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MOMENT MEASURES OF HEAVY-TAILED RENEWAL POINT
PROCESSES: ASYMPTOTICS AND APPLICATIONS

CLEMENT DOMBRY! AND INGEMAR KAJ?

Abstract. We study higher-order moment measures of heavy-tailed renewal models, including a re-
newal point process with heavy-tailed inter-renewal distribution and its continuous analog, the occupa-
tion measure of a heavy-tailed Lévy subordinator. Our results reveal that the asymptotic structure of
such moment measures are given by explicit power-law density functions. The same power-law densities
appear naturally as cumulant measures of certain Poisson and Gaussian stochastic integrals. This cor-
respondence provides new and extended results regarding the asymptotic fluctuations of heavy-tailed
sources under aggregation, and clarifies existing links between renewal models and fractional random
processes.
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1. INTRODUCTION AND MAIN RESULTS

The topic of study in this work is heavy-tailed renewal models, starting from a renewal point process on
the line with an inter-renewal time distribution which is heavy-tailed at infinity. The occupation measure of
a Lévy subordinator with heavy-tailed Lévy measure provides a continuous analog. Our analysis shows that
the discrete and the continuous models are closely related with respect to the structure of their higher-order
moment measures. We show that the moment measures in both cases have the same asymptotic structure and
that the limit measures are given by specific density functions with a power-law behavior governed by the
inter-renewal tail index. As customary, our approach to the discrete renewal model begins with properties of
factorial measures.

The power-law density functions which are recognized to determine the asymptotic behavior of moments
in the renewal models also appear naturally as cumulant measures of certain Poisson and Gaussian stochastic
integrals. This correspondence helps us to unify and extend results on asymptotic fluctuations of heavy-tailed
sources under aggregation, and to clarify the role in this context of fractional Poisson motion [2,5] and of
fractional Brownian motion as rescaling limit processes.

Hence we believe that the present paper sheds some new light on the rich literature on traffic models and
aggregation of heavy-tailed sources. Popular models include the infinite source Poisson model [10, 13], the
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aggregation of ON/OFF sources [5,13,19], renewal processes [7] or renewal/reward processes [12,14,15]. The
interested reader should also refer to the monography on heavy-tailed phenomena [17].

We begin this first section of the paper by introducing a renewal point process on the positive half line
with heavy-tailed inter-renewal distribution at infinity. Then we introduce the relevant families of power-law
density functions, defined on [0, 00)* for each k& > 1, and recognize the role of these families of functions within
two separate frameworks. Firstly they arise as asymptotic limits of the higher-order moment measures for the
renewal model. Secondly, the same families of power-law measures express the cumulants for a class of Poisson
stochastic integrals with power-law intensity measure. Closely related are Gaussian stochastic integrals defined
by a power-law control measure. Based on these links we establish a limit theorem for renewal point processes
under aggregation and scaling, and show that the asymptotic fluctuations are given by Poisson or Gaussian
stochastic integrals. These are natural extensions of fractional Poisson motion and fractional Brownian motion,
which explains and extends earlier results on scaling limits of heavy-tailed renewal counting processes.

All results relating to higher order moment measures of the renewal model have been collected in Section 2. We
investigate systematically the asymptotic behavior of factorial moment measures, moment measures and centered
moment measures, leading up to identifying the limiting centered moments in terms of power-law density
functions. In Section 3 we apply these findings in order to present the proof of our main result Theorem 1.4,
which gives the fluctuation limits for renewal systems under simultaneous aggregation and time scaling.

In Section 4 these results are extended to a continuous version of the discrete renewal model based on
the occupation measure of a heavy-tailed Lévy subordinator. We establish that the same power-law density
measures as for the discrete renewal model provide the higher-order moment asymptotics and the same Poisson
and Gaussian integrals yield the scaling limits under aggregation.

1.1. A discrete renewal model

Consider the renewal sequence (S, )n>0 generated by a sequence of independent non-negative random variables
(Xk)k>1, te. Sy =Sy + Z?:l X; for n > 1. The inter-renewal times (X)x>1 are identically distributed with
probability measure F and independent of Sy. We write 2 € R™ — F ([0,2]) for the distribution function and
assume that the inter-renewal distribution has finite mean u = fooo F([z,00))dz > 0. The initial distribution,
i.e. the distribution of Sy, is denoted by m. We will use the notation P, [, for the probability measure and
expectation of the renewal model with initial distribution 7. Two main cases appear naturally: the pure renewal
case where Sy = 0, i.e. m = dg, and the stationary renewal case where Sy follows the equilibrium distribution

1 x
Teq(T) = ;/0 F([s,00))ds, x>0. (1.1)

Probability and expectation are denoted by Py and Eq in the pure case 7 = §y and by Peq and E.q in the
stationary case m = meq.
Recall that a function ¢ : (0, 00) — (0, 00) is said to be slowly varying at infinity if for all t > 0, £(tx)/¢(x) — 1,
x — 00. Our basic assumption is that the inter-renewal distribution F', in addition to finite expected value p,
has a regularly varying tail with exponent 1+ 3, 8 € (0, 1), i.e. there exists a slowly varying function ¢ such
that
F([z,00)) ~ 2~ () as z — oco. (1.2)

Thus, Xk, k > 1, have infinite variance. To study the renewal model (S,,) we will use general ideas of renewal
point processes and moment measures, see [4] for a full account of such methods.

The renewal point process { = > - ds, on [0,400) is locally finite under P.. For k > 1, the k-fold tensorial
product of ¢ with itself is the random point measure on [0, +00)* given by

£®F = Z O(Sny sernsSny )

ni,...,nE>0
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For k > 1, we consider [0,400)* endowed with the Borel o-algebra By. The kth moment measure M rof s
the measure on [0, +00)* defined by

M (A) = B¢ (A)], A€ By
We also define a centered version of the kth moment measure by
M7 (A) = Eq[(¢€ = \/pw)®¥(A)], A € By bounded,

where A1 is Lebesgue measure on the real line. In particular, for k£ =1,

M7 (A) = Eo[g(A)], qu(A)=%/\1(A)7 M?(A)=Eo[§(A)]—%>\1(A), Myi(4) = 0.

For the special case of cylinder sets in [0, +00)" we have

k
f®k(i§Ai) = HE(Az‘), Ay, .. Ay € B

i=1

k
For closed intervals A; = [0, ;], this is £¢¥%( ® [0, 2;]) = Hle £([0, 2;]), which evaluates tensorial products in
i=1

terms of the renewal counting process
£([0,2]) = Card{n > 0; S, <=z}, x>0. (1.3)

Similarly, our detailed analysis of higher order moment measures will reveal representations in terms of first
order moments, that is the familiar renewal measures

o0 )
U:ZF*H, U+50:ZF*H7
n=1

n=0

where F*" is the n-fold convolution of F and F*° = §y is Dirac mass at 0. Here, z +— U([0, z]) is the associated
renewal function.

