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GOODNESS-OF-FIT TESTS IN LONG-RANGE DEPENDENT PROCESSES
UNDER FIXED ALTERNATIVES
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Abstract. In a recent paper Fay and Philippe [ESAIM: PS 6 (2002) 239–258] proposed a goodness-of-
fit test for long-range dependent processes which uses the logarithmic contrast as information measure.
These authors established asymptotic normality under the null hypothesis and local alternatives. In
the present note we extend these results and show that the corresponding test statistic is also normally
distributed under fixed alternatives.
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1. Introduction

Nowadays long-range dependent processes represent a well accepted class of stochastic processes for mod-
elling real phenomena in such diverse areas as hydrology, behaviour research, network traffic or finance
(see [15, 17, 20, 21] among many others). Many inference methods assume that the specific form of the spec-
trum is known except for a finite dimensional parameter. Therefore results of the statistical analysis depend
sensitively on these assumptions, and the conclusions from the data may be misleading if these assumptions are
violated. For this reason several authors have pointed out the importance of being able to check the goodness-
of-fit of a specific model assumption in long-range dependent processes. Beran [2] proposed a method for testing
how well a specified model, such as a fractional Gaussian noise, fits the data. His results were extended by Deo
and Chen [7] who investigated an integral of the squared periodogram. Recently Chen and Deo [4] suggested
a generalized Portmanteau test based on the discrete spectral average estimator and obtained the asymptotic
null distribution for Gaussian long-memory time series. While most of the tests proposed by these authors are
based on the estimation of the L2 distance between the unknown spectral density and the best approximation
by the parametric class, Fay and Philippe [12] proposed to measure the distance between two spectral densities
f1, f2 by a modified Kullback–Leibler information

S(f1, f2) = log
∫ π

−π

f1(λ)
f2(λ)

dλ
2π

−
∫ π

−π

log
f1(λ)
f2(λ)

dλ
2π

· (1.1)

It was pointed out by Mokkadem [18] that the distance (1.1) is more adapted to derive useful tests than
L2-distances. Fay and Philippe [12] replaced f1 by a pooled and tapered periodogram and f2 by a parametric
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estimate of the spectral density and established the asymptotic normality of a corresponding test statistic under
the null hypothesis and local alternatives.

As pointed out by Chen and Deo [4], most theoretical results in the context of goodness-of-fit testing address
the asymptotic behaviour of a test statistic under the null hypothesis, and an additional question of interest is
the power property of the corresponding test when the null hypothesis is actually not satisfied. This problem
requires asymptotic inference under the alternative and has found considerable interest in the context of classical
regression analysis (see [8] or [9] among others). Dette and Spreckelsen [11] investigated the asymptotic properties
of an L2-test proposed by Paparoditis [19] for the parametric form of the spectral density in stationary short-
range dependent processes, but less results are available for goodness-of-fit tests in long range dependence
processes.

The present paper is devoted to the asymptotic analysis of the test statistic proposed by Fay and Philippe [12]
under fixed alternatives. In Section 2 we introduce the necessary notations and assumptions and review the
results of Fay and Philippe [12]. Section 3 presents our main results which show that the test statistic proposed
by Fay and Philippe [12] is also asymptotically normally distributed under fixed alternatives. We state a general
result which contains the situation of a “true” null hypothesis as a special case and also discuss potential
applications of our results. Finally, for the sake of a transparent presentation, some technical details are deferred
to an appendix in Section 4.

2. Preliminaries

Throughout this paper let X = (Xt)t∈Z denote a stationary Gaussian process. Following Fay and Philippe [12]
we represent the spectral density f of the process (Xt)t∈Z as

f(λ) = σ2|1 − eiλ|−2d1f∗(λ); λ ∈ [−π, π], (2.1)

where d1 ∈ [0, 1/2) and f∗ is a twice continuously differentiable function defined on the interval [−π, π] and
bounded away from zero. We are interested in the problem of testing for a specific parametric form of the
spectral density of the process (Xt)t∈Z, that is

H0 : f ∈ F0 =
{
f(λ) = σ2|1 − eiλ|−2dg∗(λ; θ)

∣∣∣ (d, θ) ∈ D ×Θ, σ2 > 0, g∗ ∈ G
}
. (2.2)

