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HOW THE RESULT OF GRAPH CLUSTERING METHODS DEPENDS
ON THE CONSTRUCTION OF THE GRAPH
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Abstract. We study the scenario of graph-based clustering algorithms such as spectral clustering.
Given a set of data points, one first has to construct a graph on the data points and then apply a
graph clustering algorithm to find a suitable partition of the graph. Our main question is if and how
the construction of the graph (choice of the graph, choice of parameters, choice of weights) influences
the outcome of the final clustering result. To this end we study the convergence of cluster quality
measures such as the normalized cut or the Cheeger cut on various kinds of random geometric graphs
as the sample size tends to infinity. It turns out that the limit values of the same objective function are
systematically different on different types of graphs. This implies that clustering results systematically
depend on the graph and can be very different for different types of graph. We provide examples to
illustrate the implications on spectral clustering.
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1. Introduction

Nowadays it is very popular to represent and analyze statistical data using random graph or network models.
The vertices in such a graph correspond to data points, whereas edges in the graph indicate that the adjacent
vertices are “similar” or “related” to each other. In this paper we consider the problem of data clustering in
a random geometric graph setting. We are given a sample of points drawn from some underlying probability
distribution on a metric space. The goal is to cluster the sample points into “meaningful groups”. A standard
procedure is to first transform the data to a neighborhood graph, for example a k-nearest neighbor graph. In a
second step, the cluster structure is then extracted from the graph: clusters correspond to regions in the graph
that are tightly connected within themselves and only sparsely connected to other clusters.

There already exist a couple of papers that study statistical properties of this procedure in a particular
setting: when the true underlying clusters are defined to be the connected components of a density level set
in the underlying space. In his setting, a test for detecting cluster structure and outliers is proposed in Brito
et al. [3]. In Biau et al. [2] the authors build a neighborhood graph in such a way that its connected components
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converge to the underlying true clusters in the data. Maier et al. [8] compare the properties of different random
graph models for identifying clusters of the density level sets.

While the definition of clusters as connected components of level sets is appealing from a theoretical point
of view, the corresponding algorithms are often too simplistic and only moderately successful in practice. From
a practical point of view, clustering methods based on graph partitioning algorithms are more robust. Clusters
do not have to be perfectly disconnected in the graph, but are allowed to have a small number of connecting
edges between them. Graph partitioning methods are widely used in practice. The most prominent algorithm
in this class is spectral clustering, which optimizes the normalized cut (NCut) objective function (see below for
exact definitions, and von Luxburg [13] for a tutorial on spectral clustering). It is already known under what
circumstances spectral clustering is statistically consistent [14]. However, there is one important open question.
When applying graph-based methods to given sets of data points, one obviously has to build a graph first, and
there are several important choices to be made: the type of the graph (for example, k-nearest neighbor graph,
the r-neighborhood graph or a Gaussian similarity graph), the connectivity parameter (k or r or σ, respectively)
and the weights of the graph. Making such choices is not so difficult in the domain of supervised learning, where
parameters can be set using cross-validation. However, it poses a serious problem in unsupervised learning.
While different researchers use different heuristics and their “gut feeling” to set these parameters, neither
systematic empirical studies have been conducted (for example, how sensitive the results are to the choice of
graph parameters), nor do theoretical results exist which lead to well-justified heuristics.

In this paper we study the question if and how the results of graph-based clustering algorithms are affected
by the graph type and the parameters that are chosen for the construction of the neighborhood graph. We focus
on the case where the best clustering is defined as the partition that minimizes the normalized cut (Ncut) or
the Cheeger cut.

Our theoretical setup is as follows. In a first step we ignore the problem of actually finding the optimal
partition. Instead we fix some partition of the underlying space and consider it as the “true” partition. For any
finite set of points drawn from the underlying space we consider the clustering of the points that is induced by
this underlying partition. Then we study the convergence of the NCut value of this clustering as the sample
size tends to infinity. We investigate this question on different kinds of neighborhood graphs. Our first main
result is that depending on the type of graph, the clustering quality measure converges to different limit values.
For example, depending on whether we use the kNN graph or the r-graph, the limit functional integrates
over different powers of the density. From a statistical point of view, this is very surprising because in many
other respects, the kNN graph and the r-graph behave very similar to each other. Just consider the related
problem of density estimation. Here, both the k-nearest neighbor density estimate and the estimate based on
the degrees in the r-graph converge to the same limit, namely the true underlying density (cf. Loftsgaarden
and Quesenberry [7] for the consistency of the kNN density estimate). So it is far from obvious that the NCut
values would converge to different limits.

In a second step we then relate these results to the setting where we optimize over all partitions to find
the one that minimizes the NCut. We can show that the results from the first part can lead to the effect
that the minimizer of NCut on the kNN graph is different from the minimizer of NCut on the r-graph or on
the complete graph with Gaussian weights. This effect can also be studied in practical examples. First, we
give examples of well-clustered distributions (mixtures of Gaussians) where the optimal limit cut on the kNN
graph is different from the one on the r-neighborhood graph. The optimal limit cuts in these examples can be
computed analytically. Next we can demonstrate that this effect can already been observed on finite samples
from these distributions. Given a finite sample, running normalized spectral clustering to optimize Ncut leads
to systematically different results on the kNN graph than on the r-graph. This shows that our results are not
only of theoretical interest, but that they are highly relevant in practice.

In the following section we formally define the graph clustering quality measures and the neighborhood graph
types we consider in this paper. Furthermore, we introduce the notation and technical assumptions for the rest
of the paper. In Section 3 we present our main results on the convergence of NCut and the CheegerCut on
different graphs. In Section 4 we show that our findings are not only of theoretical interest, but that they also
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influence concrete algorithms such as spectral clustering in practice. All proofs are deferred to Section 6. Note
that a small part of the results of this paper has already been published in Maier et al. [9].

2. Definitions and assumptions

Given a directed graph G = (V, E) with weights w : E → R and a partition of the nodes V into (U, V \ U)
we define

cut(U, V \ U) =
∑

u∈U,v∈V \U

(w(u, v) + w(v, u)) ,

and vol(U) =
∑

u∈U,v∈V w(u, v). If G is an undirected graph we replace the ordered pair (u, v) in the sums
by the unordered pair {u, v}. Note that by doing so we count each edge twice in the undirected graph. This
introduces a constant of two in the limits but it has the advantage that there is no need to distinguish in the
formulation of our results between directed and undirected graphs.

Intuitively, the cut measures how strong the connection between the different clusters in the clustering is,
whereas the volume of a subset of the nodes measures the “weight” of the subset in terms of the edges that
originate in it. An ideal clustering would have a low cut and balanced clusters, that is clusters with similar
volume. The graph clustering quality measures that we use in this paper, the normalized cut and the Cheeger
cut, formalize this trade-off in slightly different ways: the normalized cut is defined by

NCut(U, V \ U) = cut(U, V \ U)
(

1
vol(U)

+
1

vol(V \ U)

)
, (2.1)

whereas the Cheeger cut is defined by

CheegerCut(U, V \ U) =
cut(U, V \ U)

min{vol(U), vol(V \ U)} · (2.2)

These definitions are useful for general weighted graphs and general partitions. As was said in the beginning
we want to study the values of NCut and CheegerCut on neighborhood graphs on sample points in Euclidean
space and for partitions of the nodes that are induced by a hyperplane S in R

d. The two halfspaces belonging to
S are denoted by H+ and H−. Having a neighborhood graph on the sample points {x1, . . . , xn}, the partition
of the nodes induced by S is ({x1, . . . , xn} ∩ H+, {x1, . . . , xn} ∩ H−). In the rest of this paper for a given
neighborhood graph Gn we set cutn = cut({x1, . . . , xn} ∩ H+, {x1, . . . , xn} ∩ H−). Similarly, for H = H+ or
H = H− we set voln(H) = vol({x1, . . . , xn} ∩ H+). Accordingly we define NCutn and CheegerCutn.

In the following we introduce the different types of neighborhood graphs and weighting schemes that are
considered in this paper. The graph types are:

• the k-nearest neighbor (kNN) graphs, where the idea is to connect each point to its k nearest neighbors.
However, this yields a directed graph, since the k-nearest neighbor relationship is not symmetric. If we want
to construct an undirected kNN graph we can choose between the mutual kNN graph, where there is an edge
between two points if both points are among the k nearest neighbors of the other one, and the symmetric
kNN graph, where there is an edge between two points if only one point is among the k nearest neighbors
of the other one. In our proofs for the limit expressions it will become clear that these do not differ between
the different types of kNN graphs. Therefore, we do not distinguish between them in the statement of the
theorems, but rather speak of “the kNN graph”;

• the r-neighborhood graph, where a radius r is fixed and two points are connected if their distance does not
exceed the threshold radius r. Note that due to the symmetry of the distance we do not have to distinguish
between directed and undirected graphs;
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• the complete weighted graph, where there is an edge between each pair of distinct nodes (but no loops). Of
course, in general we would not consider this graph a neighborhood graph. However, if the weight function
is chosen in such a way that the weights of edges between nearby nodes are high and the weights between
points far away from each other are almost negligible, then the behavior of this graph should be similar to
that of a neighborhood graph. One such weight function is the Gaussian weight function, which we introduce
below.

The weights that are used on neighborhood graphs usually depend on the distance of the end nodes of the edge
and are non-increasing. That is, the weight w(xi, xj) of an edge (xi, xj) is given by w(xi, xj) = f(dist(xi, xj))
with a non-increasing weight function f . The weight functions we consider here are the unit weight function
f ≡ 1, which results in the unweighted graph, and the Gaussian weight function

f(u) =
1

(2πσ2)d/2
exp

(
− 1

2
u2

σ2

)

with a parameter σ > 0 defining the bandwidth.
Of course, not every weighting scheme is suitable for every graph type. For example, as mentioned above, we

would hardly consider the complete graph with unit weights a neighborhood graph. Therefore, we only consider
the Gaussian weight function for this graph. On the other hand, for the kNN graph and the r-neighborhood
graph with Gaussian weights there are two “mechanisms” that reduce the influence of far-away nodes: first the
fact that far-away nodes are not connected to each other by an edge and second the decay of the weight function.
In fact, it turns out that the limit expressions we study depend on the interplay between these two mechanisms.
Clearly, the decay of the weight function is governed by the parameter σ. For the r-neighborhood graph the
radius r limits the length of the edges. Asymptotically, given sequences (σn)n∈N and (rn)n∈N of bandwidths and
radii we distinguish between the following two cases:

• the bandwidth σn is dominated by the radius rn, that is σn/rn → 0 for n → ∞;
• the radius rn is dominated by the bandwidth σn, that is rn/σn → 0 for n → ∞.

