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A SHARP ANALYSIS ON THE ASYMPTOTIC BEHAVIOR
OF THE DURBIN–WATSON STATISTIC FOR THE FIRST-ORDER
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Abstract. The purpose of this paper is to provide a sharp analysis on the asymptotic behavior of the
Durbin–Watson statistic. We focus our attention on the first-order autoregressive process where the
driven noise is also given by a first-order autoregressive process. We establish the almost sure conver-
gence and the asymptotic normality for both the least squares estimator of the unknown parameter
of the autoregressive process as well as for the serial correlation estimator associated with the driven
noise. In addition, the almost sure rates of convergence of our estimates are also provided. It allows us
to establish the almost sure convergence and the asymptotic normality for the Durbin–Watson statis-
tic. Finally, we propose a new bilateral statistical test for residual autocorrelation. We show how our
statistical test procedure performs better, from a theoretical and a practical point of view, than the
commonly used Box–Pierce and Ljung–Box procedures, even on small-sized samples.
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1. introduction

The Durbin–Watson statistic is very well-known in Econometry and Statistics. It was introduced by the
pioneer works of Durbin and Watson [10–12], in order to test the serial independence of the driven noise of a
linear regression model. The statistical test based on the Durbin–Watson statistic works pretty well for linear
regression models, and its power was investigated by Tillman [26]. However, as it was observed by Malinvaud [19]
and Nerlove and Wallis [20], its widespread use in inappropriate situations may lead to inadequate conclusions.
More precisely, for linear regression models containing lagged dependent random variables, the Durbin–Watson
statistic may be asymptotically biased. In order to prevent this misuse, Durbin [8] proposed alternative tests
based on the redesign of the original one. Then, he explained how to use them in the particular case of the
first-order autoregressive process previously investigated in [19,20]. Maddala and Rao [18] and Park [21] showed
by simulations that alternative tests significantly outperform the inappropriate one even on small-sized samples.
Inder [15, 16] and Durbin [9] went even deeper in the approximation of the critical values and distributions of
the alternative tests under the null hypothesis. Afterwards, additional improvements were brought by King and
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Wu [17] and more recently, Stocker [23] gave substantial contributions to the study of the asymptotic bias in the
Durbin–Watson statistic resulting from the presence of lagged dependent random variables. Nevertheless, one
can observe that statisticians usually tend to evaluate the presence of a significative serial correlation through
the widely applied Ljung–Box [4] and Box–Pierce [5] statistical tests. This approach does not take into account
the interaction between the dynamics of the model and the dynamic nature of the autoregressive residuals,
and thereby overestimates the null hypothesis of white noise. This is an additional motivation for bringing the
Durbin–Watson statistic back into light, insofar as it better fits to the residual set structure.

Our purpose is to investigate several open questions left unanswered during four decades on the Durbin–
Watson statistic [8, 9, 20]. We shall focus our attention on the first-order autoregressive process given, for all
n ≥ 1, by {

Xn = θXn−1 + εn

εn = ρεn−1 + Vn
(1.1)

where the unknown parameters |θ| < 1, |ρ| < 1. Via an extensive use of the theory of martingales [7, 14],
we shall provide a sharp and rigorous analysis on the asymptotic behavior of the least squares estimators of
θ and ρ. The previous results of convergence were only established in probability [19, 20]. We shall prove the
almost sure convergence as well as the asymptotic normality of the least squares estimators of θ and ρ. We will
deduce the almost sure convergence and the asymptotic normality for the Durbin–Watson statistic. Therefore,
we shall be in the position to propose a new bilateral test for residual autocorrelation under the null hypothesis
as well as under the alternative hypothesis. Indeed, we will explain why, on the basis of the empirical power,
our test procedure performs better than Ljung–Box [4] and Box–Pierce [5] portmanteau tests, and why it is
asymptotically equivalent to the most powerful alternative h-test of Durbin [8], in the case of a first-order
autoregressive process.

The paper is organized as follows. Section 2 is devoted to the estimation of the autoregressive parameter. We
establish the almost sure convergence of the least squares estimator θ̂n to the limiting value

θ∗ =
θ + ρ

1 + θρ
· (1.2)

One can observe that θ∗ = θ if and only if ρ = 0. The asymptotic normality of θ̂n as well as the quadratic
strong law and the law of iterated logarithm are also provided. Section 3 deals with the estimation of the serial
correlation parameter. We prove the almost sure convergence of the least squares estimator ρ̂n to

ρ∗ = θρθ∗ =
θρ(θ + ρ)
1 + θρ

· (1.3)

As before, the asymptotic normality of ρ̂n, the quadratic strong law and the law of iterated logarithm are also
provided. It enables us to establish in Section 4 the almost sure convergence of the Durbin–Watson statistic D̂n

to

D∗ = 2(1 − ρ∗) (1.4)

together with its asymptotic normality. Our sharp analysis on the asymptotic behavior of D̂n is true whatever the
values of the parameters θ and ρ inside the interval ]− 1, 1[. Consequently, we are able in Section 4 to propose
a new bilateral statistical test for residual autocorrelation. In Section 5, we compare the empirical power of
the test procedure based on the Durbin–Watson statistic with commonly used existing tests, to corroborate
the theoretical aspects and explain the reasons why we provide a more powerful alternative for testing the
significance of the one-period lagged residuals coefficient, even on small-sized samples. A short conclusion is
given in Section 6. All the technical proofs of Sections 2–4 are postponed in Appendices A–C, respectively.



502 B. BERCU AND F. PROÏA

2. On the autoregressive parameter

Consider the first-order autoregressive process given by (1.1) where the initial values X0 and ε0 may be
arbitrarily chosen. In all the sequel, we assume that (Vn) is a sequence of square-integrable, independent and
identically distributed random variables with zero mean and variance σ2 > 0. In order to estimate the unknown
parameter θ, it is natural to make use of the least squares estimator θ̂n which minimizes

Δn(θ) =
n∑

k=1

(
Xk − θXk−1

)2
.

Consequently, we obviously have for all n ≥ 1,

θ̂n =
∑n

k=1 XkXk−1∑n
k=1 X2

k−1

· (2.1)

Our first result concerns the almost sure convergence of θ̂n to the limiting value θ∗ given by (1.2). One can
observe that the convergence in probability of θ̂n to θ∗ was already proven in [19,20]. We improve this previous
result by establishing the almost sure convergence of θ̂n to θ∗.

Theorem 2.1. We have the almost sure convergence

lim
n→∞ θ̂n = θ∗ a.s. (2.2)

Our second result deals with the asymptotic normality of θ̂n where we denote

σ2
θ =

(1 − θ2)(1 − θρ)(1 − ρ2)
(1 + θρ)3

· (2.3)

Theorem 2.2. Assume that (Vn) has a finite moment of order 4. Then, we have the asymptotic normality

√
n
(
θ̂n − θ∗

) L−→ N (0, σ2
θ). (2.4)

Remark 2.3. In the well-known case where the residuals are not correlated, which means that ρ = 0, we clearly
have θ∗ = θ, σ2

θ = 1 − θ2 and we find again the asymptotic normality

√
n
(
θ̂n − θ

) L−→ N (0, 1 − θ2).

After establishing the almost sure convergence of the estimator θ̂n and its asymptotic normality, we focus
our attention on the almost sure rates of convergence.

Theorem 2.4. Assume that (Vn) has a finite moment of order 4. Then, we have the quadratic strong law

lim
n→∞

1
log n

n∑
k=1

(
θ̂k − θ∗

)2

= σ2
θ a.s. (2.5)

where σ2
θ is given by (2.3). In addition, we also have the law of iterated logarithm

lim sup
n→∞

(
n

2 log log n

)1/2 (
θ̂n − θ∗

)
= − lim inf

n→∞

(
n

2 log log n

)1/2 (
θ̂n − θ∗

)
= σθ a.s. (2.6)

Consequently,

lim sup
n→∞

(
n

2 log log n

)(
θ̂n − θ∗

)2

= σ2
θ a.s. (2.7)

Proof. The proofs are given in Appendix A. �
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Remark 2.5. It clearly follows from (2.7) that(
θ̂n − θ∗

)2

= O

(
log log n

n

)
a.s. (2.8)

This almost sure rate of convergence will be useful in all the sequel.

3. On the serial correlation parameter

This section is devoted to the estimation of the serial correlation parameter ρ. First of all, it is necessary to
evaluate, at step n, the least squares residuals given, for all 1 ≤ k ≤ n, by

ε̂k = Xk − θ̂nXk−1. (3.1)

The initial value ε̂0 may be arbitrarily chosen and we take ε̂0 = X0. Then, a natural way to estimate ρ is to
make use of the least squares estimator

ρ̂n =
∑n

k=1 ε̂kε̂k−1∑n
k=1 ε̂ 2

k−1

· (3.2)

The asymptotic behavior of θ̂n and ρ̂n are quite similar. However, one can realize that the results of this section
are much more tricky to establish than those of the previous one. We first state the almost sure convergence of
ρ̂n to ρ∗.