Here D is a compact subset of the interval [0, 1/2), Θ ⊂ R
l denotes a compact set (l ∈ N) and G is the set of

positive and symmetric functions defined on the interval [−π, π] satisfying
∫ π

−π log g∗(x; θ)dx = 0. For a given
g∗ ∈ G we define g(λ; d, θ) = |1 − eiλ|−2dg∗(λ; θ). Fay and Philippe [12] proposed to measure deviations from
the null hypothesis (2.2) by

inf
d∈D,θ∈Θ

S(f, f(·, d, θ)) = inf
d∈D,θ∈Θ

{
log

∫ π

−π

f(λ)
f(λ, d, θ)

dλ
2π

−
∫ π

−π

log
f(λ)

f(λ, d, θ)
dλ
2π

}
· (2.3)

Note that the information measure in (2.3) is always nonnegative and that the null hypothesis is satisfied if and
only if the expression in (2.3) vanishes. The logarithmic contrast has been used before by Mokkadem [18] and
Dette and Spreckelsen [11] for testing hypotheses in ARMA processes. In order to estimate the minimal distance
Fay and Philippe [12] proposed to consider a tapered Fourier transform of the series {X1, . . . , Xn} that is

d
(p)
n,k =

1√
2πn

n∑
t=1

w
(p)
n,tXteiλkt; k = 1, . . . , n

where λk = 2πk/n are the Fourier frequencies, w(p)
n,t =

(
2p
p

)− 1
2
(
1 − ei 2πt

n

)p; t = 1, . . . , n is the data taper and

p ∈ N0 denotes the order of the taper (note that p = 0 yields w(0)
n,t = 1, t = 1, . . . , n). These quantities are used
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to define a pooled periodogram by

I
X

n,k :=
1
m

(m+p)k−p∑
j=(m+p)(k−1)+1

∣∣∣d(p)
n,j

∣∣∣2 ; k = 1, . . . ,Kn.

Note that the interval [0, π] is decomposed inKn = � n−1
2(m+p)� intervals of the form [λ(k−1)(m+p), λk(m+p)] (m ∈ N)

and that the center of the kth interval is given by xk := (m + p)2π
n

(
k − 1

2

)
. Fay and Philippe [12] introduced

the discretized version of the term Sn in (2.3), i.e.

Sn

(
I

X

n , g(·; d, θ)
)

= log

(
1
Kn

Kn∑
k=1

I
X

n,k

g(xk; d, θ)

)
− 1
Kn

Kn∑
k=1

log

(
I

X

n,k

g(xk; d, θ)

)
+ γm,p

where the constant γm,p is defined by γm,p = E
[
log 2πI

Z

n,k

]
and I

Z

n,k denotes the pooled and tapered periodogram
of a Gaussian white noise process (Zt)t∈Z. Note that γm,p is a centering constant, such that the expectation
under the null hypothesis vanishes asymptotically. For the cases

(1) d0 = 0, m ≥ 5 and p = 0 or p = 1 (2) d0 > 0, m ≥ 5 and p = 1.

Fay and Philippe [12] proved that under the null hypothesis, i.e. f(λ) = g(λ, d0, θ0) for some (d0, θ0) ∈ D × Θ

and certain assumptions of regularity (see Sect. 3 for details), the statistic
√
KnSn(I

X

n , g(·; d̂n, θ̂n)) converges
weakly to a centered normal distribution with variance τ2

0 := Var(2πI
Z

n,k − log(2πI
Z

n,k)), where (d̂n, θ̂n) is any√
n-consistent estimator of the “true” parameter (d0, θ0).
For a discussion of the quantities γm,p and τ2

0 we refer to Hurvich et al. [16]. Note that Fay and Philippe [12] did
not assume a Gaussian stationary process, but considered a linear representation of the formXt = σ

∑
j∈Z

ajZt−j

with general white noise process (Zt)t∈Z satisfying several assumptions regarding the characteristic function
E[exp(iZt)]. In this case there appears an additional constant in the asymptotic variance depending on the
fourth cumulant of the white noise process. In the following section we will study the asymptotic properties of
the statistic Sn under the assumption of a Gaussian stationary process if the null hypothesis is not satisfied.

