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ASYMPTOTICS OF COUNTS OF SMALL COMPONENTS IN RANDOM
STRUCTURES AND MODELS OF COAGULATION-FRAGMENTATION

Boris L. Granovsky1

Abstract. We establish necessary and sufficient conditions for the convergence (in the sense of finite
dimensional distributions) of multiplicative measures on the set of partitions. The multiplicative mea-
sures depict distributions of component spectra of random structures and also the equilibria of classic
models of statistical mechanics and stochastic processes of coagulation-fragmentation. We show that
the convergence of multiplicative measures is equivalent to the asymptotic independence of counts of
components of fixed sizes in random structures. We then apply Schur’s tauberian lemma and some re-
sults from additive number theory and enumerative combinatorics in order to derive plausible sufficient
conditions of convergence. Our results demonstrate that the common belief, that counts of components
of fixed sizes in random structures become independent as the number of particles goes to infinity, is
not true in general.
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1. Introduction: probabilistic setting and its applications

We start from the following formalism.
Let {Zj , j ≥ 1} be a sequence of independent integer valued random variables that induces a sequence of
random vectors {K(n) = (K(n)

1 , . . . , K
(n)
n ), n ≥ 1} given by

L(K(n)) = L
(

Z1, . . . , Zn

∣∣∣∣∣
n∑

j=1

jZj = n

)
, n = 1, 2, . . . (1.1)

It follows from (1.1) that K(n) ∈ Ωn, n ≥ 1, where

Ωn =

{
η = (k1, . . . , kn) :

n∑
j=1

jkj = n

}
(1.2)

is the set of all partitions η of an integer n. In probabilistic combinatorics, (1.1) is called the conditioning
relation (see [3]), while the sequence of vectors {K(n), n ≥ 1}, is called the counting process.
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Next, denote by μn the probability measure on Ωn induced by the conditioning relation (1.1):

μn(η) := IP(K(n) = η), η ∈ Ωn, n ≥ 1

and let
a
(j)
k = IP(Zj = k), k ≥ 0, j ≥ 1. (1.3)

We then have

μn(η) = c−1
n

n∏
j=1

a
(j)
kj

, η = (k1, . . . , kn) ∈ Ωn, n ≥ 1,

where

cn = IP

⎛⎝ n∑
j=1

jZj = n

⎞⎠ =
∑

η∈Ωn

n∏
j=1

a
(j)
kj

, η = (k1, . . . , kn) (1.4)

is the partition function for the measure μn. Taking into account (1.1), (1.4) we will assume throughout this
paper that the probabilities a

(j)
k , k ≥ 0, j ≥ 1 are such that cn > 0, n ≥ 1. Vershik [31] suggested that the class

of measures (1.4) be called multiplicative, while Pitman [27] calls them Gibbsian (see also [21]). Observe that
the multiplicative form (1.4) of the sequence of measures μn is implied by the fact that the random variables
Zj , j ≥ 1 in (1.1) do not depend on n.

It is clear that the sequence of measures {μn, n ≥ 1} induced by (1.1) is uniquely defined by the array
of probabilities {a(j)

k , j ≥ 1, k ≥ 0}. However, this correspondence is not a bijection. In fact, the “tilting”
transformation (see [3]) of the probabilities:

a
(j)
k (ρ) =

ρjka
(j)
k

S(j)(ρ)
, k ≥ 0, j ≥ 1, (1.5)

where ρ > 0 and S(j)(ρ) is the normalizing constant, does not change the sequence of measures {μn n ≥ 1}. But
this transformation does affect the generic partition function cn leading to the tilted partition function cn(ρ):

cn(ρ) =
cnρn∏n

j=1 S(j)(ρ)
, n ≥ 1. (1.6)

Note that the tilting is defined for all finite ρ > 0 such that

S(j)(ρ) =
∞∑

k=0

ρjka
(j)
k < ∞, j ≥ 1. (1.7)

It is a remarkable fact that the representation (1.1) provides a mathematical formalism for a variety of models
in seemingly unrelated contexts. Let us briefly describe four main fields of application of this setting.

Decomposable combinatorial structures (for more details see [3, 19, 26] and references therein). The size
of such a structure is defined to be the number of elements in it. A decomposable structure of size n is a union
of indecomposable components (=components), so that the counts k1, . . . , kn of components of sizes 1, . . . , n
respectively, form an integer partition of n. It is assumed that each component of size j belongs to one of mj

types. The three classes of decomposable structures: assemblies, multisets and selections, encompass the whole
universe of classical combinatorial objects. Assemblies are structures composed of labeled elements. The class of
assemblies includes permutations decomposed into cycles (mj = (j − 1)!), forests composed of rooted trees with
labeled vertices (mj = jj−1), graphs composed of connected subgraphs with labeled vertices (mj ∼ 2(j

2)), etc.
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We note that for the last model mj appears to be asymptotically equal to the total number 2(j
2) of graphs on j

vertices. This follows from the remarkable fact that a random graph on n vertices is connected with probability 1,
as n → ∞ (see [9]). Multisets are formed from unlabeled elements. Examples of multisets are integer partitions
(mj = 1), planar partitions (mj = j) and mapping patterns (mj ∼ ρ−j

2j , ρ = 0.3383). Regarding the last
example, recall that a mapping from the set [1, n] to itself is a digraph with edges (i, f(i), i = 1, . . . , n)
decomposed into connected subgraphs of the underlying undirected graph. Mapping patterns are obtained from
the above structure by removing labels, so that only the topology of the graph matters. Finally, selections are
defined as multisets with distinct components, which means that all component counts kj , j = 1, . . . , n are
either 0 or 1. A typical example of a selection is an integer partition into distinct parts (mj = 1).

The basic problem in enumerative combinatorics is to find the asymptotics, as n goes to infinity, of the
number of a certain class of structures of size n, with a component spectrum (k1, . . . , kn) in a given subset of
Ωn. As a part of this problem, the asymptotics of the total number of given structures of size n is of special
interest.

The starting point of the probabilistic method considered is the definition of a random structure of size n,
which is a random element Πn distributed uniformly on the finite set of all structures considered, with size n.
Next is defined the induced random component spectrum K(n), also called the counting process:

K(n) = K(n)(Πn) =

(
K

(n)
1 , . . . , K(n)

n

)
, n ≥ 1, K(n)(Πn) ∈ Ωn,

where the random variable K
(n)
j represents the number of components of size j in Πn.

It turns out that the representation (1.1) of the distribution of K(n) is valid for the aforementioned three
classes of combinatorial structures. Namely, assemblies, multisets and selections are induced respectively, by
the following three types of random variables Zj , j ≥ 1: Poisson (Po(aj), aj = mj

j! ), Negative Binomial

(NB(pj , mj)) and Binomial (Bi( pj

1+pj , mj)), 0 < p < 1.

Models of ideal gas (for references see [23,31] and [29], Chap. 12). In classical statistical mechanics, an ideal
gas is a collection of perfectly elastic particles (atoms or molecules) which collide but otherwise do not interact
with each other. It is assumed that the total internal energy E of a gas is the sum of the microscopic energies
of random motions of individual particles and that E is partitioned between the particles, so that kj , called
an occupation number, is the number of particles with the energy level j, having a prescribed weight mj that
regularly varies with j. The following three basic models (=statistics) of ideal gas are common.