For the kNN graph we cannot give a radius up to which points are connected by an edge, since this radius for
each point is a random variable that depends on the positions of all the sample points. However, it is possible
to show that for a point in a region of constant density p the kn-nearest neighbor radius is concentrated around
d
√

kn/((n − 1)ηdp), where ηd denotes the volume of the unit ball in Euclidean space R
d. This is plausible,

considering that, by a standard result on density estimation, kn/((n − 1)ηdr̂
d), where r̂ is the empirical kn-

nearest neighbor radius, is an estimate of the density at the point. That is, the kNN radius decays to zero with
the rate d

√
kn/n. In the following it is convenient to set for the kNN graph rn = d

√
kn/n, noting that this is not

the k-nearest neighbor radius of any point but only its decay rate. Using this “radius” we distinguish between
the same two cases of the ratio of rn and σn as for the r-neighborhood graph.

For the sequences (rn)n∈N and (σn)n∈N we always assume rn → 0, σn → 0 and nrn → ∞, nσn → ∞ for
n → ∞. Furthermore, for the parameter sequence (kn)n∈N of the kNN graph we always assume kn/n → 0,
which corresponds to rn → 0, and kn/ logn → ∞.

In the rest of this paper we denote by Ld the Lebesgue measure in R
d. Furthermore, let B(x, r) denote the

closed ball of radius r around x and ηd = Ld(B(0, 1)), where we set η0 = 1.

We make the following general assumptions in the whole paper:

• the data points x1, . . . , xn are drawn independently from some density p on R
d. The measure on R

d that is
induced by p is denoted by μ; that means, for a measurable set A ⊆ R

d we set μ(A) =
∫

A p(x) dx;
• the density p is bounded from below and above, that is 0 < pmin ≤ p(x) ≤ pmax. In particular, it has compact

support C;
• in the interior of C, the density p is twice differentiable and ‖∇p(x)‖ ≤ p′max for a p′max ∈ R and all x in

the interior of C;
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• the cut hyperplane S splits the space R
d into two halfspaces H+ and H− (both including the hyperplane S)

with positive probability masses, that is μ(H+) > 0, μ(H−) > 0. The normal of S pointing towards H+ is
denoted by nS;

• if d ≥ 2 the boundary ∂C is a compact, smooth (d − 1)-dimensional surface with minimal curvature radius
κ > 0, that is the absolute values of the principal curvatures are bounded by 1/κ. We denote by nx the normal
to the surface ∂C at the point x ∈ ∂C. Furthermore, we can find constants γ > 0 and rγ > 0 such that for
all r ≤ rγ we have Ld(B(x, r) ∩ C) ≥ γLd(B(x, r)) for all x ∈ C;

• if d ≥ 2 we can find an angle α ∈ (0, π/2) such that |〈nS , nx〉| ≤ cosα for all x ∈ S∩∂C. If d = 1 we assume
that (the point) S is in the interior of C.

The assumptions on the lower and upper bounds of the density are necessary to find lower and upper bounds on
the k-nearest neighbor radii of points in C. The assumptions on differentiability are used to show concentration
of the k-nearest neighbor radius for points in the “interior” of C, that is, points not within a boundary strip
of C.

The assumptions on the boundary ∂C are necessary in order to bound the influence of points that are close
to the boundary. The problem with these points is that the density is not approximately uniform inside small
balls around them. Therefore, we cannot find a good estimate of their kNN radius and on their contribution to
the cut and the volume. Furthermore, in the case of the r-neighborhood graph we cannot control the number
of edges originating in these points. Under the assumptions above we can neglect these points.

The last assumption on the minimum angle between the normal of S and the normal of ∂C in S ∩∂C is used
to ensure, that the intersection of the “boundary strip” of C, where we cannot control the kNN radii and the
number of edges to other points, and S converges to zero sufficiently fast. Therefore, we can find a bound on
the influence of the boundary points in our results and how fast this influence vanishes.

Appendix A contains a table of the notation used throughout the paper.

3. Main results: limits of the quality measures NCut and CheegerCut

As we can see in equations (2.1) and (2.2) the definitions of NCut and CheegerCut rely on the cut and the
volume. Therefore, in order to study the convergence of NCut and CheegerCut it seems reasonable to study
the convergence of the cut and the volume first. In Section 6 Corollaries 6.4–6.6 and Corollaries 6.9–6.11 state
the convergence of the cut and the volume on the kNN graphs. Corollaries 6.13–6.16 state the convergence of
the cut on the r-graph and the complete weighted graph, whereas Corollaries 6.18–6.21 state the convergence
of the volume on the same graphs.

These corollaries show that there are scaling sequences (scut
n )n∈N and (svol

n )n∈N that depend on n, rn and the
graph type such that, under certain conditions, almost surely(

scut
n

)−1 cutn → CutLim and
(
svol

n

)−1
voln(H) → V olLim(H)

for n → ∞, where CutLim ∈ R≥0 and V olLim(H+), V olLim(H−) ∈ R>0 are constants depending only on the
density p and the hyperplane S.

Having defined these limits we define, analogously to the definitions in Equations (2.1) and (2.2), the limits
of NCut and CheegerCut as

NCutLim =
CutLim

V olLim (H+)
+

CutLim

V olLim (H−)
(3.1)

and

CheegerCutLim =
CutLim

min {V olLim (H+) , V olLim (H−)}· (3.2)
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In our following main theorems we show the conditions under which we have for n → ∞ almost sure conver-
gence of

svol
n

scut
n

NCutn → NCutLim and
svol

n

scut
n

CheegerCutn → CheegerCutLim.

Furthermore, for the unweighted r-graph and kNN-graph and for the complete weighted graph with Gaussian
weights we state the optimal convergence rates, where “optimal” means the best trade-off between our bounds
for different quantities derived in Section 6. Note that we will not prove the following theorems here. Rather
the Proof of Theorem 3.1 can be found in Section 6.2.4, whereas the Proofs of Theorems 3.2 and 3.3 can be
found in Section 6.3.3.

Theorem 3.1 (NCut and CheegerCut on the kNN-graph). For a sequence (kn)n∈N with kn/n → 0 for n → ∞
let Gn be the kn-nearest neighbor graph on the sample x1, . . . , xn. Set XCut = NCut or XCut = CheegerCut
and let XCutLim denote the corresponding limit as defined in equations (3.1) and (3.2). Set

Δn =

∣∣∣∣∣ s
vol
n

scut
n

XCutn −XCutLim

∣∣∣∣∣.
• Let Gn be the unweighted kNN graph. If kn/

√
n log n → ∞ in the case d = 1 and kn/ log n → ∞ in the

case d ≥ 2 we have Δn → 0 for n → ∞ almost surely. The optimal convergence rate is achieved for
kn = k0

4
√

n3 log n in the case d = 1 and kn = k0n
2/(d+2)(log n)d/(d+2) in the case d ≥ 2. For this choice of

kn we have Δn = O( d+4
√

log n/n) in the case d = 1 and Δn = O( d+2
√

log n/n) for d ≥ 2;
• let Gn be the kNN-graph with Gaussian weights and suppose rn ≥ σα

n for an α ∈ (0, 1). Then we have almost
sure convergence of Δn → 0 for n → ∞ if kn/ logn → ∞ and nσd+1

n / log n → ∞;
• let Gn be the kNN-graph with Gaussian weights and rn/σn → 0. Then we have almost sure convergence of

Δn → 0 for n → ∞ if kn/
√

n logn → ∞ in the case d = 1 and kn/ logn → ∞ in the case d ≥ 2.

Theorem 3.2 (NCut and CheegerCut on the r-graph). For a sequence (rn)n∈N ⊆ R>0 with rn → 0 for n → ∞
let Gn be the rn-neighborhood graph on the sample x1, . . . , xn. Set XCut = NCut or XCut = CheegerCut and
let XCutLim denote the corresponding limit as defined in equations (3.1) and (3.2). Set

Δn =

∣∣∣∣∣ s
vol
n

scut
n

XCutn −XCutLim

∣∣∣∣∣.
• Let Gn be unweighted. Then Δn → 0 almost surely for n → ∞ if nrd+1

n / log n → ∞. The optimal convergence
rate is achieved for rn = r0

d+3
√

log n/n for a suitable constant r0 > 0. For this choice of rn we have
Δn = O( d+3

√
log n/n);

• let Gn be weighted with Gaussian weights with bandwidth σn → 0 and rn/σn → ∞ for n → ∞. Then Δn → 0
almost surely for n → ∞ if nσd+1

n / logn → ∞;
• let Gn be weighted with Gaussian weights with bandwidth σn → 0 and rn/σn → 0 for n → ∞. Then Δn → 0

almost surely for n → ∞ if nrd+1
n / log n → ∞.

The following theorem presents the limit results for NCut and CheegerCut on the complete weighted graph.
One result that we need in the proof of this theorem is Corollary 6.14 on the convergence of the cut. Note that in
Narayanan et al. [11] a similar cut convergence problem is studied for the case of the complete weighted graph,
and the scaling sequence and the limit differ from ours. However, the reason is that in that paper the weighted
cut is considered, which can be written as f ′Lnormf , where Lnorm denotes the normalized graph Laplacian
matrix and f is an n-dimensional vector with fi = 1 if xi is in one cluster and fi = 0 if xi is in the other cluster.
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Table 1. The scaling sequences and limit expression for the cut and the volume in all the
considered graph types. In the limit expression for the cut the integral denotes the (d − 1)-
dimensional surface integral along the hyperplane S, whereas in the limit expressions for the
volume the integral denotes the Lebesgue integral over the halfspace H = H+ or H = H−.