Theorem 3.1. We have the almost sure convergence

lim
n→∞ ρ̂n = ρ∗ a.s. (3.3)

Our next result deals with the joint asymptotic normality of θ̂n and ρ̂n. Denote

σ2
ρ =

(1 − θρ)
(1 + θρ)3

(
(θ + ρ)2(1 + θρ)2 + (θρ)2(1 − θ2)(1 − ρ2)

)
. (3.4)

In addition, let Γ be the positive semidefinite covariance matrix given by

Γ =

(
σ2

θ θρσ2
θ

θρσ2
θ σ2

ρ

)
. (3.5)

Theorem 3.2. Assume that (Vn) has a finite moment of order 4. Then, we have the joint asymptotic normality

√
n

(
θ̂n − θ∗

ρ̂n − ρ∗

)
L−→ N (0, Γ

)
. (3.6)

In particular,
√

n
(
ρ̂n − ρ∗

) L−→ N (0, σ2
ρ). (3.7)

Remark 3.3. The covariance matrix Γ is invertible if and only if θ �= −ρ since one can see by a straightforward
calculation that

det(Γ ) =
σ2

θ(θ + ρ)2(1 − θρ)
(1 + θρ)

·

Moreover, in the particular case where θ = −ρ,

√
n θ̂n

L−→ N
(

0,
1 + θ2

1 − θ2

)
and

√
n ρ̂n

L−→ N
(

0,
θ4(1 + θ2)

1 − θ2

)
·
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Finally, if the residuals are not correlated which means that ρ = 0,

√
n ρ̂n

L−→ N (
0, θ2

)
.

The almost sure rates of convergence for ρ̂n are as follows.

Theorem 3.4. Assume that (Vn) has a finite moment of order 4. Then, we have the quadratic strong law

lim
n→∞

1
log n

n∑
k=1

(
ρ̂k − ρ∗

)2

= σ2
ρ a.s. (3.8)

where σ2
ρ is given by (3.4). In addition, we also have the law of iterated logarithm

lim sup
n→∞

(
n

2 log log n

)1/2 (
ρ̂n − ρ∗

)
= − lim inf

n→∞

(
n

2 log log n

)1/2 (
ρ̂n − ρ∗

)
= σρ a.s. (3.9)

Consequently,

lim sup
n→∞

(
n

2 log log n

)(
ρ̂n − ρ∗

)2

= σ2
ρ a.s. (3.10)

Proof. The proofs are given in Appendix B. �

Remark 3.5. We obviously deduce from (3.10) that(
ρ̂n − ρ∗

)2

= O

(
log log n

n

)
a.s. (3.11)

The estimators θ̂n and ρ̂n are self-normalized. Consequently, the asymptotic variances σ2
θ and σ2

ρ do not
depend on the variance σ2 associated with the driven noise (Vn). Nevertheless, we can estimate the variance σ2

by

σ̂ 2
n =

(
1 − ρ̂ 2

n

θ̂ 2
n

)
1
n

n∑
k=1

ε̂ 2
k . (3.12)

We clearly have the almost sure convergence

lim
n→∞ σ̂ 2

n = σ2 a.s. (3.13)

The proof is left to the reader as it follows essentially the same lines as that of (3.3).

4. On the Durbin–Watson statistic

We shall now investigate the asymptotic behavior of the Durbin–Watson statistic [10–12] given, for all n ≥ 1,
by

D̂n =
∑n

k=1(ε̂k − ε̂k−1)2∑n
k=0 ε̂ 2

k

· (4.1)

One can observe that D̂n and ρ̂n are asymptotically linked together by an affine transformation. Consequently,
the results of the previous section allow us to establish the asymptotic behavior of D̂n. We start with the almost
sure convergence of D̂n to D∗.
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Theorem 4.1. We have the almost sure convergence

lim
n→∞ D̂n = D∗ a.s. (4.2)

Our next result deals with the asymptotic normality of D̂n. It will be the keystone of a new bilateral statistical
test deciding in particular, for a given significance level, whether residuals are autocorrelated or not. Denote
σ2

D = 4σ2
ρ where the variance σ2

ρ is given by (3.4).

Theorem 4.2. Assume that (Vn) has a finite moment of order 4. Then, we have the asymptotic normality

√
n
(
D̂n − D∗

) L−→ N (0, σ2
D). (4.3)

Remark 4.3. We immediately deduce from (4.3) that

n

σ2
D

(
D̂n − D∗

)2 L−→ χ2 (4.4)

where χ2 has a Chi-square distribution with one degree of freedom.

Before providing our statistical test, we focus our attention on the almost sure rates of convergence for D̂n

which are based on the asymptotic linear relation between D̂n and ρ̂n.

Theorem 4.4. Assume that (Vn) has a finite moment of order 4. Then, we have the quadratic strong law

lim
n→∞

1
log n

n∑
k=1

(
D̂k − D∗

)2

= σ2
D a.s. (4.5)

In addition, we also have the law of iterated logarithm

lim sup
n→∞

(
n

2 log log n

)1/2 (
D̂n − D∗

)
= − lim inf

n→∞

(
n

2 log log n

)1/2 (
D̂n − D∗

)
= σD a.s. (4.6)

Consequently,

lim sup
n→∞

(
n

2 log log n

)(
D̂n − D∗

)2

= σ2
D a.s. (4.7)

We are now in the position to propose our new bilateral statistical test built on the Durbin–Watson statistic
D̂n. First of all, we shall not investigate the trivial case θ = 0 since our statistical test procedure is of interest
only for autoregressive processes. In addition, we shall note the existence of a critical case as introduced in
Remark 3.3. Indeed, if θ = −ρ, the covariance matrix Γ given by (3.5) is not invertible and the distribution
of the statistic associated with the test we plan to establish will be degenerate. For this reason, we suggest a
preliminary test for the hypothesis “θ = −ρ”, allowing us to switch from one test to another if necessary. More
precisely, we first wish to test

H0 : “θ = −ρ” against H1 : “θ �= −ρ”.

Under the null hypothesis H0, it is easy to see that D∗ = 2. According to Remark 3.3, we have

n
(
1 − θ2

)
4θ4 (1 + θ2)

(
D̂n − 2

)2 L−→ χ2 (4.8)
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where χ2 has a Chi-square distribution with one degree of freedom. Moreover, the model can be rewritten under
H0, for all n ≥ 2, as

Xn = θ2Xn−2 + Vn. (4.9)

Then, we propose to make use of the standard least squares estimator ϑ̂ 2
n of θ2,

ϑ̂ 2
n =

∑n
k=2 Xk−2Xk∑n

k=2 X2
k−2

· (4.10)

Under H0, we have the almost sure convergence of ϑ̂ 2
n to θ2. In addition, we obviously have D∗ �= 2 under

H1. These results under the null and the alternative hypothesis lead to Theorem 4.5, whose proof immediately
follows from (4.8).

Theorem 4.5. Assume that (Vn) has a finite moment of order 4, θ �= 0 and ρ �= 0. Then, under the null
hypothesis H0 : “θ = −ρ′′,

n
(
1 − ϑ̂ 2

n

)
4
(
ϑ̂ 2

n

)2 (
1 + ϑ̂ 2

n

) (D̂n − 2
)2 L−→ χ2 (4.11)

where χ2 has a Chi-square distribution with one degree of freedom. In addition, under the alternative hypothesis
H1 : “θ �= −ρ”,

lim
n→∞

n
(
1 − ϑ̂ 2

n

)
4
(
ϑ̂ 2

n

)2 (
1 + ϑ̂ 2

n

) (D̂n − 2
)2

= +∞ a.s. (4.12)

For a significance level α where 0 < α < 1, the acceptance and rejection regions are given by A = [0, zα] and
R =]zα, +∞[ where zα stands for the (1−α)-quantile of the Chi-square distribution with one degree of freedom.
The null hypothesis H0 will not be rejected if the empirical value

n
(
1 − ϑ̂ 2

n

)
4
(
ϑ̂ 2

n

)2 (
1 + ϑ̂ 2

n

) (D̂n − 2
)2

≤ zα,

and will be rejected otherwise. Assume now that we cannot reject H0, which means that we admit de facto
the hypothesis “θ = −ρ”. For a given value ρ0 such that |ρ0| < 1, we wish to test whether or not the serial
correlation parameter is equal to ρ0, setting

H0 : “ρ = ρ0” against H1 : “ρ �= ρ0”.

One shall proceed once again to the test described by Theorem 4.5, taking ρ2
0 in lieu of ϑ̂2

n, insofar as one can
easily agree that our test statistic satisfies the same properties, under H0 as under H1, by virtue of Remark 3.3.
This alternative solution is necessary to avoid the degenerate situation implied by the critical case θ = −ρ.
Let us now focus on the more widespread case where the preliminary test leads to a rejection of H0, admitting
“θ �= −ρ”. For that purpose, denote θ̃n = θ̂n + ρ̂n − ρ0 and D̃n = 2

(
1 − ρ̃n

)
where

ρ̃n =
ρ0θ̃n

(
θ̃n + ρ0

)
1 + ρ0θ̃n

· (4.13)

One can observe that our statistical test procedure works whatever the value of the autoregressive parameter
θ inside the interval ]− 1, 1[ with θ �= −ρ. Moreover, it follows from (2.2) and (3.3) that under the null
hypothesis H0,

lim
n→∞ θ̃n = θ + ρ0 − ρ0 = θ a.s.
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To construct our statistical test, we need to introduce more notations. Denote

ân = −ρ0

(
θ̂n + θ̃n

)
= −ρ0

(
2θ̂n + ρ̂n − ρ0

)
,

b̂n = 1 − ρ0θ̂n,

and let ŵn be the vector of R
2 given by ŵ ′

n = (ân, b̂n). In addition, let

Γ̂n =

(
α̂n ρ0θ̃nα̂n

ρ0θ̃nα̂n β̂n

)
. (4.14)

where α̂n and β̂n are defined as

α̂n =

(
1 − θ̃ 2

n

)(
1 − ρ0θ̃n

)
(1 − ρ2

0)(
1 + ρ0θ̃n

)3 ,

β̂n =

(
1 − ρ0θ̃n

)
(
1 + ρ0θ̃n

)3

((
θ̃n + ρ0

)2 (
1 + ρ0θ̃n

)2

+
(
ρ0θ̃n

)2 (
1 − θ̃ 2

n

) (
1 − ρ2

0

) )
.

