mα/2

2 ‖(A∗)−1‖
)

≤
∑

k∈Kϕ
0m

P

(
|ĉ(m)
k − c

(m)
k | > Cg2 λ�n 2−mα/2

2
√
Uϕ − Lϕ + 1 ‖(A∗)−1‖

)

=
∑

k∈Kϕ
0m

P

(
|ĉ(m)
k − c

(m)
k | > 2C−1

λ1 λ�n 2−mα/2
)

= O
(
n−2(Cκ Cλ1)

−1 λ
)
.

Similarly, using Lemma 9.6 with w = ϕ and Cτ given by (6.8), and recalling the definitions of v̂(m) and v(m),
one can derive an upper bound for P2 as

P2 ≤ P

(
‖v̂(m) − v(m)‖ > λ�n 2mα/2

2 ‖(A∗)−1 B∗‖
)

≤
∑

k∈K∗
0m

P

(
|âmk − amk| > λ�n 2mα/2

2
√
Uϕ − Lϕ + 1 ‖(A∗)−1 B∗‖

)

= O
(
n−2(Cτ Cλ2)

−1 λ
)
,

which completes the proof of the lemma. �

Proof of Lemma 6.1. Note that by definition of m̂, whenever m̂ > m0, there exists j > m0 such that ‖(f̂m0 −
f̂j)I(Ξm0)‖2 > λ2 2jα ρ2

n, where �n is defined in (9.20). Therefore,

P(m̂ > m0) ≤
J−1∑
j=m0

Pj with Pj = P

(
‖(f̂m0 − f̂j)I(Ξm0)‖2 > λ2 2jα ρ2

n

)
. (9.34)

Observe that since

‖(f̂m0 − f̂j)I(Ξm0)‖ ≤ ‖(f̂0,j − f0,j)I(Ξm0)‖ + ‖(f̂c,j − fc,j)I(Ξm0)‖
+ ‖(f̂0,m0 − f0,m0)I(Ξm0)‖ + ‖(f̂c,m0 − fc,m0)I(Ξm0)‖,

one has the following upper bound for Pj defined in (9.34):

Pj ≤ P0,j,m0 + P0,j,j + Pc,j,m0 + Pc,j,j,
where, for any m0 ≤ m ≤ j,

P0,j,m = P

(
‖(f̂0,m − f0,m)I(Ξm0)‖ > 0.25λ 2jα/2 ρn

)
,

Pc,j,m = P

(
‖(f̂c,m − fc,m)I(Ξm0)‖ > 0.25λ 2jα/2 ρn

)
.

Since supp(f0,m) ⊆ Ξm ∈ Ξm0 for m ≥ m0, one has

‖(f̂0,m − f0,m)I(Ξm0)‖2 = ‖(f̂0,m − f0,m)I(Ξm)‖2 = ‖f̂0,m − f0,m‖2 (9.35)

≤ ‖û(m) − u(m)‖2 + 2(Uϕ − Lϕ + 1)A22−2ms′ .

Hence, by (9.35) and Lemma 9.8, since m0 ≤ m ≤ j, one derives

P0,j,m ≤ P

(
‖û(m) − u(m)‖ > 0.25λ 2jα/2 ρn −A

√
2(Uϕ − Lϕ + 1)2−js

′
)

= O
(
n− λ

2Cu

)
.
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Now, let us consider the second term, Pc,j,m. Note that supp(ϕmk) and Ξm0 have non-empty intersection if and
only if k ∈ K̃m,m0 , where

K̃m,m0 =
{
k : 2m−m0 [min(Lϕ, Lψ) − Uϕ] − Uϕ < k − k0m < 2m−m0 [max(Uϕ, Uψ) − Lϕ] − Lϕ

}
.

Hence, for m ≥ m0,

‖(f̂c,m − fc,m)I(Ξm0)‖2 ≤ ‖v̂(m) − v(m)‖2 +
J−1∑
j′=m

∑
k∈K̃j′,m0

(b̂j′k − bj′k)2 +
∞∑
j=J

∑
k∈K̃j,m0

b2jk.

Here, by (9.57), we have
∞∑
j=J

∑
k∈K̃j,m0

b2jk ≤ A22−2Js∗ = O
(
n− 2s′

2s′+α (lnn)
2s′

2s′+α
)
,

where s∗ is defined in (9.56). Also,

(b̂j′k − bj′k)2 ≤ (b̂j′k − bj′k)2I(|b̂j′k − bj′k| > 0.5d2jα/2|k − k0j′ |−α/2) + b2j′k

since I(|b̂j′k| > d2jα/2|k − k0j′ |−α/2) ≤ I(|bj′k| > 0.5d2jα/2|k − k0j′ |−α/2) + I(|b̂j′k − bj′k| > 0.5d2jα/2|k −
k0j′ |−α/2) and, for j ≥ m0 and n large enough, I(|bj′k| > 0.5d2jα/2|k − k0j′ |−α/2) = 0. Denote CLU =

max (|min(Lϕ, Lψ) − 2Uϕ|, |max(Uϕ, Uψ) − 2Lϕ|) and observe that K̃j′,m0 ⊂
{
k : |k − k0j′ | < 2j

′−m0CLU

}
.

Hence, using the Cauchy–Schwarz inequality and (9.56), one obtains

J−1∑
j′=m

∑
k∈K̃j′,m0

b2j′k ≤ A2(2CLU )(1−2/p)+ 2−2m0s
′
2−2s∗(m−m0).