The cut in the kNN-graph and the r-graph

Weighting scut
n CutLim kNN-graph CutLim r-graph

Unweighted n2rd+1
n

2ηd−1

(d+1)η
1+1/d
d

∫
S

p1−1/d(s) ds
2ηd−1
d+1

∫
S

p2(s) ds

Weighted rn/σn → ∞ n2σn
2√
2π

∫
S

p2(s) ds 2√
2π

∫
S

p2(s) ds

Weighted rn/σn → 0 σ−d
n n2rd+1

n
2ηd−1η

−1−1/d
d

(d+1)(2π)d/2

∫
S

p1−1/d(s) ds
2ηd−1

(d+1)(2π)d/2

∫
S

p2(s) ds

The cut in the complete weighted graph

Weighting scut
n CutLim in complete weighted graph

Weighted n2σn
2√
2π

∫
S

p2(s) ds

The volume in the kNN-graph and the r-graph

Weighting svol
n V olLim(H) kNN-graph V olLim(H) r-graph

Unweighted n2rd
n

∫
H

p(x) dx ηd

∫
H

p2(x) dx

Weighted, rn/σn → ∞ n2
∫

H
p2(x) dx

∫
H

p2(x) dx

Weighted, rn/σn → 0 σ−d
n n2rd

n
1

(2π)d/2

∫
H

p(x) dx ηd

(2π)d/2

∫
H

p2(x) dx

The volume in the complete weighted graph

Weighting svol
n V olLim in complete weighted graph

Weighted n2
∫

H
p2(x) dx

On the other hand, the standard cut, which we consider in this paper, can be written (up to a constant) as
f ′Lunnormf , where Lunnorm denotes the unnormalized graph Laplacian matrix. (For the definitions of the graph
Laplacian matrices and their relationship to the cut we refer the reader to von Luxburg [13]). Therefore, the
two results do not contradict each other.

Theorem 3.3 (NCut and CheegerCut on the complete weighted graph). Let Gn be the complete weighted
graph with Gaussian weights and bandwidth σn on the sample points x1, . . . , xn. Set XCut = NCut or XCut =
CheegerCut and let XCutLim denote the corresponding limit as defined in equations (3.1) and (3.2). Set

Δn =

∣∣∣∣∣ s
vol
n

scut
n

XCutn −XCutLim

∣∣∣∣∣.
Under the conditions σn → 0 and nσd+1

n / log n → ∞ we have almost surely Δn → 0 for n → ∞. The optimal
convergence rate is achieved setting σn = σ0

d+3
√

log n/n with a suitable σ0 > 0. For this choice of σn the
convergence rate is in O((log n/n)α/(d+3)) for any α ∈ (0, 1).

Let us decrypt these results and for simplicity focus on the cut value. When we compare the limits of the cut
(cf. Tab. 1) it is striking that, depending on the graph type and the weighting scheme, there are two substantially
different limits: the limit

∫
S p2(s) ds for the unweighted r-neighborhood graph, and the limit

∫
S p1−1/d(s) ds

for the unweighted k-nearest neighbor graph.
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The limit of the cut for the complete weighted graph with Gaussian weights is the same as the limit for the
unweighted r-neighborhood graph. There is a simple reason for that: on both graph types the weight of an edge
only depends on the distance between its end points, no matter where the points are. This is in contrast to the
kNN-graph, where the radius up to which a point is connected strongly depends on its location: if a point is
in a region of high density there will be many other points close by, which means that the radius is small. On
the other hand, this radius is large for points in low-density regions. Furthermore, the Gaussian weights decline
very rapidly with the distance, depending on the parameter σ. That is, σ plays a similar role as the radius r for
the r-neighborhood graph.

The two types of r-neighborhood graphs with Gaussian weights have the same limit as the unweighted r-
neighborhood graph and the complete weighted graph with Gaussian weights. When we compare the scaling
sequences scut

n it turns out that in the case rn/σn → ∞ this sequence is the same as for the complete weighted
graph, whereas in the case rn/σn → 0 we have scut

n = n2rd+1
n /σd

n, which is the same sequence as for the
unweighted r-graph corrected by a factor of σ−d

n . In fact, these effects are easy to explain: if rn/σn → ∞ then
the edges which we have to remove from the complete weighted graph in order to obtain the rn-neighborhood
graph have a very small weight and their contribution to the value of the cut can be neglected. Therefore
this graph behaves like the complete weighted graph with Gaussian weights. On the other hand, if rn/σn → 0
then all the edges that remain in the rn-neighborhood graph have approximately the same weight, namely the
maximum of the Gaussian weight function, which is linear in σ−d

n .
Similar effects can be observed for the k-nearest neighbor graphs. The limits of the unweighted graph and

the graph with Gaussian weight and rn/σn → 0 are identical (up to constants) and the scaling sequence has to
correct for the maximum of the Gaussian weight function. However, the limit for the kNN-graph with Gaussian
weights and rn/σn → ∞ is different: in fact, we have the same limit expression as for the complete weighted
graph with Gaussian weights. The reason for this is the following: since rn is large compared to σn at some
point all the k-nearest neighbor radii of the sample points are very large. Therefore, all the edges that are in
the complete weighted graph but not in the kNN graph have very low weights and thus the limit of this graph
behaves like the limit of the complete weighted graph with Gaussian weights.

Finally, we would like to discuss the difference between the two limit expressions, where as examples for the
graphs we use only the unweighted r-neighborhood graph and the unweighted kNN-graph. Of course, the results
can be carried over to the other graph types. For the cut we have the limits

∫
S p1−1/d(s) ds and

∫
S p2(s) ds. In

dimension 1 the difference between these expressions is most pronounced: the limit for the kNN graph does not
depend on the density p at all, whereas in the limit for the r-graph the exponent of p is 2, independent of the
dimension. Generally, the limit for the r-graph seems to be more sensitive to the absolute value of the density.
This can also be seen for the volume: the limit expression for the kNN graph is

∫
H p(x) dx, which does not

depend on the absolute value of the density at all, but only on the probability mass in the halfspace H . This is
different for the unweighted r-neighborhood graph with the limit expression

∫
H p2(x) dx.

4. Examples where different limits of Ncut lead to different optimal cuts

In Theorems 3.1–3.3 we have proved that the limit expressions for NCut and CheegerCut are different for
different kinds of neighborhood graphs. In fact, apart from constants there are two limit expressions: that of
the unweighted kNN-graph, where the exponent of the density p in the limit integral for the cut is 1− 1/d and
for the volume is 1, and that of the unweighted r-neighborhood graph, where the exponent in the limit of the
cut is 2 and in the limit of the vol is 1. Therefore, we consider here only the unweighted kNN-graph and the
unweighted r-neighborhood graph.

In this section we show that the difference between the limit expressions is more than a mathematical subtlety
without practical relevance: if we select an optimal cut based on the limit criterion for the kNN graph we can
obtain a different result than if we use the limit criterion based on the r-neighborhood graph.
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Figure 1. Densities in the examples. In the two-dimensional case, we plot the informative
dimension (marginal over the other dimensions) only. The dashed blue vertical line depicts the
optimal limit cut of the r-graph, the solid red vertical line the optimal limit cut of the kNN
graph.

Consider Gaussian mixture distributions in one (Example 1) and in two dimensions (Example 2) of the form∑3
i=1 αiN([μi, 0, . . . , 0], σiI) which are set to zero where they are below a threshold θ and properly rescaled.

The specific parameters in one and two dimensions are

Dim μ1 μ2 μ3 σ1 σ2 σ3 α1 α2 α3 θ
1 0 0.5 1 0.4 0.1 0.1 0.66 0.17 0.17 0.1
2 −1.1 0 1.3 0.2 0.4 0.1 0.4 0.55 0.05 0.01

Plots of the densities of Examples 1 and 2 can be seen in Figure 1. We first investigate the theoretic limit cut
values, for hyperplanes which cut perpendicular to the first dimension (which is the “informative” dimension
of the data). For the chosen densities, the limit NCut expressions from Theorems 3.1 and 3.2 can be computed
analytically and optimized over the chosen hyperplanes. The solid red line in Figure 1 indicates the position
of the minimal value for the kNN-graph case, whereas the dashed blue line indicates the the position of the
minimal value for the r-graph case.

Up to now we only compared the limits of different graphs with each other, but the question is, whether
the effects of these limits can be observed even for finite sample sizes. In order to investigate this question we
applied normalized spectral clustering (cf. von Luxburg [13]) to sample data sets of n = 2000 points from the
mixture distribution above. We used the unweighted r-graph and the unweighted symmetric k-nearest neighbor
graph. We tried a range of reasonable values for the parameters k and r and the results we obtained were stable
over a range of parameters. Here we present the results for the 30- (for d = 1) and the 150-nearest neighbor
graphs (for d = 2) and the r-graphs with corresponding parameter r, that is r was set to be the mean 30- and
150-nearest neighbor radius. Different clusterings are compared using the minimal matching distance:

dMM (Clust1, Clust2) = min
π

1
n

n∑
i=1

1Clust1(xi) �=π(Clust2(xi))

where the minimum is taken over all permutations π of the labels. In the case of two clusters, this distance
corresponds to the 0-1-loss as used in classification: a minimal matching distance of 0.35, say, means that 35%
of the data points lie in different clusters. In our spectral clustering experiment, we could observe that the
clusterings obtained by spectral clustering are usually very close to the theoretically optimal hyperplane splits
predicted by theory (the minimal matching distances to the optimal hyperplane splits were always in the order
of 0.03 or smaller). As predicted by theory, the two types of graph give different cuts in the data. An illustration
of this phenomenon for the case of dimension 2 can be found in Figure 2. To give a quantitative evaluation
of this phenomenon, we computed the mean minimal matching distances between clusterings obtained by the
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Figure 2. Results of spectral clustering in two dimensions, for the unweighted r-graph (left)
and the unweighted kNN graph (right).

same type of graph over the different samples (denoted dkNN and dr), and the mean difference dkNN−r between
the clusterings obtained by different graph types:

Example dkNN dr dkNN−r

1 dim 0.0005± 0.0006 0.0003± 0.0004 0.346 ± 0.063
2 dim 0.005 ± 0.0023 0.001 ± 0.001 0.49 ± 0.01

We can see that for the same graph, the clustering results are very stable (differences in the order of 10−3)
whereas the differences between the kNN graph and the r-neighborhood graph are substantial (0.35 and 0.49,
respectively). This difference is exactly the one induced by assigning the middle mode of the density to different
clusters, which is the effect predicted by theory.