1.2. A collection of measures

To prepare for our analysis of renewal moment measures we introduce four families of measures defined on
[0, +00)*, k > 1. They are parameterized by the tail index 3, 0 < 3 < 1 introduced in (1.2) and defined by
their densities with respect to the Lebesgue measure A\, A\ip(dz) = dz, = (x1,...,2). The measures will be
denoted P and ]313 , k > 1, with the tilde-mark indicating a centered measure and the upper index 7 an initial
distribution. Whenever it is suitable to distinguish the two choices of initial distributions we use upper index 0
for the case m = Jp and eq for the equilibrium distribution m = meq in (1.1). For k = 1, define

dpy

dpy dpPy
dA;

P dpee
A\, a

(x) = |27, o) =) =o0.

(z) = —|z|™® and

We use here the convention 077 = oo so that the densities may be infinite on a set of zero Lebesgue measure.
For k > 2, let 2(1y) < ... < () be the order statistic of the vector x = (z1,...,2x) € [0, +00)* and put

dp? PR . dP? _ ~
ﬁ(x) = |z ™7 + ; 2y — -], ﬁ(@ =z — 2y = |lzw|? (1.4)
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and
dPZq
dA

- dpsd
(@) = |zw — -1l 7, d>\’; () = |z — x| 7. (1.5)
=2
These measures will play a key role in this work as they provide non-obvious links between the renewal models
on one hand and Poisson integrals on the other. It is worth noting that they enjoy interesting scaling properties:
for all @ > 0 and A € By,
P{(aA) = a" PP (A), F[(ad) =" "P{(4),

valid for either initial condition dy or meq. Also, in the stationary case, the limit measures are invariant by
translation: for all h > 0 and A € B

Pi(A+h) = PiA(A),  Pei(A+h) = PLA(A).
In the pure case, for all bounded A € By,

, Jim PY(A+h) = P(A), Jim PY(A+ h) = PSY(A).

1.3. Scaling limits for moment measures

We are interested in the asymptotic behavior of the moment measures under rescaling of the space [0, +00).
For a > 0 and k > 1, let s, = s* denote the component wise defined scaling map = + z/a from [0, +00)* onto
itself. We define the rescaled point process s, ! by

€51 (A) =€(ad), A€ By,
and notice &s; 1 = > =093, /a- The kth moment measure M,?sgl and the kth centered moment measure Mgsgl
of £st, are given by
MTs;H(A) = MT(ad), Mfs,*(A) = M (ad), A€ B.

The asymptotic behavior of the rescaled moment measures as a — oo will be given in terms of weak convergence
as follows. If m is a signed Radon measure and f a bounded and compactly supported function both defined
on [0,00)" we write m[f] = [ f dm, for the corresponding integral. Let

ok f

Fr =1 f:]0,400)* = R; compact support , ————
Ox1...0xy

exists and is continuous}, k>1. (1.6)

The technical reason for this choice of test functions is the use of an integration by parts formula (see Lem. 2.1
below) and the fact that f* € Fj, when f € Fy. If (m,,)n,>1 and m are signed Radon measures on [0, +00)¥,

we say that (my,),>1 Fr-converges to m, denoted my, Tk, m, if and only if
mn[f] = m[f], n—oo, fE€F (1.7)

Our main result for the discrete renewal model is the following limit theorem, which identifies the asymptotic
form of k-moment measures expressed in terms of the power law measures P and P .

Theorem 1.1. Suppose that assumption (1.2) is satisfied. For m =g or m = Teq and k > 1,

M,?s;l —(a/w)* A 7 1 ]Tf,?s‘l Fi (—1)k ~
PTr a s
Fa) ek M maiey gt

as a — +00.
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1.4. A class of Poisson and Gaussian integrals

We relate the measures ]Skeq and ]B,S introduced in (1.4) to the cumulants of Poisson and Gaussian integrals.
Recall that we have fixed a parameter 3 € (0, 1) and let N(dx, du) be a Poisson random measure on R x [0, +00)
with intensity measure

n(dz,du) = dz (6 + 1)u " "2du

and let N(dz,du) = N(dz,du) — n(dz,du) denote the corresponding compensated Poisson measure. Once
again, we use the convention 07”2 = oo and the intensity measure density may be infinite on a set with zero
Lebesgue measure. Similarly, let N (dz, du) be the Poisson random measure on [0, +00) x [0, +00) with intensity
n4(dz, du) = 1;>0n(dz, du) and put Ny =Ny —ng.

It is convenient for our purpose to view each Poisson point (z,u) as an interval [z, x + u] on the real line and
the Poisson measure N(dx,du) as a collection of overlapping sessions formed by these intervals. With this in
mind we will restrict attention to integrands obtained as the weighted occupation times

ol u) = /[0 s 0)

For f:[0,+00) — R and k > 1, we define the tensor product f®* : [0, +00)* — R by

k

FER @, ) =[] )

i=1

Proposition 1.2. For any measurable and bounded function f : [0,4+00) — R with compact support, the
Poisson integrals

JE(f] = / / 1o o) (1) F () dy N (dz, du),
Rx[0,400) /[0,400)

906 = / / Lieaag (4)f () dy N (e, du),
[0,+00) % [0,4+00) +/ [0,+00)

are well defined and have finite cumulants of any order given by
1 1
p p

and C1(JG'[f]) = C1(J[f]) = 0. Furthermore, the distributions of J5*[f] and J§[f] are uniquely determined by
their sequence of cumulants.

Cr(JfD) = = PR, Cu(JSIAD) = = PRIFY],  k>2, (1.8)

We now define the Gaussian counterpart of these Poisson integrals, see e.g. [18] for background and details.
Let W (dx,du) be a Gaussian random measure on R x [0, +00) with control measure n(dx,du). Similarly, let
W, (dz, du) be a Gaussian random measure on [0, +00) X [0, +00) with control measure n (dx, du).

Proposition 1.3. For any measurable and bounded function f : [0,4+00) — R with compact support, the
Gaussian integrals

Gealf] = / / o) (8) £ () dy W (dz, du),
Rx[0,400) /[0,400)

QY1) = / / Lo o) (8) £ () dy W (e, du),
[0,+00) % [0,400) + [0,+00)

are well defined and have finite cumulants of any order given by

CoGI) = 3, CalGBIAD) = 5P (1.9)
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and for k=1 or k >3,
Ce(GFfN) =0,  Cu(GB[f]) =0.

1.5. Scaling limits for superposition of sources

Let &%, 4 > 1 be i.i.d. copies of the random measure £. We will consider

ga,m — ! Z(g Mﬂ— _1)

obtained by aggregation of m centered copies of § under spatial scaling by s,, with a suitable normalization
sequence b(a,m), and study the asymptotic behavior of &, ,, as a — oo and m — oo. To deal with the
simultaneous limit, we consider a = a,, — +00 as m — +oc.

The two limit regimes of interest to us are known in some applications as regimes of intermediate connection
rate and of fast connection rate, respectively, and are hence labeled in the following (ICR) and (FCR). The
intermediate scaling condition is given by

1
maga) —puc’, 0<e<oo, (ICR)
whereas the fast scaling condition entails
ml(a)
i “+00. (FCR)
We consider the random fields {€q.m[f] : f € F1} and prove convergence of the finite dimensional distributions,

which we denote by F4 For f € Fi, we define f. by f.(x) = cf(cx).
Theorem 1.4.

(1) Consider the rescaling assumption (ICR) with normalization b(a, m) = a.