Furthermore, denote

τ̂ 2
n =

4(
1 + ρ0θ̃n

)2 ŵ ′
nΓ̂nŵn. (4.15)

Theorem 4.6. Assume that (Vn) has a finite moment of order 4, θ �= ρ0 and θ �= −ρ. Then, under the null
hypothesis H0 : “ρ = ρ0”,

n

τ̂ 2
n

(
D̂n − D̃n

)2 L−→ χ2 (4.16)

where χ2 has a Chi-square distribution with one degree of freedom. In addition, under the alternative hypothesis
H1 : “ρ �= ρ0”,

lim
n→∞

n

τ̂ 2
n

(
D̂n − D̃n

)2

= +∞ a.s. (4.17)

One can observe by a symmetry argument on the role played by θ and ρ, that the assumption θ = ρ0 is not
restrictive since the latter can be seen as another way of expressing Theorem 4.6. From a practical point of
view, for a significance level α where 0 < α < 1, the acceptance and rejection regions are given by A = [0, zα]
and R =]zα, +∞[ where zα stands for the (1 − α)-quantile of the Chi-square distribution with one degree of
freedom. The null hypothesis H0 will not be rejected if the empirical value

n

τ̂ 2
n

(
D̂n − D̃n

)2

≤ zα,

and will be rejected otherwise. Moreover, if one wishes to test

H0 : “ρ = 0” against H1 : “ρ �= 0”,

our statistical test procedure is very simple. As a matter of fact, we are in the particular case ρ0 = 0 which
means that D̃n = 2, ân = 0 and b̂n = 1. We can also replace θ̃n by θ̂n so τ̂ 2

n reduces to τ̂ 2
n = 4θ̂ 2

n . In the next
section, we will explain why the following test is asymptotically equivalent to the h-test proposed by Durbin [8].
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Theorem 4.7. Assume that (Vn) has a finite moment of order 4, θ �= 0 and θ �= −ρ. Then, under the null
hypothesis H0 : “ρ = 0”,

n

4θ̂ 2
n

(
D̂n − 2

)2 L−→ χ2 (4.18)

where χ2 has a Chi-square distribution with one degree of freedom. In addition, under the alternative hypothesis
H1 : “ρ �= 0”,

lim
n→∞

n

4θ̂ 2
n

(
D̂n − 2

)2

= +∞ a.s. (4.19)

Proof. The proofs are given in Appendix C. �

5. Comparisons with previous statistical tests

This section is devoted to the comparison of our statistical test procedure with the statistical tests commonly
used in time series analysis to detect the presence of a significative first-order correlation in the residuals. More
precisely, we will focus our attention on the well-known Ljung–Box [4] and Box–Pierce [5] tests widely used in
Econometry on the one hand, and on the alternative procedures proposed by Durbin [8] in order to prevent
the inappropriate use of the original one in the case of lagged-dependent random variables, on the other hand.
First, we will briefly recall some theoretical aspects of the procedures to be compared. Then, we shall explain
how, on the basis of the empirical power, the test procedure in Theorem 4.7 performs better than Ljung–Box [4]
and Box–Pierce [5] portmanteau tests, and why it is asymptotically equivalent to the most powerful alternative
test of Durbin [8], better known as h-test, in the case of a first-order autoregressive process. We shall assume in
all the sequel that θ �= 0 is a statistically significant parameter and we will test

H0 : “ρ = 0” against H1 : “ρ �= 0”.

5.1. The Ljung–Box and Box–Pierce tests

It is important to note that these portmanteau tests are built to detect the presence of a significative serial
correlation of any order. Of course, in this paper, we shall only focus our attention on the first-order restriction.
The Box–Pierce procedure uses the test statistic given by

Q̂BP
n = nρ̂ 2

n (5.1)

where ρ̂n is given in (3.2). The Ljung–Box test is an adjustement of the latter, to improve the precision on
small-sized samples. It is defined as

Q̂LB
n =

n(n + 2)
n − 1

ρ̂ 2
n . (5.2)

If there exists a white noise (Wn) such that the estimated residual set (ε̂n) given by (3.1) could by rewritten,
for all n ≥ 1, as ε̂n = ρε̂n−1 + Wn, then under H0,

Q̂BP
n

L−→ χ2 and Q̂LB
n

L−→ χ2 (5.3)

where χ2 has a Chi-square distribution with one degree of freedom, and go a.s. to infinity under H1. Moreover,
the asymptotic normality given in Theorem 3.2 ensures that, under H0,

nρ̂ 2
n

θ̂ 2
n

L−→ χ2. (5.4)

This explains why our statistical procedure is more precise for testing the existence of a significative first-order
serial correlation in a first-order autoregressive process than the Box–Pierce and Ljung–Box ones as this will be
observed on simulated data.
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5.2. The alternative Durbin tests

Park [21] has observed by simulations that the alternative t-test and h-test proposed by Durbin [8] for
autocorrelated error terms in a lagged-dependent random variables framework significantly outperform the
original Durbin–Watson test. Let us try to compare our statistical procedure with both of them. In fact, we will
only focus our attention on the h-test since, as it is clearly specified by Park [21], the t-test merely consists in
fitting by least squares a linear regression of (ε̂n) on the one-period lagged residuals (ε̂n−1) and in testing the
significance of the coefficient of (ε̂n−1). One has to note that such a procedure is quasi equivalent to the one of
Box–Pierce, in our precise framework. The test statistic associated with the h-test is given by

Ĥn =

(
1 − D̂n

2

)2 [
n

1 − nV̂ar(θ̂n)

]
(5.5)

where D̂n is the Durbin–Watson statistic given in (4.1). Under H0, it is shown by Durbin [8] that

Ĥn
L−→ χ2 (5.6)

where χ2 stands for the Chi-square distribution with one degree of freedom. Moreover, it immediately follows
from the very definition of θ̂n that, under H0,

V̂ar(θ̂n) = σ̂ 2
nS−1

n−1 where Sn =
n∑

k=0

X2
k

and σ̂ 2
n is the least squares estimator of the variance of the sequence (εn),

σ̂ 2
n =

1
n

n∑
k=1

(
Xk − θ̂nXk−1

)2

.

As a consequence,
nV̂ar(θ̂n) = 1 − θ̂ 2

n + X2
nS−1

n−1

where the remainder term converges a.s. to zero by virtue of Lemma A.2 with a = 2. Accordingly, it follows
from a straightforward calculation that Ĥn is almost surely equivalent to the test statistic given by (4.18), that
is

Ẑn =
n

4θ̂ 2
n

(
D̂n − 2

)2

. (5.7)

5.3. Empirical power and comparisons

We shall now compare the empirical power of the statistical tests based on Q̂BP
n , Q̂LB

n , Ĥn and Ẑn by
simulations. These statistics are used to test H0 against H1 at the 0.05 level of significance. We repeat the
procedure 1000 times and compute the frequency with which H0 is rejected, for different values of ρ. At the
end of each experiment, we obtain the empirical power of the procedures and compare their performance, by
estimating

P
(
rejecting H0 | H1 is true

)
.

To minimize the impact of the initial values, the first 50 observations are discarded and the remaining observa-
tions taken as a sample, according to the protocol of Park [21]. We choose a significative θ = 0.5 and standard
normal residuals. Note that σ2 has no influence on the test statistics since ρ̂n is self-normalized. Finally, sample
sizes n = 30, n = 100 and n = 500 are used in order to evaluate the empirical power even on small-sized samples.
All numerical results are given in Tables 1–3.
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Table 1. Figures give the power of the tests for n = 30, the frequencies of H0 not rejected are
in parentheses.

n = 30
Values of ρ

−0.9 −0.6 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.6 0.9

Box–Pierce
0.20 0.00 0.00 0.00 0.00 – 0.00 0.01 0.02 0.22 0.63

(0.80) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (0.99) (0.98) (0.78) (0.40)

Ljung–Box
0.24 0.00 0.00 0.00 0.00 – 0.00 0.01 0.03 0.26 0.60

(0.76) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (0.99) (0.97) (0.74) (0.37)

h-test
0.58 0.24 0.16 0.14 0.17 – 0.18 0.22 0.28 0.49 0.71

(0.42) (0.76) (0.84) (0.86) (0.83) (0.85) (0.82) (0.78) (0.72) (0.51) (0.29)

Durbin–Watson
0.63 0.54 0.31 0.22 0.17 – 0.15 0.18 0.23 0.46 0.70

(0.37) (0.47) (0.69) (0.78) (0.84) (0.87) (0.85) (0.82) (0.77) (0.55) (0.30)