It is tempting to conjecture that in Examples 1 and 2 the two different limit solutions and their impact on
spectral clustering might arise due to the fact that the number of Gaussians and the number of clusters we are
looking for do not coincide. Yet the following Example 3 shows that this is not the case: for a density in one
dimension as above but with only two Gaussians with parameters

μ1 μ2 σ1 σ2 α1 α2 θ
0.2 0.4 0.05 0.03 0.8 0.2 0.1

the same effects can be observed. The density is depicted in the left plot of Figure 3.
In this example we draw a sample of 2000 points from this density and compute the spectral clustering of

the points, once with the unweighted kNN-graph and once with the unweighted r-graph. In one dimension we
can compute the place of the boundary between two clusters, that is the middle between the rightmost point of
the left cluster and the leftmost point of the right cluster. We did this for 100 iterations and plotted histograms
of the location of the cluster boundary. In the middle and the right plot of Figure 3 we see that these coincide
with the optimal cut predicted by theory.

5. Outlook

In this paper we have investigated the influence of the graph construction on the graph-based clustering
measures normalized cut and Cheeger cut. We have seen that depending on the type of graph and the weights,
the clustering quality measures converge to different limit results.

This means that ultimately, the question about the “best NCut” or “best Cheeger cut” clustering, given
infinite amount of data, has different answers, depending on which underlying graph we use. This observation
opens Pandora’s box on clustering criteria: the “meaning” of a clustering criterion does not only depend on the
exact definition of the criterion itself, but also on how the graph on the finite sample is constructed. This means
that one graph clustering quality measure is not just “one well-defined criterion” on the underlying space, but



380 M. MAIER ET AL.

0 0.2 0.40

2

4

6

8
Density example 3

0 0.2 0.40

50

100
kNN−graph, k=200

0 0.2 0.40

50

100
r−graph, r=200−NN radius

Figure 3. The Example 3 with the sum of two Gaussians, that is two modes of the density.
In the left figure the density with the optimal limit cut of the r-graph (dashed blue vertical
line) and the optimal limit cut of the kNN graph (the solid red vertical line) is depicted. The
two figures on the right show the histograms of the cluster boundary over 100 iterations for the
unweighted r-neighborhood and kNN-graphs.

it corresponds to a whole bunch of criteria, which differ depending on the underlying graph. More sloppy: a
clustering quality measure applied to one neighborhood graph does something different in terms of partitions
of the underlying space than the same quality measure applied to a different neighborhood graph. This shows
that these criteria cannot be studied isolated from the graph they are applied to.

From a theoretical side, there are several directions in which our work can be improved. In this paper we
only consider partitions of Euclidean space that are defined by hyperplanes. This restriction is made in order to
keep the proofs reasonably simple. However, we are confident that similar results could be proven for arbitrary
smooth surfaces.

Another extension would be to obtain uniform convergence results. Here one has to take care that one uses
a suitably restricted class of candidate surfaces S (note that uniform convergence results over the set of all
partitions of R

d are impossible, cf. Bubeck and von Luxburg [4]). This result would be especially useful, if there
existed a practically applicable algorithm to compute the optimal surface out of the set of all candidate surfaces.

For practice, it will be important to study how the different limit results influence clustering results. So far,
we do not have much intuition about when the different limit expressions lead to different optimal solutions,
and when these solutions will show up in practice. The examples we provided above already show that different
graphs indeed can lead to systematically different clusterings in practice. Gaining more understanding of this
effect will be an important direction of research if one wants to understand the nature of different graph
clustering quality measures.

6. Proofs

In many of the proofs that are to follow in this section a lot of technique is involved in order to come to
terms with problems that arise due to effects at the boundary of our support C and to the non-uniformity of
the density p. However, if these technicalities are ignored, the basic ideas of the proofs are simple to explain and
they are similar for the different types of neighborhood graphs. In Section 6.1 we discuss these ideas without
the technical overhead and define some quantities that are necessary for the formulation of our results.

In Section 6.2 we present the results for the k-nearest neighbor graph and in Section 6.3 we present those for
the r-graph and the complete weighted graph. Each of these sections consists of three parts: the first is devoted
to the cut, the second is devoted to the volume, and in the third we proof the main theorem for the considered
graphs using the results for the cut and the volume.

The sections on the convergence of the cut and the volume always follow the same scheme: first, a proposition
concerning the convergence of the cut or the volume for general monotonically decreasing weight functions is
given. Using this general proposition the results for the specific weight functions we consider in this paper follow
as corollaries.
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Since the basic ideas of our proofs are the same for all the different graphs, it is not worth repeating the same
steps for all the graphs. Therefore, we decided to give detailed proofs for the k-nearest neighbor graph, which
is the most difficult case. The r-neighborhood graph and the complete weighted graph can be treated together
and we mainly discuss the differences to the proof for the kNN graph.

The limits of the cut and the volume for general weight function are expressed in terms of certain integrals
of the weight function over “caps” and “balls”, which are explained later. For a specific weight function these
integrals have to be evaluated. This is done in the lemmas in Section 6.4. Furthermore, this section contains a
technical lemma that helps us to control boundary effects.

6.1. Basic ideas

In this section we present the ideas of our convergence proofs non-formally. We focus here on NCut, but all
the ideas can easily be carried over to the Cheeger cut.

First step: Decompose NCutn into cutn and voln
For sequences an, bn that converge to the limits a > 0 and b > 0, the convergence of an − bn, an/bn can be

expressend in terms of the convergence speed of an and bn. Therefore, under our general assumptions, there exist
constants c1, c2, c3, which may depend on the limit values of the cut and the volume, such that for sufficiently
large n ∣∣∣∣ svol

n

scut
n

(
cutn

voln (H+)
+

cutn

voln (H−)

)
− CutLim

V olLim (H+)
+

CutLim

V olLim (H−)

∣∣∣∣
≤ c1

∣∣∣∣cutn

scut
n

− CutLim

∣∣∣∣︸ ︷︷ ︸
cut term

+c2

∣∣∣∣voln(H+)
svol

n

− V olLim(H+)
∣∣∣∣︸ ︷︷ ︸

volume-term

+c3

∣∣∣∣voln(H−)
svol

n

− V olLim(H−)
∣∣∣∣︸ ︷︷ ︸

volume-term

.

This decomposition is used in order to proof the main theorems, Theorems 3.1–3.3; the goal of the following
steps is to find bounds on the terms on the right hand side of this equation.

Second step: Bias/variance decomposition of cut and volume terms
In order to show the convergence of the cut-term we do a bias/variance decomposition∣∣∣∣cutn

scut
n

− CutLim

∣∣∣∣ ≤
∣∣∣∣cutn

scut
n

− E

(
cutn

scut
n

)∣∣∣∣︸ ︷︷ ︸
variance term

+
∣∣∣∣E
(

cutn

scut
n

)
− CutLim

∣∣∣∣︸ ︷︷ ︸
bias term

and show the convergence to zero of these terms separately. Clearly, the same decomposition can be done for
the volume terms. In the following we call these terms the “bias term of the cut” and the “variance term of the
cut” and similarly for the volume.

In Propositions 6.1 and 6.12 bounds on the bias term and the variance term of the cut are shown for
the k-nearest neighbor graph and the r-graph, respectively, for rather general weight functions. Similarly in
Propositions 6.7 and 6.17 for the bias and the variance term of the volume. The following steps in this section
show the ideas that are used in the proofs of these propositions.

Third step: Use concentration of measure inequalities for the variance term
Bounding the deviation of a random variable from its expectation is a well-studied problem in statistics

and there are a couple of so-called concentration of measure inequalities that bound the probability of a large
deviation from the mean. In this paper we use McDiarmid’s inequality for the kNN graphs and a concentration
of measure result for U -statistics by Hoeffding for the r-neighborhood graph and the complete weighted graph.
The reason for this is that each of the graph types has its particular advantages and disadvantages when it
comes to the prerequisites for the concentration inequalities: the advantage of the kNN graph is that we can
bound the degree of a node linearly in the parameter k, whereas for the r-neighborhood graph we can bound
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the degree only by the trivial bound (n− 1) and for the complete graph this bound is even attained. Therefore,
using the same proof as for the kNN-graph is suboptimal for the latter two graphs. On the other hand, in these
graphs the connectivity between points is not random given their position and it is always symmetric. This
allows us to use a U -statistics argument, which cannot be applied to the kNN-graph, since the connectivity
there may be unsymmetric (at least for the directed one) and the connectivity between each two points depends
on all the sample points.

Note that these results are of a probabilistic nature, that is we obtain results of the form

Pr
(∣∣∣∣cutn

scut
n

− E

(
cutn

scut
n

)∣∣∣∣ > ε

)
≤ pn,

for a sequence (pn) of non-negative real numbers. If for all ε > 0 the sum
∑∞

i=1 pi is finite, then we have almost
sure convergence of the variance term to zero by the Borel-Cantelli lemma.

Formal proofs of probabilistic bounds on the variance terms can be found in the proofs of Propositions 6.1
and 6.12 for the cut, and in the proofs of Propositions 6.7 and 6.17 for the volume.

Fourth step: Bias of the cut term
While all steps so far were pretty much standard, this part is the technically most challenging part of our

convergence proof. We have to prove the convergence of E(cutn /scut
n ) to CutLim (and similarly for the volume).

Omitting all technical difficulties like boundary effects and the variability of the density, the basic ideas can be
described in a rather simple manner. The formal proofs can be found in the proofs of Proposition 6.1 for the
k-nearest neighbor graph, and in the proof of Proposition 6.12 for the r-neighborhood and the complete graph.

The first idea is to break the cut down into the contributions of each single edge. We define a random variable
Wij that attains the weight of the edge between xi and xj , if these points are connected in the graph and on
different sides of the hyperplane S, and zero otherwise. By the linearity of the expectation and the fact that
the points are sampled i.i.d.

E (cutn) =
n∑

i=1

n∑
j=1

j �=i

EWij = n(n − 1)EW12.

Now we fix the positions of the points x1 = x and x2 = y. In this case Wij can attain only two values:
fn(dist(x, y)) if the points are connected and on different sides of S, and zero otherwise. We first consider the
r-neighborhood graph with parameter rn, since here the existence of an edge between two points is determined
by their distance, and is not random as in the kNN graph. Two points are connected if their distance is not
greater than rn and thus Wij = 0 if dist(x, y) > rn. Furthermore, Wij = 0 if x and y are on the same side of S.
That is, for a point x ∈ H+ we have

E(W12 | x1 = x, x2 = y) =

{
fn(dist(x, y)) if y is in the cap B(x, rn) ∩ H−

0 otherwise.