In the pure case ™ = dg,
fidi

ga,m[f] __Jﬂ[fc] f€f1;

in the stationary case ™ = Teq,

Eamlf] L4 ——Jeqw fer.

(2) Under the scaling assumption (FCR) with normalization b(a, m) = (ma®> ?0(a))'/?,
in the pure case m = dg
fidi

Eamlf] =5 GYIf], f € Fi;

in the stationary case ™ = Teq,
fidi

Eamlf] 75 GHIf), feE R

Remark 1.5. The above theorem is related to a limit theorem for renewal counting processes which is the
main result in [7]. Indeed, considering the parameterized class of functions f; = 194, t > 0, we have s =
£([0, at]). Applied to the equilibrium renewal model for which Ec,&%([0,¢])) = t/pu, this yields

m

(€'([0, at]) — at/p).

gm[f} - b alm

i=1
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While 1j9.4 ¢ F1 the Poisson integrals Jg[1(g 4] and J§[1(g ] are still well-defined. Put Jg(t) = Jg*[1jp,] and
G (t) = G319, t > 0, that is

t
JE(t) = / / oo () dy N (e, dus),
Rx[0,4+00) JO
and .
G(t) = / / Lo ot (y) dy W (da, du), t > 0.
Rx[0,+00) JO

According to [7], under assumption (ICR),

whereas under assumption (FCR),

W ;(fi([o,at}) —at/p) "B Gg), t>o0.

By construction, Geﬁq(t), t > 0, is a Gaussian mean zero process with stationary increments and variance given

by
2

t
1
g otu (¥ dy> n(dz, du) = ——— 275,
Joonny () trmtna) i = 5y
The normalized processes By (t) = /(1 — B)G}'(t) and Py (t) = \/B(1 — B)J5"(t) have stationary increments

and covariance function
1
Cov(Bg(t), Bu(s)) = Cov(Py(t), Pu(s)) = §(t2H + s |t — s2H).
The relation
E|By (t) — Bu(s)|* = E|Pu(t) — Pu(s)|* = |t — s[*~”

with § < 1 together with the Kolmogorov-Centsov criterion implies that there exists a modification of these
processes with continuous sample paths. Thus, By is a fractional Brownian motion with Hurst index H =
1—03/2 € (1/2,1). By analogy, the mean zero non-Gaussian process Py has been called fractional Poisson
motion, cf. [2,5]. By a refined analysis of higher-order moments it can be shown moreover that Py and By
share the same Holder-regularity: in both cases the paths are 4-Holder continuous of any order v < H, [6].

2. ASYMPTOTICS OF MOMENT MEASURES
This section is devoted to the proof of Theorem 1.1. We begin with some preliminaries.

2.1. Preliminaries

We give a simple criterion for the convergence Tr, of signed Radon measures defined in (1.7). For « =
(z1,...,21) € [0,400)*, we denote [0,7] = [0,21] x ... x [0, xx].

Lemma 2.1. Let (my)n>1 and m be signed Radon measures. Suppose that the following conditions holds: for
all z € [0, +00),

(i) mn([0,2z]) = m([0,z]) as n — oco;
(1) SUPye(0,2] SUPR>n, [Mn([0,u])| < 0o for some ng > 1.

Fr
Then, m,, —> m as n — .
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Proof. The proof is based on the following standard integration by part formula: for any signed Radon measure
m and f € Fy, with support included in [0, x],
orf

dz1... 075 0, u])du.
[0,2] 8-Tl C. 8'/Ek (’Lb)m([ UD u

_ m = (—1)
mifl= [ fdm=

Using this, we have, as n — oo,

k
malf) = 0 [ om0,
3
(1) OF  (wym((0, u))du = m[f).

[0,2] 8.%1 [N axk

The convergence is ensured by Lebesgue’s dominated convergence theorem: condition (i) entails the pointwise
convergence and (ii) the domination condition. O

The following simple properties will be useful. A mapping h : [0, +00)" — [0, +00)! is said to be proper if any
compact K C [0, +00)! has a compact preimage h™1(K) C [0, +00)".
Lemma 2.2. Suppose that (my)n>1 and m are signed Radon measure on [0,+00)" such that m,, I m as
n — oco. Then
(1) for all smooth and proper functions h : [0, +00)" — [0, +00)!, m,h~? Tt b asn — 00;

(2) foralll >1, mn®)\l}ﬁ5m®)\l as n — oo;

Proof. For the first point, it is enough to remark that if f € F; and h is smooth and proper, then fh € F,. so
that
(mah™)f] = malfh] — mifh] = (mh~)(f] as n— oo.

For the second point, let f € F,1; and define the function f by

flag,. ... x) = / flae, .. zp, oy, oy @pgg) dapgr - oo dey .
[0,+00)!

It is easy to show that f € F. so that

(mn @ M) = malf] — m[f] = (m@X)[f] asn — . .

2.2. Asymptotics of factorial moment measures

Before considering moment and centered moment measures, we need to consider factorial moment measures
that have a simpler structure. The kth factorial moment measure M[’IZ], k > 1, is defined by

My (4) = B[S 065, s (A)] - A€ B, (2.1)

where the sum runs over the set of k-tuple’s (nq,...,nk) of pairwise distinct non-negative integers, see [4].
To clarify the structure of factorial moment measures for the renewal point process £, we introduce the
following additional notation. Let 6, : [0, +00)* — [0, +00) be the injective mapping

ek(l‘l,...,l‘k) = (1‘1,1‘1 +1‘2,...,l‘1—|—...—|—.1‘k),

and let X denote the set of permutations of {1,...,k}. A permutation o operates on [0, +00)* by permutation
of the coordinates:

U(l‘l,...,l‘k) = (ma(l),...,xa(k)), (1‘1,...,l‘k) € [0, -|-OO)k
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Lemma 2.3. For any k > 1, the kth factorial moment measure M[’,Z] satisfies
M= X [l ) U D]gcto
oceXy
with U = 07 | F*™.

Proof. By reindexing the terms in the sum (2.1),

M[T’rf] (A) = E” Z Z 6(‘9”0(1)""’S'"a(k))(A)

ol 0<n1 <...<ny

=E, Z Z O(Sn, Sy ) (07 1H(A))

ceX, 0<ni1<...<ny

=> D Pi(S,...,Sn) €0 (A

ceX, 0<ni1<...<nyg

Then, for all o € X, by changing the summation indices according to i1 =n; > 0,4 =no —ny > 1,... i =
ng —ng—1 > 1,

> Pa(Sns o Su) €0 A=Y Y Prl(SnysSns = Snys- o Sny = Sni,) €6, 0T H(A)).

0<n 1 <...<ng 11>012>0,...,i >0

Since the law of (S, ,Sny, — Snys- -+ Sny, — Sne_,) is equal to (7 x F*1) @ F*2 @ ... @ F** with F*0 = §;, we
get

> Pa(SnsSu)€d A =D > [(mx P @ F e (6,0 A)

0<n1<...<ny 112>012>0,...,i>0

= |(m+ 7 * 03y - L O
U U®(k 1) 0k 1 lA
and this proves the desired result. O

We are now in position to consider scaled factorial moment measures. At this stage we recall the basic
assumption (1.2) that the inter-renewal distribution has a regularly varying decay with tail parameter 1+ (3 as
well as the notion of Fj-convergence introduced in (1.7).