3. Weak convergence under fixed alternatives

If the null hypothesis is not satisfied, then the minimum distance in (2.3) is positive. Throughout this paper
we assume that there exists a unique pair (d0, θ0) ∈ (D ×Θ)0 such that

inf
(d,θ)∈D×Θ

S(f, g(·; d, θ)) = S(f, g(·; d0, θ0)),

where C0 denotes the interior of the set C ⊂ R
l+1 and D in (2.2) is defined by D = [δ, 1/2 − δ] for some

0 < δ < 1/4. We further assume that the set Θ is additionally convex (see [5]). Note that (d0, θ0) is the
parameter corresponding to the best approximation of the spectral density f by densities of the class F0.
Throughout this paper let (d̂n, θ̂n) denote a Whittle type estimate [22] which is defined as the minimizer of the
objective function

Qn(d, θ) =
π

Kn

Kn∑
j=1

I
x

n,j

g(xj ; d, θ)
(3.1)

where xj is defined in Section 2. In the case where the model is correctly specified, the asymptotic behaviour of
the maximum likelihood estimator was investigated by Dahlhaus [6]. The Whittle estimator was investigated by
Fox and Taqqu [13] and Giraitis and Surgailis [14] for Gaussian and linear processes, respectively. Recently, Chen
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and Deo [5] derived the asymptotic properties of an estimator minimizing an approximation to the negative of the
exact Gaussian likelihood [22] in the case of misspecified long-range dependent processes. Note that in contrast
to these results, the objective function considered in (3.1) is based on the tapered and pooled periodogram in
this definition, while Chen and Deo [5] considered the “classical” periodogram in the objective function (3.1).
A careful inspection of the proofs in this reference shows that the main results, in particular Theorem 2 and
Lemma 2 of Chen and Deo [5], remain valid in this case. It is also notable that the asymptotic properties – in
particular the rate of convergence – depend sensitively on the distance d1 − d0. If d1 − d0 ≤ 1/4 the estimator√
n((d̂n, θ̂n) − (d0, θ0)) is asymptotically normal distributed, while in the case d1 − d0 > 1/4 the difference

converges in distribution with a different rate to a non-Gaussian limit. In particular, the rate of convergence
can be arbitrarily small in this case. In our main result we specify the asymptotic behaviour of the test statistic
proposed by Fay and Philippe [12] in the case of a misspecified model. For this purpose we define by

D(d0, θ0) := log
(

1
π

∫ π

0

f(x)
g(x; d0, θ0)

dx
)
− 1
π

∫ π

0

log
(

f(x)
g(x; d0, θ0)

)
dx (3.2)

as the minimal distance between the true spectral density f and the parametric class defined in (2.2) with
respect to the logarithmic contrast. Note that the null hypothesis (2.2) is satisfied if and only if D(d0, θ0) = 0.
Theorem 3.1. Let (Xt)t∈Z be a stationary Gaussian process with spectral density given by (2.1), d1 ∈ (0, 1/2),
p = 1, m ≥ 4, d1 − d0 < 1/4, and assume that the following conditions are satisfied:

(A1) g∗(λ; θ) is three times continuously differentiable;
(A2) infθ infλ g

∗(λ; θ) > 0, supθ supλ g
∗(λ; θ) <∞;

(A3) supλ supθ

∣∣∣∂g∗(λ;θ)
∂θi

∣∣∣ <∞; 1 ≤ i ≤ l;

(A4) supλ supθ

∣∣∣∂2g∗(λ;θ)
∂θi∂θj

∣∣∣ <∞, supλ supθ

∣∣∣∂2g∗(λ;θ)
∂θi∂λ

∣∣∣ <∞; 1 ≤ i, j ≤ l;

(A5) supλ supθ

∣∣∣ ∂3g∗(λ;θ)
∂θi∂θj∂θk

∣∣∣ <∞; 1 ≤ i, j, k ≤ l;

(A6)
∫ π

−π log g∗(λ; θ) dλ = 0 for all θ ∈ Θ;
(A7) There exists a unique vector (d0, θ0), such that (d0, θ0) = arg min

D×Θ
D(d, θ).

If n→ ∞, then √
Kn

{
Sn

(
I

X

n , g(·; d̂n, θ̂n)
)
−D(d0, θ0)

}
D−→ N (

0, τ2
Δ

)
where D(d0, θ0) denotes the minimal distance between the parametric class F0 and the unknown spectral density
f defined in (2.1) and the asymptotic variance is given by

τ2
Δ := (Δ− 1)Var

(
2πI

Z

n,k

)
+ Var

(
2πI

Z

n,k − log 2πI
Z

n,k

)
with

Δ = π

∫ π

0

(
f(x)

g(x; d0, θ0)

)2

dx
(∫ π

0

f(x)
g(x; d0, θ0)

dx
)−2

. (3.3)

Proof. We define and decompose the statistic Tn

Tn =
√
Kn

{
Sn

(
I

X

n , g(·; d̂n, θ̂n)
)
−D(d0, θ0)

}
=
√
Kn {An +Bn + Cn} ,

where the random variables An, Bn and Cn are defined by

An := Sn

(
I

X

n , f(·)
)
, (3.4)