By integrating over R
d we obtain

E(W12 | x1 = x) =
∫

B(x,rn)∩H−
fn(dist(x, y))p(y) dy

and denote the integral on the right hand side in the following by g(x).
Integrating the conditional expectation over all possible positions of the point x in R

d gives

E (W12) =
∫

Rd

g(x) p(x) dx =
∫

H+
g(x) p(x) dx +

∫
H−

g(x) p(x) dx.

We only consider the integral over the halfspace H+ here, since the other integral can be treated analogously.
The important idea in the evaluation of this integral is the following: instead of integrating over H+, we initially
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Figure 4. Integration along the normal line through s. Obviously, for t ≥ rn the intersection
B(s + tnS, rn) ∩ H− is empty and therefore g(s + tnS) = 0. For 0 ≤ t < rn the points in the
cap are close to s and therefore the density in the cap is approximately p(s).

integrate over the hyperplane S and then, at each point s ∈ S, along the normal line through s, that is the line
s + tnS for all t ∈ R≥0. This leads to∫

H+
g(x) p(x) dx =

∫
S

∫ ∞

0

g(s + tnS) p(s + tnS) dt ds.

This integration is illustrated in Figure 4. It has two advantages: first, if x is far enough from S (that is,
dist(x, s) > rn for all s ∈ S), then g(x) = 0 and the corresponding terms in the integral vanish. Second, if x is
close to s ∈ S and the radius rn is small, then the density on the ball B(x, rn) can be considered approximately
uniform, that is we assume p(y) = p(s) for all y ∈ B(x, rn). Thus,∫ ∞

0

g(s + tnS) p(s + tnS) dt =
∫ rn

0

g(s + tnS) p(s + tnS) dt

= p(s)
∫ rn

0

g(s + tnS) dt = p2(s)
∫ rn

0

∫
B(x,rn)∩H−

fn(dist(x, y)) dy dt

= ηd−1

∫ rn

0

udfn(u) du p2(s)

where the last step follows with Lemma 6.3.
Since this integral of the weight function fn over the “caps” plays such an important role in the derivation

of our results we introduce a special notation for it: for a radius r ∈ R≥0 and q = 1, 2 we define

F
(q)
C (r) = ηd−1

∫ r

0

udf q
n(u) du.

Although these integrals also depend on n we do not make this dependence explicit. In fact, the parameter r is
replaced by the radius rn in the case of the r-neighborhood graph or by a different graph parameter depending
on n for the other neighborhood graphs. Therefore the dependence of F

(q)
C (rn) on n will be understood. Note

that we allow the notation F
(q)
C (∞), if the indefinite integral exists. The integral F

(q)
C for q = 2 is needed

for the following reason: for the U -statistics bound on the variance term we do not only have to compute the
expectation of Wij , but also their variance. But the variance can in turn be bounded by the expectation of W 2

ij ,

which is expressed in terms of F
(2)
C (rn).

In the r-neighborhood graph points are only connected within a certain radius rn, which means that to
compute E(W12 | x1 = x) we only have to integrate over the ball B(x, rn), since all other points cannot be
connected to x1 = x. This is clearly different for the complete graph, where every point is connected to every
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other point. The idea is to fix a radius rn in such a way as to make sure that the contribution of edges to points
outside B(x, rn) can be neglected, because their weight is small. Since W12 = fn(dist(x1, x2)) if the points are
on different sides of S we have for x ∈ H+

E(W12 | x1 = x) =
∫

B(x,rn)∩H−
fn(dist(x, y)) p(y) dy +

∫
B(x,rn)c∩H−

fn(dist(x, y)) p(y) dy

≤ g(x) + pmax

∫
B(x,rn)c

fn(dist(x, y)) dy.

For the Gaussian weight function the integral converges to zero very quickly, if rn/σn → ∞ for n → ∞. Thus
we can treat the complete graph almost as the r-neighborhood graph.

For the k-nearest neighbor graph the connectedness of points depends on their k-nearest neighbor radii that
is, the distance of the point to its k-th nearest neighbor, which is itself a random variable. However, one can
show that with very high probability the k-nearest neighbor radius of a point in a region with uniform density
p is concentrated around (kn/((n − 1)ηdp)1/d. Since we assume that kn/n → 0 for n → ∞ the expected kNN
radius converges to zero. Thus the density in balls with this radius is close to uniform and the estimate becomes
more accurate. Upper and lower bounds on the k-nearest neighbor radius that hold with high probability are
given in Lemma 6.2. The idea is to perform the integration above for both, the lower bound on the kNN radius
and the upper bound on the kNN radius. Then it is shown that these integrals converge to the same limit.

Fifth step: Bias of the volume terms
The bias of the volume term, which is dealt with in in Propositions 6.7 for the k-nearest neighbor graph and

in Proposition 6.17 for the r-neighborhood and the complete graph, can be treated similarly to that of the cut
term. We define Wij = fn(dist(xi, xj) if xi and xj are connected in the graph and Wij = 0 otherwise. Note that
we do not need the condition that the points have to be on different sides of the hyperplane S as for the cut.
Then, for a point x ∈ C if we assume that the density is uniform within distance rn around x

E(W12 | x1 = x) =
∫

B(x,rn)

fn(dist(x, y))p(y) dy = p(x)
∫

B(x,rn)

fn(dist(x, y)) dy

= dηd

∫ rn

0

ud−1fn(u) du p(x),

where the last integral transform follows with Lemma 6.8. Integrating over R
d we obtain

E(W12) =
∫

Rd

E(W12 | x1 = x)p(x) dx = dηd

∫ rn

0

ud−1fn(u) du

∫
Rd

p2(x) dx.

Since the integral over the balls is so important in the formulation of our general results we often call it the
“ball integral” and introduce the notation

F
(q)
B (r) = dηd

∫ r

0

ud−1fn(u) du

for a radius r > 0 and q = 1, 2. The remarks that were made on the “cap integral” FC(r) above also apply to
the “ball integral” FB(r).

Sixth step: Plugging in the weight functions
Having derived results on the bias term of the cut and volume for general weight functions, we can now

plug in the specific weight functions in which we are interested in this paper. This boils down to the evaluation
of the “cap” and “ball” integrals FC(rn) and FB(rn) for these weight functions. For the unit weight function
the integrals can be computed exactly (Lem. 6.22), whereas for the Gaussian weight function we study the
asymptotic behavior of the “cap” and “ball” integral in the cases rn/σn → 0 (Lem. 6.23) and rn/σn → ∞ for
n → ∞ (Lem. 6.24).
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Figure 5. The structure of the proofs in this section. Proposition 6.1 and 6.7 state bounds
for general weight functions on the bias and the variance term of the cut and the volume,
respectively. Lemma 6.2 shows the concentration of the kNN radii, Lemma 6.25 is needed to
bound the influence of points close to the boundary. Lemma 6.3 and 6.8 perform the integration
of the weight function over “caps” and “balls”. In Lemmas 6.22–6.24 the general “ball” and
“cap” integrals are evaluated for the specific weight functions we use. Using these results,
Corollaries 6.4–6.6 dealing with the cut and Corollaries 6.9–6.11 dealing with the volume are
proved. Finally, in Theorem 3.1 the convergence of NCut and CheegerCut are analyzed using
the result of these corollaries.

6.2. Proofs for the k-nearest neighbor graph

As we have already mentioned we will give the proofs of our general propositions in detail here and then
discuss in Section 6.3 how they have to be adapted to the r-neighborhood graph and the complete weighted
graph. This means, that Lemmas 6.3 and 6.8 that are necessary for the proof of the general propositions can
be found in this section, although they are also needed for the r-graph and the complete graph with Gaussian
weights.

This section consists of four subsections: in Section 6.2.1 we define some quantities that help us to deal with
the fact that the connectivity between two points is random even if we know their distance. These quantities will
play an important role in the succeeding sections. Section 6.2.2 presents the results for the cut term, whereas
Section 6.2.3 presents the results for the volume term. Finally, these results are used to proof Theorem 3.1, the
main theorem for the k-nearest neighbor graph in Section 6.2.4.

In the subsections on the cut-term and the volume term we always present the proposition for general weight
functions first. Then the lemmas follow that are used in the proof of the proposition. Finally, we show corollaries
that apply these general results to the specific weight functions we consider in this paper. An overview of the
proof structure is given in Figure 5.

6.2.1. k-nearest neighbor radii

As we have explained in Section 6.1 the basic ideas of our convergence proofs are similar for all the graphs.
However, there is one major technical difficulty for the k-nearest neighbor graph: the existence of an edge
between two points depends on all the other sample points and it is random, even if we know the distance
between the points. However, each sample point xi is connected to its k nearest neighbors, that means to all
points with a distance not greater than that of the k-th nearest neighbor. This distance is called the k-nearest
neighbor radius of point xi. Unfortunately, given a sample point we do not know this radius without looking at
all the other points. The idea to overcome this difficulty is the following: given the position of a sample point
we give lower and upper bounds on the kNN radius that depend on the density around the point and show
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that with high probability the true radius is between these bounds. Then we can replace the integration over
balls of a fixed radius with the integration over balls with the lower and upper bound on the kNN radius in the
proof for the bias term and then show that these integrals converge towards each other. Furthermore, under
our assumptions the radius of all the points can be bounded from above, which helps to bound the influence of
far-away points.

In this section we define formally the bounds on the k-nearest neighbor radii, since these will be used in the
statement of the general proposition. In Lemma 6.2 we state the bounds on the probabilities that the true kNN
radius is between our bounds for the cases we need in the proofs.

We first introduce the upper bound rmax
n on the maximum k-nearest neighbor radius of a point not depending

on its position. Second, we use that given a point x (far enough) in the interior of C the conditional kNN radius
of a sample point at x is highly concentrated around a radius rn(x). Formally, we define

rmax
n = d

√
4

γpminηd

kn

n − 1
, and rn(x) = d

√
kn

(n − 1)p(x)ηd
for all x ∈ C.