Maxwell-Boltzmann (MB) (=labeled particles), Bose-Einstein (BE) (=indistinguishable particles), Fermi-
Dirac (FD) (=indistinguishable particles, such that no more than one particle may have a given energy level).
In accordance with the setting for combinatorial structures, MB, BE and FD models conform to assemblies,
multisets and selections, respectively. The probability distribution of the energy states η which varies from
model to model, is defined by a measure on the state space Ωn. By laws of statistical mechanics, these measures
are forced to be of the multiplicative form (1.4), with the numbers a

(j)
k defining the type of a model of the ideal

gas considered.
A substantial difference of the model of ideal gas, treated as a quantum system is that a particle of the

d-dimensional gas is viewed as a lattice point q ∈ Zd and the energy levels εq, called energy eigenvalues, are of
the following special form:

ε‖q‖2 = c‖q‖2, q = (l1, . . . , ld) ∈ Zd, ‖q‖2 =
d∑

s=1

l2s , (1.8)

where c > 0 is a known constant that does not depend on q. Consequently, the state of the quantum system
is determined by a weighted partition η = (k1, . . . , kn) of an integer n = E : E =

∑
j≥1 jkj . By (1.8), to each
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energy level j is naturally prescribed a “weight” rd(j) which is the number of representations of the natural
number j as the sum of d integer squares. In other words, rd(j) is the number of distinct lattice positions
q = (l1, . . . , ld) ∈ Zd of a particle on a sphere of radius

√
j, i.e. with the energy level j. It is known from number

theory (see e.g. [24]) that for d ≥ 5,

C1j
d−2
2 ≤ rd(j) ≤ C2j

d−2
2 , j ≥ 1,

where C1, C2 are positive constants depending on d, and that for d = 2, 3, 4 the functions rd(j) oscillate wildly
(in j), while, obviously,

r1(j) =

{
2, if j is a square
0, otherwise.

(1.9)

Employing known properties of rd(j), an important fact was proven in [32] that for the sake of asymptotic
analysis, it is possible to treat the d- dimensional quantum models as the classic BE and FD ones with
parameters mj = cjβ , where c > 0, and β = d−2

2 , if d ≥ 2.

Coagulation-fragmentation processes on the set of integer partitions (see [3, 14]). We will show that
a multiplicative measure μn can be viewed as an equilibrium of a classic coagulation-fragmentation process
(CFP) which is a time-continuous Markov chain on Ωn, defined as follows. A state η = (k1, . . . , kn) ∈ Ωn

of a CFP depicts a partition of a total number n of identical particles (animals, atoms, stars, human
beings, etc) into clusters (=groups) of different sizes, so that kj is the number of clusters of size j. The
only possible infinitesimal (in time) transitions are coagulation (merging) of two clusters of sizes i and j
into one cluster of size i + j and fragmentation (splitting) of a cluster of size i + j into two clusters of
sizes i and j. Given a state η ∈ Ωn, with ki, kj > 0 for some 1 ≤ i, j ≤ n, denote by η(i,j) ∈ Ωn the
state that is obtained from η by the coagulation of some two clusters of sizes i and j, and denote by
uc(η, η(i,j)) the rate of the infinitesimal transition η → η(i,j). Similarly, for a given state η ∈ Ωn with
ki+j > 0, let η(i,j) be the state that is obtained from η by the fragmentation of some cluster of size i + j into
two clusters of sizes i and j, and let uf(η, η(i,j)) be the rate of the infinitesimal transition η → η(i,j). Denoting by

q(η; i, j) =
uc(η, η(i,j))
uf (η(i,j), η)

the ratio of the above transitions, the important property of reversibility of multiplicative measures is derived
by verifying the detailed balance condition.

Proposition 1.1. A multiplicative measure μn defined by (1.4) is reversible with respect to the transition rates
uc, uf if their ratio satisfies:

q(η; i, j) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
a
(i)
ki−1a

(j)
kj−1a

(i+j)
ki+j+1

a
(i)
ki

a
(j)
kj

a
(i+j)
ki+j

, if i 
= j : ki, kj > 0

a
(i)
ki−2a

(2i)
k2i+1

a
(i)
ki

a
(2i)
k2i

, if i = j : ki ≥ 2.

(1.10)

An immediate consequence of Proposition 1.1 is that a multiplicative measure μn defined by (1.4) is the equi-
librium distribution of a CFP with transition rates uc, uf obeying the condition (1.10), under some sequence
of probabilities {a(j)

kj
}.
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We now distinguish a class of CFP’s with transition rates uc, uf of the form

uc(η, η(i,j)) =

{
kikjφ(i, j), if i 
= j, kikj > 0
ki(ki − 1)φ(i, i), if i = j, ki ≥ 2,

uf (η, η(i,j)) = ki+jϕ(i, j), 2 ≤ i + j ≤ n, ki+j ≥ 2, (1.11)

where φ, ϕ are some symmetric nonnegative functions on the set of pairs of positive integers. Treating the
functions φ, ϕ in (1.11) as the rates of a single coagulation and a single fragmentation respectively, the induced
CFP’s can be viewed as mean-field models on the set Ωn. In fact, (1.11) tells us that at any state η ∈ Ωn, each
cluster may coagulate with every other one or may be fragmented into two parts, so that the net rates of the
transitions η → η(i,j) and η → η(i,j) are sums of the rates of all possible single coagulations and fragmentations
respectively, at the state η. It is proven in [14] with the help of the Kolmogorov cycle condition that in the case
when all rates of single coagulations and fragmentations are positive, the CFP’s given by (1.11) are reversible
if and only if the ratios of the single transitions are of the form

φ(i, j)
ϕ(i, j)

=
ai+j

aiaj
, i, j ≥ 1, (1.12)

with some ai > 0, i ≥ 1. The corresponding CFP’s are known as classical reversible models of clustering and
networks studied in 1970-s by Kelly and Whittle (see [14–16] and references therein). The equilibrium measures
of the mean-field CFP’s with the rates (1.11), (1.12) are multiplicative measures μn induced by the conditioning
relation (1.1) with Zj distributed Po(aj), j ≥ 1. An example of a reversible CFP which is not a mean field, is
provided by setting in (1.3) Zj = Gj − 1, where Gj is distributed geometrically with parameter pj , 0 < p < 1.
Then a

(j)
k = pjkqj , qj = 1 − pj , j ≥ 1, k ≥ 0, and the corresponding measure μn is the uniform one on the

set Ωn, while in (1.10), q(η; i, j) ≡ 1. It is simple to see that, due to the last fact, the net transition rates of
form (1.11) do not provide the detailed balance condition for the CFP considered in the example, which implies
that the above reversible CFP is not a mean -field model.