Table 2. Figures give the power of the tests for n = 100, the frequencies of H0 not rejected
are in parentheses.

n = 100
Values of ρ

−0.9 −0.6 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.6 0.9

Box–Pierce
0.89 0.00 0.00 0.00 0.00 – 0.00 0.02 0.10 0.75 0.99

(0.11) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (0.98) (0.90) (0.26) (0.01)

Ljung–Box
0.90 0.00 0.00 0.00 0.00 – 0.00 0.02 0.11 0.75 0.99

(0.10) (1.00) (1.00) (1.00) (1.00) (1.00) (1.00) (0.98) (0.89) (0.25) (0.01)

h-test
0.99 0.62 0.25 0.15 0.10 – 0.14 0.22 0.41 0.87 1.00

(0.01) (0.38) (0.75) (0.85) (0.90) (0.92) (0.86) (0.79) (0.59) (0.13) (0.00)

Durbin–Watson
0.99 0.82 0.26 0.13 0.08 – 0.13 0.20 0.39 0.87 1.00

(0.01) (0.18) (0.74) (0.87) (0.92) (0.94) (0.87) (0.80) (0.61) (0.14) (0.00)

Table 3. Figures give the power of the tests for n = 500, the frequencies of H0 not rejected
are in parentheses.

n = 500
Values of ρ

−0.9 −0.6 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.6 0.9

Box–Pierce
1.00 0.01 0.00 0.00 0.00 – 0.00 0.19 0.70 1.00 1.00

(0.00) (0.99) (1.00) (1.00) (1.00) (1.00) (1.00) (0.81) (0.30) (0.00) (0.00)

Ljung–Box
1.00 0.01 0.00 0.00 0.00 – 0.00 0.19 0.70 1.00 1.00

(0.00) (0.99) (1.00) (1.00) (1.00) (1.00) (1.00) (0.81) (0.30) (0.00) (0.00)

h-test
1.00 0.94 0.87 0.54 0.17 – 0.24 0.63 0.93 1.00 1.00

(0.00) (0.06) (0.13) (0.46) (0.83) (0.95) (0.76) (0.37) (0.07) (0.00) (0.00)

Durbin–Watson
1.00 1.00 0.86 0.54 0.17 – 0.24 0.63 0.93 1.00 1.00

(0.00) (0.00) (0.14) (0.46) (0.83) (0.95) (0.77) (0.37) (0.07) (0.00) (0.00)

Figures 1 and 2 below represent the frequencies of H0 not rejected when ρ varies from −0.9 to 0.9, for
n = 100 and then for n = 500. BP, LB, HT and DW respectively stand for Box–Pierce, Ljung–Box, H-test and
Durbin–Watson.

It clearly appears that the h-test and our procedure are more powerful than the portmanteau tests, in our
precise framework of first-order processes. Note that an unexpected peak occurs when ρ = −0.6, due to the fact
that we are close to the critical situation where θ = −ρ, in which ρ̂n converges a.s. to zero even if there is a
significative serial correlation. As we have seen before in (5.4), the Box–Pierce and Ljung–Box test statistics are
invariably smaller than they should have been in such a model, underestimating the alternative H1 hypothesis.
That is the reason why we constantly observe that these procedures lead to inadequate conclusions in the region
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Figure 1. Frequencies of H0 not rejected for sample size n = 100 and ρ varying from −0.9 to
0.9 on the abscissa.
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Figure 2. Frequencies of H0 not rejected for sample size n = 500 and ρ varying from −0.9 to
0.9 on the abscissa.
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Figure 3. Frequencies of H0 not rejected for sample size n = 30 and ρ varying from −0.9 to
0.9 on the abscissa.

0 < |ρ| ≤ 0.3 even if, under H0 and for the same reason, they are more reliable than the h-test and the test
we proposed. Under H1, we suggest to make use of the latter ones, clearly more powerful. The asymptotic
equivalence between them implies that they share the same behavior on large samples, as it appears on the
graphs above. However, our procedure is less impacted by the critical situation where θ = −ρ. Figure 3 displays
the results for n = 30.

On small-sized samples, all procedures are obviously less powerful, but once again we observe that our
procedure outperforms both the portmanteau tests and the h-test, particularly when θ and ρ are of different
sign. Nevertheless, results are quite satisfying in the area of uncertainty where |ρ| ≤ 0.2. In consequence, even
if the h-test and our procedure are equally powerful on large samples, it seems advisable to make use of the
one described in Theorem 4.7 on small-sized ones, to detect a significative first-order serial correlation in the
residuals of a first-order autoregressive process. Note that the so-called Breusch-Godfrey test [6, 13] is not as
efficient as our procedure on small-sized samples, but we have observed that it would lead to similar results
on large samples. In order to keep this section brief, we have chosen a particular θ = 0.5. However, it is clear
that all those simulation results lead to the same conclusions when θ varies in a significative area, say |θ| not
too close to 0. On the other side, when |θ| is close to 1, we have from (5.4) that all the statistical tests are
asymptotically equivalent.

6. Conclusion

Via an extensive use of the theory of martingales, we have provided a sharp analysis on the asymptotic
behavior of the least squares estimators θ̂n and ρ̂n which has allowed us to deduce the asymptotic behavior of
the Durbin–Watson statistic D̂n for the first-order autoregressive process. More precisely, we have established
the almost sure convergence and the asymptotic normality for all three estimators θ̂n, ρ̂n and D̂n. In addition,
we have proposed a new bilateral statistical procedure for testing serial correlation, built on D̂n. All these results
give a new light on the well-known test of Durbin–Watson in a context of lagged dependent random variables.
From a practical standpoint and for a matter of completeness, we may wonder about the estimation of the true
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values of the parameters θ and ρ. As soon as θ �= −ρ, we can estimate θ and ρ by solving the nonlinear system
of two equations given, for ân = θ̂n + ρ̂n and b̂n = ρ̂n/θ̂n, by⎧⎨⎩

lim
n→∞ ân = θ + ρ

lim
n→∞ b̂n = θρ

a.s.

One can easily find two couples of solutions, symmetrically linked together. For example, assuming θ < ρ, we
propose to make use of

θ̃n =
ân −

√
â 2

n − 4b̂n

2
and ρ̃n =

ân +
√

â 2
n − 4b̂n

2
,

merely inverting the values of θ̃n and ρ̃n whether, for some statistical argument, we would rather choose θ > ρ.
This work lifts the veil on a set of questions for long left unanswered about the pioneer works of Durbin and
Watson [10–12,19,20] and contributes to bring the test procedure back into light. Moderate deviation principles
on the Durbin–Watson statistic have recently been established by Bitseki Penda et al. [3] and the extension to
the more general stable p-order autoregressive processes may be found in [22]. In addition, it would be very
interesting to investigate the asymptotic behavior of the Durbin–Watson statistic in the explosive case where
|θ| > 1 or |ρ| > 1.

Appendix A. Proofs of the autoregressive parameter results

A.1. Proof of Theorem 2.1

We start with some useful technical lemmas we shall make repeatedly use of. The proof of the first one may
be found in [7] page 24.

Lemma A.1. Assume that (Vn) is a sequence of independent and identically distributed random variables such
that, for some a ≥ 1, E[|V1|a] is finite. Then,

lim
n→∞

1
n

n∑
k=1

|Vk|a = E[|V1|a] a.s. (A.1)

and
sup

1≤k≤n
|Vk| = o(n1/a) a.s. (A.2)

Lemma A.2. Assume that (Vn) is a sequence of independent and identically distributed random variables such
that, for some a ≥ 1, E[|V1|a] is finite. If (Xn) satisfies (1.1) with |θ| < 1, |ρ| < 1, then

n∑
k=1

|Xk|a = O(n) a.s. (A.3)

and
sup

1≤k≤n
|Xk| = o(n1/a) a.s. (A.4)

Remark A.3. In the particular case a = 2, we obtain that

n∑
k=1

X2
k = O(n) and sup

1≤k≤n
X2

k = o(n) a.s.
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Proof. It follows from (1.1) that for all n ≥ 1,

|Xn| ≤ |θ|n|X0| +
n∑

k=1

|θ|n−k|εk|. (A.5)

Consequently, as |θ| < 1, we obtain that

sup
1≤k≤n

|Xk| ≤ 1
1 − |θ|

(
|X0| + sup

1≤k≤n
|εk|
)

. (A.6)

By the same token, as |ρ| < 1, we also deduce from (1.1) that

sup
1≤k≤n

|εk| ≤ 1
1 − |ρ|

(
|ε0| + sup

1≤k≤n
|Vk|

)
. (A.7)

Hence, (A.2) together with (A.6) and (A.7) obviously imply

sup
1≤k≤n

|Xk| = o(n1/a) a.s.

Furthermore, let b be the conjugate exponent of a,

1
a

+
1
b

= 1.

It follows from (A.5) and Holder’s inequality that for all n ≥ 1,

|Xn| ≤
(
|θ|n|X0|a +

n∑
k=1

|θ|n−k|εk|a
)1/a( n∑

k=0

|θ|n−k

)1/b

which implies that

|Xn|a ≤
(

n∑
k=0

|θ|n−k

)a/b(
|θ|n|X0|a +

n∑
k=0

|θ|n−k|εk|a
)

,

≤
( ∞∑

k=0

|θ|k
)a/b(

|θ|n|X0|a +
n∑

k=1

|θ|n−k|εk|a
)

,

≤
(
1 − |θ|

)−a/b
(
|θ|n|X0|a +

n∑
k=1

|θ|n−k|εk|a
)

.