As to the concentration we state sequences of lower and upper bounds, r−n (x) and r+
n (x) that converge to rn(x)

such that for all x ∈ C that are not in a small boundary strip the probability that a point in x is connected to
a point in y becomes small if the distance between x and y exceeds r+

n (x) and becomes large if the distance is
smaller than r−n (x).

Clearly, the accuracy of the bounds depends on how much the density can vary around x. Setting ξn =
2p′maxr

max
n /pmin the density in the ball of radius 2rmax

n around x can vary between (1−ξn)p(x) and (1+ξn)p(x).
Furthermore, we have to “blow up” or shrink the radii a bit in order to be sure that the true kNN radius is
between them. To this end we introduce a sequence (δn)n∈N with δn → 0 and δnkn → ∞ for n → ∞. Then we
can define

r−n (x) = d
√

(1 − 2ξn)(1 − δn)rn(x) and r+
n (x) = d

√
(1 + 2ξn)(1 + δn)rn(x).

Note that ξn converges to zero, since rmax
n converges to zero as d

√
kn/n. The sequence δn is chosen such that

it converges to zero reasonably fast, but that with high probability r+
n (x) and r−n (x) are bounds on the kNN

radius of a point at x.
In order to quantify the probability of connections, which we seek to bound, we define the function c :

R
d × R

d → [0, 1] by

c(x, y) =
{

Pr (C12 | x1 = x, x2 = y) if x ∈ C and y ∈ C
0 otherwise,

where C12 denotes the event that there is an edge between the sample points x1 and x2 in the (directed or
undirected) k-nearest neighbor graph.

6.2.2. The cut term in the kNN graph

Proposition 6.1. Let Gn be the directed, symmetric or mutual k-nearest neighbor graph with a monotonically
decreasing weight function fn. Set δn =

√
(8δ0 log n)/kn for some δ0 ≥ 2 in the definition of r−n (x). Then we

have for the bias term∣∣∣∣E
(

cutn

n(n − 1)

)
− 2
∫

S∩C

p2(s)F (1)
C (rn(s)) ds

∣∣∣∣ = O

(
F

(1)
C (rmax

n ) d

√
kn

n

)

+ O

(
min
{

n−δ0fn

(
inf
x∈C

rn(x)
)

, F
(1)
B (∞) − F

(1)
B

(
inf
x∈C

rn(x)
)})

+ O

(
min

{(
d

√
kn

n
+
√

log n

kn

)
fn

(
inf
x∈C

r−n (x)
)(

kn

n

)1+1/d

, F
(1)
C (∞) − F

(1)
C ( inf

x∈C
r−n (x))

})
.
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Furthermore, we have for the variance term for a suitable constant C̃

Pr
(∣∣∣cutn −E

(
cut(i)n

)∣∣∣ > ε
)
≤ 2 exp

(
− C̃ε2

nk2
nf2

n(0)

)
·

Proof. We define for i, j ∈ {1, . . . , n}, i �= j the random variable Wij as

Wij =

{
fn(dist(xi, xj) if xi ∈ H+, xj ∈ H− and (xi, xj) edge in Gn

0 otherwise.

For both, a directed and an undirected graph we have

cutn =
n∑

i=1

n∑
j=1

j �=i

Wij ,

and by the linearity of expectation and the fact that the points are independent and identically distributed, we
have

E

(
cutn

n(n − 1)

)
=

1
n(n − 1)

n∑
i=1

n∑
j=1

j �=i

E(Wij) =
1

n(n − 1)
n(n − 1)E(W12) = E(W12).

In the convergence proof for the variance term of the cut for the r-neighborhood graph in Proposition 6.12 we
need a bound on E(W 2

12). Since this can be derived similarly to E(W12) we state the following for E(W q
12) for

q = 1, 2.
We define C12 to be the event that the sample points x1 and x2 are connected in the graph. Conditioning

on the location of the points x1 ∈ C and x2 ∈ C we obtain W12 = 0 if x1 and x2 on the same side of the
hyperplaneS, otherwise

W12 =

{
fn(dist(x1, x2)) if C12 = 1
0 otherwise.

Therefore, if x1 ∈ C and x2 ∈ C are on different sides of S

E (W q
12 | x1 = x, x2 = y) = f q

n(dist(x, y)) Pr (C12 | x1 = x, x2 = y) .

With c(x, y) as above we have

E(W q
12) =

∫
C

∫
C

E(W q
12 | x1 = x, x2 = y)p(y) dy p(x) dx

=
∫

H+∩C

∫
H−∩C

f q
n(dist(x, y)) Pr (C12 | x1 = x, x2 = y) p(y) dy p(x) dx

+
∫

H−∩C

∫
H+∩C

f q
n(dist(x, y)) Pr (C12 | x1 = x, x2 = y) p(y) dy p(x) dx

=
∫

H+

∫
H−

f q
n(dist(x, y))c(x, y)p(y) dy p(x) dx

+
∫

H−

∫
H+

f q
n(dist(x, y))c(x, y)p(y) dy p(x) dx.
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Setting

g(x) =

{∫
H− f q

n(dist(x, y))c(x, y)p(y) dy if x ∈ H+∫
H+ f q

n(dist(x, y))c(x, y)p(y) dy if x ∈ H−

we obtain

E(W q
12) =

∫
Rd

g(x)p(x) dx =
∫

H+
g(x)p(x) dx +

∫
H−

g(x)p(x) dx.

We only deal with the first integral here, the second can be computed analogously. By a simple transformation
of the coordinate system we can write this integral as an integral along the hyperplane S, and for each points
s in S we integrate over the normal line through s. In the following we find lower and upper bounds on the
integral ∫

S

∫ ∞

0

g(s + tnS)p (s + tnS) dtds =
∫

S

hn(s)ds,

where we have set

hn(s) =
∫ ∞

0

g (s + tnS) p (s + tnS) dt.

We set In = {x ∈ C | dist(x, ∂C) ≥ 2rmax
n } and use the following decomposition of the integral∣∣∣∣∣

∫
S

hn(s) ds−
∫

S

p2(s)F (q)
C (rn(s)) ds

∣∣∣∣∣ ≤
∣∣∣∣
∫

S

hn(s) ds −
∫

S∩In

hn(s) ds

∣∣∣∣ (6.1)

+
∣∣∣∣
∫

S∩In

hn(s) ds −
∫

S∩In

p2(s)F (q)
C (rn(s)) ds

∣∣∣∣ (6.2)

+
∣∣∣∣
∫

S∩In

p2(s)F (q)
C (rn(s)) ds −

∫
S∩C

p2(s)F (q)
C (rn(s)) ds

∣∣∣∣ . (6.3)

We first give a bound on the right hand side of equation (6.1). Setting Rn = {x ∈ R
d | dist(x, ∂C) < 2rmax

n }
and An = R

d \ (In ∪Rn), we have (considering that the integrand is positive and S ∩ In ⊆ S)∣∣∣∣
∫

S

hn(s) ds −
∫

S∩In

hn(s) ds

∣∣∣∣ =
∫

S∩Rn

hn(s) ds +
∫

S∩An

hn(s) ds,

that is, we have to derive upper bounds on the two integrals on the right hand side.
First let s ∈ S ∩ An, that is s /∈ C and dist(s, C) ≥ 2rmax

n . Consequently p(s + tnS) = 0 for t < 2rmax
n . On

the other hand, if t ≥ 2rmax
n we have dist(s + tnS , y) ≥ 2rmax

n for all y ∈ H−. Setting cn = 2 exp(−kn/8) we
have with Lemma 6.2 c(s + tnS , y) ≤ cn for all y ∈ H−. Hence

g(s + tnS) ≤
∫

B(s+tnS ,rmax
n )∩H−

f q
n(dist(s + tnS , y))c(s + tnS , y)p(y) dy

+
∫

B(s+tnS ,rmax
n )c∩H−

f q
n(dist(s + tnS , y))c(s + tnS , y)p(y) dy

≤ f q
n (rmax

n )
∫

H−
c(s + tnS , y)p(y) dy ≤ cnf q

n (rmax
n ) ,
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since B(s + tnS , rmax
n ) ∩H− = ∅ for t > rmax

n and fn is monotonically decreasing. Therefore, for all s ∈ S ∩An

hn(s) =
∫ ∞

0

g (s + tnS) p (s + tnS) dt ≤
∫ ∞

2rmax
n

g(s + tnS)p (s + tnS) dt

≤ cnf q
n (rmax

n )
∫ ∞

0

p (s + tnS) dt,

and thus ∫
S∩An

hn(s) ds ≤
∫

S∩An

cnf q
n (rmax

n )
∫ ∞

0

p (s + tnS) dt ds

≤ cnf q
n (rmax

n )
∫

S

∫ ∞

0

p (s + tnS) dt ds ≤ cnf q
n (rmax

n ) .

Now let s ∈ S ∩Rn. Then

g(s + tnS) =
∫

H−
f q

n(dist(s + tnS , y))c(s + tnS , y)p(y) dy

≤
∫

B(s+tnS ,rmax
n )∩H−

f q
n(dist(s + tnS , y))c(s + tnS , y)p(y) dy

+
∫

B(s+tnS ,rmax
n )c∩H−

f q
n(dist(s + tnS, y))c(s + tnS , y)p(y) dy

≤ pmax

∫
B(s+tnS ,rmax

n )∩H−
f q

n(dist(s + tnS , y)) dy + cnf q
n (rmax

n ) .

Considering that B(s + tnS , rmax
n ) ∩ H− = ∅ for t > rmax

n and therefore the first integral vanishes in this case,
we have for all s ∈ S ∩Rn

hn(s) =
∫ ∞

0

g (s + tnS) p (s + tnS) dt

≤
∫ rmax

n

0

pmax

∫
B(s+tnS ,rmax

n )∩H−
f q

n(dist(s + tnS , y)) dy p (s + tnS) dt

+ cnf q
n (rmax

n )
∫ ∞

0

p (s + tnS) dt

≤ p2
max

∫ rmax
n

0

∫
B(s+tnS ,rmax

n )∩H−
f q

n(dist(s + tnS , y)) dy dt

+ cnf q
n (rmax

n )
∫ ∞

0

p (s + tnS) dt

≤ p2
maxF

(q)
C (rmax

n ) + cnf q
n (rmax

n )
∫ ∞

0

p (s + tnS) dt,

and thus ∫
S∩Rn

hn(s) ds ≤
∫

S∩Rn

p2
maxF

(q)
C (rmax

n ) + cnf q
n (rmax

n )
∫ ∞

0

p (s + tnS) dt ds

≤ p2
maxF

(q)
C (rmax

n )Ld−1 (S ∩Rn) + cnf q
n (rmax

n ) .