CFP’s on set partitions ([7,8,27]). We assume here that in the preceding set up for CFP’s, particles are labeled
by 1, . . . , n, so that the state space of the system of clusters related to a CFP, becomes the set Ω[n] = {π[n]} of
all partitions π[n] of the set [n] = {1, . . . , n} into subsets. Recall that a partition of [n] into k blocks (clusters)
A1, . . . , Ak is π[n],k = (A1, . . . , Ak), where Aj , 1 ≤ j ≤ k ≤ n are nonempty and disjoint subsets of [n] whose
union is [n] and which are numbered, e.g. in the order of their least element. Denoting |Aj | the size of a cluster
Aj , we further assign to each Aj , a weight m|Aj| which is a number of possible states of Aj , the states can be e.g.,
shapes (in the plane or in space), colors, energy levels, etc. This says that to the set partition π[n],k correspond∏k

j=1 m|Aj| different structures with the same blocks A1, . . . , Ak, so that the total number of structures formed
by all partitions of the set [n] into k given clusters is equal to

∑
π[n],k∈Ω[n],k

k∏
j=1

m|Aj| := Bn,k, (1.13)

where Bn,k is known as a Bell polynomial in weights m1, . . . , mn−k+1. Similar to the setting for decomposable
combinatorial structures, a random structure Π[n],k is the one chosen randomly from the set of Bn,k structures.
As a result, for a given k a measure p[n],k on the set Ω[n],k = {π[n],k} is induced:

p[n],k(π[n]) =

∏k
j=1 m|Aj |
Bn,k

, π[n] ∈ Ω[n],k. (1.14)

In a more general setting which encompasses a variety of models (see [7, 27]), the weights mj in (1.14) are
allowed to be arbitrary nonnegative numbers. Pitman [27] calls the Π[n],k a Gibbs partition and the measure
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p[n],k microcanonical Gibbs distribution. Obviously, the vector (|A1|, . . . |Ak|) of block size counts defines a
partition of the integer n into k summands, induced by the generic set partition π[n],k, and it is known that to
each η = (k1, . . . , kn) ∈ Ωn, such that k1 + . . . + kn = k, correspond

n!∏n
j=1(kj !)(j!)kj

different set partitions π[n],k ∈ Ω[n],k, each one of them having the same probability p[n],k(π[n],k) given by (1.14).
Thus, the Gibbs distribution p[n],k on Ω[n],k induces the Gibbs distribution pn,k on the set Ωn,k of integer
partitions of n into k positive summands:

pn,k(η) = (Bn,k)−1
n∏

j=1

(
mj

j!

)kj

1
(kj)!

, η = (k1, . . . , kn) ∈ Ωn,k, (1.15)

where the partition function Bn,k defined as in (1.13) can be rewritten in the following form:

Bn,k =
∑

η∈Ωn,k

n∏
j=1

(
mj

j!

)kj

1
(kj)!

· (1.16)

From (1.15) it is easy to derive Kolchin’s representation of Gibbs partitions (see [27], Thm. 1.2). On the other
hand, the distribution pn,k given by (1.15) is produced by conditioning the multiplicative measure μn defined
by (1.4) on the event Z1 + . . . + Zn = k, with Zj ∼ Po(aj), aj = mj

j! , j ≥ 1. However, this embedding of
the generic model associated with set partitions of [n] into the setting for conditioning relation (1.1) does not
facilitate the study of a wealth of problems (see [7]) arising from treating p[n],k, k = 1, . . . , n as marginal
distributions of irreversible time continuous markov processes of pure fragmentation (or pure coagulation) on
the state space [n]. The study of these problems was initiated by Kingman and Pitman and has been extensively
continued by a group of researchers including Pitman, Bertoin, Berestycki, Gnedin et al.

In what follows we will refer to all models induced by the conditioning relation (1.1) as random structures
(RS’s).

2. Objective and summary

In this paper, we study the asymptotic behaviour, as n → ∞, of the random vector (K(n)
1 , . . . , K

(n)
l ) composed of

the first l ≥ 1 components of the random vector K(n), defined by (1.1). In view of the independence of the random
variables Zj , j ≥ 1 in (1.1), there was a common belief in physics and combinatorics that the small (compared
with n) counts K

(n)
1 , . . . , K

(n)
l become independent, as n → ∞, for any fixed l ≥ 2, and this was proven in a

variety of particular cases of RS’s. We show that in general the assumption of asymptotic independence fails.
This said, we note that properly scaled large component counts K

(n)
l , K

(n)
l+1, . . . , K

(n)
n are known to be dependent

in the limit, for any fixed l ≥ 1. Our main result which is Theorem 3.3 in Section 3, consists of establishing the
necessary and sufficient conditions for the asymptotic independence of small component counts. Combining this
result with the Schur’s lemma we provide in Section 4 a plausible sufficient condition for convergence RS’s. This
allows us to answer the question of convergence of counting processes for the three basic types of RS’s discussed
in Section 1. It turns out that many models of RS’s are divergent. In a parallel way we discuss the problem
of convergence for CFP’s. The final section, Section 5, contains concluding remarks, among them a historical
background of the problem.
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3. Main result

Definition 3.1. We say that the counting process {K(n), n ≥ 1}, is convergent, if for each fixed l ≥ 1, the
probability law L(K(n)

1 , . . . , K
(n)
l ) weakly converges, as n → ∞, to some probability law Fl on Rl, l ≥ 1.

Moreover, we say that the counts K
(n)
1 , . . . , K

(n)
l , l ≥ 2 of small components of the random vector K(n) are

asymptotically independent if the above laws Fl are product measures on Rl, for all finite l ≥ 2.

Note that in contrast to the setting for limit shapes (see e.g. [17, 31]), in this paper we are interested in the
weak convergence of non scaled multiplicative measures.

For a fixed l ≥ 1, given k1, . . . , kl and sufficiently large n, we denote

Ml =
l∑

j=1

jkj , and T (l)(n, Ml) = IP

(
n−Ml∑
j=l+1

jZj = n − Ml

)
. (3.1)

It is immediate that
T (l)(n, Ml) = T (l)(n − Ml, 0) := T

(l)
n−Ml

, l ≥ 1, Ml ≥ 0. (3.2)

Assuming in what follows that
a
(j)
0 > 0, j ≥ 1,

we will be dealing with the “scaled” quantities ã
(j)
k , c̃n, and T̃

(l)
n−k defined by

ã
(j)
k =

a
(j)
k

a
(j)
0

, k ≥ 0, j ≥ 1, (3.3)

c̃n =

(
n∏

j=1

a
(j)
0

)−1

cn, n ≥ 1, c̃0 = 1, (3.4)

T̃
(l)
n−k =

(
n−k∏

j=l+1

a
(j)
0

)−1

T
(l)
n−k, T̃

(l)
0 = 1, l ≥ 1, 0 ≤ k ≤ n. (3.5)

In the context of decomposable combinatorial structures, the quantities c̃n and T̃
(l)
n−k have a significant combi-

natorial meaning. Denoting by pn the number of structures of size n, we demonstrate in Section 4 that

pn =

{
p−nc̃n, for multisets (NB(pj , mj)) and selections (Bi(pj , mj))

n!c̃n, for assemblies (Po(aj)).

In analogous way, T̃
(l)
n−k is related to the number of structures of size (n − k) with all component sizes greater

than l.
With the help of the above notation, we have

IP(K(n)
1 = k1, . . . , K

(n)
l = kl) = c−1

n

(
l∏

j=1

a
(j)
kj

)
IP

(
n∑

j=l+1

jZj = n − Ml

)
=

(
l∏

j=1

ã
(j)
kj

)
T̃

(l)
n−Ml

c̃n
, (3.6)

where in the last step we have used the fact that

IP

(
n∑

j=l+1

jZj = n − Ml

)
= T

(l)
n−Ml

Ml∏
k=1

IP(Zn−Ml+k = 0)
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and the definitions (3.3), (3.4) and (3.5) of the “scaled” quantities. Note that in view of (3.1), T̃
(l)
n−Ml

is the
same for all k1, . . . , kl :

∑l
j=1 jkj = Ml.

