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WAVELET ANALYSIS OF THE MULTIVARIATE FRACTIONAL
BROWNIAN MOTION
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Abstract. The work developed in the paper concerns the multivariate fractional Brownian motion
(mfBm) viewed through the lens of the wavelet transform. After recalling some basic properties on
the mfBm, we calculate the correlation structure of its wavelet transform. We particularly study the
asymptotic behaviour of the correlation, showing that if the analyzing wavelet has a sufficient number
of null first order moments, the decomposition eliminates any possible long-range (inter)dependence.
The cross-spectral density is also considered in a second part. Its existence is proved and its evaluation
is performed using a von Bahr–Essen like representation of the function sign(t)|t|α. The behaviour of
the cross-spectral density of the wavelet field at the zero frequency is also developed and confirms the
results provided by the asymptotic analysis of the correlation.
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1. Motivations and overlook

The fractional Brownian (fBm) motion developed by Mandelbrot and Van Ness [18] has been extensively
studied as the archetypal model of fractal signals. Many extensions have been proposed, trying to keep the
simplicity of its definition while modelling more complex phenomena. For example, time-dependent Hurst ex-
ponent or d-dimensional extensions have been introduced which have respectively led to the multifractional
Brownian motion [19] and the fractional Brownian sheet [6]. Another extension consists in defining multivariate
fractal processes. This extension is needed by many applications ranging from economy to physics, passing by
biology and neuroscience [1,2,5,15]. In all these disciplines, many modern sensing approaches allow to measure
instantaneously different variables from complex phenomena. The need of multivariate signals models is crucial
in order to model and understand these phenomena.

A multivariate extension of the fBm has been proposed recently in a very general setting by Didier and
Pipiras [10] with the help of operator self-similarity. The operator fractional Brownian motion is an operator self-
similar Gaussian process with stationary increments. When the operator is diagonal, it is called the multivariate
fractional Brownian motion (mfBm). We have particularly studied this diagonal case [4], elaborating on the work
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of Lavancier et al. [17]. In these works, the correlation structure of the mfBm has been studied. The increments
process has also been studied, and we have exhibited its correlation and spectral structures, showing the possible
existence of long-range dependence in correlation as well as in cross-correlation between components.

In this paper, we pursue the study by wavelet analyzing the multivariate process. Wavelet transforms or
decomposition provide a regularized differentiation of the processes, have a filter bank structure in perfect
adequacy with 1/f type of spectral behaviour, may eliminate long-range dependence properties if the analyzing
wavelet is properly chosen. Therefore, it is now well-accepted that wavelet analysis is the appropriate framework
to deal with monovariate fractal signals with stationary increments [7, 11–13, 20, 23] and in particular the
appropriate framework to estimate efficiently the Hurst exponent (or the long-memory parameter in a semi-
parametric framework). Henceforth, establishing theoretical properties of the wavelet transform of the mfBm is
of major interest in the perspective to estimate the parameters of this model (in particular the Hurst exponents
and the correlation between the components). Based on the results of the present paper, the identification of
the mfBm has been investigated in Amblard and Coeurjolly [3].

We thus concentrate on the correlation and on the spectral structure of the wavelet transform of the mfBm.
The principal result of the paper is the explicit form of the second order statistics of this multivariate Gaussian
random field. We study the asymptotic behaviour of the cross-correlation function of the wavelet, and this
allows us to prove that choosing a wavelet with at least two null first order moments eliminates any possible
long-range dependence in the correlations. We prove the existence and calculate the cross-spectral density of the
wavelet field. We thus extend the result of Kato and Masry [16] providing the existence of the spectral density
of the wavelet transform of the fBm. The proof uses a generalization of the von Bahr–Essen representation of
|t|α (used by Kato and Masry [16]) to the function sign(t)|t|α. We also provide the behaviour of the density at
the zero frequency, corroborating the asymptotic result obtained in the time domain. We stress on the fact that
our asymptotic results do not impose that the wavelet is a real function, nor that it has a compact support.

The paper is organized as follows. In order to have a self-contained exposition, we recall some basics definition
and results on the mfBm in Section 2. In Section 3, we set the wavelet analysis and look at some self-similarity
properties inherited from the process. The full correlation structure and the spectral counterpart are also
presented in Section 3. A conclusion is presented in Section 4. The technical proofs and the needed generalized
von Bahr–Essen representation are postponed into the Appendix.

2. Some facts on the multivariate fractional Brownian motion

The p dimensional multivariate fractional Brownian motion (mfBm) x(t) is defined as the only Gaussian
process having stationary increments and having components jointly self-similar with parameters (H1, . . . , Hp) ∈
(0, 1)p. The self-similarity property can be stated as follows: for any real λ > 0, x(λt) fidi= λHx(t) where
H = diag(H1, . . . , Hp) and λH is intended in the matrix sense. The notation fidi= stands for equality of all the
finite-dimensional probability distributions.

The cross-covariance structure induced by the multivariate self-similarity property and the stationarity of the
increments has been first studied by Lavancier et al. [17], Theorem 2.1, without having recourse to the Gaussian
assumption. Amblard et al. [4] have parameterized this covariance structure in a more simple way as follows.