390 M. MAIER ET AL.

For some weight functions, for example the Gaussian, it is preferable to use that for all x ∈ R
d and all radii r∫

B(x,r)c∩H−
f q

n(dist(x, y))c(x, y)p(y) dy ≤ pmax

∫
B(x,r)c

f q
n(dist(x, y)) dy

= pmax

(∫
Rd

f q
n(dist(x, y)) dy −

∫
B(x,r)

f q
n(dist(x, y)) dy

)

= pmax

(
F

(q)
B (∞) − F

(q)
B (r)

)
.

We have according to Lemma 6.25 Ld−1 (S ∩Rn) = O(rmax
n ). Consequently, using rmax

n = O( d
√

kn/n) and
plugging in cn∣∣∣∣

∫
S

hn(s) ds −
∫

S∩In

hn(s) ds

∣∣∣∣
= O

(
F

(q)
C (rmax

n ) d

√
kn

n
+ min

{
exp (−kn/8) f q

n

(
inf
x∈C

rn(x)
)

,
(
F

(q)
B (∞) − F

(q)
B (rmax

n )
)})

.

Now we consider the term in equation (6.2). In the following, note that with ξn = 2p′maxr
max
n /pmin we have for

all x ∈ C with B(x, 2rmax
n ) ⊆ C and y ∈ B(x, 2rmax

n )

(1 − ξn)p(x) ≤ p(y) ≤ (1 + ξn)p(x).

We assume that n is sufficiently large such that ξn < 1/2.
For any s ∈ S ∩ In and any t ≥ 0 we have

g(s + tnS) =
∫

H−
f q

n(dist(s + tnS , y))c(s + tnS , y)p(y) dy

≥
∫

B(s+tnS ,r−
n (s))∩H−

f q
n(dist(s + tnS , y))c(s + tnS, y)p(y) dy.

If t > r−n (s) we use the trivial bound g(s + tnS) ≥ 0. Otherwise we have with Lemma 6.2 for all y ∈ B(s +
tnS , r−n (s)) ∩ H− that c(s + tnS , y) ≥ 1 − an with an = 6 exp

(−δ2
nkn/3

)
. Using, furthermore, the bound

p(y) ≥ (1 − ξn)p(s) we obtain

g(s + tnS) ≥
∫

B(s+tnS ,r−
n (s))∩H−

f q
n(dist(s + tnS , y))(1 − an)(1 − ξn)p(s) dy

= (1 − an)(1 − ξn)p(s)
∫

B(s+tnS ,r−
n (s))∩H−

f q
n(dist(s + tnS , y)) dy.

That is, we obtain for s ∈ In

hn(s) =
∫ ∞

0

g (s + tnS) p (s + tnS) dt ≥
∫ r−

n (s)

0

g (s + tnS) p (s + tnS) dt

≥ (1 − ξn)p(s)
∫ r−

n (s)

0

g (s + tnS) dt

≥ (1 − an)(1 − ξn)2p2(s)
∫ r−

n (s)

0

∫
B(s+tnS ,r−

n (s))∩H−
f q

n(dist(s + tnS , y)) dy dt

≥ (1 − an)(1 − ξn)2p2(s)F (q)
C

(
r−n (s)

)
,

where in the last inequality we have applied Lemma 6.3.
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Therefore ∫
S∩In

hn(s) ds ≥ (1 − an)(1 − ξn)2
∫

S∩In

p2(s)F (q)
C

(
r−n (s)

)
ds

≥ (1 − an)(1 − ξn)2
∫

S∩In

p2(s)F (q)
C (rn(s)) ds

−
∫

S∩In

p2(s)
(
F

(q)
C (rn(s)) − F

(q)
C

(
r−n (s)

))
ds

≥
∫

S∩In

p2(s)F (q)
C (rn(s)) ds − (an + ξn)

∫
S∩In

p2(s)F (q)
C (rn(s)) ds

− p2
max

∫
S∩In

(
F

(q)
C (rn(s)) − F

(q)
C

(
r−n (s)

))
ds,

and thus∫
S∩In

hn(s) ds −
∫

S∩In

p2(s)F (q)
C (rn(s)) ds ≥− (an + ξn)

∫
S∩In

p2(s)F (q)
C (rn(s)) ds

− p2
maxLd−1(S ∩ C) sup

s∈S∩In

(
F

(q)
C

(
r+
n (s)
)− F

(q)
C (rn(s))

)
.

(6.4)

Now, we want to find an upper bound on g(s+tnS) for s ∈ S∩In, that is B(s, 2rmax
n ) ⊆ C. We use the following

decomposition

g(s + tnS) =
∫

H−
f q

n(dist(s + tnS, y))c(s + tnS , y)p(y) dy

≤
∫

B(s+tnS ,r+
n (s))∩H−

f q
n(dist(s + tnS , y))c(s + tnS , y)p(y) dy

+
∫

B(s+tnS ,r+
n (s))c∩H−

f q
n(dist(s + tnS , y))c(s + tnS , y)p(y) dy.

We use in the first term the trivial bound c(s + tnS , y) ≤ 1 and in the second term the monotonicity of fn and
the bound bn = 6 exp(−δ2

nkn/4) on the probability of connectedness when the distance is greater than r+
n (s)

from Lemma 6.2 to obtain

g(s + tnS) ≤
∫

B(s+tnS ,r+
n (s))∩H−

f q
n(dist(s + tnS , y))p(y) dy + bnf q

n

(
r+
n (s)
) ∫

B(s+tnS ,r+
n (s))c∩H−

p(y) dy

≤
∫

B(s+tnS ,r+
n (s))∩H−

f q
n(dist(s + tnS , y))p(y) dy + bnf q

n

(
r+
n (s)
)
.

Using a bound on the density in the balls B(s + tnS, r+
n (s)) we obtain

g(s + tnS) ≤ (1 + ξn)p(s)
∫

B(s+tnS ,r+
n (s))∩H−

f q
n(dist(s + tnS , y)) dy + bnfn

(
r+
n (s)
)
,

and observe that g(s + tnS) ≤ bnf q
n(r+

n (s)) if t > r+
n (s) since in this case B(s + tnS , r+

n (s)) ∩ H− = ∅.
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That is,

hn(s) =
∫ ∞

0

g (s + tnS) p (s + tnS) dt

≤
∫ r+

n (s)

0

(1 + ξn)p(s)
∫

B(s+tnS ,r+
n (s))∩H−

f q
n(dist(s + tnS , y)) dy p (s + tnS) dt

+
∫ ∞

0

bnf q
n

(
r+
n (s)
)
p (s + tnS) dt

≤ (1 + ξn)2p2(s)
∫ r+

n (s)

0

∫
B(s+tnS ,r+

n (s))∩H−
f q

n(dist(s + tnS , y)) dy dt

+ bnf q
n

(
r+
n (s)
) ∫ ∞

0

p (s + tnS) dt

=(1 + ξn)2p2(s)F (q)
C

(
r+
n (s)
)

+ bnf q
n

(
r+
n (s)
) ∫ ∞

0

p (s + tnS) dt.

Therefore, considering that ξn < 1/2∫
S∩In

hn(s) ds ≤ (1 + ξn)2
∫

S∩In

p2(s)F (q)
C

(
r+
n (s)
)

ds + bn

∫
S∩In

f q
n

(
r+
n (s)
) ∫ ∞

0

p (s + tnS) dt ds

≤ (1 + 3ξn)
∫

S∩In

p2(s)F (q)
C (rn(s)) ds + 3

∫
S∩In

p2(s)
(
F

(q)
C

(
r+
n (s)
)− F

(q)
C (rn(s))

)
ds

+ bnf q
n

(
inf

s∈S∩C
r+
n (s)
)

.

Consequently,∫
S∩In

hn(s) ds −
∫

S∩In

p2(s)F (q)
C (rn(s)) ds ≤ 3p2

max sup
s∈S∩In

(
F

(q)
C

(
r+
n (s)
)− F

(q)
C (rn(s))

)
Ld−1(S ∩ C)

+ 3ξn

∫
S∩In

p2(s)F (q)
C (rn(s)) ds + bnf q

n

(
inf

s∈S∩C
r+
n (s)
)

. (6.5)

Similarly to the remark above, using the boundedness of the density p, we can replace bnf q
n (infs∈S∩C r+

n (s)) by

pmax

(
F

(q)
B (∞) − F

(q)
B ( inf

s∈S∩C
rn(s))

)
,

which gives a better bound for some weight functions, especially the Gaussian.
Combining Equations (6.4) and (6.5), using the monotonicity of F

(q)
C and f we obtain∣∣∣∣

∫
S∩In

hn(s) ds −
∫

S∩In

p2(s)F (q)
C (rn(s)) ds

∣∣∣∣ = O

(
sup

s∈S∩In

(
F

(q)
C

(
r+
n (s)
)− F

(q)
C

(
r−n (s)

)))

+ O

(
(an + ξn)F (q)

C (rmax
n ) + min

{
bnf q

n

(
inf
x∈C

rn(s)
)

, F
(q)
B (∞) − F

(q)
B ( inf

x∈C
rn(x))

})
.

We still have to bound the first term. For some weight functions, especially the Gaussian, we have

sup
s∈S∩In

(
F

(q)
C

(
r+
n (s)
)− F

(q)
C

(
r−n (s)

)) ≤ F
(q)
C (∞) − F

(q)
C

(
inf
x∈C

r−n (x)
)

.
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For the other weight functions we use

F
(q)
C

(
r+
n (s)
)− F

(q)
C

(
r−n (s)

)
=
∫ r+

n (s)

0
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Since, with ξn < 1/2 and δn < 1,(
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n (s)
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=
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and a similar bound holds for the other quotient we have
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With our choice of δn we have, considering that δ0 ≥ 2,

an = 6 exp
(−δ2

nkn/3
)

= 6 exp (−(8δ0 log n)/3) ≤ 6 exp (−5 logn) = 6/n5,

that is, for n sufficiently large such that 6/n5 ≤ ξn, considering that ξn = O( d
√

kn/n) and plugging in bn we
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Finally, we bound the term in equation (6.3). Setting R′
n = C \ In we have∣∣∣∣
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Using Lemma 6.25 we have Ld−1 (S ∩Rn) = O(rmax
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Deriving the same bounds for the other halfspace and collecting the three bounds we obtain the result, consid-
ering that kn/8 ≥ δ2

nkn/8, δ2
nkn/4 ≥ δ2

nkn/8 and rmax
n ≥ maxx∈C rn(x) due to the monotonicity of F

(1)
C .