Lemma 2.4.

In the pure case when ™ = &g, we have as a — 00,

Mpgsat = (a/W* e 7 1 o

a*B0(a) - ﬂMkJrlPk’ k=1
In the stationary case when T = Teq, as a — 00,
Mygsat = (a/p)* A 1
[k] i P k>1

aB4(a) T Bkt

Proof. Since the measure Ake,;l is absolutely continuous with respect to A\x with density 1y, < . .<,,}, we have

Z )\k0;10'71 = A\s.

oeXy
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By Lemma 2.3,
Mpysat = (a/p)* M 1
[k] — = — (M[T]rg] _ /iik)\k)s,;l
ak=84(a) ak=84(a)
_ 1 ®k—1 _  —k —1_-1_-1
= F ) Z ((7T+7T*U)®U i )\k)ek o sy

oceXy
Using the commutation relations s,0 = os, and s,0; = 0xS,, this implies

Mi sy a/,u VEAR +7xU)® ®(k—1)) ~1_ (a/p)kA
[k]Sa 47U U S, a/i) A\ 1 1

= g . 2.2
ak=B4(a ( aF=Bi(a) )9k o (2.2)

oeXy

The further analysis of (2.2) will be carried out separately for the pure and the stationary cases.
We first consider the pure case. For k = 1, we use the classical result for the renewal function U([0,x]) =
Eo&([0, 2]) with heavy-tailed inter-renewal distribution that satisfies assumption (1.2) (see Thm. 4 in [20]):

x (z)zt=P
Uulo,z]) - —~—=——— asxz — o0. 2.3
(0.2~ %~ o (23)
For k =1 we have M = 0o+ U and, for z > 0, PP([0,z]) = ﬁxl B This entails condition (i) of Lemma 2.1:
form>0andasa—>oo

Mfysat —a/ph U([0,az]) +1—ax/ xi=h 1
(1] _ K _
( a'=fl(a) ) 0= a'=Ft(a) p2B(1—p)  Bp? P02

Condition (ii) of Lemma 2.1 is the property that there exists ag > 0 such that

oy oy Ul0001]) —
u€[0,z] a>ao a’liﬁg(a’)

< 0. (2.4)

The proof of (2.4) relies on the theory of regularly varying functions and is more technical; it is postponed to
Appendix A.
Turning to the case k > 2 and considering (2.2) with © = dy, we will prove the Fi-convergence of measures

((60 +U) @ UP*=D) s71 — (a/w)F N 7,
ak=B(a) - ﬁMk+1

where (dQ9/d\g)(z) = Zle x;ﬁ. To this end, we note that for x = (x1,...,2x) € [0, +00)*,

= 5() (£

Qk7 as a — o0, (25)

and, using (2.3),

b
(60 + V) © UPE)((0,aa]) = (1 + U ([0, aza)) [[U(0,a) (2.6)
_ ar (axi)(axz)l p oll(a)al=b
—121( et L oft(a)a )
Cl T E(a)a_ T A o(l(a)a™"?
/)" (H )( e PRARRCC >>
ak k ﬁf( ) s
:F/\k([o, ) G Qn([0,2]) + o(£(a)a™ "),
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which proves condition (i) of Lemma 2.1. Equations (2.4) and (2.6) together imply condition (ii), i.e.,

(G + 1) 9 U ) (0. ax) — (/i) Ae(05]) _
uZ[OI,)z]aZ(i akfﬁﬁ(a) <

and hence the Fj-convergence (2.5) follows from Lemma 2.1. The mapping o6 is smooth and proper and
so (2.2) and (2.5) together with Lemma 2.2 entail

M[(;c]sgl - (a//u)k/\k T, 1 Z 0915
1) gt 2 Qe

oeXy,

It remains to verify that the measure ) ., @V, o1 equals P. For this we observe that Q%0; ' is absolutely
continuous with respect to A\;, with density

Q) :
T\k(y): |yl\_ﬁ+Z|yz’—yz’—1|_ﬁ Lyi<<mny

=2

Hence the measure > .y Qg@;lg*l has the density function

k k
_ _ _ _ dpPo
> (%(1) P+ Wo) = Yoti-1)| ﬁ) Lyoiy<oguom} = W) 7+ D Iy — v—n* = ﬁ(y)

ocXy =2 =2

Taking into account the property (2.4) of regularly varying functions in Appendix A, this completes the proof
of the lemma for the pure case.

The proof in the stationary case is quite similar and is only given in brief. For k =1,
M[el? = Treq + Teq * U = A1/,
hence
M[eﬁ —A\i/p=Pt=0.
For k > 2, equation (2.2) yields

Midst = (a/m)*xe (M @ USED)st — (a/w) M o1 -
ak*ﬁﬁ(a) —UEE akfﬁg(a) r 0 -

Similarly as in (2.5), we then prove

(M_l/\l X U®(k_1))5;1 - (a//f")k)‘k’ ﬂ} 1 eq
() G

with (dQ}/dAy)(z) = S % 277, The desired result now follows from the fact that

=271

> gt - gt -
oeXy,
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2.3. Asymptotics of moment measures

Moment measures can be expressed in terms of factorial moment measures. Trivially, for £k = 1, M] = M, [7{].
For k = 2 and Al,AQ € Bi:

MJ (A x Ag) =E, Z (8, ,8n,) (A1 X A2)

ni,n2>0

=K, Z (S, 1Sny) (A1 X A2) | + Er 25(5,,“5@(141 X As)
_nl;ﬁng nZO

Define iy3 : [0, +00) — [0, +00)? given by i12(x) = (x,x). We have i}, (A; x Az) = A; N Ag so that
M3 = My + Mfjjiyy
When k = 3, a similar computation yields

Mgr(Al x Ag X Ag,) (A1 x Ag % A3) + M[Q]((Al n AQ) X A3) + M ((Al N Ag,) X AQ)
—|—M ((A2 ﬂAg)XAl)—FM[](Al ﬂAQ ﬂA3)

Define the mappings i12,3(z,v) = (x,2,y), t13.2(x,y) = (,y,2), i231(2r,y) = (y,2,2) and i123(z) = (x, 2, x).
Then,
M7 = My + Myjity s + Mjisgs + Myizg 1 + Mfjitgs.