Proposition 2.1 ([4], Prop. 3). Let j, k ∈ {1, . . . , p}, j �= k, then there exist σj > 0, (ρjk, ηjk) ∈ [−1, 1] × R

satisfying ρjk = ρkj and ηjk = −ηkj , such that

rjk(s, t) := E[xj(s)xk(t)] =
σjσk

2
{wjk(−s) + wjk(t) − wjk(t− s)} , (1)

where the function wjk(h) is defined by

wjk(h) =

{
(ρjk − ηjksign(h))|h|Hj+Hk if Hj +Hk �= 1,

ρjk|h| + ηjkh log |h| if Hj +Hk = 1.
(2)



594 J.-F. COEURJOLLY ET AL.

0 200 400 600 800 1000
−80

−60

−40

−20

0

20

40

60

80

0 200 400 600 800 1000
−100

−80

−60

−40

−20

0

20

40

60

80

100

0 200 400 600 800 1000
−150

−100

−50

0

50

100

150

200

250

300

350

Figure 1. Examples of discretized sample paths of a time reversible (ηjk = 0) mfBm of length
n = 1024, with p = 20 components. The Hurst exponents are equally spaced in [0.3, 0.4] (left
plot), [0.6, 0.7] (middle plot) and [0.4, 0.8] (right plot). The correlation parameters are set to
0.7 (left and middle plot) and to 0.3 (right plot). The components are shifted artificially in the
left plot for the sake of visibility.

This result is also valid in the case j = k when setting ρjj = 1 and ηjj = 0 in (2); we thus recover the covariance
structure of a monovariate fBm. The parameter σ2

j is the variance of a fBm at time 1, Var(xj(1)), whereas
ρjk represents the instantaneous correlation between components j and k at time 1, i.e. E[xj(1)xk(1)]. The
antisymmetric parameter ηjk is related to the time-reversibility property of the multivariate process. Indeed,
the mfBm is time reversible, i.e. x(t) = x(−t) in distribution for every t, if and only if ηjk = 0 for all j, k [4].

To ensure that the matrix given by (1) is the cross-covariance matrix of a process, the constraints imposed
on ρjk and ηjk are not sufficient. A necessary and sufficient condition, proved by Amblard et al. [4], corresponds
to the positive-definiteness of the Hermitian matrix with entries Γ (Hj +Hk + 1)× ξjk where ξjk is defined by

ξjk =

{
ρjk sin

(
π
2 (Hj +Hk)

)− iηjk cos
(
π
2 (Hj +Hk)

)
if Hj +Hk �= 1

ρjk − iπ2 ηjk if Hj +Hk = 1,
(3)

where i =
√−1. For example, when p = 2 and ηjk = 0 no condition is required for the correlation ρ12 when

H1 = H2, and when H1 = 0.1 and H2 = 0.8 the correlation ρ12 cannot exceed 0.514, see [4] for more discussion.
The problem of simulation of such a process has been investigated in Amblard et al. [4] using the algorithm
developed by Chan and Wood [8]. Figure 1 presents some examples in order to illustrate the process.

The covariance structure of the increment process (at lag 1) can be easily deduced from (1). When j = k,
we obviously recover the covariance of the fractional Gaussian noise and the classical property that this process
is short-memory when Hj ≤ 1/2 and long-memory when Hj > 1/2. In the multivariate case, long-range
(interdependence) may also appear in the cross-covariance. Indeed Amblard et al. [4] proved that for all j �= k,
the cross-covariance behaves asymptotically as |h|Hj+Hk−2 (up to a constant) meaning that the long-memory
property arises as soon as Hj + Hk ≥ 1 which can appear in three different situations: Hj = Hk = 1/2,
Hj < 1/2 and Hk > 1 − Hj or Hj > 1/2 and Hk > 1/2. In those cases, some troubles may appear when
it comes to infer parameters of the models from data. Indeed, long-range dependence may lead to very slow
convergence of estimators. As already observed in many works, e.g. [7,9,13,21], having recourse to wavelet types
of transformation is an elegant way to overcome the problem. Indeed, using wavelet types of transformation
with a correctly chosen filter allows to extract the stationary part from the fBm and allows to “whiten” the
increments. We describe such an approach in the following section.
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3. Wavelet Analysis of the mfBm

The use of wavelet analysis in the understanding of the monovariate fractional Brownian motion, and more
generally for the study of fractal signals, goes back to the early works of Flandrin [12,13], Tewfik and Kim [20],
Wornell [23] to cite some but a few.

The aim is now to analyze the multivariate fractional Brownian motion through the lens of the wavelet
transform. We use the continuous wavelet transform here, but a similar analysis could be performed in the
multiresolution framework using orthonormal wavelet bases. We will consider complex valued wavelets, not
necessarily in the Hardy class, not necessarily with compact support. The hypothesis we impose on the wavelets
will be detailed when needed.

3.1. Definition and stationarity

Let ψ be a complex wavelet function, let a > 0 and b ∈ R and consider ψab(.) = a−1/2ψ((.− b)/a). Let

dja,b :=
〈
xj

∣∣∣ψa,b〉
L2

=
∫

R

xj(t)ψa,b(t)dt (4)

the wavelet transform of the jth component of a multivariate fractional Brownian motion. ψ denotes the
complex conjugate of ψ. In this section, we assume that conditions [C1] and [C2(2)] are satisfied, where:

[C1] Admissibility condition: ψ(t) ∈ L2 and |ψ̂(ω)|2/|ω| ∈ L1, where ψ̂ is the Fourier transform of ψ.