Consequently,

n∑
k=1

|Xk|a ≤
(
1 − |θ|

)−a/b
(

n∑
k=1

|θ|k|X0|a +
n∑

k=1

k∑
�=1

|θ|k−�|ε�|a
)

,

≤
(
1 − |θ|

)−a/b
(
|X0|a

n∑
k=1

|θ|k +
n∑

�=1

|ε�|a
n∑

k=�

|θ|k−�

)
,

≤
(
1 − |θ|

)−a
(
|X0|a +

n∑
k=1

|εk|a
)

. (A.8)
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Via the same lines, we also obtain that

n∑
k=1

|εk|a ≤
(
1 − |ρ|

)−a
(
|ε0|a +

n∑
k=1

|Vk|a
)

. (A.9)

Finally, (A.1) together with (A.8) and (A.9) lead to (A.3), which completes the proof of Lemma A.2. �

Proof of Theorem 2.1. We easily deduce from (1.1) that the process (Xn) satisfies the fundamental autoregres-
sive equation given, for all n ≥ 2, by

Xn = (θ + ρ)Xn−1 − θρXn−2 + Vn. (A.10)

For all n ≥ 0, let

Sn =
n∑

k=0

X2
k , (A.11)

Pn =
n∑

k=1

XkXk−1, (A.12)

Mn =
n∑

k=1

Xk−1Vk (A.13)

where P0 = 0 and M0 = 0. It is not hard to see from (A.10) that for all n ≥ 2,

Pn = (θ + ρ)Sn−1 − θρPn−1 + Mn + ρX0(ε0 − X0)

which implies that
(1 + θρ)Pn = (θ + ρ)Sn−1 + Mn + θρXnXn−1 + ρX0(ε0 − X0). (A.14)

Via (2.1), (A.14) leads to the main decomposition

θ̂n =
θ + ρ

1 + θρ
+

1
1 + θρ

Mn

Sn−1
+

1
1 + θρ

Rn

Sn−1
(A.15)

where the remainder term
Rn = θρXnXn−1 + ρX0(ε0 − X0).

For all n ≥ 1, denote by Fn the σ-algebra of the events occurring up to time n, Fn = σ(X0, ε0, V1, . . . , Vn).
We infer from (A.13) that (Mn) is a locally square-integrable real martingale [7,14] with predictable quadratic
variation given by 〈M〉0 = 0 and for all n ≥ 1,

〈M〉n =
n∑

k=1

E[(Mk − Mk−1)2|Fk−1],

=
n∑

k=1

E[X2
k−1V

2
k |Fk−1] = σ2Sn−1.

Furthermore, it follows from (A.10) and Corollary 1.3.25 of [7] that n = O(Sn) a.s. Then, we deduce from the
strong law of large numbers for martingales given e.g. by Theorem 1.3.15 of [7] that

lim
n→∞

Mn

〈M〉n = 0 a.s.
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which of course ensures that
lim

n→∞
Mn

Sn−1
= 0 a.s. (A.16)

It remains to show that the remainder Rn = o(Sn−1) a.s. We have from (A.4) with a = 2 that |Xn| = o(
√

n)
a.s. which implies that Rn = o(n) a.s. However, we already saw that n = O(Sn) a.s. Hence,

lim
n→∞

Rn

Sn−1
= 0 a.s. (A.17)

Finally, it follows from (A.15) together with (A.16) and (A.17) that

lim
n→∞ θ̂n =

θ + ρ

1 + θρ
a.s.

which achieves the Proof of Theorem 2.1. �

A.2. Proof of Theorem 2.2

In order to establish the asymptotic normality of the least squares estimator θ̂n, it is necessary to be more
precise in Lemma A.2 with a = 2.

Lemma A.4. Assume that the initial values X0 and ε0 are square-integrable and that (Vn) is a sequence of
square-integrable, independent and identically distributed random variables with zero mean and variance σ2 > 0.
Then,

lim
n→∞

1
n

n∑
k=1

X2
k = 
 a.s. (A.18)

where the limiting value


 =
σ2(1 + θρ)

(1 − θ2)(1 − θρ)(1 − ρ2)
· (A.19)

In addition, if 
1 = θ∗
, then

lim
n→∞

1
n

n∑
k=1

XkXk−1 = 
1 a.s. (A.20)

Proof. We deduce from the fundamental autoregressive equation (A.10) together with straightforward calcula-
tions that for all n ≥ 2,

Sn = (θ + ρ)2Sn−1 + (θρ)2Sn−2 + Ln − 2θρ(θ + ρ)Pn−1 + 2(θ + ρ)Mn − 2θρNn + ξ1

where Sn, Pn and Mn are respectively given by (A.11)–(A.13), the last term ξ1 = (1 − 2θρ − ρ2)X2
0 + ρ2ε2

0 +
2θρX0ε0 + 2ρ(ε0 − X0)V1 and, for all n ≥ 2,

Ln =
n∑

k=1

V 2
k , (A.21)

Nn =
n∑

k=2

Xk−2Vk. (A.22)

Consequently,

(1 − (θ + ρ)2 − (θρ)2)Sn = Ln − 2θρ(θ + ρ)Pn + 2(θ + ρ)Mn − 2θρNn − Tn (A.23)
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where the remainder term

Tn = ((θ + ρ)2 + (θρ)2)X2
n + (θρ)2X2

n−1 − 2θρ(θ + ρ)XnXn−1 − ξ1.

It follows from (A.1) with a = 2 that

lim
n→∞

Ln

n
= σ2 a.s. (A.24)

In addition, we already saw from equation (A.14) that Pn = θ∗Sn−1 + o(Sn−1) a.s. which clearly implies

Pn = θ∗Sn + o(Sn) a.s. (A.25)

Moreover, (Nn) given by (A.22) is a locally square-integrable real martingale sharing the same almost sure
properties than (Mn). More precisely, its predictable quadratic variation is given by 〈N〉n = σ2Sn−2 which
means that

lim
n→∞

Mn

Sn
= 0 and lim

n→∞
Nn

Sn
= 0 a.s. (A.26)

Furthermore, we have from (A.4) with a = 2 that X2
n = o(n) a.s. It ensures by use of n = O(Sn) a.s. that

lim
n→∞

Tn

Sn
= 0 a.s. (A.27)

Therefore, it follows from the conjunction of (A.23), (A.25), (A.26) and (A.27) that

(1 − (θ + ρ)2 − (θρ)2 + 2θρ(θ + ρ)θ∗)Sn = Ln + o(Sn) a.s. (A.28)

Finally, dividing both sides of (A.28) by n and letting n goes to infinity, we deduce from (A.24) that

lim
n→∞

Sn

n
=

σ2(1 + θρ)
(1 − θρ)(1 − θ2)(1 − ρ2)

a.s.

lim
n→∞

Pn

n
=

σ2(θ + ρ)
(1 − θρ)(1 − θ2)(1 − ρ2)

a.s.

These two limits will often be used in all the sequel. �

Proof of Theorem 2.2. We are now in the position to prove the asymptotic normality of θ̂n. We have from the
main decomposition (A.15) that for all n ≥ 2,

√
n
(
θ̂n − θ∗

)
=

√
n

(
σ2

1 + θρ

)
Mn

〈M〉n +
√

n

(
1

1 + θρ

)
Rn

Sn−1
· (A.29)

We shall make use of the central limit theorem for martingales given e.g. by Corollary 2.1.10 of [7], to establish
the asymptotic normality of the first term in the right-hand side of (A.29). On the other hand, we will also
show that the second term

√
nRn/Sn−1 goes to zero almost surely. First of all, it follows from (A.18) that

lim
n→∞

〈M〉n
n

= σ2
 a.s. (A.30)

From now on, in order to apply the central limit theorem for martingales, it is necessary to prove that the
Lindeberg condition is satisfied. For all n ≥ 1, denote ΔMn = Xn−1Vn. One only has to show that for all ε > 0,

1
n

n∑
k=1

E
[|ΔMk|2I|ΔMk|≥ε

√
n|Fk−1

] P−→ 0. (A.31)
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However, we have assumed that (Vn) has a finite moment of order 4, τ4 = E[V 4
1 ]. Hence, for all n ≥ 1,

E[|ΔMn|4|Fn−1] = E[X4
n−1V

4
n |Fn−1] = τ4X4

n−1. In addition, we deduce from (A.3) with a = 4 that

n∑
k=1

X4
k = O(n) a.s. (A.32)

Therefore, for all ε > 0,

1
n

n∑
k=1

E
[|ΔMk|2I|ΔMk|≥ε

√
n|Fk−1

] ≤ 1
ε2n2

n∑
k=1

E
[|ΔMk|4|Fk−1

]
,

≤ τ4

ε2n2

n∑
k=1

X4
k−1.