Bn := Sn

(
I

X

n , g(·; d0, θ0)
)
− Sn

(
I

X

n , f(·)
)
, (3.5)

Cn := Sn

(
I

X

n , g(·; d̂n, θ̂n)
)− Sn

(
I

X

n , g(·; d0, θ0)
)
, (3.6)
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respectively. Since the process (Xt)t∈Z is Gaussian, it has a linear representation of the form Xt = σ
∑

j∈Z
ajZj ,

where (aj)j∈Z is square summable and (Zt)t∈Z is a Gaussian white noise process with unit variance. In the
appendix we will show that

An =
1
Kn

Kn∑
k=1

(
2πI

Z

n,k − 1 − log 2πI
Z

n,k + γm,p

)
+ op

(
1√
Kn

)
, (3.7)

Bn =
Kn∑
k=1

(
βn,k− 1

Kn

)(
2πI

Z

n,k−1
)
+log

(
1
Kn

Kn∑
k=1

f(xk)
g(xk; d0, θ0)

)
− 1
Kn

Kn∑
k=1

log
(

f(xk)
g(xk; d0, θ0)

)
+op

(
1√
Kn

)
,

(3.8)

Cn = op

(
1√
Kn

)
(3.9)

where I
Z

n,k denotes the pooled and tapered periodogram of the Gaussian white noise process (Zt)t∈Z and the
constants βn,k are defined by

βn,k =
f(xk)

g(xk;d0,θ0)∑Kn

j=1
f(xj)

g(xj ;d0,θ0)

=
|1 − eixk |−2(d1−d0) f∗(xk)

g∗(xk;θ0)∑Kn

j=1 |1 − eixj |−2(d1−d0) f∗(xj)
g∗(xj;θ0)

·

Observing the approximation

log

(
1
Kn

Kn∑
k=1

f(xk)
g(xk; d0, θ0)

)
− 1
Kn

Kn∑
k=1

log
(

f(xk)
g(xk; d0, θ0)

)

= log

(
1
Kn

Kn∑
k=1

|1 − eixk |−2(d1−d0)
f∗(xk)
g∗(xk; θ0)

)
− 1
Kn

Kn∑
k=1

log
(
|1 − eixk |−2(d1−d0)

f∗(xk)
g∗(xk; θ0)

)

= D(d0, θ0) +O
(
n−1+2(d1−d0)

+
)
,

it follows that the weak convergence of the statistic Tn can be obtained from the asymptotic properties of the
random variable

T̃n =
√
Kn

Kn∑
k=1

{(
βn,k2πI

Z

n,k − 1
Kn

log 2πI
Z

n,k

)
−
(
βn,k − 1

Kn
γm,p

)}
.

For this purpose we use the central limit theorem of Ljapunov. To precise we note that the random variables
2πI

Z

n,k are independent identically distributed with existing fourth moment satisfying

E

[
2πI

Z

n,k

]
= 1; k = 1, . . .Kn. (3.10)

Therefore we obtain for the variance of T̃n by a straightforward calculation

Var[T̃n] = Var
(
2πI

Z

n,k

)
Kn

Kn∑
k=1

β2
n,k + Var

(
log 2πI

Z

n,k

)
− 2

{
E

[
2πI

Z

n,k log 2πI
Z

n,k

]
− γm,p

}
.

Observing the approximation

1
Kn

Kn∑
k=1

(
f(xk)

g(xk; d0, θ0)

)j

=
1
Kn

Kn∑
k=1

(
|1 − eixk |−2(d1−d0) f∗(xk)

g∗(xk, θ0)

)j

=
1
π

∫ π

0

(
f(x)

g(x; d0, θ0)

)j

dx+O
(
n−1+2j(d1−d0)

+
)
; j = 1, 2
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we obtain by a tedious calculation

lim
n→∞Kn

Kn∑
k=1

β2
n,k = Δ,

where Δ is defined in (3.3) and
Kn∑
k=1

β2
n,k ≤ C

n
(3.11)

(note that d1 − d0 <
1
4 by assumption). Combining these results gives for the asymptotic variance of T̃n

lim
n→∞Var[T̃n] = τ2

Δ

where τ2
Δ is defined in Theorem 3.1. Note that E[log 2πI

Z

n,k]4 is constant, then a similar calculation yields for
the numerator in the Ljapunov condition