[C2(K)] tmψ(t) ∈ L1 for m = 0, 1, . . . ,K.

Condition [C1] ensures that ψ̂(0) = 0 and that
∫

R
ψ(t)dt = 0. We note, as Kato and Masry [16], that under

condition [C2(1)], the integral (4) is well-defined as a sample path integral and is a second-order random variable.
This follows, since under [C2(1)] we have

∫
R
|s|H |ψa,b(s)|ds < +∞, ∀H ∈ (0, 1).

The aim of this section is to focus on the correlation between the wavelet transforms (at different scales
and different times) of two components j and k of the multivariate fractional Brownian motion. The wavelet
transform is a random field. It is clearly zero mean and Gaussian. We have for a1, a2 > 0 and b, h ∈ R

E
[
dja1,b+h

dka2,b

]
=

∫
R2
rjk(t1, t2)ψa1,b+h(t1)ψa2,b(t2)dt1dt2.

Under [C1], and from (2) the last expression reduces to

E
[
dja1,b+h

dka2,b

]
= −σjσk

2

∫
R2
wjk(t2 − t1)ψa1,b+h(t1)ψa2,b(t2)dt1dt2.

Let Γψ(v) :=
∫

R
ψa1,b+h(u)ψa2,b(u + v)du be the correlation function between the two wavelets ψa1,b+h and

ψa2,b. Then we have

E
[
dja1,b+h

dka2,b

]
= −σjσk

2

∫
R

wjk(v)Γψ(v)dv. (5)

Note that [C2(2)] implies that for all the values of Hj and Hk,
∫

R
|wjk(v)| |Γψ(v)| dv < +∞. With two changes

of variables, this may also be rewritten as

E
[
dja1,b+h

dka2,b

]
= −σjσk

2
√
a1a2 ×

∫
R2
wjk(a2t2 − a1t1 − h)ψ(t1)ψ(t2)dt1dt2. (6)

If we interpret for fixed parameters a1 and a2, the quantity E[dja2,b+h
dka2,b

] as the cross-correlation between two
signals, we observe that it depends only on the difference between the times at which it is evaluated (i.e. h).
With the fact that the wavelet transform is a zero mean and Gaussian field, we conclude that dja1,. and dka2,. are
jointly stationary signals.
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3.2. Self-similarity type property of the cross-wavelet transform

The variance of the wavelet transform at similar scales for the fractional Brownian motion with Hurst
parameter H exhibits a self-similarity property. Indeed, it is proved in Flandrin [12] for example that for
all b

Var(dja,b) = a2H+1 ×
(
−σ

2

2

∫
R2

|t2 − t1|2Hψ(t1)ψ(t2)dt1dt2

)
.

We note here that the same behaviour holds for the cross-wavelet variance.

Proposition 3.1. Under the assumptions [C1] and [C2(2)], let h = 0 and fix a1 = a2 = a > 0. Then for
all b ∈ R,

E
[
dja,bd

k
a,b

]
= aHj+Hk+1

(
−σjσk

2
zjk

)
and Corr[dja,b, d

k
a,b] =

zjk√
zjjzkk

, (7)

where zjk :=
∫

R2 wjk(t2 − t1)ψ(t1)ψ(t2)dt1dt2.

Proof. Consider equation (6). The result is obvious when Hj + Hk �= 1 since for any a > 0, wjk(av) =
aHj+Hkwjk(v). Now, when Hj +Hk = 1, the result comes from Condition [C1] ensuring that

∫
R2 ηjk × a(t2 −

t1) log(a)ψ(t1)ψ(t2)dt1dt2 = 0. �

3.3. Cross-correlation structure of the wavelet transform of the mfBm

For fixed scales, a1, a2, we now specify the behaviour of the cross-wavelet covariance (or correlation) as
|h| → +∞. In particular, our aim is to exhibit the influence of the number of vanishing moments of the wavelet
function on the asymptotic cross-wavelet covariance. Such a result needs the following assumption:

[C3] The wavelet function has M ≥ 1 vanishing moments that is∫
R

tmψ(t)dt = 0 for m = 0, . . . ,M − 1 and
∫

R

tMψ(t)dt �= 0.

We may now derive our result obtained as |h| → +∞. Let us first recall Landau notation: for two functions
f(h) and g(h) defined on R, we denote by f(h)∼g(h) as |h| → +∞ (resp. f(h)=o(g(h)) and f(h)=O(g(h))) if
lim|h|→+∞ f(h)/g(h) = 1 (resp. lim|h|→+∞ f(h)/g(h) = 0 and f(h)/g(h) is bounded for all h).