Combining all inequalities above, we derive that for any m ≥ m0,

‖(f̂c,m − fc,m)I(Ξm0)‖2 ≤ ‖v̂(m) − v(m)‖2 +A22−2Js∗ +A2(2CLU )(1−2/p)+ 2−2m0s
′
2−2s∗(m−m0)

+
J−1∑
j′=m

∑
k∈K̃j′,m0

(b̂j′k − bj′k)2I(|b̂j′k − bj′k| > 0.5d2jα/2|k − k0j′ |−α/2).

Now, by Lemma 9.6 with w = ϕ and w = ψ, obtain

Pc,j,m ≤ P

(
‖v̂(m) − v(m)‖ > 0.25λ 2jα/2 ρn −A22−2Js∗ +A2(2CLU )(1−2/p)+ 2−2m0s

′
2−2s∗(m−m0)

)
+

J−1∑
j′=m

∑
k∈K̃j′,m0

P(|b̂j′k − bj′k| > 0.5d2jα/2|k − k0j′ |−α/2)

= O
(
n−(CτCλ0)

−1λ
)

+O
(
n

1
α+1− d

2Cd

)
,

which completes the proof. �

9.5. Proofs of the statements in Section 5: the zero-affected part of the wavelet
thresholding estimator

Proof of Lemma 5.1. Note that

Δ1 = ‖Ef̂
(m)
0 − f

(m)
0 ‖2 =

∞∑
j=m

∑
k∈Kϕ

0m

b2jk, Δ2 = E‖f̂ (m)
0 − Ef̂

(m)
0 ‖2 =

∑
k∈Kϕ

0m

E(âmk − amk)2,
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where âmk = û
(m)
k for k ∈ Kϕ

0m. From the characterization (3.1) of Besov spaces, it follows that, for any k, one
has b2jk ≤ A2−2js′ , and, therefore, since the number of indices in the set Kϕ

0m is finite,

Δ1 = O

⎛⎝ ∞∑
j=m

2−2js′

⎞⎠ = O
(
2−2ms′

)
. (9.36)

Now, consider Δ2. Let, as in Lemma 9.5, A(m) be the matrix with the entries given by (5.9), D(m) =√
diag(A(m)) and Q(m) = (D(m))−1A(m)(D(m))−1. In the following proof, for the sake of clarity, we shall

suppress the index m. Rewrite the systems of equations (5.8) and (5.15), respectively, as

QDu = D−1 c + D−1 ε − D−1 Bv, QDû = D−1 ĉ − D−1 Bv̂, (9.37)

so that
û− u = D−1Q−1D−1(ĉ − c) − D−1Q−1D−1B(v̂ − v) + D−1Q−1D−1ε. (9.38)

Therefore,

Δ2 = E‖û− u‖2 = O (Δ21 +Δ22 +Δ23) , (9.39)

with

Δ21 = E‖D−1Q−1D−1(ĉ − c)‖2, Δ22 = E‖D−1Q−1D−1B(v̂ − v)‖2, Δ23 = ‖D−1Q−1D−1ε‖2. (9.40)

By Lemma 9.4, one has
Dii ≥ C2−mα/2 exp(−0.5 b2β(m+1)),

and since D is the finite-dimensional diagonal matrix, the latter implies

‖D−1‖ = O
(
2mα/2 exp(0.5 b2β(m+1))

)
. (9.41)

Therefore, since the set Kϕ
0m is finite, by Lemma 9.4, one has

E‖D−1(ĉ − c)‖2 =
∑

k∈Kϕ
0m

Var(ĉ(m)
k )/A(m)

kk = O
(
n−1

)
,

so that we derive

Δ21 = O
(‖D−1‖2‖Q−1‖2

E‖D−1(ĉ − c)‖2
)

= O
(
n−1 2mα exp(b2β(m+1))

)
. (9.42)

In order to derive an upper bound for Δ22, note that from (9.10), (9.40) and considerations above, it follows
that

Δ22 = O
(‖D−1‖4‖Q−1‖2

E‖B(v̂ − v)‖2
)

= O
(
22mα exp(2b 2β(m+1)) E‖B(v̂ − v)‖2

)
.

Since exp(−b2mβ|z|−β) is an increasing function of |z| and, for Lϕ ≤ z + k0m − k ≤ Uϕ and k ∈ K∗
0m, one has

|z| ≤ 2(Uϕ − Lϕ), for k ∈ K∗
0m, we derive

Ckk =
∫
ϕ2
mk(x)g(x)I(2

mx− l ∈ Ωδ)dx = O

(
2−mα

∫
ϕ2(z + k0m − k) |z|α exp

{−b2mβ|z|−β} dz
)

= O
(
2−mα exp

{
−b2m(β−1)(Uϕ − Lϕ)−β

})
.
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Hence, since the sets Kϕ
0m and K∗

0m are finite, by definition of vector v̂, Lemmas 9.2 and 9.4 and the Cauchy–
Schwarz inequality, we obtain

E‖B(v̂ − v)‖2 =
∑

h∈Kϕ
0m

∑
k,l∈K∗

0m

BhkBhlCov(âk, âl) ≤ n−1
∑

h∈Kϕ
0m

∑
k,l∈K∗

0m

JmklAhh
√
CkkCll

= O
(
n−12−mα exp

{
b2mβ − b2m(β−1)(Uϕ − Lϕ)−β − b2mβM−β

ϕ

})
,

where Mϕ is defined in Lemma 9.4. Since Uϕ − Lϕ ≥ 4, we finally obtain

Δ22 = O
(
n−1 2mα exp(b 2mβ[2β+1 + 1])

)
. (9.43)

Now, for the function εm(x) defined in (5.4), one has

Δ23 = O
(‖D−1‖2 ‖Q−1‖2 ‖D−1ε‖2

)
, (9.44)

where

‖D−1ε‖2 =
∑

k∈Kϕ
0m

A−2
kk

[∫
εm(x)ϕ∗

mk(x) g(x)dx
]2

. (9.45)