K2
n

Kn∑
k=1

E

[
βn,k

(
2πI

Z

n,k − 1
)
− 1
Kn

(
log 2πI

Z

n,k − γm,p

)]4

≤ K2
n

Kn∑
k=1

∣∣∣∣β4
n,kE

[
2πI

Z

n,k − 1
]4

− 4β3
n,k

1
Kn

E

[(
2πI

Z

n,k − 1
)3 (

log 2πI
Z

n,k − γm,p

)]

+ 6β2
n,k

1
K2

n

E

[(
2πI

Z

n,k − 1
)2 (

log 2πI
Z

n,k − γm,p

)2
]

− 4βn,k
1
K3

n

E

[(
2πI

Z

n,k − 1
)(

log 2πI
Z

n,k − γm,p

)3
]

+
1
K4

n

E

[
log 2πI

Z

n,k − γm,p

]4∣∣∣∣
= O(1)

{
K2

n

Kn∑
k=1

β4
n,k +Kn

Kn∑
k=1

β3
n,k +

Kn∑
k=1

β2
n,k +

1
Kn

+
1
Kn

}
= O

(
1
n

)
,

where we have used (3.11) for the last estimate. This establishes the Lyapunov condition and the asymptotic
normality of Tn follows observing that Tn and T̃n have the same asymptotic behavior. �

Remark 3.2.
(a) Note that Theorem 3.1 holds under the null hypothesis and under the alternative, in particular it reduces
to Theorem 3.1 in Fay and Philippe [12]. These authors did not assume a Gaussian process and we conjecture
that Theorem 3.1 remains valid under the assumptions made in this reference, where the asymptotic variance
has to be replaced by

τ2
Δ +

κ4αm,p

8(m+ p)
·

Here the constant αm,p is defined by

αm,p = E
2
[‖ζ‖2Φm,p(ζ)

]
with

Φm,p(x) =
ψm,p(x)

2m
− 1 − ln

(
ψm,p(x)

2m

)
+ γm,p,

ψm,p(x) =
(
2p
p

)−1
m∑

j=1

∣∣∣∣∣
p∑

l=0

(
p
l

)
(−1)l

(
x2(j+l)−1 + ix2(j+l)

)∣∣∣∣∣
2

and ζ is a 2(m+ p)-dimensional standard Gaussian vector.
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(b) Note that in the Gaussian case an alternative proof of Theorem 3.1, which avoids the Bartlett decomposition
technique, could be obtained by applying general limit theorems for functionals of stationary Gaussian sequences
(see e.g. [1]). In this case one could use the method of moments and the diagram formula.
(c) Note that the assumption p = 1,m ≥ 4 is required for the proof of (3.8), which uses results in Hurvich
et al. [16] (see Sect. 4.2).

Remark 3.3. In this remark we indicate two important applications of the Theorem 3.1. For a more detailed
discussion we refer to Dette and Munk [10].

(1) If D(d0, θ0) is used as a measure for the deviation of the “true” spectral density from the parametric class
F0, we obtain from Theorem 3.1 a consistent estimate of D(d0, θ0), and it follows that the interval[

Sn

(
I

X

n , g(·; d̂n, θ̂n)
)
− τ̂Δ√

Kn

u1−α/2, Sn

(
I

X

n , g(·; d̂n, θ̂n)
)

+
τ̂Δ√
Kn

u1−α/2

]

is an asymptotic (1 − α) confidence interval for the logarithmic contrast D(d0, θ0), which measures the
deviation from the parametric class F0. Here u1−α/2 denotes the (1 − α

2 ) quantile of the standard normal
distribution and τ̂2

Δ is a consistent estimate of the asymptotic variance τ2
Δ.

(2) As pointed out by Fay and Philippe [12] an application of the asymptotic normality of the statistic
Sn(I

X

n , g(·; d̂n, θ̂n)) under the null hypothesis consists in the construction of an asymptotic level α test
for the hypothesis of a parametric form of the spectral density of the long range dependence process. A
consistent test is obtained by rejecting the null hypothesis whenever

Sn

(
I

X

n , g(·; d̂n, θ̂n)
)
≥ τ0√

Kn

u1−α

where τ2
0 denotes the asymptotic variance under the null hypothesis (which has to be estimated in the case

of a non Gaussian white noise). The asymptotic power of this test can now be approximated by Theorem 3.1,
that is

PH1(“H0 is rejected”) = PH1

(
Sn

(
I

X

n , g(·, d̂n, θ̂n)
)
≥ τ0√

Kn

u1−α

)

= PH1

(√
Kn

τΔ

{
Sn

(
I

X

n , g(·, d̂n, θ̂n)
)
−D(d0, θ0)

}
≥ τ0
τΔ
u1−α −

√
Kn

τΔ
D(d0, θ0)

)

≈ Φ

(√
Kn

D(d0, θ0)
τΔ

− τ0
τΔ
u1−α

)
,

where τ0 and τΔ denote the (asymptotic) standard deviation of
√
KnSn

(
I

X

n , g(·; d̂n, θ̂n)
)

under the null hy-
pothesis and alternative, respectively, and Φ is the distribution function of the standard normal distribution.