Consequently, (A.32) ensures that

1
n

n∑
k=1

E
[|ΔMk|2I|ΔMk|≥ε

√
n|Fk−1

]
= O(n−1) a.s.

and the Lindeberg condition is clearly satisfied. We can conclude from the central limit theorem for martingales
that

1√
n

Mn
L−→ N (

0, σ2

)

(A.33)

in which the asymptotic variance is the deterministic limit given by (A.30). Moreover, as 
 > 0, we have from
(A.33) and Slutsky’s lemma that

√
n

Mn

〈M〉n
L−→ N (

0, σ−2
−1
)
. (A.34)

It only remains to prove that
√

nRn = o(Sn−1) a.s. We have from (A.4) with a = 4 that |Xn| = o(n1/4) a.s.
which implies that

√
nRn = o(n) a.s. Hence,

lim
n→∞

√
n

Rn

Sn−1
= 0 a.s. (A.35)

Finally, it follows from (A.29) together with (A.34) and (A.35) that

√
n
(
θ̂n − θ∗

) L−→ N (
0, σ2

θ

)
where the asymptotic variance

σ2
θ =

σ2


(1 + θρ)2
=

(1 − θ2)(1 − θρ)(1 − ρ2)
(1 + θρ)3

which achieves the Proof of Theorem 2.2. �

A.3. Proof of Theorem 2.4

Denote by fn the explosion coefficient associated with the locally square-integrable real martingale (Mn),
given for all n ≥ 0, by

fn =
X2

n

Sn
· (A.36)
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It clearly follows from (A.18) that fn tends to zero almost surely. Consequently, by virtue of the quadratic
strong law for martingales given by Theorem 3 of [1] or [2],

lim
n→∞

1
log n

n∑
k=1

fk

(
M2

k

Sk−1

)
= σ2 a.s. (A.37)

In addition, by summation of equation (A.15), we have for all n ≥ 1,

n∑
k=1

fkSk−1

(
θ̂k − θ∗

)2

=
1

(1 + θρ)2

n∑
k=1

fk

(
M2

k

Sk−1

)
+

1
(1 + θρ)2

n∑
k=1

fk

(
R2

k

Sk−1

)

+
2

(1 + θρ)2

n∑
k=1

fk

(
MkRk

Sk−1

)
·

We already saw from (A.35) that R2
n = o(Sn−1) a.s. Moreover, by the elementary inequality x ≤ − log(1 − x)

where 0 ≤ x ≤ 1, we obtain that fn ≤ − log(1 − fn) which means that fn ≤ log Sn − log Sn−1. Thus,

n∑
k=1

fk

(
R2

k

Sk−1

)
= O(1) + o

(
n∑

k=1

fk

)
= O(1) + o (log Sn) = o (log n) a.s.

Consequently, the second term of the summation is negligible compared to the first one. Furthermore, the third
one is a cross-term and this ensures that it also plays a negligible role compared to the first term. Thereby,

lim
n→∞

1
log n

n∑
k=1

fkSk−1

(
θ̂k − θ∗

)2

=
σ2

(1 + θρ)2
a.s. (A.38)

Finally, as in the proof of Corollary 8 in [1], we deduce from (A.18) and (A.38) that

lim
n→∞

1
log n

n∑
k=1

(
θ̂k − θ∗

)2

=
σ2


(1 + θρ)2
a.s.

=
(1 − θ2)(1 − θρ)(1 − ρ2)

(1 + θρ)3
a.s.

which completes the proof of the quadratic strong law (2.5). We shall now proceed to the proof of the law
of iterated logarithm given by (2.6). Kolmogorov’s law of iterated logarithm was extended to the martingale
framework by Stout [24, 25] and a simplified version of this result may be found in Corollary 6.4.25 of [7]. In
order to apply the law of iterated logarithm for martingales, it is only necessary to verify that

+∞∑
k=1

X4
k

k2
< +∞ a.s. (A.39)

For all n ≥ 0, denote

Tn =
n∑

k=1

X4
k

with T0 = 0. We clearly have

+∞∑
k=1

X4
k

k2
=

+∞∑
k=1

Tk − Tk−1

k2
=

+∞∑
k=1

(
2k + 1

k2(k + 1)2

)
Tk.
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However, we already saw from (A.32) that Tn = O(n) a.s. Consequently,

+∞∑
k=1

X4
k

k2
= O

(
+∞∑
k=1

Tk

k3

)
= O

(
+∞∑
k=1

1
k2

)
= O(1) a.s.

which immediately implies (A.39). Then, we obtain from the law of iterated logarithm for martingales that

lim sup
n→∞

( 〈M〉n
2 log log〈M〉n

)1/2
Mn

〈M〉n = − lim inf
n→∞

( 〈M〉n
2 log log〈M〉n

)1/2
Mn

〈M〉n
= 1 a.s.

Whence, as 〈M〉n = σ2Sn−1, we deduce from (A.18) that

lim sup
n→∞

(
n

2 log log n

)1/2
Mn

Sn−1
= − lim inf

n→∞

(
n

2 log log n

)1/2
Mn

Sn−1

=
σ√



a.s. (A.40)

Furthermore, we obviously have from (A.35) that

lim
n→∞

(
n

2 log log n

)1/2
Rn

Sn−1
= 0 a.s. (A.41)

Finally, (2.6) follows from the conjunction of (A.15), (A.40) and (A.41), completing the Proof of Theorem 2.4.

Appendix B. Proofs of the serial correlation parameter results

B.1. Proof of Theorem 3.1

In order to establish the almost sure convergence of the least squares estimator ρ̂n, it is necessary to start
with an useful technical lemma.

Lemma B.1. Assume that the initial values X0 and ε0 are square-integrable and that (Vn) is a sequence of
square-integrable, independent and identically distributed random variables with zero mean and variance σ2 > 0.
Then,

lim
n→∞

1
n

n∑
k=2

XkXk−2 = 
2 a.s. (B.1)

where the limiting value


2 =
σ2
(
(θ + ρ)2 − θρ(1 + θρ)

)
(1 − θ2)(1 − θρ)(1 − ρ2)

· (B.2)

Proof. Proceeding as in the proof of Lemma A.4, we deduce from (A.10) that for all n ≥ 2,

Qn =
n∑

k=2

XkXk−2 = (θ + ρ)Pn−1 − θρSn−2 + Nn (B.3)

where Sn, Pn and Nn are respectively given by (A.11), (A.12) and (A.22). We already saw in Appendix A that
Nn = o(n) a.s. Hence, it follows from (A.18) and (A.20) that

lim
n→∞

Qn

n
= (θ + ρ)
1 − θρ
 = 
2 a.s.

which achieves the proof of Lemma B.1. �
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Proof of Theorem 3.1. We are now in the position to prove the almost sure convergence of ρ̂n to ρ∗ given by
(1.3). For all n ≥ 1, denote

In =
n∑

k=1

ε̂kε̂k−1 and Jn =
n∑

k=0

ε̂ 2
k .

It is not hard to see that

In = Pn − θ̂n(Sn−1 + Qn) + θ̂ 2
nPn−1, (B.4)

Jn = Sn − 2θ̂nPn + θ̂ 2
nSn−1. (B.5)

Consequently, it follows from convergence (2.2) together with (A.18), (A.20) and (B.1) that

lim
n→∞

In

n
= 
1 − θ∗(
 + 
2) + (θ∗)2
1 a.s.

= θρθ∗
(1 − (θ∗)2) a.s.
= ρ∗
(1 − (θ∗)2) a.s. (B.6)

since ρ∗ = θρθ∗. By the same token,

lim
n→∞

Jn

n
= 
 − 2θ∗
1 + (θ∗)2
 a.s.

= 
(1 − (θ∗)2) a.s. (B.7)

One can observe that 
 > 0 and |θ∗| < 1, which implies that 
(1 − (θ∗)2) > 0. Therefore, we deduce
from (3.2), (B.6) and (B.7) that

lim
n→∞ ρ̂n = lim

n→∞
In

Jn−1
=

ρ∗
(1 − (θ∗)2)

(1 − (θ∗)2)

= ρ∗ a.s.

which completes the Proof of Theorem 3.1. �

B.2. Proof of Theorem 3.2

First of all, we already saw from (A.15) that

Sn−1

(
θ̂n − θ∗

)
=

Mn

1 + θρ
+

Rn(θ)
1 + θρ

(B.8)

where Rn(θ) = θρXnXn−1 + ρX0(ε0 −X0). Our goal is to find a similar decomposition for ρ̂n − ρ∗. On the one
hand, we deduce from (A.14) that

Pn = θ∗Sn +
Mn

1 + θρ
+

ξP
n

1 + θρ
(B.9)

where ξP
n = Rn(θ) − (θ + ρ)X2

n. On the other hand, we obtain from (B.3) and (B.9) that

Qn =
(
(θ + ρ)θ∗ − θρ)

)
Sn + θ∗Mn + Nn + ξQ

n (B.10)

with ξQ
n = θ∗ξP

n − (θ +ρ)XnXn−1 + θρ(X2
n +X2

n−1). Then, it follows from (B.4), (B.9) and (B.10) together with
tedious but straightforward calculations that

In = θ∗
(
θρ − θ∗ρ∗

)
Sn +

(
1 − θ∗ρ∗

1 + θρ

)
Mn − θ∗Nn − (θ̂n − θ∗

)
Fn + ξI

n (B.11)
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where Fn = Sn + Qn − (θ̂n + θ∗
)
Pn,

ξI
n = θ̂nX2

n − θ̂ 2
nXnXn−1 +

(
1 + (θ∗)2

1 + θρ

)
ξP
n − θ∗ξQ

n .