If b = 0, by Cauchy–Schwarz inequality, one obtains ‖D−1ε‖2 ≤ ∑
k∈Kϕ

0m
A−2
kk ‖εm0‖2 ‖ϕmk g‖2, where εm0(x) =

εm(x)I(|x − x0| ≤ C2−m). By calculations similar to Proof of Lemma 9.4 in the case of b = 0, one can show
that ‖ϕmk g‖2 =

∫
ϕ2
mk(x)g(x)dx = O

(
2−2mα

)
. Also, since b2jk ≤ A2−2js′ , one has

‖εm0‖2 = O

⎛⎝ ∞∑
j=m

∑
|k−k0j |≤C2j−m

⎞⎠
= O

⎛⎝ ∞∑
j=m

2−2js′2(j−m)(1−2/p)

⎞⎠ = O
(
2−2ms′

)
.

Recalling (9.10), we obtain in the case of b = 0,

Δ23 = O
(
2−2ms′

)
. (9.46)

Now, let us consider the case of b > 0. Denote ϕ∗
mk(x) = ϕmk(x)I(2mx−k ∈ Ωδ), Ijmkl =

∫
ϕ∗
mk(x)ψjl(x)g(x)dx

and let
zmax(ϕ∗

mk, ψjl) = argmax
x

[ϕ∗
mk(x)ψjl(x)g(x)]. (9.47)

Observe that since ϕ∗
mk(zmax) �= 0, we have Ijmkl/A

(m)
kk = O(1). Consider the collection of indices

Lmjk =
{
l : 0 ≤ l ≤ 2j − 1, supp(ϕ∗

mk) ∩ supp(ψjl) �= ∅} .
It is easy to see that Lmjk ⊆ [2j−m(Lϕ+δb+k)−Uψ, 2j−m(Uϕ+δb+k)−Lψ], so, for each k, there are O(2j−m)
terms such that l ∈ Lmjk. Note that |zmax(ϕ∗

mk, ψjl)| ≤ |zmax(ϕ∗
mk)| and, for each k, there is only finite number

of terms such that |zmax((ϕ∗
mk, ψjl)| = |zmax((ϕ∗

mk)|. Indeed, straightforward calculation shows that

zmax(ϕ∗
mk, ψjl) = min[(Uϕ − δb + k − k0m), 2m−j(Uψ + l − k0j)] if k0m − k < 0.5 (Uϕ + Lϕ),

and

zmax(ϕ∗
mk, ψjl) = max[(Lϕ + δb + k − k0m), 2m−j(Lψ + l− k0j)] if k0m − k ≥ 0.5 (Uϕ + Lϕ).
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Hence, |zmax(ϕ∗
mk, ψjl)| = |zmax(ϕ∗

mk)| if l ≥ 2j−m(Uϕ − δb + k) − Uψ or l ≤ 2j−m(Lϕ + δb + k) − Lψ. Since we
also need l ∈ Lmjk, we obtain that |zmax((ϕ∗

mk, ψjl)| = |zmax((ϕ∗
mk)| if l ∈ L∗

mjk where

L∗
mjk ⊆ [2j−m(Lϕ + δb + k)−Uψ, 2j−m(Lϕ + δb + k)−Uψ]∪ [2j−m(Uϕ + δb + k)−Uψ, 2j−m(Uϕ + δb + k)−Lψ]

and, thus, L∗
mjk contains at most 2(Uψ − Lψ) values of l for each k. If l ∈ Lmjk \ L∗

mjk = Lcmjk, then

2j−m(Lϕ + δb + k) − Lψ < l < 2j−m(Uϕ − δb + k) − Uψ. (9.48)

Then, by (9.15),

Ijmkl ∼ 2−
j−m

2

∫
ϕ∗(2m−jt+ k0m − k)ψ(t+ k0j − l)2−jα |t|α exp(−b|t|−β2jβ)dt

= O
(
2(m−j)/22−jα2−jβ2(j−m)α exp

{
−b2jβ |t(k,l)max |−β

})
,

where
t(k,l)max = Uψ + l − k0j if k0m − k < (Uϕ + Lϕ)/2

and
t(k,l)max = Lψ + l− k0j if k0m − k ≥ (Uϕ + Lϕ)/2.

Using formula (9.17), we derive that

(A(m)
kk )−1 |Ijmkl | = O

(
2(j−m)(β+1/2) exp

{
−b2jβ

[
|t(k,l)max |−β − 2−(j−m)β|z(k,k,δ)

max |−β
]})

, (9.49)

where z(k,k,δ)
max is defined in (9.16).

Denote hjmkl = |t(k,l)max | − 2(j−m)|z(k,k,δ)
max | and observe that

hjmkl = 2(j−m)(Uϕ − δb + k) − Uψ − l if k0m − k < (Uϕ + Lϕ)/2,

and
hjmkl = l− 2(j−m)(Lϕ + δb + k) + Lψ if k0m − k ≥ (Uϕ + Lϕ)/2.

Comparing the latter formulae with definition of Lcmjk, we derive that, for l ∈ Lcmjk, 0 < hjmkl < Ch2j−m for
every value of k, where Ch > 0 is a constant which depends only on the choice of the wavelet basis. Now, for
any 0 < x < y and β > 0,

x−β − y−β ≥ β(y − x)y−(β+1).