In the general case k > 1, the combinatorial relation between moment measures and factorial moment measures
can be found in [4], Exercise 5.4.5, page 143. For 1 < j < k, let P, be the set of all partitions of {1,...,k} into j
nonempty subsets. An element 7 = {S1(7),...,5;(7)} € Pji formed by j disjoint subsets labelled in arbitrary
order is called a j-partition. The cardinality of the subset S;(7") is denoted by |S;(7)| so that Zzzl |S:(T)| = k.
For any j-partition 7 € Pjy, the injection iz : [0, +00)) — [0, +00)¥ is defined by iz (21,...,2;) = (Y1,---,Yk)
where y, = z; if p € S;(T). Then

k
ME=>" %" Mz (2.7)
j=1T€EPjp

Proof of Theorem 1.1. Moment measures.
To prove Theorem 1.1 as regards properties of the moment measures M ,S and M, we will show that factorial
moment measures and moment measures share the same asymptotic behavior. More precisely, using (2.7),

MEsg — (a/w*e _ Mpsa . s s e
k—p - k—p k-3
akF=Pl(a) akF=PL(a P a
We have shown in Lemma 2.4 that the factorial moments in the first term on the right hand side Fy-converge to
the desired limit measures. To complete the proof it suffices to verify that the second summation term vanishes

in the limit:
[J ZT 8(1 ! ,Fk
Z Z a—Pl(a) 0. (2:8)
J=1TEPji

We will establish (2.8) for the pure case m = Jp. A straightforward adaptation yields the stationary case. By
Lemma 2.4, for 1 <j < k-1,

M s .
Mysa” by

(a/p)?
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and hence -
Misa” 7
ak=B4(a) '
For T € Pjj, the mapping i7 is smooth and proper and such that s,i7 = i7s,. Hence, Lemma 2.2 (1) implies
0 ,—1.-1
Mt 5a” 7 -
ak=Pl(a) ’
2.4. Asymptotics of centered moment measures

To prove the results in Theorem 1.1 related to centered moment measures we will apply a formula for centered
k-moment measures in terms of m-moment measures of order m < k. First of all, we have M = MT — \1/pu.

Lemma 2.5. For k > 2, consider cylinder sets A = ®f:1Ai, where Ay, ..., Ax € By. For any subset I of
indices, I C {1,...,k}, denote Ay = ®1Ai and Are = @ A;. Then
i€ il

k
AT —r T )‘7" A - Afe
ME ) =3 3 (1 (g - A e,
r=1|I|=r K K
Proof. We compute

k
M (A) =E, [H@(A» — Mi(A) /)

i=1

E.| > (=p (Hﬁ(z@) (HM(Ai)/u)

Ic{1,...,k} icl i¢gl

— Z (_1)k—\I\M‘T;‘ ( s Az’) /\klﬂ(k&jg[ Ai) |

{1k}

which may be written
— k Ao (Age)
Mii(A) = Z Z (‘kaerﬂ(AI)T‘ (2.9)
r=0|I|=r
Observe that
k k 3
> Y v =) —a-nt-o
=0 |I|=r r=0

This implies

k k
oA (AL A (Ae k(A .
S S (o AR A D S S (=0 210)
r=0|I|=r a a W =0 =
Taking the difference between (2.9) and (2.10), the term with r = 0 cancels out and the result follows. O

Proof of Theorem 1.1. Centered moment measures. o .
To prove the remaining statements of Theorem 1.1 devoted to centered moment measures M and M, we
apply Lemma 2.5 to obtain

Mrs; (A MZs;' = (a/w)" ) (Ar) Me—r(Age
all:_gz((a)) _ (_1)k:Z Z (_1)r( ar_(géég) )( I) kﬂk(_rf )

: (2.11)
r>1|I|=r
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Hence, with the notation © = (z1,...,zk), 1 = (z;)ics and e = (z;)icr,
Mjs,! (MFs7' = (a/m)" ) s (Are)
a d d c .
(ak_ﬁg(a/)> Z Z ( ar ﬁg(a) ( :EI) Mk_r ( Tr )
r>1 |I|=r

This brings us in position to apply the already established part of Theorem 1.1. For m = §y we have shown, for
all » > 1,
MO _ r , 1
r —(a/m)"A RN PV asa— oo.
a™P4(a) Bur+t

In view of Lemma 2.2 (2) with £ =k — r,

MY — (a/p)" A, (1
(P ) o) ) 25 (1P (o) s (). a0 o

and equation (2.11) entails

MDs;!

r=1|I|=

When 7 = 7eq, all terms in (2.11) with r = 1 vanish. For this case, similar computations show

Mtsy! a) ) e
ak=Bl(a) (dz) ﬁuk+1 Z Z ﬁwﬂ (dzr) Ap—r(dzre), @ — o0.

r=2|I|=

It remains to identify the limiting centered measures as ﬁ,? and ﬁ;q introduced in (1.4) and (1.5), i.e. we must
prove

Z > (=1 P (dwr)Aep(dase) = PY(dx) (2.12)
r=1|I|=r

and
k

SO (1) P Ak (daye) = PP(d). (2.13)

r=2|I|=r

We begin with (2.13), which is the same as

dP ) = 4P .
Z > (= () =" @) (2.14)

r=2|I|=r

since P4 is absolutely continuous with respect to Lebesgue measure A, with density (1.4). As both sides of the
equality are symmetric functions of x = (x1,...,xy), it is enough to prove (2.14) for the case z1 < ... < x.
Then, if I = {iy,...,i} with i3 < ... <,

T

dpPea
d; ('TI) = Z |xl7 = Li;_y |_6

Jj=2

and

PIPHCIETNED DD SN BTSN DA

r=2|I|=r r=21<i1<...<i, <k j=2 1<l <1<k
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for suitable coefficients ¢, ;, obtained by reordering terms. We claim that ¢y, = 1 and ¢;, 1, = 0if (I1,12) # (1, k),

so that
Z Cuy s |z, — xl1‘7ﬁ = |og, — x1|*ﬁ’
1<l <3<k

which is the desired representation (2.14). To compute the coefficients ¢;, 1,, we write ¢, 1, = > (—1)", with the
sum running over all r-tuplets ¢; < ... <4,, 2 <r <k, such that Iy =i; and [; = ij_; for some j € {2,...,r}.
Such r-tuplets are exactly those containing l; and I but no elements inbetween. They are hence obtained by

choosing r — 2 indices in {1,...,k}\ {l1,...,l2}, which can be done in exactly (k N lﬁ —'__121 B 1) ways. By

convention, the binomial coefficient is 0 if r —2 > k — Iy + 13 — 1. Finally, using the binomial formula,

c o zk: k—Ily+1;—1 (_1)r _ (1 _ 1)k—l2+l1—1
bola = r—2 N '

r=2

which verifies that we have indeed ¢1, = 1 and ¢, 1, = 0if (I1,12) # (1, k).
We now consider (2.12) which is equivalent to

& ~
TdPTO dP,?
>3 G = Fh@). (2.15)
r=1|I|=r
It is enough to consider the case 1 < ... < mp. If we take I = {iy,...,4,} with i3 < ... < ¢, and use for

convenience ig = 0 and zo = 0, then

s

r dpP° k
Z Z (-1)" dA: (z1) = Z Z (_1)7~Z i, — i, |77

r=1|I|=r r=11<i;1<...<i,<k j=1

Z 021,12|xl2 - xl1|_ﬁ

0<l1 <2<k

Reordering terms, this is

for suitable coefficients 021’12. Again we will prove that most of the coefficients vanish except c’l,k = 1 and
co.r = —1 so that the corresponding density is [x(x) — z(1) |7 — |z x| P, which is (2.15). To see this we observe
that for the case 1 <[y < I3 < k, the previous computations remain the same with cflh = ¢y, 1, equal to 1 if

(l1,12) = (1,k) and 0 otherwise. The case [; = 0 needs to be considered separately. Here, ¢, = > ;(—1)" with
the sum running over all r-tuplets i1 < ... < 1,, 1 < r <k, such that I = 7;. There exists exactly <i: lf)

such r-tuplets, obtained by choosing r — 1 indices in the set {l; + 1,...,k}. Finally,