Theorem 3.2. Assume [C1], [C2(2M+1)] and [C3] hold. Let a1, a2 > 0 and b, h ∈ R, then as |h| → +∞, we
have

E
[
dja1,b+h

dka2,b

]
∼ −σjσk

2
κ(ψ,M, a1, a2) τjk(h) |h|Hj+Hk−2M

where κ(ψ,M, a1, a2) :=
(
2M
M

)
(a1a2)M

∣∣∫ tMψ(t)dt
∣∣2 and

τjk(h) =

⎧⎨⎩ (ρjk + ηjk sign(h))
(
Hj+Hk

2M

)
if Hj +Hk �= 1

− ηjk×sign(h)
2M(2M−1) if Hj +Hk = 1.

(8)

We notice that the equivalence stated has a meaning as soon as ρjk + ηjk sign(h) �= 0 when Hj +Hk �= 1 and as
soon as ηjk �= 0 when Hj +Hk = 1. In the opposite cases, a careful look at the proof shows that the equivalence
can be replaced by an upper-bound or more precisely E[dja1,b+h

dka2,b
] = o(|h|1−2M ).

Similarly to the fractional Brownian motion, Theorem 3.2 asserts that the higher M , the less correlated the
wavelet transforms of the components j and k of the multivariate fractional Brownian motion. This has many
implications. In particular, this suggests that estimating the instantaneous cross-wavelet correlation at a scale
a may be efficiently done by using the empirical correlation since at scale a, dja,b+h and dka,b are not too much
correlated if M is large, see Section 4.
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3.4. Cross-spectral density of the wavelet transform of the mfBm

In the case of the fBm, the expression of the spectral density of the wavelet transform was provided by
Flandrin [12,13]. A rigorous proof of the existence of this spectral density in the L1 sense was obtained by Kato
and Masry [16]. On the basis of this work, our ambition is to provide the cross-spectral density between wavelet
transforms (at different scales) of components j and k of the multivariate fractional Brownian motion. The idea
is to obtain the following spectral representation for the cross-correlation

E
[
dja1,b+h

dka2,b

]
=

1
2π

∫
R

Sjka1,a2
(ω)eiωt dω.

Theorem 3.3. Under Assumptions [C1], [C2(M)] and [C3] (with M ≥ 2), we derive the following assertions
for a1, a2 > 0 and ω ∈ R:

(i) The cross-spectral density of the wavelet transforms of two components j and k exists and is given by

Sjka1,a2
(ω) =

√
a1a2 σjσkΓ (Hj +Hk + 1) ζjk(ω)

ψ̂(a1ω)ψ̂(a2ω)
|ω|Hj+Hk+1

(9)

where

ζjk(ω) =

{
ρjk sin

(
π
2 (Hj +Hk)

)
+ i ηjk cos

(
π
2 (Hj +Hk)

)
sign(ω) if Hj +Hk �= 1

ρjk + iπ2 ηjk sign(ω) if Hj +Hk = 1.

(ii) We have for both cases, as ω → 0∣∣∣Sjka1,a2
(ω)

∣∣∣ ∼ (a1a2)M+1/2σjσk Γ (Hj +Hk + 1) |ψ̂(M)(0)|2 |ζjk(ω)| |ω|2M−1−α.

(iii) Moreover, the coherence function between the two components j and k satisfies:

Cjka1,a2
(ω) :=

∣∣Sjka1,a2
(ω)

∣∣2
Sjja1,a1(ω)Skka2,a2

(ω)
= |ζjk(ω)|2 Γ (Hj +Hk + 1)2

Γ (2Hj + 1)Γ (2Hk + 1)
× ψ̂(a1ω)ψ̂(a2ω)

ψ̂(a1ω)ψ̂(a2ω)
· (10)

Before writing down the proof, let us give some comments.

1. Item (ii) in Theorem 3.3 is the spectral analogue of Theorem 3.2. Indeed the behaviour of the cross-correlation
at infinite lags is linked to the behaviour of its Fourier transform at the zero frequency. We recover the fact
that as soon as M > Hj + Hk + 1/2, the long-range interdependence is destroyed. The divergence of
|ω|−1−Hj+Hk is compensated by the rapid decrease to zero of the Fourier transform of the wavelet.

2. The interpretation of the coherence (10) is difficult here. Indeed, it is complex valued, a property which is not
natural for a coherence. This comes from the fact that the quantities Sjja1,a2

(ω) are not power spectral densities
but cross-spectral densities (cross-spectral density between two different scales of the wavelet transform of
one signal). Thus, to interpret correctly the coherence, we should look at one scale only, in which case
we recover the coherence evaluated in the usual spectral domain. And this result is logical since the usual
coherence is independent of the frequency.

3. Setting a1 = a2 and j = k in the expression of the cross-spectral density, we recover the usual result of the
power spectral density at one scale of the wavelet transform of a scalar fBm. The proof proposed here is a
natural extension of the proof found in Kato and Masry [16].