Applying the above inequality with x = |t(k,l)max | and y = 2(j−m)|z(k,k,δ)
max |, we obtain that

|t(k,l)max |−β − 2−(j−m)β |z(k,k,δ)
max |−β ≥ βhjmkl2−(j−m)(β+1)|z(k,k,δ)

max |−(β+1),

and, thus, for l ∈ Lcmjk, we have

(A(m)
kk )−1 |Ijmkl | = O

(
2(j−m)(β+1/2) exp

{
−bβ|z(k,k,δ)

max |−(β+1)2mβ2−(j−m)hjmkl

})
. (9.50)

Now, it follows from (9.44) that Δ23 = Δ231 +Δ232, where

Δ231 = O

⎛⎜⎝ ∑
k∈Kϕ

0m

⎡⎣ ∞∑
j=m

∑
l∈L∗

mjk

(A(m)
kk )−1 |Ijmkl ||bjl|

⎤⎦2
⎞⎟⎠ ,

Δ232 = O

⎛⎜⎝ ∑
k∈Kϕ

0m

⎡⎣ ∞∑
j=m

∑
l∈Lcmjk

(A(m)
kk )−1 |Ijmkl ||bjl|

⎤⎦2
⎞⎟⎠ .
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Using the facts thta the set Kϕ
0m is finite, |bjl| = O(2−js

′
and (A(m)

kk )−1 |Ijmkl| = O(1), we derive that, as
m→ ∞,

Δ231 = O
(
2−2ms′

)
. (9.51)

For Δ232, using (9.50) and taking into account that hjmkl changes by unit increments, we obtain

Δ232 = O

⎛⎜⎝ ∑
k∈Kϕ

0m

⎡⎣ ∞∑
j=m

Ch2j−m∑
hjmkl=0

2−js
′
2(j−m)(β+1/2) exp

{
−bβ|z(k,k,δ)

max |−(β+1)2mβ2−(j−m)hjmkl

}⎤⎦2
⎞⎟⎠

= O

⎛⎜⎝−2ms′

⎡⎣ ∞∑
j=m

2−(j−m)(β−1/2+s′)

⎤⎦2
⎞⎟⎠ = O

(
2−2ms′

)
(9.52)

since s′ ≥ 1/2 and β > 0. Finally, combining expressions (9.39), (9.42), (9.43), (9.51) and (9.52), we obtain

Δ2 = O
(
n−1 2mα exp(2b 2β(m+1)) + 2−2ms′

)
. (9.53)

To complete the proof of (5.17), setm = m0, wherem0 is defined in (5.18) and combine (9.53) with (9.36)–(9.43).
�

Now, we need to show that E‖f̂ (m)
0 − Ef̂

(m)
0 ‖4 = o(1). Note that it follows from (9.37)–(9.40) that Δ∗ =

O (Δ∗
1 +Δ∗

2 +Δ∗
3) where, similarly to the case of squared difference,

Δ∗
1 = O

(‖D−1‖8‖Q−1‖4
E‖ĉ − c‖4

)
,

Δ∗
2 = O

(‖D−1‖8 ‖B‖4‖Q−1‖4
E‖v̂ − v‖4

)
,

Δ∗
3 = O

(‖D−1‖4 ‖Q−1‖4 ‖D−1ε‖4
)
.

Applying Lemma 9.5 and using (9.12) and (9.41) with b = 0, we obtain Δ∗
1 = O

(
n−222mα

)
= o(1) and

Δ∗
2 = O

(
22mα

E‖v̂ − v‖4
)
. Also, similarly to (9.44) and (9.46), Δ∗

3 = O
(
2−4ms′

)
. To complete the proof of

the lemma, recall the definitions of v̂ and v, apply (9.5) with k ∈ K∗
0m, and note that, for k ∈ K∗

0m, one has
|k − k0m| = O(1).

9.6. Proofs of the statements in Section 5: the zero-free part of the wavelet threholding
estimator

Proof of Lemma 5.2. Let R = E‖f̂c,m0 − fc,m0‖2 = R1 +R2 +R3, where

R1 =
∑

k∈Kϕ
0mc

Var(âm0k), R2 =
∞∑
j=J

∑
k∈Kψ

0jc

b2jk, R3 =
J−1∑
j=m0

∑
k∈Kψ

0jc

E(b̂jk − bjk)2.

By Lemma 9.2 we derive that, as n→ ∞,

R1 = O

⎛⎝n−1 2m0α
∑

k∈Kϕ
0m0c

[|k − k0m0 |−α exp(b2m0β |k − k0m0 |−β)
]⎞⎠

= O
(
n−12m0(1+α) exp(2−(β+1) lnn)

)
= o

(
(lnn)−

2s′
β

)
.
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Using (5.3) and (9.56), we derive that

R2 = O
(
2−2Js∗

)
= O

(
(lnn)−

4s∗
β

)
= O

(
(lnn)−

2s′
β

)
,

since s∗ = s′ for 1 ≤ p ≤ 2 and s∗ = s ≥ (s+ 1/2 − 1/p)/2 for 2 < p ≤ ∞ due to s ≥ 1/2. For R3, we have

R3 =
J−1∑
j=m0

∑
|k−k0j |≤2j−m0

b2jk +
J−1∑
j=m0

∑
|k−k0j |>2j−m0

Var(b̃jk)

= O

⎛⎝ J−1∑
j=m0

[
2−2js′(2j−m0)1−2/p + n−1 2j 2αm0 exp

(
b2βm0

)]⎞⎠
= O

(
2−m0(s+2/p−1) + (lnn)(2+α)/βn−1+2−(β+1)

)
= O

(
(lnn)−

2s′
β

)
.