(3) A further important application of Theorem 3.1 arises from the fact that in practice when testing the
hypothesis of a parametric model the distance D(d0, θ0) will usually never be precisely identical 0. The
more realistic question in this context is, if the parametric is approximately correct. Therefore we propose
to investigate the so called precise hypotheses [3]

H0 : D(d0, θ0) > ε versus H1 : D(d0, θ0) ≤ ε , (3.12)

where D(d0, θ0) is the measure defined by (3.2) and ε > 0 is a prespecified constant for which the statistician
agrees to analyse the data under the additional assumption of the parametric model. An asymptotic level
α test for the hypothesis (3.12) is obtained by rejecting the null hypothesis, whenever√

Kn

τ2
Δ

{
Sn

(
I

X

n , g
(
·; d̂n, θ̂n

))
− ε

}
< uα.
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Table 1. Different short memory parameters in the FARIMA(0, 0.4, 1)-process with spectral
density given by (3.14). The values d0 and D(d0) correspond to the long range parameter and
minimal distance of the best approximation of the process with density (3.14) by a process with
density (3.13).

β −0.05 −0.4 −0.65
d0 0.3698 0.1731 0.0505

d1 − d0 0.0302 0.2269 0.3495
D(d0) 0.0009555 0.0511878 0.1196544

Table 2. Simulated coverage probabilities of the asymptotic confidence intervals defined in
Remark 3.3 (1). The parametric and the “true” density are given by (3.14) and (3.13), respec-
tively, where β = −0.05.

α n = 100 n = 200 n = 500
0.2 0.8308 0.8258 0.8142
0.1 0.9440 0.9326 0.9196
0.05 0.9644 0.9732 0.9664

Example 3.4. In this example we illustrate the accuracy of the confidence interval for the distance D(d0, θ0)
in Remark 3.3 (1) by means of a small simulation study. We assume that the process X = (Xt)t∈Z is a Gaussian
FARIMA(0, d, 0)-process with spectral density

g(λ; d, θ) =
1
2π

∣∣1 − eiλ
∣∣−2d (3.13)

but generated data from a Gaussian FARIMA(0,0.4,1)-process with spectral density given by

f(λ) =
1
2π

|1 + βeiλ|2|1 − eiλ|−2·0.4, (3.14)

where β = −0.65,−0.4,−0.1,−0.05. The corresponding values for d0 and D(d0) have been calculated as de-
scribed in Chen and Deo [5] and are depicted in Table 1. It is notable that the changes in the short-memory
component β also result in a change in the difference between the long memory parameters d0 and d1.

We have generated 5000 replications of the process for sample sizes n = 100, 200 and 500 using the farimaSim
function in the fArma package in R. The parameter d0 in the variance τ2

Δ was estimated by the Whittle estimator
in (3.1). The other quantities in the asymptotic variance have been determined explicitly by numerical integration
and are given by

γm,p = −0.1400195,

Var
(
2πI

Z

n,k

)
= 0.2795195,

Var
(
2πI

Z

n,k − log 2πI
Z

n,k

)
= 0.03776237.

For each series the 80%, 90% and 95% confidence intervals (p = 1, m = 5) were calculated and the proportion of
the intervals containing the true valueD(0.34) are listed in Tables 2–4 corresponding to the cases β = −0.05,−0.4
and −0.65, respectively.

We observe reasonable coverage probabilities for the two scenarios β = −0.05 and β = −0.4 (see Tabs. 2
and 3). If β = −0.05 the coverage probability is already very good for the sample size n = 100 (see Tab. 2),
while a larger sample (namely n = 200) is needed to receive satisfactory results in the case β = −0.4. Note that
the results in Table 4 correspond to the situation d1 − d0 = 0.3495, where the assumptions of Theorem 3.1 are
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Table 3. Simulated coverage probabilities of the asymptotic confidence intervals defined in
Remark 3.3 (1). The parametric and the “true” density are given by (3.14) and (3.13), respec-
tively, where β = −0.4.