4. The derivation of the analytic form of the cross-spectral density is easy if we use generalized
functions (or Schwartz distributions). Indeed, from Gel’fand and Shilov [14], we know that the
Fourier transforms of |v|α and |v|αsign(v) are respectively given by −2Γ (α + 1)|ω|−α−1 sin(πα/2) and
−2iΓ (α + 1)|ω|−α−1sign(ω) sin(πα/2). Then, in the proof below, the calculation of T =

∫
R
wjk(v)Γψ(v)dv

can be done using Parseval equality. However, the theoretical background required and hidden in the calcu-
lation is far more involved than the basics we have used in the proof (see [14]).
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4. Discussion

To estimate the Hurst exponent of a monovariate fractional Brownian motion using wavelet techniques or
filtering techniques, the key-ingredient is that the logarithm of the wavelet variance is linear in the logarithm of
the scale which suggests to estimate the Hurst exponent via the slope from the regression of the log-scalogram
on the logarithm of the scales for a set of different scales as investigated for instance by Veitch and Abry [21],
Bardet et al. [7], Faÿ et al. [11]. Since each component of a mfBm is a fBm, this procedure can still be efficiently
considered to estimate the different Hurst exponents. Proposition 3.1 provides an additional information. Indeed,
this result asserts in particular that the logarithm of the absolute cross-wavelet variance between two components
j and k also exhibits a linear behaviour with the logarithm of the scale with proportionality coefficient equal
to Hj +Hk. This theoretical fact clearly suggests to include the information of the logarithm of the asbsolute
empirical cross-wavelet variance in order to improve the classical procedure. Such ideas have been considered in
details in Amblard and Coeurjolly [3], where we propose a joint estimation of the parameters Hj for j = 1, . . . , p
and also efficient procedures to estimate σ2

j , ρjk and ηjk for j, k = 1, . . . , p, k > j. In particular for specific
wavelet, we exploit Theorem 3.2 to obtain a central limit theorem for the sample variances at different scales
of the wavelet transforms as well as the sample cross-correlations. From this, we derived a multivariate central
limit theorem for the estimators.

Appendix A. Proofs of the main results

A.1. Proof of Theorem 3.2

Proof. The proof is split into two cases. Before this, we denote for h > 0 by Dh := {(t1, t2)
∈ R

2 : |a2t2 − a1t1| < |h|
2

}
and we note in particular that

∀(t1, t2) ∈ Dh

∣∣∣∣a2t2 − a1t1
h

∣∣∣∣ ≤ 1
2
< 1 and sign(a2t2 − a1t1 − h) = −sign(h) (A.1)

∀(t1, t2) ∈ R
2 \Dh

∣∣∣∣ h

a2t2 − a1t1

∣∣∣∣ ≤ 2. (A.2)

For brevity, we assume in the following that for for t1, t2 ∈ R, a1t1 �= a2t2.

Case 1. α := Hj +Hk �= 1.

We assume here that ρjk + ηjksign(h) �= 0. Let us write E[dja,b+hd
k
a,b] = −σjσk

2

√
a1a2 × T with

T :=
∫

R2
(ρjk − ηjk sign(a2t2 − a1t1 − h))|a2t2 − a1t1 − h|αψ(t1)ψ(t2)dt1dt2 = T1 + T2,

and where T1 (resp. T2) corresponds to the integral on Dh (resp. R
2 \Dh). Let us first prove that |h|2M−αT2 → 0

as |h| → +∞. Denoting c∨ = |ρjk| + |ηjk|, we have since 2M − α > 0 and from (A.2) for the second inequality

|h|2M−α|T2| ≤ c∨
∫

R2\Dh

|a2t2 − a1t1|α|h|2M−α
∣∣∣∣1 − h

a2t2 − a1t1

∣∣∣∣α |ψ(t1)||ψ(t2)|dt1dt2

≤ 22M−α3αc∨
∫

R2\Dh

(a2t2 − a1t1)2M |ψ(t1)||ψ(t2)|dt1dt2.
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The result is then obtained by using assumption [C2(2M)] and the dominated convergence theorem. Now,
within the domain Dh, one may use the series expansion of (1 + x)α (for |x| < 1).

T1 = |h|α
∫
Dh

(ρjk − ηjk sign(a2t2 − a1t1 − h))
(

1 − a2t2 − a1t1
h

)α
ψ(t1)ψ(t2)dt1dt2

= |h|α(ρjk + ηjk sign(h))
∫
Dh

⎛⎝∑
�≥0

(−1)�
(
α

�

)(
a2t2 − a1t1

h

)�⎞⎠ψ(t1)ψ(t2)dt1dt2,

where
(
α
�

)
denotes the binomial coefficient (α)(α−1) . . . (α− �+1)/�!. Decompose T1 into three terms (denoted

by T ′
1, T

′
2 and T ′

3) corresponding to the 2M first terms of the series, the (2M + 1)th term (� = 2M) and the
remainder terms. Then,

T ′
1 = |h|α(ρjk + ηjk sign(h))

2M−1∑
�=0

(−1)�h−�
(
α

�

)∫
Dh

(a2t2 − a1t1)
�
ψ(t1)ψ(t2)dt1dt2.

Under Assumption [C3], ψ has M vanishing moments and therefore the previous expression reduces to

T ′
1 = −|h|α(ρjk + ηjk sign(h))

2M−1∑
�=0

(−1)�h−�
(
α

�

)∫
R2\Dh

(a2t2 − a1t1)
�
ψ(t1)ψ(t2)dt1dt2.

Now,

|h|2M−α|T ′
1| ≤ c∨

2M−1∑
�=0

∣∣∣∣(α�
)∣∣∣∣ ∫

R2\Dh

22M−� (a2t2 − a1t1)
2M |ψ(t1)||ψ(t2)|dt1dt2.