=D (52%) - S (*,%) oy =—a-pes

r=1 r=0

which is 0 if I < k and —1 if [, = k. O

3. AGCREGATION OF SOURCES

The Proof of Theorem 1.4 is based on the method of cumulants [8], a variant of the method of moments for
proving weak convergence. In the present context, cumulants have two main advantages over moments: first, the
cumulants of the Poisson and Gaussian integrals appearing in the limit have a simple structure (see Sect. 1.4);
second, cumulants are well adapted to aggregation, since the cumulant of a sum of independent random variables
is equal to the sum of cumulants of each term.
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3.1. Proof of Propositions 1.2 and 1.3
We first consider the Proof of Proposition 1.2. According to [11], Lemma 12.13, the Poisson integral

Ngl= [ (o0 N(de.du
Rx[0,+0c0)
exists for any measurable function g : R x [0, +00) — R such that
/ 9@, w)| A gl w)? n(dz, du) < oo.
Rx[0,400)

For k > 1, the kth moment E[N[g]*] and kth cumulant Cy(N[g]) of N[g] are well-defined as soon as
fo[o +o0) |g(z,u)[¥ n(dx,du) < co. Then, C1(N[g]) = 0 and for k > 2,

Ci(Ng]) = /]R L g, ) (3.1)

Corresponding remarks apply to stochastic integrals with respect to ]\~f+(dac, du). Therefore, in order to prove
that the Poisson integrals J3*[f] and Jg [f] exists and have finite cumulants of all order, it is enough to show
that, for all £ > 1,

/ lg(z,u)|* n(dz,du) < oo and / lg(z, u)[F ny (dz, du) < oo
Rx[0,4+00) Rx[0,4+00)

with g(x,u) = f[o +00) Lz 244 () f(y) dy. This follows easily from the fact that f is bounded and has bounded
support. Then, using equation (3.1), we compute

k
AN /IR o ( /[W) Lo o)) £ (9) dy> n(de, du)

— [ e [ Ly uses F0) ) o
Rx[0,+00) [0,+00)*
1

1 He
= Fn) o ) lyay — vyl P dyr .. dyr = =P[O,
B [0,400)* B

By restricting the dz-integration to the positive half axis rather than the real line as above, we obtain

k
Ck(Jg f]) = /[O ooy (/[0 ) 1[x,x+u] () f(y) dy) B+ 1)u7ﬁ72dudx
_1 Fan) - Fm) (o — v ™ — v ™) dys ... dye = ~ B[]
B J10,+00) B

It remains to prove that the distributions of ng [f] and Jg [f] are uniquely determined by their sequence of
cumulants. To this aim, we show that the cumulant generating function

eq =, ok
log Ee?/s 7] = > Hok(J;q[f])
k=1
has a positive radius of convergence and similarly for Jﬁo [f]. Indeed, there exist M > 0 and T > 0 such that
|f(y)| < M1j.1)(y) for all y € [0, +00), and then
MFTE=BE(k — 1)

Co(T3lfeD)] < MPICK(T5[Lo,m))| < MF|Cu(T5 [Lo,m))| = 1=kt 2—5)

The claim follows.
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The Proof of Proposition 1.3 is easier and based on the same arguments. The Gaussian integral
Wi = [ gl Wide,du)
Rx[0,4+00)
is well defined for g € L2(R x [0, +00),n) and then, W(g] is a centered Gaussian variable with variance
CoWla) = [ glau) n(de.du).
Rx[0,+00)

The remaining cumulants C,(W{g]), k = 1, or k > 3, are equal to 0. Corresponding remarks hold for stochastic

integrals with respect to W,.. Further details are omitted.

3.2. Proof of Theorem 1.4

We begin the proof by restating the convergence results for centered moments in Theorem 1.1 in a form
which is adapted to the scaling assumptions (ICR) and (FCR). Recall that 5 and ¢ are given in (1.2) and that,
in the scaling (ICR), the sequence a = a,, satisfies a — co and mf(a)/a” — uc® as m — oo. With b(a,m) = a,
Theorem 1.1 implies, for k& > 1,

’“;5 Pr. (3.2)

Turning to fast connection rate scaling (FCR), we have mf(a)/a” — oo and norming sequence b(a,m) =
(ma®>~P4(a))/?. Hence, for k = 2

ArTo—1 mg(a) 1

71'71 Fr
g MEsa = T gy M — )

AFT — 1 DT
= g M35 RN 573132 (3.3)

and, for k > 3,

k/2—1 k/2—1
mwﬂsfl _ af 1 Mﬂsfl ~ a (_1)k P
g Se = akF—Be(q) ka Bpk+1 k

== 0. (3.4)

_ Based on the above relations we are able to derive the asymptotic behavior of the cumulants of
Eam|f]- As in Section 1.4 we write Ci(X) for the kth order cumulant of a random variable X, so that

log Ee®X = >°72 %Ok(X ). It is convenient to write C7(X) to emphasize that expectations over X are
taken with respect to [E; with 7 = &y or 7 = eq, and C}(X) and C;?(X) if there is a need to distinguish the
two cases.

Lemma 3.1. Under both scaling assumptions (ICR) and (FCR), with the corresponding choice of norming
sequence b(a,m), for any f € Fi we have CT ({a,m[f]) =0 and, for k > 2,

CF (€amlf]) = o S HIF] 4 o(1)  asm — +oo,
Proof. Since the centering of Ea,m[ f] is prescribed with respect to the relevant measure [, and hence
In ]E,regg“”"[f] — mInlE, efésa /b _ %HEﬂfsgl,

we have

C{r(ga,m[f]) =0
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and

O (Camlf)) = EOF (€5 U, k22,

Moreover, for k > 2 the cumulants of £s;[f] and of (€s; % — (a/p)M\)[f] coincide. Thus, by applying the general
recursive relation between moments and cumulants given by

k—1
Cu(x) = E[xH - Y (’“ - 1)0 (X)E[XH

1 —1
i=1

to X = (&s,1 — (a/u)N)[f], we obtain, for k > 2,

k-1

0 (e 1) = (e ) ™= X2 (1) () D (3" 1741
i=1

Hence,
OF (Samlf)) = 75 (Misy") 175) = Rulf),

where
-1

Relf] = kz_f (k - I)OZT (gamm) (M;? i Zk)z [f® *i}'

; 1 —1
=1

It remains to prove that asymptotically Ry[f] = o(1). For a proof by induction on k, we notice Rz[f] = 0 and
suppose that

71- -~ MTs —1 ®1 <3< — 1. .
C7 (Samlf)) = 35 (M7s7") 1f%) +0(1), 2<i<k—1 (3.5)
Here, f®' € F; since f € Fy. In view of (3.2) for (ICR) scaling and (3.3), (3.4) for (FCR) we have
T—1 ®1] _
= (M7, ) 1£5) = 0),
from which then follows Ry[f] = O(1/m), and hence (3.5) is true for i = k. O

Proof of Theorem 1.4. We consider the scaling regime (ICR). Minor modifications yield the case (FCR).
For k > 2, f®* € F}.. Hence, by Lemma 3.1 and (3.2),

B B L
CT (favm[fD — (—1)’“%135”@]6}-
The scaling property Pl ®k} _ cﬁP [f®k] pr [ ®k] _ cﬁpﬂ[f@@k} (3.6)
& ) k .

and the property of Poisson integrals (1.8) imply that the limit is

B
B =S CD e o4 = (—%Jg[fc}).