Central to our subsequent study is the notion of smoothly growing real sequences RTρ, the definition of which
we adopt from [6,10].

Definition 3.2. RTρ, 0 ≤ ρ ≤ ∞ is the collection of sequences {dn}n≥1 of nonnegative numbers that satisfy

lim
n→∞

dn

dn+1
= ρ. (3.7)

Sequences in RTρ play a key role in Compton’s theory of logical limit laws and in additive number theory (for
references see [5, 6, 10]).

Now we are prepared to state our main result.

Theorem 3.3. The counting process {K(n), n ≥ 1} is convergent if and only if the following two conditions
hold:
(a) {c̃n}n≥0 ∈ RTρ, for some 0 ≤ ρ < ∞; and
(b) For each l ≥ 1 there exists a positive finite limit

q(l) = lim
n→∞

T̃
(l)
n

c̃n
· (3.8)

Moreover, counts of small components of a convergent random vector K(n) are asymptotically independent.

Proof. In view of (3.6), the counting process {K(n), n ≥ 1} is convergent if and only if the fraction on the RHS
of (3.6) has finite limits, as n → ∞ for all fixed Ml ≥ 0, l ≥ 1, while for any l ≥ 1 there exists an Ml ≥ 0, such
that

lim
n→∞

T̃
(l)
n−Ml

c̃n
> 0. (3.9)

We note that (3.9) secures that the limiting distribution is a probability measure. Next we write

T̃
(l)
n−Ml−1

c̃n
=

(
T̃

(l)
n−Ml−1

c̃n−1

)(
c̃n−1

c̃n

)
· (3.10)

We first prove the necessity of the conditions (a), (b) of the theorem. Assuming that {K(n), n ≥ 1} converges,
it follows from (3.6) that there exists a finite limit

lim
n→∞ IP(K(n)

1 = 0, . . . , K
(n)
l = 0) = lim

n→∞
T̃

(l)
n

c̃n
:= q(l) < ∞, l ≥ 1.

Consequently, (3.10), (3.9) and the preceding discussion imply that c̃n ∈ RTρ, for some 0 ≤ ρ < ∞ and we get
from (3.10)

lim
n→∞

T̃
(l)
n−Ml

c̃n
= q(l)ρMl , l ≥ 1, (3.11)

for all 0 ≤ Ml < ∞. From the latter and (3.9) we conclude that q(l) is positive. For the proof of sufficiency
we first apply (3.10) with Ml = 0 to conclude, by virtue of the conditions (a) and (b), that (3.11) holds with
Ml = 1, l ≥ 1 and so on, proving (3.11) for all Ml ≥ 0. As a result,

lim
n→∞ IP

(
K

(n)
1 = k1, . . . , K

(n)
l = kl

)
= q(l)

l∏
j=1

ã
(j)
kj

ρjkj , l ≥ 1, (3.12)
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by (3.6) and the definition of Ml. Since the sum over (k1, . . . , kl) ∈ Rl of the LHS of (3.12) is equal to 1, we
obtain the explicit expression for q(l):

q(l) =

(
l∏

j=1

S̃(j)(ρ)

)−1

, l ≥ 1, (3.13)

where we denoted S̃(j)(ρ) =
∑

k≥0 ã
(j)
kj

ρjkj , in accordance with (1.7). This shows that the limiting distribution

of the probability law L(K(n)
1 , . . . , K

(n)
l ) is the product probability measure

l∏
j=1

ã
(j)
kj

ρjkj

S̃(j)(ρ)
, l ≥ 1. (3.14)

�

Remark 3.4.

(i) Setting 00 = 1 and recalling that ã
(j)
0 = 1, j ≥ 1, it follows from (3.6) and (3.14) that in the case of a

convergent counting process with ρ = 0 in condition (a), the limit law of the random probability vector
(K(n)

1 , . . . , K
(n)
l ), l ≥ 1 is the measure concentrated at the singleton (0, . . . , 0) ∈ Rl. We also observe that

in this case q(l) = 1, l ≥ 1, in accordance with (3.12), while limn→∞
T̃

(l)
n−Ml

c̃n
= 0, l ≥ 1, for all Ml > 0;

(ii) condition (c) implies {T̃ (l)
n }n≥0 ∈ RTρ, for all l ≥ 1, with the same 0 ≤ ρ < ∞ as for the sequence {c̃n}n≥0.

This can be seen by writing
T̃

(l)
n

c̃n
=

(
T̃

(l)
n

T̃
(l)
n−1

)(
T̃

(l)
n−1

c̃n−1

)(
c̃n−1

c̃n

)
and then applying the fact that 0 < q(l) < ∞. Conversely, if (3.8) holds and {T̃ (l)

n }n≥0 ∈ RTρ, for some
l ≥ 1 and 0 ≤ ρ < ∞, then {c̃n}n≥0 ∈ RTρ, with the same ρ;

(iii) one can see from the proof of Theorem 3.3 that the condition q(l) > 0, l ≥ 1 which is a part of the condition
(c), ensures the tightness of the corresponding sequences of finite dimensional probability measures.

To formulate the forthcoming corollary, we need to extend the definition (1.5) of the tilting transformation to
the case ρ = 0, in the following natural way:

a
(j)
k (0) =

{
1, if k = 0
0, otherwise.

(3.15)

Corollary 3.5. Let K(n) be a convergent counting process, such that c̃n ∈ RTρ, for some 0 ≤ ρ < ∞. Then

lim
n→∞ IP(K(n)

1 = k1, . . . , K
(n)
l = kl) =

l∏
j=1

a
(j)
kj

(ρ), l ≥ 1, (3.16)

where a
(j)
kj

(ρ) are the generic probabilities a
(j)
kj

tilted with the above ρ.

Proof. By (3.8) and the definitions (1.5), (3.15) and (3.3), it follows from Theorem 3.3 that for a convergent
counting process,

lim
n→∞ IP(K(n)

1 = k1, . . . , K
(n)
l = kl) =

l∏
j=1

ã
(j)
kj

ρjk

S̃(j)(ρ)
=

l∏
j=1

a
(j)
kj

ρjk

S(j)(ρ)
=

l∏
j=1

a
(j)
kj

(ρ), l ≥ 1. �
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Remark 3.6.

(i) Corollary 3.5 says that asymptotic independence with the limit product measure composed of generic
probabilities a

(j)
kj

takes place only if {c̃n} ∈ RT1.

(ii) We denote by cn(θ) the quantity cn corresponding to the tilting of the probabilities a
(j)
k with θ ≥ 0 and

recall that a multiplicative measure μn is invariant under all possible tiltings of the probabilities with θ > 0.
By definitions (1.5) and (3.4) we then have

c̃n(θ) = θnc̃n, n ≥ 0,

where c̃n(θ) is the scaling of cn(θ). So, if {c̃n}n≥0,∈ RTρ, for some 0 ≤ ρ < ∞, then

{cn(θ)}n≥0 ∈ RT ρ
θ
.

This clarifies the following meaning of Corollary 3.5. Consider a convergent counting process such that
{c̃n}n≥0 ∈ RTρ, with some ρ > 0. Then the whole family of counting processes obtained by tilting the origi-
nal one with all possible θ > 0, has the same limit finite dimensional distributions as the counting process ob-
tained by tilting the original one with the ρ > 0, so that the corresponding quantity {c̃n(ρ), n ≥ 0} ∈ RT1.