Since R
2 \ Dh → 0 as |h| → +∞, Assumption [C2(2M)] and the dominated convergence theorem may be

combined to prove that |h|2M−αT ′
1 → 0 as |h| → +∞. The term T ′

2 is defined as

T ′
2 := |h|α−2M (ρjk + ηjk sign(h))

(
α

2M

)∫
Dh

(a2t2 − a1t1)
2M

ψ(t1)ψ(t2)dt1dt2.

As previously we obtain

|h|2M−αT ′
2

ρjk + ηjk sign(h)
→

(
α

2M

)∫
R2

(a2t2 − a1t1)
2M

ψ(t1)ψ(t2)dt1dt2

=
(
α

2M

)(
2M
M

)
(a1a2)M

∣∣∣∣∫ tMψ(t)dt
∣∣∣∣2 =

(
α

2M

)
κ(ψ,M, a1, a2).

Since T = T1 +T2 = T ′
1 +T ′

2 +T ′
3 +T2, the proof will be completed if we manage to prove that |h|2M−αT ′

3 → 0.
Let us write

|h|2M−αT ′
3 = h2M (ρjk + ηjk sign(h))

∫
Dh

∑
�≥2M+1

(−1)�
(
α

�

)(
a2t2 − a1t1

h

)�
ψ(t1)ψ(t2)dt1dt2

=
ρjk + ηjk sign(h)

h

×
∫
Dh

(a2t2 − a1t1)2M+1

⎛⎝∑
�≥0

(−1)�+1

(
α

�+ 2M + 1

)(
a2t2 − a1t1

h

)�⎞⎠ ψ(t1)ψ(t2)dt1dt2.
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The binomial coefficient appearing in the last equation satisfies, with �′ = �+ 2M + 1∣∣∣(α
�′

)∣∣∣ =

∣∣α(α− 1) · · · (α − �′ + 1)
∣∣

�′!

≤ 2(2 − α) · · · (�′ − 1 − α)
�′!

since α ≤ 2

≤ 2(�′ − 1)!
�′!

=
2
�′

≤ 2
�
·

Recall that in Dh we have
∣∣a2t2 − a1t1

∣∣/|h| ≤ 1/2. From (A.1), the series in the previous integral then satisfies

∣∣∣∑
�≥0

(
α

�+ 2M + 1

)(
a2t2 − a1t1

h

)� ∣∣∣ ≤ ∣∣∣( α

2M + 1

)∣∣∣ +
∑
�≥1

∣∣∣∣( α

�+ 2M + 1

)∣∣∣∣ ∣∣∣∣a2t2 − a1t1
h

∣∣∣∣�
≤ 2

2M + 1
+

∑
�≥1

2
�

2−�

=
2

2M + 1
+ 2 log(2) =: CM .

Thus we obtain

|h|2M−α∣∣T ′
3

∣∣ ≤ CMc
∨

|h|
∫

R2

∣∣a2t2 − a1t1
∣∣2M+1|ψ(t1)||ψ(t2)|dt1dt2.

Since by Assumption [C2(2M+1)], t2M+1ψ(t) ∈ L1, we have |h|2M−α∣∣T ′
3

∣∣ = O(|h|−1), whence the result.

Case 2. Hj +Hk = 1.
We assume here that ηjk �= 0. We take the same notation as previously. We first note that, under [C1], the

term T can be rewritten as

T =
∫

R2
ρjk|a2t2 − a1t1 − h| + ηjk(a2t2 − a1t1 − h) log

∣∣∣∣1 − a2t2 − a1t1
h

∣∣∣∣ψ(t1)ψ(t2)dt1dt2.

We decompose T in T1 + T2 (as done in case 1). The proof that |h|2M−1T2 → 0 as |h| → +∞ follows similar
arguments as in the case 1 and is therefore omitted. Now, the term T1 can be rewritten as

T1 = ρjk|h|
∫
Dh

(
1 − a2t2 − a1t1

h

)
ψ(t1)ψ(t2)dt1dt2

−ηjkh
∫
Dh

(
1 − a2t2 − a1t1

h

)
log

(
1 − a2t2 − a1t1

h

)
ψ(t1)ψ(t2)dt1dt2.

Denote by T̃1 and T̃2 these two terms. Assumption [C1] leads to

T̃1 = −ρjk|h|
∫

R2\Dh

(
1 − a2t2 − a1t1

h

)
ψ(t1)ψ(t2)dt1dt2

= −ρjk
∫

R2\Dh

|a2t2 − a1t1|
∣∣∣∣1 − h

a2t2 − a1t1

∣∣∣∣dt1dt2.
Then, we assert that

|h|2M−1|T̃1| ≤ 22M−13|ρjk|
∫

R2\Dh

(
a2t2 − a1t1

)2M

|ψ(t1)||ψ(t2)|dt1dt2 → 0
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as |h| → +∞. For the term T̃2, we may use the series expansion of log(1 + x) (for |x| < 1). We omit the details
and leave the reader to verify that as |h| → +∞

T̃2 ∼ ηjkh

∫
R2

(
1 − a2t2 − a1t1

h

)(
−1

2M − 1

(
a2t2 − a1t1

h

)2M−1

× −1
2M

(
a2t2 − a1t1

h

)2M
)
ψ(t1)ψ(t2)dt1dt2

∼ −h1−2M × ηjk
2M(2M − 1)

(
2M
M

)
(a1a2)M

∣∣∣∣∫ tMψ(t)dt
∣∣∣∣2 .