To complete the proof of the lemma, note that the upper bounds are uniform for f ∈ Bsp,q(A). �

Proof of Lemma 5.3. Note that

R = E‖f̂c,m − fc‖2 = R1 +R2 +R3 +R4, (9.54)

where

R1 =
∑

k∈Kϕ
0mc

E(âmk − amk)2, R2 =
∞∑
j=J

∑
k∈Kψ

0jc

b2jk,

R3 =
J−1∑
j=m

∑
k∈Kψ

0jc

E

[
(b̃jk − bjk)2 I(b̃2jk > d2 �n 2jα |k − k0j |−α)

]
,

R4 =
J−1∑
j=m

∑
k∈Kψ

0jc

b2jk P(b̃2jk ≤ d2 �n 2jα |k − k0j |−α),

with �n defined in (9.20). Using Lemma 9.2, we obtain

R1 = O

⎛⎝n−1 2mα
∑

k∈Kϕ
0mc

|k − k0m|−α
⎞⎠ = O

(
n−1 2mα(lnn)I(α=1)

)
, (9.55)

since the set Kϕ
0mc contains O(lnn) terms and the sum

∑
k∈Kϕ

0mc
|k − k0m|−α is uniformly bounded if α > 1.

It is well-known (see, e.g., Johnstone [19], Lem. 19.1) that if f ∈ Bsp,q(A), then for some constant c
 > 0,
dependent on p, q, s and A only, one has

2j−1∑
k=0

b2jk ≤ c
2−2js∗ with s∗ = min(s, s′). (9.56)

Therefore, an upper bound for R2 is of the form

R2 =
∞∑
j=J

2j−1∑
k=0

b2jk = O
(
2−2Js′

)
.
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If 1 ≤ p ≤ 2, then s∗ = s′ and R2 = O
(
n− 2s′

2s′+α (lnn)
2s′

2s′+α
)
. If 2 ≤ p ≤ ∞, then s∗ = s and, since s ≥ 1/2, one

has p > (4s− 2α− 2)/(4s2 − α− 1). Hence,

2s/(α+ 1) > 2s′/(2s′ + α),

so that, for 1 ≤ p ≤ ∞, one has

R2 = O
(
n− 2s′

2s′+α (lnn)
2s′

2s′+α
)
. (9.57)

In oder to obtain an upper bound for R3 and R4, note that

R3 ≤ R31 +R32, R4 ≤ R41 +R42, (9.58)

where

R31 =
J−1∑
j=m

∑
k∈Kψ

0jc

E

[
(b̃jk − bjk)2 I((b̃jk − bjk)2 > 0.25 d2 �n 2jα |k − k0j |−α)

]
,

R32 =
J−1∑
j=m

∑
k∈Kψ

0jc

E

[
(b̃jk − bjk)2 I(b2jk > 0.25 d2 �2

n 2jα |k − k0j |−α)
]
,

R41 =
J−1∑
j=m

∑
k∈Kψ

0jc

b2jk P((b̃jk − bjk)2 > 0.25 d2 �2
n 2jα |k − k0j |−α), (9.59)

R42 =
J−1∑
j=m

∑
k∈Kψ

0jc

b2jk I(b2jk ≤ 2.25 d2 �2
n 2jα |k − k0j |−α).

Applying Lemma 9.6 with w(·) = ψ(·) and τ = 0.5d, we obtain

P((b̃jk − bjk)2 > 0.25 d2 �2
n 2jα |k − k0j |−α) = O

(
n−0.5d/Cd

)
,

where Cd is given by (5.20). Hence, by Lemma 9.2 and inequality
√
a+ b ≤ √

a+
√
b, for d > 4Cd, as n → ∞,

we obtain

R31 ≤
J−1∑
j=m

∑
k∈Kψ

0jc

[
E(b̃jk − bjk)4 · P((b̃jk − bjk)2 > 0.25 d2 �2

n 2jα |k − k0j |−α)
]1/2

= O

⎛⎜⎝n− d
4Cd

⎡⎢⎣n− 3
2 2

j(3α+1)
2

∑
k∈Kψ

0jc

|k − k0j |− 3α
2 + n−12jα

∑
k∈Kψ

0jc

|k − k0j |−α
⎤⎥⎦
⎞⎟⎠

= O
(
n
− d

4Cd

)
= o

(
n− 2s′

2s′+α (lnn)
2s′

2s′+α
)
. (9.60)

Similarly, by (9.56),

R41 = O
(
n
− d

2Cd

) J−1∑
j=m

∑
k∈Kψ

0jc

b2jk = o(n−1). (9.61)
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Now, consider R32 and R42. Note that it follows from Lemma 9.2 that

R32 = O

⎛⎜⎝J−1∑
j=m

∑
k∈Kψ

0jc

[
n−12jα|k − k0j |−αI(b2jk > 0.5 d2 n−1 lnn 2jα |k − k0j |−α)

]⎞⎟⎠
= O

⎛⎜⎝J−1∑
j=m

∑
k∈Kψ

0jc

min
[
(lnn)−1b2jk, n

−12jα|k − k0j |−α
]⎞⎟⎠

and, similarly,

R42 = O

⎛⎜⎝J−1∑
j=m

∑
k∈Kψ

0jc

min
[
b2jk, n

−1 lnn 2jα|k − k0j |−α
]⎞⎟⎠ .