4. Convergent and divergent random structures

We agree to call a RS convergent/divergent if the corresponding counting process converges/diverges in the
sense of Definition 3.1.

Assuming that condition (a) of Theorem 3.3 holds, our tool for verifying condition (b) for the models con-
sidered will be the remarkable Schur tauberian lemma cited below. With an obvious abuse of notation, we say
that a power series f(x) =

∑
n≥0 dnxn is in RTρ if {dn}n≥0 ∈ RTρ. We denote by * the Cauchy product, which

is extended to formal power series as usual (see [10]).

Lemma 4.1 (Schur, see [10], p. 62). Let f = f1 ∗ f2, where f, f1, f2 are power series with coefficients
dn, d

(1)
n , d

(2)
n , n ≥ 0, respectively,

such that:

(a) f1 ∈ RTρ for some 0 ≤ ρ < ∞; and
(b) the radius of convergence of f2 is greater than ρ.

Then
lim

n→∞
dn

d
(1)
n

= f2(ρ). (4.1)

Schur’s lemma is widely used in asymptotic enumeration and in the study of asymptotic densities of additive
number systems (see [10]). The proof of the lemma is quite simple (see [28], problem 178). In [35] a version of
Schur’s lemma for Dirichlet series was obtained, which allowed applications to multiplicative number theory.

We note the fact that, under the conditions of Schur’s lemma, f1 ∈ RTρ implies f ∈ RTρ. This can be seen
by writing

dn−1

dn
=

(
d
(1)
n−1

d
(1)
n

)(
dn−1

d
(1)
n−1

)(
d
(1)
n

dn

)
·

We now outline the scheme of application of Schur’s lemma to our specific setting. Treating S(j) in (1.7) as
the generating probability function of the random variable jZj (=of the sequence of probabilities {a(j)

k }) in the
conditioning relation (1.1), we have:

S(j)(x) =
∑
k≥0

a
(j)
k xkj .
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Clearly, the radius of convergence of S(j) is ≥ 1, for all j ≥ 1. Next, we denote S̃(j) = 1

a
(j)
0

S(j), g̃ =
∏

j≥1 S̃(j)

and g̃T̃ (l) =
∏

j≥l+1 S̃(j). Since ã
(j)
0 = 1, j ≥ 1, the above are the generating functions for the scaled sequences

{ã(j)
k }k≥0, {c̃n}n≥0 and {T̃ (l)

n }n≥0 respectively, as defined by (3.3)–(3.5). Finally, writing g̃(l) =
∏l

j=1 S̃(j), l ≥ 1
we have

g̃ = g̃T̃ (l) ∗ g̃(l) (4.2)

or, equivalently,

g̃T̃ (l) = g̃ ∗
(

1
g̃(l)

)
· (4.3)

Remark 4.2. We make here use of the representation (4.2) to show that condition (a) of Theorem 3.3 does
not imply even the existence of the limit (3.8) defining q(l), l ≥ 1. Let l = 1,

g̃(x) =
1

1 − x
, g̃(1)(x) = 1 + x, g̃T̃ (1)(x) =

1
1 − x2

, |x| < 1.

Then

c̃n = 1, n ≥ 1, T̃ (1)
n =

{
0, if n is odd
1, if n is even n ≥ 1,

which shows that the limn→∞
T̃ (1)

n

c̃n
does not exist. The scheme considered is realized by the following sequence

of random variables Zj , j ≥ 1 :

Z1 ∼ Bernoulli(1/2), Zj ∼ Po(aj), with aj =
{

0, if j is odd
2/j, if j is even.

Proposition 4.3 (sufficient condition of convergence/divergence). Let g̃ ∈ RTρ, 0 ≤ ρ < ∞ and let the radius

of convergence of the series 1
g̃(l) be greater than ρ, for all l ≥ 1. Then a RS converges if

(
g̃(l)(ρ)

)−1

> 0, l ≥ 1

and it diverges if
(
g̃(l)(ρ)

)−1

= 0, l ≥ 1.

Proof. Applying Schur’s lemma to (4.3), we get q(l) =
(
g̃(l)(ρ)

)−1

< ∞. By Theorem 3.3 this implies the
claim. �

Remark 4.4. The example in Remark 4.2 demonstrates the importance of the second condition of Proposi-
tion 4.3. In fact, in the model considered g̃ ∈ RT1 and

(
g̃(1)(1)

)−1
> 0. However the RS diverges, since the

radius of convergence of
(
g̃(1)(x)

)−1 = 1
1+x equals to 1.

Proposition 4.3 allows to suggest the following two-step strategy for deciding about convergence/divergence
of RS’s.

(i) Validation of the condition g̃ ∈ RTρ for some 0 ≤ ρ < ∞. Our treatment of the problem is based
on application of known sufficient conditions on sequences {mj}j≥1 that guarantee the RTρ property for the
induced sequences {c̃n} n≥0. The conditions we employ are the products of two quite different lines of research:

– Burris–Bell theory [5, 6] of RTρ sequences, developed with the help of analytical tools stemming from
Tauberian theory. Motivation of this research came from Compton’s (1980s) theory of logical limit laws
and also from the additive number system theory;
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– Sufficient conditions for g̃ ∈ RTρ implied by asymptotic formulae for the number of decomposable structures,
in particular recent results by Barbour, Freiman, Stark and the author, derived with the help of probabilistic
methods.

Each one of the two approaches has its particular limitations, some of which are noted later on in this Section.
In this connection we observe that there is little hope to obtain plausible necessary conditions on {mj}j≥1

implied by the RTρ property of g̃.

(ii) Validation of the condition (b) of Schur’s lemma for the functions (g̃(l))−1, l ≥ 1. Provided the condition
holds, the conclusion regarding convergence/divergence is based on the claim of
Proposition 4.3.

Following the aforementioned strategy, we examine now the convergence of counting processes for the three
basic types of RS’s: assemblies, multisets and selections, described in Section 1. Furthermore, the results obtained
explain the crucial difference in the asymptotic behaviour of mean-field and non mean-field CFP’s associated
with the above structures.

First, following [4] we will say that a RS is regularly varying in case it is induced by random variables
Zj , j ≥ 1 in (1.1), with

IEZj ∼ const. yjjα, α ∈ IR, y > 0, j → ∞. (4.4)

Since the asymptotic behaviour of regularly varying RS’s appears to be in accordance with the behaviour of the
series

∑∞
j=1 jα (see [3, 4, 18, 22]), it was suggested in [4] to distinguish the following three classes of regularly

varying structures: logarithmic (α = −1), convergent (α < −1) and expansive (α > −1). (It goes without saying
that in this classification, the meaning of a convergent structure is different from the one in the present paper).
As in [18], we extend the above definition of expansive structures to include random structures with IEZj , j ≥ 1
oscillating (in j) between two regularly varying functions, namely

(IEZj, j ≥ 1) ∈ F(r1, r2; y) := {f = f(j) : γ1y
jjr1−1 ≤ f(j) ≤ γ2y

jjr2−1, j ≥ 1, y > 0},
where γi, i = 1, 2 are positive constants and 0 < r1 ≤ r2. (The requirement r1, r2 > 0 is the characteristic
feature of the expansive case).