For k = 1, the first cumulant of the Poisson integrals vanish, and C’f(gam[f}) = 0 by Lemma 3.1. So, for each
k> 1,

(-1*

CF Eamlf)) — Ci <_%J;;[ fc]> .

According to Proposition 1.2, the sequence of cumulants {Cy(Jj[—fc/p]), k > 1} uniquely determines the
distribution of J 5 [—f./u]. Hence, by the method of cumulants, we conclude the weak convergence

Eomlf] = —%Jg 1l 0
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4. A LEVY PROCESS RENEWAL MODEL

We are now going to replace the renewal sequence (5,,) with a Lévy subordinator (Zs), so that the role of
the renewal counting process £([0, x]) is taken over by the first passage times of the Lévy process

7’]([0,.%‘]) = / 1{0§Z5§z} dS7 X Z O
0

This provides a continuous counterpart of the discrete renewal model. As we will see, the discrete and continuous
models share the same structure of moment measures and all results derived for the discrete model can be
transfered to the continuous framework. The continuous model is introduced in [9] and studied here in a more
general setting.

4.1. Model and results

Let (Z(t))i>0 be a Lévy subordinator with right-continuous paths, drift zero and Lévy measure v on [0, +00)
with no atom at zero, such that

/0 (INz)r(de) < oo and ,u:/o yv(dy) < co.

For the initial distribution 7 of Z(0) we will again consider two variations in analogy with the discrete renewal
model. The pure subordinator with Z(0) = 0 is the basic case m = Jy. For the stationary case 7 = meq We
put Z(t) = Z(t) + Z(0), where {Z(t)} is a pure subordinator, Z(0) is a random variable with the equilibrium
distribution

mallOsa) = 1 [ / " (du)dy, (4.1)

and {Z(t)} and Z(0) are independent. As before, the initial distribution is emphasized in the notations P, and
[E. For the pure Lévy subordinator, we have [£o(Z(t)) = ut, t > 0, and

Eyfe—20] = o=12() ()) = / (1—eM)u(dy), A>0.
0

By imposing initially the equilibrium distribution, for which Eeq[e*AZ (0)] = %, we obtain

_ B(\) _
]Ee AZ(t) — tP(N)
Q[e ] ,U/)‘ €

We suppose that the Lévy measure v has a regularly varying tail with index 1+ 3 for g € (0,1), i.e.
[ee)
/ v(dy) ~ 2= D), as z — oo, (4.2)
xT
for some slowly varying function ¢. In addition, we suppose that the lower index o of the subordinator is greater

than g3, i.e.
o =sup{a: /\lim D(N)/AY — o0} > f. (4.3)
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Let 1 be the occupation measure of the process Z, i.e. the random measure on ([0, +00), B1) defined by

77(14) = / 6Z(s) (A) ds, A€ B.
0

The Lévy subordinator Z is transient (Z(t) — +o0c almost surely as t — +00), hence 7(A) is almost surely finite
for all bounded sets A € By, [1] Chapter 1.4. For measurable, bounded and compactly supported f : [0, +o00) —
R, we put

il = [ fan= [~ rzas
Denote by L}, (A) the kth moment measure of n given by

L7 (A) = Ex[n®"(4)], A€ By
Equivalently,

LZ(A) = Eﬂ [/[ ) 5(2(31)7“472(%))(‘4) d81 N dsk . (44)
0,4+00)k

Define also the centered version of the kth moment measure by
EZ(A) =E:[(n— >\1//~L)®k(A)]a A € B, bounded.

Interestingly, the asymptotic behavior of the moment measures is the same as for the discrete setting.

Theorem 4.1. Suppose that assumptions (4.2) and (4.3) are satisfied. Then, for k > 1 and as a — oo,

Lisyt—(a/w)*xe 7 1 nggl 7 (=1)F

T

P,
a"Be(a) G a"—51(a) T Bukt

P

As remarked initially in this section, if we take f to be the indicator function of an interval [0, ] then n[f]
provides the inverse of the Lévy-subordinator Z, given by the process of passage times

n([0,z]) = inf{s > 0; Z(s) > x}, x>0. (4.5)

The expected value LY([0,z]) = Eq[n([0,x])] is the pure subordinator renewal function. Under m = meq, by
stationarity, L{([z, z+y]) = Eeq[n([z, 2+y])] = y/p, see [1]. Similarly as in Section 1.5, the result in Theorem 4.1
provides limit theorems in the continuous setting for the superposition of random sources. Let n*, i > 1 be i.i.d.
copies of the random measure 7. We consider

1

7 —1_L7r —1 )
b(a,m) (77 Sa 1%a )

i=1

Na,m =
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The counterpart of Theorem 1.4 is the following:
Theorem 4.2.

(1) Under the rescaling assumption (ICR) with normalization b(a, m) = a,
for the pure case m = g,

and for the stationary case ™ = Teq,

(2) With scaling (FCR) and normalization b(a,m) = (ma®~%£(a))'/?,
in the pure case m = dg

Tam[f] =
and in the stationary case ™ = Teq

Tomlf] "5 G, f € Fu.

The main result in [9] is a weak convergence result under (ICR) of the form
1 ( ; 1 ) 1 .
= n'([0,az]) — —ax | — —=cJ 2 /d],
PICICEIES Leria/d

and a similar result under (FCR) with the fractional Brownian motion as limit process.

4.2. Proof of Theorem 4.1

The discrete renewal measure U is replaced for the continuous model by the (pure) subordinator renewal
measure

V() = o [~ sz nas].
The following lemma replaces Lemmas 2.3 and 2.5. We use the same notations.
Lemma 4.3. For any k > 1, the kth moment measure L, satisfies
Li(A) = Y [(m+V)@VeE g o7 (A).
ceZ),

Moreover, for k > 2,

k
L) =3 X (—1)’“‘r(LZf - %)(A,)L(A”),

k—r
r=1 ‘I‘:r M

Proof. For the first statement, split the integral expression in the defining relation (4.4) in k! terms corresponding
to the relative order of s;, 1 <17 < k, to obtain

LZ(A) :E.,r Z /[O ook 5(2(51),“.,2(5”)(A)1{50(1)<m<s”(k)}d81...dSk

oeXy,
= Z ]Eﬂ/ 5(2(51),.“’2(%))(0'_114) dsy .. .dsg
cEX 0<s1<...<8
= Eﬂ/ 8(2(51), Z(s2)~ Z(s1), Z(s8)—Z(s5 1)) (O "0 A)ds1 . s
€Dy 0<s1<... <55
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By the Markov property and the fact that Z(0), Z(s1)—Z(0), Z(s2)—Z(s1), - .., Z(sk)—Z(sk—1) are independent,
]Eﬂ- / 6(Z(51),Z(52)7Z(s1),...,Z(sk)fZ(sk_l))(9];10-_114) d81 e dsk = [(71’ * V) ® V®(k_1)] (9];10'_114).
<s1<...<8

The proof of the remaining formula is the same as that of Lemma 2.5. |

The Proof of Theorem 4.1 follows the same lines as the proof of Lemma 2.4, with Lemma 4.3 replacing
Lemmas 2.3 and 2.5. The only part in this line of arguments that needs to be considered further is to establish
an analogous result to Teugel’s estimate (2.3), valid for the subordinator renewal measure V. This is the content
of Lemma 4.4 below. The proof relies on fine properties of the Lévy measure v, taking into account its regularly
varying tail function in (4.2), which we denote here by

as well as the lower index assumption in (4.3).