Hence,
R32 = O

(
(lnn)−1R42

)
= O (R42) (9.62)

so that one needs to study only R42. Partition R42 as R42 = R421 +R422 +R423, where

R421 =
j1∑
j=m

∑
k∈Kψ

0jc

[
n−1 lnn 2jα|k − k0j |−α

]
, R422 =

J−1∑
j=j2

∑
k∈Kψ

0jc

b2jk,

R423 =
j2−1∑
j=j1+1

⎡⎣ ∑
|k−k0j |>Nj

n−1 lnn 2jα|k − k0j |−α +
∑

|k−k0j |≤Nj
b2jk

⎤⎦ ,
and the values of j1, j2 and Nj will be defined later. It is easy to see that, by (9.56),

R421 = O
(
n−1 lnn 2j1α(lnn)I(α=1)

)
, R422 = O

(
2−2j2s

∗)
, (9.63)

R423 = O

⎛⎝ j2−1∑
j=j1+1

[
n−1 lnn 2jαN1−α

j (lnn)I(α=1) + 2−2js′N
1−2/p
j

]⎞⎠ . (9.64)

If α �= 1, the two terms in (9.64) are equal to each other when

Nj =
(
n−1 lnn2j(2s

′+α)
)1/(α−2/p)

,

and, for this value of Nj , one has

R423 = O

⎛⎝ j2−1∑
j=j1+1

(n/ lnn)
2/p−1
α−2/p 2

2j(s′−αs)
α−2/p

⎞⎠ . (9.65)

Therefore, R423 behave differently when αs ≥ s′ and αs < s′, and we consider those cases separately.
First, consider the case when αs = s′. Then

R423 = O
(
(j2 − j1)(n/ lnn)

2/p−1
α−2/p

)
= O

(
(lnn/n)

2s′
2s′+α lnn

)
if αs = s′.
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If α > 1, αs > s′, choose j1 and j2 such that

2j1 = (n/ lnn)
1

2s′+α , 2j2 = (n/ lnn)
s′

s∗(2s′+α) .

Note that if 1 ≤ p ≤ 2, one has s∗ = s ≥ s′, so that j2 ≤ j1 and R423 = 0. If 2 < p ≤ ∞, then j2 > j1. Also, it fol-

lows from (9.63) and (9.65) that R423 = O

(
n

2/p−1
α−2/p (lnn)

1−α
α−2/p 2

2j1(s′−αs)
α−2/p

)
. Hence, R421 = O

(
(n/ lnn)−

2s′
2s′+α

)
,

R422 = O
(
(n/ lnn)−

2s′
2s′+α

)
and R423 = O

(
(n/ lnn)−

2s′
2s′+α

)
, so that

R42 = O
(
(n/ lnn)−

2s′
2s′+α

)
if αs ≥ s′, α > 1. (9.66)

Similarly, if α > 1, αs < s′, choose j1 and j2 such that

2j1 = (n/ lnn)
1

α(2s+1) , 2j2 = (n/ lnn)
1

2s+1 .

In this case, R423 = O

(
n

2/p−1
α−2/p (lnn)

1−α
α−2/p 2

2j2(s′−αs)
α−2/p

)
, and direct calculations yield R421 = O

(
(n/ lnn)−

2s
2s+1

)
,

R422 = O
(
(n/ lnn)−

2s
2s+1

)
and R423 = O

(
(n/ lnn)−

2s
2s+1

)
, so that

R42 = O
(
(n/ lnn)−

2s
2s+1

)
if αs < s′, α > 1. (9.67)

Finally, if α = 1, set j1 = j2 such that

2j1 = (n/ ln2 n)
1

2s∗+1

and obtain
R42 = O

(
n− 2s∗

2s∗+1 (lnn)
4s∗−1
2s∗+1

)
if α = 1. (9.68)

Now, to complete the proof of (5.21), one just need to combine (9.54)–(9.68), and to note that all upper bounds
are uniform for f ∈ Bsp,q(A). �

In order to prove (5.22), note that

R∗ = E‖f̂c,m − fc‖4 ≤ R∗
1 +R∗

2 +R∗
3,

where

R∗
1 = O

⎛⎜⎝E

∥∥∥∥∥∥
∑

k∈Kϕ
0mc

(âmk − amk)ϕmk(x)

∥∥∥∥∥∥
4
⎞⎟⎠ , R∗

2 = O

⎛⎜⎝
∥∥∥∥∥∥∥

∞∑
j=m

∑
k∈Kψ

0jc

bjkψjk(x)

∥∥∥∥∥∥∥
4⎞⎟⎠ ,

R∗
3 = O

⎛⎜⎝E

⎡⎢⎣J−1∑
j=m

∑
k∈Kψ

0jc

(b̃jk − bjk)2 I(b̃2jk > d2 �n 2jα |k − k0j |−α)

⎤⎥⎦
2⎞⎟⎠ .

Observe that, by Lemma 9.2, since 2m(α+1) = o(n/ lnn), as n→ ∞,

R∗
1 = O

⎛⎝2m
∑

k∈Kϕ
0mc

E(âmk − amk)4

⎞⎠ = O
(
n−3 2m(3α+2) + n−2 2m(2α+1)

)
= O

(
n−2 2m(2α+1)

)
= o(1).
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For R∗
2, by (9.56), we have

R∗
2 = O

⎛⎜⎝
⎡⎢⎣ ∞∑
j=m

∑
k∈Kψ

0jc

b2jk

⎤⎥⎦
2⎞⎟⎠ = O

([
2−2ms′

]2
)

= o(1).

Finally, similarly to (9.59), partition R∗
3 as R∗

3 = R∗
31 +R∗

32 with R∗
31 and R∗

32 corresponding to I(|b̃jk − bjk|2 >
0.25 d2 �n 2jα |k − k0j |−α) and I(b2jk > 0.25 d2 �n 2jα |k − k0j |−α), respectively. For R∗

31, applying Lemmas 9.2
and 9.6 with w = ψ and Cd given by (5.20), and also noting that

∑
k∈Kψ

0jc
|k − k0j |−l = O(1) for l > 1, we

derive

R∗
31 = O

⎛⎜⎝n J−1∑
j=m

∑
k∈Kψ

0jc

E

[
|b̃jk − bjk|4 I(|b̃jk − bjk|2 > 0.25 d2 �n 2jα |k − k0j |−α)