Assemblies. Let Zj ∼ Po(aj), aj > 0, j ≥ 1. In this case,

ã
(j)
kj

=
a

kj

j

kj !
, S̃(j)(x) = exp (ajx

j), j ≥ 1

and

g̃(x) = exp

⎛⎝∑
j≥1

ajx
j

⎞⎠ , g̃(l)(x) = exp

⎛⎝ l∑
j=1

ajx
j

⎞⎠ , l ≥ 1, IEZj = aj , j ≥ 1.

Thus, the radius of convergence of 1
g̃(l) equals ∞ for all finite l ≥ 1. Consequently, assuming g̃ ∈ RTρ, 0 ≤ ρ < ∞,

we have
(
g̃(l)(ρ)

)−1

(ρ) > 0. By virtue of Theorem 3.3, the latter leads to the following

Proposition 4.5. An assembly converges if and only if the sequence {aj}j≥1 is such that g̃ ∈ RTρ, for some
0 ≤ ρ < ∞.

Corollary 4.6. Assemblies with the following parameter functions a = {aj, j ≥ 1} are convergent:

(i) Smoothly growing: a ∈ RTρ, 0 < ρ < ∞;
(ii) Oscillating: a ∈ F(2r

3 + ε, r; y), where r, y > 0, while 0 < ε ≤ r
3 .
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Proof. (i) follows from the important Corollary 4.3 in [6], which says that a ∈ RTρ, 0 < ρ < ∞ implies g̃ ∈ RTρ,
with the same ρ. For the proof of (ii), we derive from the asymptotic formula (4.99) in [18] that for the oscillating
assembly with y = 1, we have g̃ ∈ RT1. Hence, it is left to apply (ii) of Remark 3.6 with θ = y. �

Note that the restriction on ε in the part (ii) of the last corollary determines a bound on the “size” of
oscillation of the function IEZj = aj , j ≥ 1 that ensures the RTρ property for g̃.

Examples. In combinatorics (see Tab. 2.2 in [3]), many assemblies, e.g. permutations (aj = 1
j ), Ewens sam-

pling formula (aj = θ
j , θ > 0), forests of labeled rooted trees (aj = jj−1

j! ∼ const. ejj−
3
2 ), etc. are regularly

varying, which says that in all these cases a ∈ RT 1
y
, y > 0, where y is as in the definition (4.4) of a regularly

varying structure. In statistical mechanics, regularly varying assemblies with y = 1 and α > 0 are called gener-
alized Maxwell−Boltzman statistics [31]. By virtue of the condition (i) of Corollary 4.6, all the aforementioned
assemblies converge.

Based on Proposition 4.5, we give now two examples of divergent assemblies. Firstly, set partitions (aj =
(j!)−1, j ≥ 1) diverges, since in this case g̃(x) = eex−1, so that the radius of convergence of g̃ is infinity. In
this connection note that the following sufficient condition for the RT∞ property of g̃ was recently established
in [11]: if the parameter function a is such that gcd{j : aj > 0} = 1 and aj = O(jθj/j!), 0 < θ < 1, j → ∞,
then g̃ ∈ RT∞, which means that the induced assembly diverges.

For our second example we construct a divergent assembly with g̃ that does not belong to any class RTρ, 0 ≤
ρ ≤ ∞. It is clear that the corresponding sequence {aj}j≥1 should exhibit a wild behavior. We set

aj =

{
j−1, if j ≥ 1 is odd,

j−1 + 2j+1j−1, if j ≥ 2 is even.

We then have

g̃(x) =

(
1

1 − x

)
∗
(

1
1 − 4x2

)
,

which by the Cauchy product formula gives

c̃n =
[n/2]∑
k=0

4k =
41+[n/2] − 1

3
, n ≥ 1.

Consequently,

lim
n→∞

c̃2n−1

c̃2n
= 1/4

lim
n→∞

c̃2n

c̃2n+1
= 1.

Finally, note that for graphs on n vertices, c̃n = 2(
n
2)

n! , so that c̃n ∈ RT0 and by (i) of Remark 3.4, for any l ≥ 1
the limit measure is concentrated on the singleton (0, . . . , 0) ∈ IRl, l ≥ 1.

We shift now to considering reversible CFP’s related to assemblies. In this case the ratio of the net transitions
(1.10) has the following form:

q(η; i, j) = V (ki, kj , ki+j)

⎧⎨⎩
ai+j

aiaj
, if i 
= j : kikj > 0

a2i

a2
i
, if i = j : ki ≥ 2,

(4.5)

where

V (ki, kj , ki+j) =

⎧⎨⎩
kikj

ki+j+1 , if i 
= j : kikj > 0
ki(ki−1)

k2i+1 , if i = j : ki ≥ 2.
(4.6)
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As we explained in Section 1, such ratios correspond to reversible mean-field CFP’s with net transition rates
of coagulation and fragmentation as given by (1.11), (1.12) and the equilibrium measure μn defined by (1.4)
with Zj ∼ Po(aj), j ≥ 1. Consequently, the preceding discussion reveals that amongst mean-field CFP’s both
convergent and divergent models exist, depending on the sequence of parameters {aj}∞1 .

Multisets. Assuming Zj ∼ NB(mj , p
j), 0 < p < 1, mj ≥ 1, j ≥ 1, we have

a
(j)
k = (1 − pj)mj

(
mj + k − 1

k

)
pjk, k ≥ 0,

where p is a free parameter. This gives

ã
(j)
k =

(
mj + k − 1

k

)
pjk, S̃(j)(x) = (1 − (px)j)−mj , |xp| < 1,

which leads to the Euler type generating function

g̃(x) =
∏
j≥1

(
1 − (px)j

)−mj
, |x| < p−1. (4.7)

Clearly, the radius of convergence of g̃(x) is no greater than p−1. Moreover, it is known (see e.g. [10],
Lem. 1.15) that g̃ converges at some point x : |xp| < 1 if and only if the sequence {mj}∞1 is such that
limj→∞

(
1 − (px)j

)−mj = 1. Next, in (4.3) the function

1
g̃(l)(x)

=
l∏

j=1

(
1 − (px)j

)mj
> 0, for all |x| < p−1, l ≥ 1.

Proposition 4.7. A multiset is convergent if and only if g̃ ∈ RTρ, for some ρ < p−1.

Proof. In the case g̃ ∈ RTp−1 , we have 1
g̃(l)(p−1)

= 0, l ≥ 1, which implies divergence. If now g̃ ∈ RTρ with
0 ≤ ρ < p−1, then a multiset converges, by Proposition 4.3. �
Corollary 4.8. Multisets with the following parameter functions m = {mj, j ≥ 1} are divergent:

(i) m ∈ RT1;
(ii) mj = O(jα), for some α ∈ R;
(iii) m ∈ F(2r

3 + ε, r; 1), 0 < ε ≤ r
3 , r > 0, The aforementioned convergence/divergence hold under any

0 < p < 1.

whereas multisets with parameter functions (iv)–(vi) below converge:

(iv) m ∈ RTρ, for some 0 < ρ < 1;
(v) m ∈ F(2r

3 + ε, r; y), 0 < ε ≤ r
3 , y > 1, r > 0;

(vi) mj 
 yjj−1, y > 1.