α n = 100 n = 200 n = 500
0.2 0.9118 0.8834 0.7886
0.1 0.9542 0.9456 0.8878
0.05 0.9750 0.9726 0.9406

Table 4. Simulated coverage probabilities of the asymptotic confidence intervals defined in
Remark 3.3 (1). The parametric and the “true” density are given by (3.14) and (3.13), respec-
tively, where β = −0.65.

α n = 100 n = 200 n = 500
0.2 0.7674 0.6388 0.1458
0.1 0.8652 0.7832 0.2826
0.05 0.9264 0.8758 0.4294

Table 5. Simulated coverage probabilities of the asymptotic confidence intervals defined
in Remark 3.3 (1). The “true” and the parametric density are given by (3.13) and a
FARIMA(0, 0.4, 1) process with an additive exponential white noise, respectively.

α n = 100 n = 200 n = 500
0.2 0.6896 0.7874 0.8096
0.1 0.7874 0.8846 0.9142
0.05 0.8106 0.9250 0.9638

not satisfied. In this case the asymptotic properties of test statistic are different and this fact is clearly reflected
by the empirical results, which show the coverage probability is strictly decreasing with increasing sample size.

We finally investigate the coverage probability of the confidence intervals in a model with additional noise. To
be precise we consider a process of the form Xn+ Un where Xn is a FARIMA(0, 0.4, 1) process with β = −0.1
and Un is an exponential white noise independent of the process Xn. The assumed model is again specified
by spectral density (3.13). The corresponding results are depicted in Table 5 and we observe a reasonable
approximation of the coverage probabilities for sample sizes larger than n = 200.

Appendix A: Technical details

In this appendix we provide the technical details for the stochastic expansions (3.7)–(3.9).

A.1. Proof of (3.7)

We use a Bartlett decomposition technique, i.e. we relate the periodogram of X to the periodogram of Z and
then apply Lemma 4.2 in Fay and Philippe [12] to show that the difference is stochastically small, i.e.

An = Sn

(
I

X

n , f(·)
)

= Sn

(
2πI

Z

n , 1
)

+Rn

= log

(
1
Kn

Kn∑
k=1

2πI
Z

n,k

)
− 1
Kn

Kn∑
k=1

log
(
2πI

Z

n,k

)
+ γm,p + op

(
1√
Kn

)
·

Using (3.10) and the independence of the I
Z

n.k we can expand the first term into a Taylor series and obtain the
stochastic expansion in (3.7).
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A.2. Proof of (3.8)

Recall the definition of Bn in (3.5). For a proof of (3.8) we use the Bartlett decomposition twice, which yields

Bn = log

(∑Kn

k=1 I
X

n,k/g(xk; d0, θ0)∑Kn

k=1 2πI
Z

n,k

)
− log

(∑Kn

k=1 I
X

n,k/f(xk)∑Kn

k=1 2πI
Z

n,k

)
− 1
Kn

Kn∑
k=1

log
(

f(xk)
g(xk; d0, θ0)

)

= log

(
1
Kn

Kn∑
k=1

I
X

n,k

g(xk; d0, θ0)

)
− log

(
1
Kn

Kn∑
k=1

2πI
Z

n,k

)
− 1
Kn

Kn∑
k=1

log
(

f(xk)
g(xk; d0, θ0)

)
+ op

(
1√
Kn

)

= log

(
Kn∑
k=1

βn,k

I
X

n,k

f(xk)

)
+ log

(
1
Kn

Kn∑
k=1

f(xk)
g(xk; d0, θ0)

)
− log

(
1
Kn

Kn∑
k=1

2πI
Z

n,k

)

− 1
Kn

Kn∑
k=1

log
(

f(xk)
g(xk; d0, θ0)

)
+ op

(
1√
Kn

)
,

where the second estimate follows from Lemma 2 in Hurvich et al. [16]. We note that by the central limit
theorem

1
Kn

Kn∑
k=1

(
2πI

Z

n,k − 1
)

=
1
Kn

Kn∑
k=1

2πI
Z

n,k − 1 = Op

(
1√
n

)
· (A.1)

We will show at the end of this section that
Kn∑
k=1

βn,k

(
I

X

n,k

f(xk)
− 1

)
= Op

(
1√
n

)
, (A.2)

then the expansion of the function log(1 + z) = z + o(z2) yields with the estimates (A.2) and (A.1) (note that∑Kn

k=1 βn,k = 1)

Bn =
Kn∑
k=1

βn,k

(
I

X

n,k

f(xk)
− 1

)
− 1
Kn

Kn∑
k=1

(
2πI

Z

n,k − 1
)