Hence, T ∼ |h|1−2M ×
(
− ηjk×sign(h)

2M(2M−1)

)
κ(ψ,M, a1, a2).

In this proof, Fubini’s theorem and interchanges of integrals and (in)finite sums are widely used. All of these
are justified by the absolute convergence of the different series related to the expansions of (1+x)α or log(1+x)
for |x| < 1 and Assumption [C2(2M+1)]. �

A.2. Proof of Theorem 3.3

Proof. (i) We recall that under [C1] and [C2(2)], equation (5) holds, that is E[dja1,b1
dka2,b2

] = −σjσk

2 T with
T :=

∫
R
wjk(v)Γψ(v)dv. Furthermore, note that the Fourier transforms of ψa,b and Γψ(v) exist and are equal

respectively to
√
aψ̂(aω)e−iωb and to

q(ω) := Γ̂ψ(ω) =
∫

R

Γψ(v)e−iωvdv =
√
a1a2ψ̂(a1ω)ψ̂(a2ω)eiωh. (A.3)

Now, let us split the proof into two cases.

Case 1. α := Hj +Hk �= 1.

When j = k, at this step, Kato and Masry [16] have used the representation of |v|α obtained by von Bahr
and Esseen [22]. We have obtained a similar representation for the function sign(v)|v|α for α ∈ (0, 2) \ {1} (see
Eqs. (A.5) and (A.6) in Lem. A.1). Let gα : R → R be the function which equals zero when α ∈ (0, 1) and
which is the identity function when α ∈ (1, 2). We have by Fubini’s theorem and under Assumption [C3] (with
M ≥ 2).

T =
∫

R

(ρjk − ηjk sign(v))|v|αΓψ(v)dv

=
Γ (α+ 1)

π

∫
R

|ω|−α−1

∫
R

(
ρjk sin(πα/2)(1 − cos(ωv)) − ηjk cos(πα/2)sign(ω)(sin(ωv) − gα(ωv))

)
×Γψ(v) dv dω

=
Γ (α+ 1)

π

∫
R

|ω|−α−1

(
−ρjk sin(πα/2)

(
q(−ω) + q(ω)

2

)
− ηjk cos(πα/2)sign(ω)

(
q(−ω) − q(ω)

2i

))
dω

= −Γ (α+ 1)
π

∫
R

|ω|−α−1

(
ρjk sin(πα/2) + i ηjk cos(πα/2)sign(ω)

)
q(ω)dω

= −Γ (α+ 1)
π

∫
R

|ω|−α−1ζjk(ω)q(ω)dω.

Note that the condition M ≥ 2 is required for α > 1. For α < 1, M ≥ 1 is a sufficient condition. These conditions
allow us to show that the contributions

∫
Γψ(v)dv and

∫
R
gα(ωv)Γψ(v)dv are equal to zero. Now, using (A.3)
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we obtain

E
[
dja1,b1

dka2,b2

]
=

√
a1a2 σjσkΓ (α+ 1) × 1

2π

∫
R

|ω|−α−1ζjk(ω)ψ̂(a1ω)ψ̂(a2ω)︸ ︷︷ ︸
=:P (ω)

eiωhdω.

By using Bochner’s theorem, the proof will be done, if one proves that the function P (·) is integrable. Let us
prove this last assertion. Under [C2(M)], tkψ(t) ∈ L1 for k = 0, . . . ,M . Therefore, ψ̂ is a M times continuous
and differentiable function. Using a Taylor expansion

ψ̂(ω) =
M−1∑
k=0

ωkψ̂(k)(ω) + ωM ψ̂(M)(ω̃) = ωM ψ̂(M)(ω̃), with ω̃ ∈ [0 ∧ ω, 0 ∨ ω],

under [C2(M)]. And since ψ(M) is continuous at zero, ψ̂(ω) ∼ ωM ψ̂(M)(0) as ω → 0. Then as ω → 0:

P (ω) ∼ ζjk(ω)|ω|2M−1−α(a1a2)M |ψ̂(M)(0)|2. (A.4)

As a consequence, for M ≥ 2, P is continuous at zero and limω→0± P (ω) = 0. Therefore for ε > 0, P is integrable
on the interval [−ε, ε] as a continuous function on this interval. Finally (with c∨ := |ρjk| + |ηkj |),

∫
|ω|≥ε

|P (ω)| ≤ c∨
(
aα1

∫
|ω|≥a1ε

|ψ̂(ω)|2
|ω|α+1

dω

)1/2(
aα2

∫
|ω|≥a2ε

|ψ̂(ω)|2
|ω|α+1

dω

)1/2

≤ c∨

εα

∫
R

|ψ̂(ω)|2
|ω| dω < +∞,

under [C1]. Hence, P (·) ∈ L1 and Bochner’s theorem may be applied.