Proof. Each one of the conditions (i)–(v) is sufficient for g̃ ∈ RTρ with a corresponding ρ. Namely, the conditions
(i) and (iv) are due to Bell−Burris Theorems 6.1 and 6.2 of [6], which state that if m ∈ RTρ, for some 0 < ρ ≤ 1,
then g̃(p−1x) ∈ RTρ with the same ρ, so that g̃(x) ∈ RTρp−1 . (Note that in Thm. 6.1 in [6], condition (c) is
required only for the second part of the claim). Condition (ii) provides g̃(p−1x) ∈ RT1, by the powerful result of
Bell [5] that generalizes the Bateman and Erdös theorem. So, under this condition, g̃(x) ∈ RTp−1 . Conditions (iii)
and (v) result from Corollary 2 of [22] for expansive multisets, which says that in both cases g̃(p−1x) ∈ RTy−1,
which is equivalent to g̃(x) ∈ RTy−1p−1 , with y ≥ 1. Regarding the condition (vi), we firstly recall that aj 
 bj

means that the ratio aj

bj
, j ≥ 1 is bounded above and below by positive constants. The sufficiency of the

condition (vi) for g̃ ∈ RTy−1p−1 , y > 1 was proven by Stark in [30],which is devoted to logical limit laws for
logarithmic multisets. �
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Examples. Integer partitions (mj = 1, j ≥ 1), planar partitions (mj = j, j ≥ 1) (see [1]) and generalized
Bose−Einstein statistics (mj = jα, α > 0) diverge, since in all these cases m ∈ RT1. The following logarithmic
multisets (see [3]) with m ∈ RTρ, ρ < 1 converge: mapping patterns (mj ∼ ρ−j

2j , ρ < 1, j ≥ 1), monic

polynomials over GF (q), q > 1 (mj ∼ qj

j ). Also, forests of unlabeled, unrooted (mj ∼ const. ρ−jj−5/2, ρ < 1)
and rooted (mj ∼ const. b−jj−3/2, b < 1) trees converge.

Remark 4.9. There is a formal linkage between assemblies and multisets, expressed as follows. In the case of
assemblies the generating function g̃ is of the exponential form: g̃(x) = eQ(x), where Q(x) =

∑
j≥1 ajx

j , with
aj ≥ 0, j ≥ 1. For multisets, the Euler type generating function g̃ in (4.7), can be written in the same form, with
the function Q∗called the star transformation (see [5,6]) of the generic generating function Q(x) =

∑
j≥1 mjp

jxj

of the sequence {mj}j≥1:

Q∗(x) =
∑
j≥1

m∗
jx

j , m∗
j =

∑
lk=j

mlp
l

k
, j ≥ 1, m∗

0 = 0. (4.8)

Thus, m∗
j ≥ 0, j ≥ 1, which is a basic assumption in the theory of RTρ sequences. It was proven in [6] that if

{mjp
j}j≥1 ∈ RTρ, with some 0 < ρ < 1, then m∗

j ∼ mjp
j , j → ∞, which means that in this case the multiset

behaves asymptotically as the assembly induced by Zj ∼ Po(mjp
j), j ≥ 1. This fact explains the nature of the

condition (iv) in Corollary 4.8.

Regarding the CFP’s associated with multisets, (1.10) becomes:

q(η; i, j) = V (ki, kj , ki+j)

⎧⎨⎩
mi+j+ki+j

(mi+ki−1)(mj+kj−1) , if i 
= j : kikj > 0
m2i+k2i

(mi+ki−1)(mi+ki−2) , if i = j : ki ≥ 2,
(4.9)

where V (ki, kj , ki+j) is as in (4.5). The second factor in (4.9) depends both on η = (k1, . . . , kn) and the
parameters mj , j ≥ 1 of the CFP, so that the representation (1.11) does not hold, which says that the process
is not a mean-field model. To illustrate this fact, recall that in a particular case of the BE model (mj = 1, j ≥ 1)
we saw in Section 1 that the corresponding μn is the uniform measure on Ωn, so that we have from (4.9)

q(η; i, j) = 1, η ∈ Ωn, i, j ≥ 1, i + j ≤ n.

Selections. In this case Zj ∼ Bi( pj

1+pj ; mj), mj ≥ O(1), j → ∞ and 0 < p ≤ 1. Hence,

ã
(j)
k =

(
mj

k

)
pjk,

g̃(x) =
∏
j≥1

(
1 + (px)j

)mj
.

So, similar to the the case of multisets, g̃ converges at some point x : |xp| < 1 if and only if the sequence {mj}∞1
is such that limj→∞

(
1 + (px)j

)mj = 1, which is equivalent to

lim
j→∞

(px)jmj = 0. (4.10)

Clearly, the radius of convergence, say ρ, of g̃ is ≤ p−1, for any nonnegative sequence {mj}j≥1. Moreover,
the condition implies that ρ > 0 for all 0 < p ≤ 1 if and only if a selection is expansive (see [4, 22]), i.e.
mj = O(jα), α > 0. A majority of practical selections are expansive.
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Proposition 4.10. Selections with radius of convergence 0 ≤ ρ < p−1 converge if and only if the sequence
{mj}j≥1 is such that g̃ ∈ RTρ. All expansive selections converge.

Proof. In the case of selections, the radius of convergence of the functions

(
g̃(l)(x)

)−1

=
l∏

j=1

(
1 + (px)j

)−mj
, l ≥ 1

is equal to p−1, for all mj ≥ 0, j = 1, . . . , l, while 1
g̃(l)(x)

> 0, |x| < p−1. Consequently, if g̃ ∈ RTρ with ρ < p−1,

then convergence holds by Proposition 4.3. However, if ρ = p−1 the second condition of Proposition 4.3 fails,
which requires to employ an argument specific for expansive selections. In this latter case c̃n → ∞ according to
the asymptotic formula derived in [22]. The formula also says that for expansive selections, g̃ ∈ RTp−1 . Moreover,
following the proof of the formula in [22] it is easy to see that also g̃T̃ (l) ∈ RTp−1 . Writing g̃(x) = (1+px)m1 g̃T̃ (1) ,
we get

c̃n =
∑
k≥0

(
m1

k

)
pkT̃

(1)
n−k, n = 1, 2, . . .

With the help of the aforementioned properties of the sequences {c̃n} and {T̃ (1)
n } we are now able to write:

lim
n→∞

c̃n

T̃
(1)
n

= 2m1 = g̃T̃ (l)(p−1) =
(
q(1)
)−1

.

In an analogous way we get q(l) =
∏l

j=1 2−mj =
(
g̃T̃ (l)(p−1)

)−1

, l ≥ 1. �

For selections, conditions of Bell−Burris type on {mj}j≥1, providing g̃ ∈ RTρ are not known. This is due to
the fact that for selections the star transformation, as defined by (4.8), does not ensure the nonnegativity of
m∗

j , j ≥ 1. However, the probabilistic method for enumeration of decomposable structures works in the case
of selections also. It follows from Theorem 5 in [22], obtained by implementing the method that for expansive
selections, m ∈ F(2r

3 + ε, r; y), r, y > 0, implies that g̃ ∈ RTρ, with ρ = (yp)−1. By our Proposition 4.7, this
provides convergence of the corresponding selections, if y ≥ 1, under any 0 < p < 1. As a result, we derive
the convergence of the following expansive selections: integer partitions into distinct parts (mj = 1, j ≥ 1)
and generalized Fermi statistics (mj = jα, α > 0). In this connection it is in order to note that multisets and
selections with mj ≡ 1 induce uniform measures μn on the set of integer partitions of n and on the set of integer
partitions of n into distinct parts, respectively. In the first case the random structure diverges, whereas in the
second case convergence to a Bernoulli product measure holds.