Via the same lines, we also find from (B.5), (B.9) and (B.10) that

Jn−1 =
(
1 − (θ∗)2

)
Sn −

(
2θ∗

1 + θρ

)
Mn −

(
θ̂n − θ∗

)
Gn + ξJ

n (B.12)

where Gn = 2Pn − (θ̂n + θ∗
)
Sn,

ξJ
n = −X2

n + 2θ̂nXnXn−1 − θ̂ 2
n (X2

n + X2
n−1) −

(
2θ∗

1 + θρ

)
ξP
n .

Replacing In and Jn−1 by the expansions (B.11) and (B.12), we obtain from the identity Jn−1(ρ̂n − ρ∗) =
In − ρ∗Jn−1 that

Jn−1

(
ρ̂n − ρ∗

)
=
(

1 + θ∗ρ∗

1 + θρ

)
Mn − θ∗Nn − (θ̂n − θ∗

)
Hn + ξI

n − ρ∗ξJ
n

where Hn = Fn − ρ∗Gn. One can observe that the leading term depending on Sn vanishes as it should, since(
θ∗
(
θρ − θ∗ρ∗)

)− ρ∗
(
1 − (θ∗)2

))
= 0.

Consequently, we deduce from (B.8) that

Jn−1

(
ρ̂n − ρ∗

)
=

TnMn

1 + θρ
− θ∗Nn +

Rn(ρ)
1 + θρ

(B.13)

where

Tn = 1 + θ∗ρ∗ − Hn

Sn−1
,

Rn(ρ) = (1 + θρ)
(

ξI
n − ρ∗ξJ

n

)
− Rn(θ)Hn

Sn−1
·

In contrast to (B.8), it was much more tricky to establish relation (B.13). We are now in the position to prove
the joint asymptotic normality of θ̂n and ρ̂n. Using the same approach as in [27], it follows from (B.8) and
(B.13) that

√
n

(
θ̂n − θ∗
ρ̂n − ρ∗

)
=

1√
n

AnZn + Bn (B.14)

where

Zn =
(

Mn

Nn

)
,

An =
n

1 + θρ

⎛⎜⎜⎝
1

Sn−1
0

Tn

Jn−1
− (θ + ρ)

Jn−1

⎞⎟⎟⎠ and Bn =
√

n

1 + θρ

⎛⎜⎜⎝
Rn(θ)
Sn−1

Rn(ρ)
Jn−1

⎞⎟⎟⎠ .



ON THE ASYMPTOTIC BEHAVIOR OF THE DURBIN–WATSON STATISTIC 523

On the one hand, we obtain from (A.18), (A.20), (B.1) and (B.7) that

lim
n→∞An = A a.s. (B.15)

where A is the limiting matrix given by

A =
1


(1 + θρ)(1 − (θ∗)2)

(
1 − (θ∗)2 0

θρ + (θ∗)2 −(θ + ρ)

)
. (B.16)

On the other hand, as in the proof of (A.35), we clearly have

lim
n→∞Bn =

(
0

0

)
a.s. (B.17)

Furthermore, (Zn) is a two-dimensional real martingale [7, 14] with increasing process given, for all n ≥ 2, by

〈Z〉n = σ2

(
Sn−1 Pn−1

Pn−1 Sn−2

)
.

We deduce from (A.18) and (A.20) that

lim
n→∞

1
n
〈Z〉n = L a.s. (B.18)

where L is the positive-definite symmetric matrix given by

L = σ2


(
1 θ∗

θ∗ 1

)
. (B.19)

We also immediately derive from (A.32) that (Zn) satisfies the Lindeberg condition. Therefore, we can conclude
from the central limit theorem for multidimensional martingales given e.g. by Corollary 2.1.10 of [7] that

1√
n

Zn
L−→ N (0, L) . (B.20)

Finally, we find from the conjunction of (B.14), (B.15), (B.17) and (B.20) together with Slutsky’s lemma that

√
n

(
θ̂n − θ∗
ρ̂n − ρ∗

) L−→ N
(
0, ALA′

)
.

One can easily check the identity Γ = ALA′ via (B.16) and (B.19), where Γ is given by (3.5), which achieves
the Proof of Theorem 3.2.

B.3. Proof of Theorem 3.4

The proof of the quadratic strong law for θ̂n relies on the quadratic strong law for the martingale (Mn) given
by (A.37)

lim
n→∞

1
log n

n∑
k=1

fk

(
M2

k

Sk−1

)
= σ2 a.s.

which implies that

lim
n→∞

1
log n

n∑
k=1

(
Mk

Sk−1

)2

=
σ2



a.s. (B.21)
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In order to establish a similar result for ρ̂n, we shall introduce a suitable martingale (Ln) which is a linear
combination of (Mn) and (Nn). The sequence (Ln) is defined by L0 = 0, L1 = X0V1 and, for all n ≥ 2,

Ln = Mn − aNn = L1 +
n∑

k=2

(Xk−1 − aXk−2)Vk (B.22)

where

a =
θ + ρ

θρ + (θ∗)2
·

We infer from (A.13) and (A.22) together with (B.22) that (Ln) is a locally square-integrable real martingale
with predictable quadratic variation given by 〈L〉0 = 0, 〈L〉1 = σ2X2

0 and for all n ≥ 2,

〈L〉n = σ2
(
Sn−1 − 2aPn−1 + a2Sn−2

)
.

Moreover, we clearly deduce from (A.18) and (A.20) that

lim
n→∞

〈L〉n
n

= σ2
b a.s. (B.23)

where b = 1 − 2aθ∗ + a2. It also comes from a tedious calculation that

b =
a2(1 − θ2)(1 − ρ2)c
(θ + ρ)2(1 + θρ)4

(B.24)

where c = (θ + ρ)2(1 + θρ)2 + (θρ)2(1− θ2)(1− ρ2). Then, via the same arguments as in the proof of (B.21), we
obtain from (B.23) that

lim
n→∞

1
log n

n∑
k=1

(
Lk

Sk−1

)2

=
σ2b



a.s. (B.25)

Furthermore, it follows from (B.13) that

Jn−1

(
ρ̂n − ρ∗

)
=
(

θρ + (θ∗)2

1 + θρ

)
Ln + ζn =

θ∗Ln

a
+ ζn (B.26)

where

ζn =
(

Tn − θρ − (θ∗)2

1 + θρ

)
Mn +

Rn(ρ)
1 + θρ

·

We obtain from (B.21) and the almost sure convergence of Tn to θρ + (θ∗)2 that

n∑
k=1

(
ζk

Sk−1

)2

= o(log n) a.s.

Consequently, (B.25) and (B.26) lead to

lim
n→∞

1
log n

n∑
k=1

(
Jk−1

Sk−1

)2 (
ρ̂k − ρ∗

)2

=
σ2b(θ∗)2

a2

a.s.

In addition, we get from (B.7) that

lim
n→∞

Jn

Sn
= 1 − (θ∗)2 a.s.
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which implies that

lim
n→∞

1
log n

n∑
k=1

(
ρ̂k − ρ∗

)2

=
σ2b(θ∗)2

a2
(1 − (θ∗)2)2
a.s. (B.27)

However, we clearly have from (A.19) that

σ2(θ∗)2


(1 − (θ∗)2)2
=

(θ + ρ)2(1 − θρ)(1 + θρ)
(1 − θ2)(1 − ρ2)

·

Finally, we can deduce from (B.24) and (B.27) that

lim
n→∞

1
log n

n∑
k=1

(
ρ̂k − ρ∗

)2

=
(1 − θρ)c
(1 + θρ)3

= σ2
ρ a.s.

which completes the proof of the quadratic strong law (3.8). The law of iterated logarithm given by (3.9) is
much more easy to handle. In order to make use of the law of iterated logarithm for the martingale (Ln), it is
only necessary to verify that

+∞∑
k=1

(Xk − aXk−1)4

k2
< +∞ a.s.

which of course follows from (A.39). Consequently, we obtain that

lim sup
n→∞

( 〈L〉n
2 log log〈L〉n

)1/2
Ln

〈L〉n = − lim inf
n→∞

( 〈L〉n
2 log log〈L〉n

)1/2
Ln

〈L〉n
= 1 a.s.

Therefore, we deduce from (B.23) that

lim sup
n→∞

(
n

2 log log n

)1/2
Ln

〈L〉n = − lim inf
n→∞

(
n

2 log log n

)1/2
Ln

〈L〉n
=

1
σ
√


b
a.s.

Whence, the convergence

lim
n→∞

Jn−1

〈L〉n =
1 − (θ∗)2

σ2b
a.s.

implies that

lim sup
n→∞

(
n

2 log log n

)1/2
Ln

Jn−1
= − lim inf

n→∞

(
n

2 log log n

)1/2
Ln

Jn−1

=
σ
√

b√

(1 − (θ∗)2)

a.s. (B.28)

One can be convinced that the remainder term ζn at the right-hand side of (B.26) plays a negligible role
compared to Ln. Finally, (B.26) and (B.28) ensure that

lim sup
n→∞

(
n

2 log log n

)1/2(
ρ̂n − ρ∗

)
= − lim inf

n→∞

(
n

2 log log n

)1/2(
ρ̂n − ρ∗

)
=

σ
√

bθ∗

a
√


(1 − (θ∗)2)
= σρ a.s.

which ends the Proof of Theorem 3.4.
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Appendix C. Proofs of the Durbin–Watson statistic results

C.1. Proof of Theorem 4.1

First of all, we establish a very useful linear relation between the Durbin–Watson statistic D̂n and the least
squares estimator ρ̂n, which allows us to deduce the asymptotic behavior of D̂n. For all n ≥ 1, set

In =
n∑

k=1

ε̂kε̂k−1, Jn =
n∑

k=0

ε̂ 2
k , Kn =

n∑
k=1

(
ε̂k − ε̂k−1

)2
,

fn =
ε̂ 2

n

Jn
·

It is not hard to see that

Kn =
n∑

k=1

ε̂ 2
k − 2

n∑
k=1

ε̂kε̂k−1 +
n∑

k=1

ε̂ 2
k−1 = 2

(
Jn−1 − In

)
+ ε̂ 2

n − ε̂ 2
0 .