]⎞⎟⎠
= O

⎛⎜⎝n J−1∑
j=m

∑
k∈Kψ

0jc

[
E|b̃jk − bjk|6

]2/3 [
P(|b̃jk − bjk|2 > 0.25 d2 �n 2jα |k − k0j |−α)

]1/3

⎞⎟⎠
= O

⎛⎝n J−1∑
j=m

n−d/(3Cd)
[
n−10/3 2j(10α+4)/3 + n−8/3 2j(8α+2)/3 + n−2 22jα

]⎞⎠
= o

(
n1−d/(3Cd)

)
= o(1), n→ ∞,

since d > 3Cd. For R∗
32, using Lemmas 9.2 and (9.56), we derive that

R∗
32 = O

⎛⎜⎝n J−1∑
j=m

∑
k∈Kψ

0jc

E

[
|b̃jk − bjk|4 I(b2jk > 0.25 d2 �n 2jα |k − k0j |−α)

]⎞⎟⎠
= O

⎛⎜⎝n J−1∑
j=m

∑
k∈Kψ

0jc

[2j ln−3 n b6jk + ln−2 n b4jk]

⎞⎟⎠ = o

⎛⎝n J−1∑
j=m

[2j(1−6s′) + 2−4js′ ]

⎞⎠
since n−1 2jα|k − k0j |−α < 0.25 b2jk/(d

2 lnn). Note that m ≥ m0 implies 2m ≥ n1/(2s′+α), so that

R∗
32 = o

(
n− 6s′−1

2s′+α + n− 4s′
2s′+α

)
= o(1),

which completes the proof of the lemma.

9.7. Proof of the asymptotic minimax upper bounds for the L2-risk in Section 6

Proof of Theorem 6.2. Since m̂ = m0 for b > 0, the validity of Theorem 6.2 for b > 0 follows directly from
Lemma 5.2. For b = 0, observe that

Δ = E[‖f̂m − f‖2 =
m0∑

m=m1

E[‖f̂m − f‖2
I(m̂ = m ≤ m0)] + E[‖f̂m − f‖2

I(m̂ = m > m0)]

≡ Δ1 +Δ2,
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and consider terms Δ1 and Δ2 separately.
Denote

R(n) =

⎧⎨⎩O
(
n− 2s

2s+1 (lnn)μ1

)
if b = 0, αs < s′,

O
(
n− 2s′

2s′+α (lnn)μ2

)
if b = 0, αs ≥ s′,

(9.69)

and note that, for any m ≥ m1,

E‖f̂m − f‖2 ≤ 2[ E‖f̂m0 − f‖2 + E‖(f̂m − f̂m0)I(x ∈ Ξm)‖2 + E‖(f̂m − f̂m0)I(x ∈ Ξcm)‖2]

where m1 is defined in (5.3) and set Ξm is defined in (6.1). By Lemmas 5.1 and 5.3, we obtain

E‖f̂m0 − f‖2 = O
(
n− 2s′

2s′+α +R(n)
)
.

If m̂ = m ≤ m0, then by definition of m̂, we derive that

E‖(f̂m − f̂m0)I(x ∈ Ξm)‖2 ≤ λ2 2m0α n−1 lnn = O
(
n− 2s′

2s′+α
)
.

Now, recall that Ξm is defined in such a way that supp(f0,m) ∈ Ξm for any m, and that Ξj1 ⊂ Ξj2 for j1 > j2,
so that, for m ≤ m0,

E‖(f̂m − f)I(x ∈ Ξcm)‖2 = E‖(f̂0,m + f̂c,m − f0,m − fc,m)I(x ∈ Ξcm)‖2

= E‖(f̂c,m − fc,m)I(x ∈ Ξcm)‖2 ≤ E‖f̂c,m − fc,m‖2 = O (R(n))

as n→ ∞. Noting that

E‖(f̂m − f̂m0)I(x ∈ Ξcm)‖2 ≤ 2
[
E‖(f̂m − f)I(x ∈ Ξcm)‖2 + E‖(f̂m0 − f)I(x ∈ Ξcm)‖2

]
and combining all formulae above, we obtain that Δ1 = O (R(n)) as n→ ∞.

By Lemmas 5.1 and 5.3, one has E‖f̂0,m − f0,m‖4 = o (1) and E‖f̂c,m − fc,m‖4 = o (1). Then, Lemma 6.1
yields

Δ2 ≤
√

E[‖f̂m − f‖4
√

P(m̂ = m > m0) = O
(
n
− λ

2Cλ + n
1

2(α+1)− d
4Cd

)
= O(n−1),

provided λ ≥ max (Cλ1, Cλ2, 2Cλ) and d > 2(α+1)−1(2α+3)Cd, which completes the Proof of Theorem 6.2. �

9.8. Proof of the asymptotic minimax upper bounds for the L2-risk in Section 7

The Proof of Theorem 7.1 is based on the following lemma.

Lemma 9.9. Let Assumption A hold with b = 0 and 0 < α < 1. Then,

Var(b̃jk) = O
(
n−12jα min(1, |k − k0j |−α)

)
,

E|b̃jk − bjk|
α+3
α+1 = O

(
n− 2

α+1 2j
(α+3)
2(α+1) + n− α+3

2(α+2) 2j
)
.