For the associated CFP’s we obtain from (1.10)

q(η; i, j) = V (ki, kj , ki+j)

⎧⎨⎩
mi+j−ki+j+1

(mi−ki−1)(mj−kj−1) , if i 
= j : kikj > 0, 0 ≤ ki ≤ mi

m2i−k2i

(mi−ki+1)(mi−ki+2) , if i = j : 2 ≤ ki ≤ mi.
(4.11)

This shows that, as in the case of multisets, the above CFP’s are not mean field models.

5. Concluding remarks and history

Generally speaking, the phenomenon of asymptotic independence of a finite number of small groups of
particles in large random systems (i.e. systems formed of a large number of randomly interacting particles) was
observed in different fields of applications, under various mathematical settings. The assumption of asymptotic
independence, sometimes accepted without proof, was of great help for the study of the probabilistic models
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considered. Not pretending to provide a comprehensive survey of the subject, we point out below a few settings
parallel (in some sense) to the one in the present paper.

(i) The Gibbs conditioning principle (see [12, 13, 15]). In the context of an ideal gas model, the simplest
version of the principle in the title reads as follows. Let X1, X2, . . . be independent and identically distributed
random variables viewed as energies of individual particles, so that X1 + . . .+Xn is the total energy of a system
of n particles. Let IEX1 = 1 and assume some suitable regularity conditions on a common probability law P of
the sequence of random variables. Then, for a fixed k ≥ 1 the distribution law Λk,n of (X1, . . . , Xk) conditioned
on X1 + . . .Xn = n converges weakly, as n → ∞ to the k-fold product law P k. In statistical physics the law Λk,n

is called a microcanonical distribution, and the gibbs conditional principle asserts asymptotic independence of
energies of any finite number of particles in microcanonical ensembles. Formulated in the beginning of the 20th
century, the principle has been extended and refined in different directions, with particular attention being paid
to the rate of convergence to limit distributions.

To distinguish from the conditioning relation (1.1), the measure Λk,n is defined on the simplex. This fact
implies that the Cauchy product relationship (4.2) for generating functions, which is basic for the study of
multiplicative measures μn, is not valid in this case. However, we believe that the interplay between the above
two settings deserves further study. Quite independently, the distribution Λk,n, with k = n and discrete and
not necessary identically distributed random variables X1, X2, . . . was introduced by Kolchin [26] to represent
the distributions of cell counts in combinatorial urn schemes. In [26] the representation is called the generalized
scheme of allocation, whereas in [7,27], it is named the Kolchin representation formula. We note that the problem
of asymptotic independence is not addressed in [26].

(ii) Random combinatorial structures. In the theory of random structures, the asymptotic independence
of counts of small components was discussed in numerous papers, starting from the 1940’s. A general set up
leading to asymptotic estimation of the total variation distance between component spectra of small counts
(as defined by the conditioning relation (1.1)) and the independent process was developed by Arratia and
Tavaré in their seminal paper [2] (see also [3,20,26]). As a result, asymptotic independence was established for
logarithmic random structures with y = 1 in (4.4). In [4], the same was proven for regularly varying convergent
(α < −1) structures and in [18] the asymptotic independence was proven for expansive assemblies with any
y > 0. Regarding assemblies, multisets and expansive selections, the aforementioned results easily follow from our
results in Section 4. In fact, recall that for assemblies IEZj = aj , j ≥ 1, for multisets IEZj = mjpj

1−pj , j ≥ 1, 0 < p < 1

and for selections IEZj = mjpj

1+pj , j ≥ 1, 0 < p < 1. By the definition (4.4) of a regularly varying RS with parameters
y > 0, α ∈ IR we thereby conclude that the following facts hold.
– For assemblies: a = {aj, j ≥ 1} ∈ RTy−1, y > 0, for all α ∈ IR, which implies convergence by condition (i)

of Corollary 4.6;
– for multisets: m = {mj, j ≥ 1} ∈ RTy−1p, 0 < p < 1, for all α ∈ R. This implies convergence if y ≥ 1, by

the condition (iv) of Corollary 4.8. Note that in the case y = p, a regularly varying multiset diverges for all
α ∈ IR, by condition (i) of Corollary 4.8;

– for selections: mj ∼ const. jα(yp−1)j , j ≥ 1. By the discussion following Proposition 4.7, this provides
convergence for all α > 0 and y ≥ 1.

In this connection, we mention that to our knowledge no examples of RS’s for which the independence
principles fails were given in the literature, prior to this paper.

Our results reveal also a basic difference between pictures of asymptotic clustering of components in con-
vergent RS’s and in regularly varying divergent multisets. Namely, in the case of a convergent RS with ρ 
= 0,
Corollary 3.5 tells us that with a positive limit probability there are components of any fixed sizes, i.e.

lim
n→∞ IP(K(n)

1 = k1, . . . , K
(n)
l = kl) > 0, k1, . . . , kl ≥ 0, l ≥ 1.

On the other hand, if a regularly varying multiset diverges, then q(l) = 0, l ≥ 1, by Proposition 4.5, from which
it follows that limn→∞ IP(K(n)

j = kj) = 0, for all finite kj ≥ 0, j ≥ 1.



548 B.L. GRANOVSKY

(iii) CFP’s. It is common to trace the beginning of rigorous mathematical models of coagulation-fragmentation
back to the paper by Smoluchowski (1918) where the famous system of coagulation equations describing the
time evolution of the process was derived. Already in this paper the assumption of independence (more precisely,
the absence of correlations) of clusters of small sizes was adopted. Subsequently, deterministic and stochastic
versions of the model were studied in numerous papers in probability and various applied fields. The study of
reversible CFP’s was concentrated on what we call in the present paper mean-field CFP’s (see [25,33]). (Recall
that these models conform to assemblies). In [14] the model was treated as a reversible Markov chain on the set
of partitions and it was proven (Thm. 4, (4.24)) that, if g̃ ∈ RTρ, 0 ≤ ρ < ∞, then at the equilibrium of the
process,

cov(K(n)
l , K(n)

m ) → 0, n → ∞,

for any fixed l 
= m. This is, of course, a weak form of our Proposition 4.5. More details on the history of CFP’s
can be found in [18, 19].

(iv) Convergence of scaled counting processes.
In the setting of the present paper, as well as in the all above mentioned settings, the convergence of generic
(=nonscaled) counting processes was studied. Our Theorem 3.3 asserts that a generic spectrum either converges
(in distribution) to a distribution with independent components, or diverges. If the first option is the case, then
the simple discrete limiting process provides approximation of the discrete generic one. In some (but not all!)
cases of RS’s it is possible to find a proper scaling that secures convergence. The disadvantage of approximation
in this latter case is that the limiting process is no longer lies in N . Some examples of scaling of logarithmic
RS’s are presented e.g. in [3]. A key role here is played by Poisson−Dirichlet distribution on a simplex as a
limit of a scaled Ewens sampling formula. In [17], it was proven a general result from which follows (Cor. 3.1
there) that nondegenerate limiting distributions are possible for convergent and logarithmic RS’s only. In the
case of expansive RS’s the limiting distribution of a properly scaled counting process is known to be a curve
called a limit shape of a random Young diagram (for the history of limit shapes see the recent papers [17, 34].
Yakubovich [34] established general conditions for the existence of limit shapes for scaled multiplicative measures
that encompass known results on limit shapes for regularly varying RS’s.
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