Case 2. Hj +Hk = 1.
We start with the representation of v log |v| given by (A.8).

wjk(v) = ρjk|v| + ηjkv log |v| = lim
α→1−

ρjk|v|α + ηjkv log |v|

= lim
α→1−

1
2π

∫
R

2ρjk(1 − cos(ωv)) − πηjksign(ω) sin(ωv)
|ω|α+1

dω.

Now, we derive the computation of the term T :=
∫

R
wjk(v)Γψ(−v)dv, similarly as the previous case. Using

dominated convergence theorem and Fubini’s theorem,

T =
1
2π

∫
R

(
lim
α→1−

∫
R

2ρjk(1 − cos(ωv)) − πηjksign(ω) sin(ωv)
|ω|α+1

dω
)
Γψ(v)dv

=
1
2π

lim
α→1−

∫
R

(∫
R

2ρjk(1 − cos(ωv)) − πηjksign(ω) sin(ωv)
|ω|α+1

Γψ(v)dv
)

dω

=
1
2π

lim
α→1−

∫
R

(
−2ρjk

(
q(−ω) + q(ω)

2

)
− πηjksign(ω)

(
q(−ω) − q(ω)

2i

))
|ω|−α−1dω

= − 1
2π

lim
α→1−

∫
R

2ρjk + iπηjksign(ω)
|ω|α+1

q(ω)dω

= − 1
2π

lim
α→1−

∫
R

|ω|−α−1 (2ρjk + iπηjksign(ω)) ψ̂(a1ω)ψ̂(a2ω)eiωhdω.
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From (A.4), |ω|−α−1ψ̂(a1ω)ψ̂(a2ω) is an integrable function for all α ∈ (0, 2). Therefore, the integral and the
limit may be interchanged. Therefore, we obtain

E[dja1,b+h
dka2,b

] =
√
a1a2σjσk × 1

2π

∫
R

ρjk + iπ2 ηjksign(ω)
|ω|2 ψ̂(a1ω)ψ̂(a2ω)eiωhdω,

and Bochner’s theorem can be applied.
(ii) is derived from (A.4). �

A.3. Bahr and Essen type representations for the functions sign(v)|v|α, vα
+ and vα

−
In 1965, von Bahr and Essen have obtained the following representation theorem for |v|α for α ∈ (0, 2):

|v|α =
Γ (α+ 1) sin(πα/2)

π

∫
R

1 − cos(ωv)
|ω|α+1

dω. (A.5)

The following lemma provides a similar representation for sign(v)|v|α, vα+ = vα1R+(v) and vα− = (−v)α1R−(v).

Lemma A.1. Let α ∈ (0, 2) \ {1} and let gα : R → R the function which equals zero when α ∈ (0, 1) and which
is the identity function when α ∈ (1, 2), then we have

sign(v)|v|α =
Γ (α+ 1) cos(πα/2)

π

∫
R

sign(ω) (sin(ωv) − gα(ωv))
|ω|α+1

dω, (A.6)

vα+ =
Γ (α+ 1)

2π

∫
R

sin
(
πα2

)
(1 − cos(ωv)) + cos

(
πα2

)
sign(ω) (sin(ωv) − gα(ωv))

|ω|α+1
dω,

vα− =
Γ (α+ 1)

2π

∫
R

sin
(
πα2

)
(1 − cos(ωv)) − cos

(
πα2

)
sign(ω) (sin(ωv) − g(ωv))

|ω|α+1
dω.

The representations of vα+ and vα− are obtained from (A.5) and (A.6) noticing that

vα+ =
1
2

(|v|α + sign(v)|v|α) and vα− =
1
2

(|v|α − sign(v)|v|α) .

Proof. Let α ∈ (0, 1), then from (A.5) and properties of the function Γ

1
α+ 1

|v|α+1 =
Γ (α+ 1)

π
cos(πα/2)

∫
R

1 − cos(ωv)
|ω|α+2

dω.

Since
∫

R
|ω|−α−1| sin(ωv)| < +∞ for α ∈ (0, 1), we can differentiate this integral with respect to v to obtain

sign(v)|v|α =
Γ (α+ 1)

π
cos(πα/2)

∫
R

sign(ω) sin(ωv)
|ω|α+1

dω. (A.7)

When α ∈ (1, 2), then from (A.5) and properties of the function Γ

α|v|α−1 =
Γ (α+ 1)

π
(− cos(πα/2))

∫
R

1 − cos(ωv)
|ω|α dω.

Since
∫

R
|ω|−α−1| sin(ωv) − ωv|dω < +∞ for α ∈ (1, 2), we can take the primitive of the last equation to get

sign(v)|v|α =
Γ (α+ 1)

π
cos(πα/2)

∫
R

sin(ωv)/ω − v

|ω|α dω

=
Γ (α+ 1)

π
cos(πα/2)

∫
R

sign(ω)(sin(ωv) − ωv)
|ω|α+1

dω,

which ends the proof. �
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Let α ∈ (0, 1), then by differentiating (A.7) with respect to α and taking the limit as α→ 1−, we may obtain

sign(v)|v| log |v| = v log |v| = lim
α→1−

−1
2

∫
R

sign(ω) sin(ωv)
|ω|α+1

dω. (A.8)
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