Consequently, it follows from (4.1) that(
Jn−1 + ε̂ 2

n

)
D̂n = 2

(
Jn−1 − In

)
+ ε̂ 2

n − ε̂ 2
0 . (C.1)

Therefore, dividing both sides of (C.1) by Jn−1, we obtain that

D̂n = 2(1 − fn)
(
1 − ρ̂n

)
+ ξn (C.2)

where

ξn =
ε̂ 2

n − ε̂ 2
0

Jn
·

We already saw from (B.7) that

lim
n→∞

Jn

n
= 
(1 − (θ∗)2) a.s. (C.3)

with 
(1 − (θ∗)2) > 0, which implies that both fn and ξn converge to zero almost surely. Hence, we deduce
from (C.2) that

lim
n→∞ D̂n = D∗ a.s.

where D∗ = 2(1 − ρ∗), which completes the Proof of Theorem 4.1.

C.2. Proof of Theorem 4.2

We shall now prove the asymptotic normality of D̂n using (3.7). On the one hand, we clearly have from (C.2)
that √

n
(
D̂n − D∗

)
= −2(1 − fn)

√
n
(
ρ̂n − ρ∗

)
+ 2(ρ∗ − 1)

√
nfn +

√
nξn. (C.4)

On the other hand, we deduce from (A.4) with a = 4 that

sup
1≤k≤n

ε̂ 2
k = o(

√
n) a.s.

which, via (C.3), implies that

lim
n→∞

√
nfn = 0 and lim

n→∞
√

nξn = 0 a.s. (C.5)

Then, it follows from (3.7), (C.4) and (C.5) together with Slutsky’s lemma that

√
n
(
D̂n − D∗

) L−→ N (0, σ2
D)

where σ2
D = 4σ2

ρ, which achieves the Proof of Theorem 4.2.
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C.3. Proof of Theorem 4.4

We immediately deduce from relation (C.2) that

D̂n − D∗ = −2(1 − fn)
(
ρ̂n − ρ∗

)
+ ζn (C.6)

where ζn = 2(ρ∗ − 1)fn + ξn. Consequently, by summation of (C.6), we obtain that for all n ≥ 1,

n∑
k=1

(
D̂k − D∗

)2

=
n∑

k=1

(
4(1 − fk)2

(
ρ̂k − ρ∗

)2 + ζ2
k − 4(1 − fk)ζk

(
ρ̂k − ρ∗

))
. (C.7)

Since fn goes to zero almost surely, we have

n∑
k=1

ζ2
k = O(1) + O

(
n∑

k=1

f2
k

)
= O(1) + o

(
n∑

k=1

fk

)
= o(log n) a.s.

Hence, we infer from (3.8) and (C.7) that

lim
n→∞

1
log n

n∑
k=1

(
D̂k − D∗

)2

= 4σ2
ρ = σ2

D a.s.

Furthermore, the law of iterated logarithm (4.6) immediately follows from (3.9) and (C.5), which completes the
Proof of Theorem 4.4.

C.4. Proof of Theorem 4.6

We shall now establish the asymptotic behavior associated with our statistical procedure. It follows from
the identity θ̃n = θ̂n + ρ̂n − ρ0 and (4.13) that

ρ̂n − ρ̃n = ρ̂n −
ρ0θ̃n

(
θ̃n + ρ0

)
1 + ρ0θ̃n

,

=
ρ̂n + ρ0θ̃nρ̂n − ρ0θ̃n

(
θ̃n + ρ0

)
1 + ρ0θ̃n

,

=
ρ̂n + ρ0θ̃n

(
ρ̂n − θ̃n − ρ0

)
1 + ρ0θ̃n

,

=
ρ̂n − ρ0θ̃nθ̂n

1 + ρ0θ̃n

·

Hence, if γ̂n = ρ̂n − θρ0θ̂n and δ̂n = θ̂n + ρ̂n − θ − ρ0, we find that

ρ̂n − ρ̃n =
ρ̂n − ρ0θ̂n

(
θ̂n + ρ̂n − ρ0

)
1 + ρ0θ̃n

=
γ̂n − ρ0θ̂nδ̂n

1 + ρ0θ̃n

· (C.8)

Denote

θ∗0 =
θ + ρ0

1 + θρ0
and ρ∗0 =

θρ0(θ + ρ0)
1 + θρ0

·
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Since ρ∗0 = θρ0θ
∗
0 and θ∗0 + ρ∗0 = θ + ρ0, we obtain that γ̂n = ρ̂n − ρ∗0 − θρ0(θ̂n − θ∗0) and δ̂n = θ̂n + ρ̂n − θ∗0 − ρ∗0.

Consequently, we deduce from (C.8) that

ρ̂n − ρ̃n =
a
(
θ̂n − θ∗0

)
+ b
(
ρ̂n − ρ∗0

)
1 + ρ0θ̃n

−
ρ0δ̂n

(
θ̂n − θ∗0

)
1 + ρ0θ̃n

(C.9)

where a = −ρ0(θ + θ∗0) and b = 1 − ρ0θ
∗
0 . On the other hand, it follows from (C.2) that

D̂n − D̃n = 2(1 − fn)
(
1 − ρ̂n

)
+ ξn − 2

(
1 − ρ̃n

)
,

= −2
(
ρ̂n − ρ̃n

)− 2fn

(
1 − ρ̂n

)
+ ξn,

= −2
(
ρ̂n − ρ̃n

)
+ Δn (C.10)

where Δn = ξn − 2fn

(
1 − ρ̂n

)
. Therefore, (C.9) together with (C.10) imply that

√
n
(
D̂n − D̃n

)
= − 2w′Wn

1 + ρ0θ̃n

+
2ρ0δ̂nv′Wn

1 + ρ0θ̃n

+
√

nΔn (C.11)

where v and w are the vectors of R
2 given by v ′ = (1, 0), w ′ = (a, b) and

Wn =
√

n

(
θ̂n − θ∗0
ρ̂n − ρ∗0

)
.

We already saw by (C.5) that
lim

n→∞
√

nΔn = 0 a.s. (C.12)

Moreover, as |δ̂n| ≤ |θ̂n − θ∗0 | + |ρ̂n − ρ∗0|, the almost sure rates of convergence given by (2.8) and (3.11) ensure
that under the null hypothesis H0, ∣∣∣δ̂nv′Wn

∣∣∣ = O

(
log log n√

n

)
a.s.

leading to
lim

n→∞ δ̂nv′Wn = 0 a.s. (C.13)

Consequently, it follows from the joint asymptotic normality (3.6) together with Slutsky’s lemma, (C.11), (C.12)
and (C.13) that under the null hypothesis H0,

√
n
(
D̂n − D̃n

) L−→ N (0, τ2) (C.14)

with
τ2 =

4
(1 + ρ0θ)2

w′Γw

where the covariance matrix Γ is given by (3.5). We recall from Remark 3.3 that Γ is invertible as soon as
θ �= −ρ, which implies that τ2 > 0. In addition, we obtain from (4.14) and (4.15) that

lim
n→∞ τ̂ 2

n = τ2 a.s. (C.15)

Finally, we deduce from (C.14), (C.15) and once again from Slutsky’s lemma that under the null hypothesis H0,
√

n

τ̂n

(
D̂n − D̃n

) L−→ N (0, 1)
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which obviously implies (4.16). It remains to show that under the alternative hypothesis H1, our test statistic
goes almost surely to infinity. We already saw from (3.3) that

lim
n→∞ ρ̂n =

θρ(θ + ρ)
1 + θρ

a.s. (C.16)

Moreover, as θ̃n converges almost surely to θ + ρ − ρ0, we obtain that

lim
n→∞ ρ̃n =

ρ0(θ + ρ)(θ + ρ − ρ0)
1 + ρ0(θ + ρ − ρ0)

a.s. (C.17)

Hence, it follows from (C.16) and (C.17) that

lim
n→∞

(
ρ̂n − ρ̃n

)
=

(θ + ρ)(θ − ρ0)(ρ − ρ0)
(1 + θρ)(1 + ρ0(θ + ρ − ρ0))

a.s. (C.18)

Under the alternative hypothesis, this limit is equal to zero if and only if θ = ρ0 or θ = −ρ. However, these
particular cases are already excluded from the study of H1. Consequently, under H1, we deduce from (C.18)
that

lim
n→∞n

(
ρ̂n − ρ̃n

)2 = +∞ a.s.

which, via (C.10), clearly leads to (4.17), completing the Proof of Theorem 4.6.
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