+ op

(
1√
Kn

)

+ log

(
1
Kn

Kn∑
k=1

f(xk)
g(xk; d0, θ0)

)
− 1
Kn

Kn∑
k=1

log
(

f(xk)
g(xk; d0, θ0)

)
·

Observing Lemma 11 in Hurvich et al. [16] we have

E

∣∣∣∣∣
Kn∑
k=1

βn,k

(
I

X

n,k

f(xk)
− 2πI

Z

n,k

)∣∣∣∣∣ ≤
Kn∑
k=1

βn,kE

∣∣∣∣∣ I
X

n,k

f(xk)
− 2πI

Z

n,k

∣∣∣∣∣ ≤
⎧⎨
⎩
O
(
n−1+2(d1−d0)

+
)

if d1 − d0 
= 0

O
(

log n
n

)
if d1 − d0 = 0

which yields
Kn∑
k=1

βn,k

(
I

X

n,k

f(xk)
− 2πI

Z

n,k

)
= op

(
1√
n

)
· (A.3)

(note that d1 − d0 <
1
4 by assumption). Therefore the assertion in (3.8) follows from (A.2) and (A.3).

We conclude this section with a proof of the statement (A.2) which is obtained observing the decomposition

Kn∑
k=1

βn,k

(
I

X

n,k

f(xk)
− 1

)
=

Kn∑
k=1

βn,k

(
I

X

n,k

f(xk)
− 2πI

Z

n,k

)
+

Kn∑
k=1

βn,k

(
2πI

Z

n,k − 1
)

= Op

(
1√
Kn

)

where the last estimate follows again from (A.3) and a straightforward application of Chebyshev’s inequality.
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A.3. Proof of (3.9)

Observing the definition (3.6) we decompose Cn as follows

Cn = C(1)
n + C(2)

n

where

C(1)
n = log

(
1
Kn

Kn∑
k=1

I
X

n,k

g(xk; Γ̂n)

)
− log

(
1
Kn

Kn∑
k=1

I
X

n,k

g(xk;Γ0)

)
, (A.4)

C(2)
n =

1
Kn

Kn∑
k=1

log
g
(
xk; Γ̂n

)
g(xk;Γ0)

, (A.5)

and we have used the notation Γ̂n = (d̂n, θ̂n) and Γ0 = (d0, θ0). The assertion in (3.9) is now obtained by
treating these terms separately, that is

C(j)
n = op

(
1√
n

)
, j = 1, 2. (A.6)

For a proof of (A.6) in the case j = 1 we note that the estimate Γ̂n = (d̂n, θ̂n) is defined as a solution of the
equation

∂Qn(Γ̂n)
∂Γ

= 0,

where the function Qn is defined in (3.1). Therefore a Taylor expansion yields

C(1)
n = logQn(Γ0) − logQn

(
Γ̂n

)

=
1
2

(
Γ0 − Γ̂n

)T 1
Qn(Γ̂n)

∂2Qn(Γ̂n)
∂Γ∂Γ T

(
Γ0 − Γ̂n

)
+ o

(∥∥∥Γ0 − Γ̂n

∥∥∥2
)
.

An extension of Theorem 2, Lemmas 2 and 3 in Chen and Deo [5] to the objective function (3.1) yields

Γ̂n − Γ0 = Op

(
1√
n

)
1

Qn

(
Γ̂n

) P−→ 1
Q (Γ0)

=
(∫ π

0

f(λ)
g(λ;Γ0)

dλ
)−1

,

∂2Qn

(
Γ̂n

)
∂Γ∂Γ T

P−→ ∂2Q(Γ0)
∂Γ∂Γ T

,

and assertion (A.6) follows in the case j = 1.
In order to prove the statement in the case j = 2 we recall the definition in (A.5) and obtain by a Taylor

expansion

C(2)
n =

1
Kn

Kn∑
k=1

{
1

g(xk;Γ0)
∂g(xk;Γ0)
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)
(A.7)
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where we have again used an extension of Theorem 2 in Chen and Deo [5] to the loss function (3.1). From the
assumption g(λ;Γ ) ∈ F0 we have ∫ π

−π

log g(λ;Γ ) dλ =
∫ π

−π

log g∗(λ, θ)dλ = 0

for all Γ ∈ D × Θ, which implies (observing the symmetry of the function g) that the sum in (A.7) converges
to 0 (a.s.). This proves the statement (A.6) in the case j = 2.
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