Lemma 4.4. As x — oo,
x {(z)x' =P

v(o,z]) = L ~ 2T 46
(0.al) = 2 2 (1.6
Proof. For convenience we denote by (T3)z>0, the inverse Lévy-subordinator T, = n([0, z]) in (4.5), for which
we have Eoy[T%] = z/u and Eq[T,] = V([0, 2]). The renewal theorem, see [1] IIL.1, implies that

V ([0, z]) ~ % as x — o0o.

Define also ~
T, =inf{s > 0; Z(s) — Z(0) > z} =n([0,z + Z(0)]), « >0.

By the Markov property, the distribution of T, under P, is equal to the distribution of T, under [Py, so that
E.q[T:] = V([0,2]). Hence, conditioning on Z(0),

V((0,4]) — /i = Bug[Ts — 1]
/IET T, 7€ (dy)

- / (Bo[T:,] - Bo[T,)) 7*(dy) + / " EolT] 79 (dy)
0 x
- / V(@ -y, 2]) 7°9(dy) + V[0, 2])m((z, +o0]).

The assumptions (4.1) and (4.2), and Karamata’s theorem [3], imply

((x, +00)) ~ w as r — 00

(2, +00)) P :

so that ) . . ) . A 4(2)
V([0,2]) — z/u ; V((z —y,z]) 7®4(dy) + 23 as T — 0o. (4.7)

Since 7°4(dz) = +7(z)dz by (4.1),

1y
m

| vt waaein = 5 [ Vi@ - vahrmay

_ e )/ Ved-y1) vy
0

U x x= (B0 (x)
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Using regular variation, for all y € (0,1) as z — oo,

Veel-yl) v g 2@ g

x W x= (8¢ (z)

SO we expect

"Vl -y 1)  v(zy) I |
/0 x @) Y ;/O y oy =Ty e oo (4.9)

The Lemma would then be a direct consequence of (4.7)-(4.9). It remains to justify the convergence (4.9). By
Lebesgue’s dominated convergence theorem, it is enough to provide a suitable domination condition. To this
aim, we will need the following estimate which is proved in Appendix A: for § > 0 there exists zg > 0 and C > 0
such that ()
vry —1-8—6

up ———) < ,

:;fo x_(1+3)£($‘) =Y
Furthermore, using the inequalities Eo[T},1,/] < Eo[T}] + Eo[T,/] and 0 < Eo[T}] — y/u < e/P(1/y) (see [1],
Sect. III.1), we obtain

ye(0,1). (4.10)

Vi(z(1—1y,1]) < V([0,zy]) S AT

y
x x po 2d(1/(zy))

The condition (4.3) on the lower index of the Lévy process ensures that for all p € (5,0), @(A)/A\P — oo as
A — 00. On the other hand, #(\) ~ Ay as A — 0 and @ is a continuous positive function on (0, 400). So for
p € (8,0 A1), there exists some C' > 0 such that #(A) > C(A A NP) for all A > 0. As a consequence, for all
y € (0,1) and = > z,

Y

V(l’(l - Y, 1}) € —1
SR S S R VAR A E PP,
<o+ o max(y, y"eg )

T

This bound together with (4.10) imply that there is C' > 0 such that for all > z¢ and y € (0, 1)

V (ac(l -, 1]) D(my) _1_g—
< p B 5_
x w*(Hﬁ)K(x) Cy

Since p — 1 — 8 > —1, choosing § small enough provides a suitable domination condition. This proves the
convergence (4.9) and hence the lemma. O

Note also that equation (2.4) holds with U replaced by V' and the proof is the same.

4.3. Proof Theorem 4.2

Just as in the discrete case, Theorem 4.1 implies Theorem 4.2 thanks to the method of cumulants. The proof
is exactly the same as for Theorem 1.4 and we omit the details.

APPENDIX A. TECHNICAL RESULTS

We gather in this appendix some technical results and proofs relying on the theory of regularly varying
functions, see e.g. [3] for background and details. We recall the so called Potter bounds (see Prop. 0.8.ii)
in [16]). If h : [0, +00) — R is regularly varying at infinity with index o € R, then for any § > 0 and ¢y > 0,
there exists yo such that for ¢t > ¢y and y > yo,

a-s _ Pyt) o
(1—0t0 < ) < (14 8)tet9, (A1)
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Proof of (2.4). Consider the function y — h(y) = U([0,y]) — y/u. The asymptotic relation (2.3) implies that h
is regularly varying at infinity with index o =1 — 8 and that equation (2.4) is equivalent to

sup sup h{au)
u€l0,x] a=ag h(a)

< 0

Let 6 € (0,1 — ) and to = 1/x. Using the lower Potter bound (A.1), there exists yo > 0 such that
g5 _ hyt)
1-0)t" P < 2L >, y > yo
( ) —h(y)a Z 10, Y = Yo

With the substitution ¢ — 1/u and y — au, we obtain

h(aw) 1 1 55

< < > 1o
h(a)*l—éu ;o u<z, au > Yo
Note that 1 — (3 —9 > 0. Furthermore, the function h is cad-lag and has limit +o00 at co. Therefore, h is bounded
on [0, yo] and 1/h is bounded on [ag, +00] for some ag > 0, so that there exists C' > 0 such that

h
(au) <C, u<uz, a>ay au<yp.
h(a)
Together these two estimates give the upper bound (2.4). O

Proof of (4.10). Since the function # is regularly varying at infinity with index —1— /3, so that (x) ~ = 178/(x)
as ¥ — 00, we may restate (4.10) as finding for any § > 0, C' and zg such that

sup yfxz) < Cz_l_ﬁ_‘s, z € (0,1).
T>T0 Z/(l‘)

By the lower Potter bound (A.1) with 0 < § < 1 and g = 1, there exists yo such that for ¢ > 1 and y > yo,

(1 _ 5)1&717,675 < D(yt)

7(y)
With the substitution ¢ — 1/z and y — xz, we obtain
v(xz) L 15
< <1 > Y.
o) S 1-0o° C s

We still need a bound when 2z < yg. For this we take C' > 0 and z¢ > 0 such that for x > xo, v(x) > Cyax=1=P-9,
In addition we have the obvious upper bound 7(z) < p/x valid for any =. Thus,

v(xz) < M 1 Coplogis
LR S L ]
v(r) — azCia=1-0-%  Ciz

T > xg.

In particular, considering the case x < yo/z,

(z2)
i@ = O

N

B+3
HYo L1835

z<1, xz<wyy, x>
Then, we obtain the desired result with C' = max((1 — §)~ 1, uyg+5/C1). O
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