Proof of Lemma 9.9. Proof of the first statement is very similar to the proof of validity of formula (9.6). Proof
of the second statement is based on Lemma 3.1. in Chesneau [6] which states that whenever

∫
[g(x)]1−νdx <∞

for some ν > 2, one has

E|b̃jk − bjk|ν = O

(
n1−ν

∫
|ψjk(x)|ν [g(x)]1−νdx+ n−ν/2

∫
ψ2
jk(x) [g(x)]−ν/2dx

)
. (9.70)

To complete the proof, note that for ν = 1 + 2/(α+ 1) > 2 one has
∫
[g(x)]1−νdx <∞ and apply (9.70). �
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Proof of Theorem 7.1. The proof of this statement is similar to the Proof of Lemma 5.3. Indeed, similarly to
the Proof of Lemma 5.3, partition the risk as R = E‖f̂ − f‖2 = R1 +R2 +R3 +R4 where, similarly to the Proof
of Lemma 5.3,

R1 =
2m1−1∑
k=0

E(âm1k − am1k)
2, R2 =

∞∑
j=J

2j−1∑
k=0

b2jk,

R3 =
J−1∑
j=0

2j−1∑
k=0

E

[
(b̃jk − bjk)2 I(b̃2jk > d2 �n 2jα |k − k0j |−α)

]
,

R4 =
J−1∑
j=0

2j−1∑
k=0

b2jk P(b̃2jk ≤ d2 �n 2jα |k − k0j |−α)

with �n defined in (9.20). Since 1/g is integrable and m1 in (5.3) is finite, it is easy to show that R1 = O
(
n−1

)
.

Also, same as before, R2 = O
(
2−2Js∗

)
. If p > 2, then α+1 < 2s+1 since s ≥ max(1/2, 1/p) and α < 1, so that

R2 = O
(
n−2s/(2s+1)

)
. If 1 ≤ p ≤ 2, then s∗ = s′ and 2s′/(1 + α) > max {2s′/(2s′ + α), 2s/(2s+ 1)}, so that

R2 = O
(
max

{
n−2s/(2s+1), n−2s′/(2s′+α)

})
.

Now, similarly to the Proof of Lemma 5.3, partition R3 and R4 as R3 ≤ R31 +R32 and R4 ≤ R41 +R42. Using
Lemma 9.9, as n→ ∞, obtain upper bounds

R31 ≤
J−1∑
j=0

2j−1∑
k=0

[
P((b̃jk − bjk)2 > 0.25 d2 �2

n 2jα |k − k0j |−α)
]1−2/ν [

E|b̃jk − bjk|ν
]2/ν

= O

⎛⎝J−1∑
j=0

2j n−d(1−2/ν)/(2Cd)
[
n1−ν2jν/2 + n−ν/2 2j

]2/ν⎞⎠
= O

(
2j n−d(1−2/ν)/(2Cd)

[
n−ν/2 2J

]2/ν)
= O

(
n−1

)
,

provided (7.2) holds, and also

R41 = O
(
n
− d

2Cd

) J−1∑
j=m

∑
k∈Kψ

0jc

b2jk = o(n−1).

Now, same as before, R32 = O
(
(lnn)−1R42

)
= O (R42), so that we need to construct upper bounds for R42

only. Partition R42 as R42 = R421 +R422 +R423 where

R421 =
j1∑
j=0

2j−1∑
k=0

[
n−1 lnn 2jα|k − k0j |−α

]
, R422 =

J−1∑
j=j2

2j−1∑
k=0

b2jk,

R423 =
j2−1∑
j=j1+1

⎧⎨⎩ ∑
|k−k0j |>Nj

|bjk|p
[
n−1 lnn 2jαN−α

j

]1−p/2
+

∑
|k−k0j |≤Nj

n−1 lnn 2jαN1−α
j

⎫⎬⎭ ,

and the values of j1, j2 andNj will be defined later. It is easy to see that, same as before,R421 = O
(
n−1 lnn 2j1α

)
and R422 = O

(
2−2j2s

∗)
. For R423 we can write the following expression

R423 =
j2−1∑
j=j1+1

[
2−js

′p
(

lnn
n

2jαN−α
j

)1−p/2
+

lnn
n

2jαN1−α
j

]
.
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If p ≥ 2, we choose j1 = j2 such that 2j1 = (lnn/n)1/(2s+1) and obtain R42 = O
(
(lnn/n)2s/(2s+1)

)
. If 1 ≤ p < 2,

we choose Nj which equalize the two terms in R423 and obtain, similarly to (9.65),

R423 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
O

(
(n/ lnn)

2/p−1
α−2/p 2

2j2(s′−αs)
α−2/p

)
if αs < s′

O

(
(n/ lnn)

2/p−1
α−2/p 2

2j1(s′−αs)
α−2/p

)
if αs > s′

O
(
(j2 − j1) (n/ lnn)

2/p−1
α−2/p

)
if αs = s′

(9.71)

If αs < s′, then choose
2j1 = (n/ lnn)

1
2s+1 , 2j2 = (n/ lnn)

s
s′(2s+1) ,

so that j1 < j2. Direct calculations show that in this case

R42 = O
(
(n/ lnn)ζ1

)
with ζ1 =

2/p− 1
2/p− α

+
2(s′ − αs)

(2s+ 1)(2/p− α)
=

2s
2s+ 1

and R42 = O
(
(lnn/n)2s/(2s+1)

)
. If αs > s′, then set

2j1 = (n/ lnn)
α

2s′+α , 2j2 = (n/ lnn)
1

2s′+α ,

so that again j1 < j2. Here we have

R42 = O
(
(n/ lnn)ζ2

)
with ζ2 =

2/p− 1
2/p− α

− 2(αs− s′)
(2s′ + α)(2/p− α)

=
2s′

2s′ + α

and R42 = O
(
(lnn/n)2s

′/(2s′+α)
)
. If αs = s′, then note that j2 − j1 = O(lnn), so that R42 =

O
(
(lnn/n)2s

′/(2s′+α)
)

= O
(
(lnn/n)2s/(2s+1)

)
. Now, to complete the proof, just combine the expressions for

R1, R2, R31, R41, R32 and R42. �
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