Finally, we discuss the choice of δn. With this choice of δn we have exp
(−δ2

nkn/8
)

= n−δ0 . Note that this is
the fastest convergence rate of δn for which the exponential term converges polynomially in 1/n, which we will
need in the proof of the following corollaries. In all the other terms above δn has to be chosen as small as possible,
so this is the best convergence rate for δn. Note further that for this choice of δn we require kn/ logn → ∞,
since δn has to converge to zero.

Now we proof the bound for the variance term. According to Corollary 3.2.3 from Miller et al. [10] the
maximum degree of the symmetric kn-nearest neighbor graph is bounded by (τd + 1)kn, where τd denotes the
kissing number in dimension d, that is, the maximum number of unit hypershpheres that touch another unit
hypersphere without any intersections.

Thus, removing a point from the graph and inserting it in a different place the number of (undirected) edges
in the cut can change by at most 2(τd + 1). Since we count undirected edges twice we obtain for all types of
k-nearest neighbor graphs ∣∣∣cutn − cut(i)n

∣∣∣ ≤ 4(τd + 1)knfn(0),

where cut(i)n denotes the value of the cut in a graph where exactly one point has been moved to a different place.
Thus by McDiarmid’s inequality for a suitable constant C̃ > 0
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(
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)
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(
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)
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(
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nk2
nf2
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)
· �

The following lemma states bounds on c(x, y), that is the probability of edges between points at x and y, in
the cases that we need in the convergence proofs for the cut and the volume.

Lemma 6.2 (kNN radii). Let Gn be the directed, mutual or symmetric kn-nearest neighbor graph. Let kn/n be
sufficiently small such that rmax

n ≤ rγ . Then, if x, y ∈ R
d and dist(x, y) ≥ rmax

n we have c(x, y) ≤ 2 exp (−kn/8).
Set ξn = 2p′maxr

max
n /pmin and define In = {s ∈ C | B(s, 2rmax

n ) ⊆ C}. Let n be sufficiently large such that
ξn < 1/2 and let δn ∈ (0, 1) with δn → 0 for n → ∞ and knδn > 1 for sufficiently large n.

Let x = s + tnS with s ∈ In ∩ S. If t ∈ R≥0 and y ∈ H− or t ∈ R≤0 and y ∈ H+, and, furthermore,
dist(x, y) ≥ r+

n (s) then c(x, y) ≤ 6 exp
(−δ2

nkn/4
)
. The same holds for x ∈ In and y ∈ C with dist(x, y) ≥ r+

n (x).
Let x = s + tnS with t ∈ [0, r−n (s)] and y ∈ H− or t ∈ [−r−n (s), 0] and y ∈ H+. If dist(x, y) ≤ r−n (s) then

c(x, y) ≥ 1 − 6 exp
(−δ2

nkn/3
)
. The same holds for x ∈ In and y ∈ C with dist(x, y) ≤ r−n (x).

Proof. We first show bounds on the probability of connectedness for the directed k-nearest neighbor graph.
These are used in the second part of this proof in order to show bounds for the undirected graph as well. Let
Dij denote the event that there exists an edge between xi and xj in the directed k-nearest neighbor graph.

First we show the statement concerning the maximal k-nearest neighbor radius. For any x ∈ C we have,
plugging in the definition of rmax

n , and using the assumptions that the density p is bounded from below on C
and that for balls of a sufficiently small radius around points in C at least a proportion of γ of the volume of
the ball is within C,
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Now suppose we fix x1 and x2 with dist(x1, x2) ≥ rmax
n . If U denotes the random variable that counts the number

of points x3, . . . , xn in B(x1, r
max
n ) we have U ∼ Bin(n−2, μ(B(x1, r

max
n ))). Setting V ∼ Bin(n−2, 4kn/(n−1)),

we certainly have 0 < kn/(n−2) < 4kn/(n−1) for n ≥ 3 and thus we obtain with a tail bound for the binomial
distribution from Srivastav and Stangier [12], which was first proved in Angluin and Valiant [1],

Pr (D12) = Pr (U < kn) ≤ Pr (V < kn) ≤ exp

⎛
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2
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(n − 2) 4kn
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)2

(n − 2) 4kn
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⎞
⎟⎠ ≤ exp

(
−kn

8

)
·

In the following we show the statements concerning the upper bound r+
n (s) on the k-nearest neighbor radii

of points in regions of relatively homogeneous density. The proof for the lower bound r−n (s) is similar and is
therefore omitted. Note, however, that the technical condition δnkn > 1 is needed for this case.

First we show how we can bound the density in the balls B(s, 2rmax
n ): for any z ∈ B(s, 2rmax

n ) we have by
Taylor’s theorem, using the assumptions on differentiability of p,

p(s) − 2p′maxr
max
n ≤ p(y) ≤ p(s) + 2p′maxr
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n ,

and thus, with ξn = 2p′maxr
max
n /pmin,

(1 − ξn)p(s) ≤ p(y) ≤ (1 + ξn)p(s).

These bounds are used below to bound the probability mass of balls within B(s, 2rmax
n ).

Now, we bound the probability mass in B(x, dist(x, y)) and B(y, dist(x, y)) from below, when dist(x, y) ≥
r+
n (s). We first observe that, for ξn < 1/2, δn < 1, and using the lower bound on p,
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√
(1 + 2ξn)(1 + δn)kn
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n (s)nS , that is the point on the line connecting s and x with

distance r+
n (s) from s. Then, by construction, B(x′, r+
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n (s)) ⊆ B(x, dist(x, s)).
Thus
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Now we consider balls around the other point y. First, suppose dist(y, s) = r+
n (s). Then
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n (s) from s. Then, by construction, B(y′, r+
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n ) and B(y′, r+
n (s)) ⊆ B(y, dist(y, s)).

Since x and y are on different sides of S we have dist(y, s) ≤ dist(y, x). Therefore
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.
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We show how to bound μ(B(x, r+
n (s))). The same bound can be shown for the probability mass in B(x′, r+

n (s)),
B(y, r+

n (s)) and B(y′, r+
n (s)), since all of these balls lie in B(s, 2rmax

n ). We have, since ξn < 1/2,

μ
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·

Let U+
x ∼ Bin (n − 2, μ (B(x, r+

n (s)))) and V +
x ∼ Bin (n − 2, (1 + δn)kn/(n − 1)). Then, we have for (n − 2)

δn > 1
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and thus, by the tail bound from Angluin and Valiant [1],
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and thus, using δn < 1,

Pr(D12) ≤ exp
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4kn
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≤ exp

(
−δ2

nkn

4
+ δn

)
≤ 3 exp

(
−δ2

nkn

4
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·

This analysis can be carried over to the case t > r+
n (s) and the same bound holds.

The same bound holds also for Pr(D21), since the same bounds for the probability mass in the balls B(y, r+
n (s))

and B(y′, r+
n (s)) hold.

In the final step of the proof we use the results derived so far to show the results for the undirected k-nearest
neighbor graphs. For the mutual kNN graph we have by definition Pr (C12) = Pr (C21) = Pr (D12 ∩ D21). Thus,
clearly, Pr (C12) ≤ Pr (D12) and

Pr (C12) = Pr (D12 ∩ D21) = 1 − Pr (Dc
12 ∪ Dc

21) ≥ 1 − Pr (Dc
12) − Pr (Dc

21)

= 1 − (1 − Pr (D12)) − (1 − Pr (D21)) = Pr (D12) + Pr (D21) − 1.

This implies

Pr (D12 | x1 = x, x2 = y)+Pr (D21 | x1 = x, x2 = y)−1 ≤ Pr (C12 | x1 = x, x2 = y) ≤ Pr (D12 | x1 = x, x2 = y) .

For the symmetric kNN graph we have Pr (C12) = Pr (C21) = Pr (D12 ∪ D21), which implies Pr (C12) ≥ Pr (D12)
and by a union bound Pr (C12) ≤ Pr (D12) + Pr (D21). Therefore

Pr (D12 | x1 = x, x2 = y) ≤ Pr (C12 | x1 = x, x2 = y) ≤ Pr (D12 | x1 = x, x2 = y) + Pr (D21 | x1 = x, x2 = y) .
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Thus, using the worse out of the two possible bounds we obtain for both undirected kNN graph types

Pr (D12 | x1 = x, x2 = y) + Pr (D21 | x1 = x, x2 = y) − 1 ≤ Pr (C12 | x1 = x, x2 = y)
≤ Pr (D12 | x1 = x, x2 = y) + Pr (D21 | x1 = x, x2 = y) .

Plugging in the results for Pr(D12) and Pr(D21) in the cases studied above, we obtain the result. �

Lemma 6.3 (integral over caps). Let the general assumptions hold and let f : R≥0 → R≥0 be a monotonically
decreasing function and s ∈ S. Then we have for any R ∈ R>0∫ R

0

∫
B(s+tnS ,R)∩H−
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Proof. By a translation and rotation of our coordinate system in R
d such that s + tnS is the origin and −nS
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f(dist(s + tnS , y)) dy =
∫
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d
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A(r) dt dr =
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A(r)
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dt dr =
∫ R

r=0

rA(r) dr.

Similarly, by the same translation and a rotation such that nS is the first coordinate axis we obtain for t < 0∫
B(s+tnS ,R)∩H+

f(dist(s + tnS , y)) dy =
∫
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that is,∫ 0

−R

∫
B(s+tnS ,R)∩H−

f(dist(s + tnS , y)) dy dt =
∫ 0

t=−R

∫ R
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A(r) dr dt
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∫ 0
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A(r) dt dr=
∫ R
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A(r)
∫ 0

t=−r

dt dr=
∫ R

r=0

rA(r) dr.

Therefore, both the integrals we want to compute are equal to
∫ R

r=0 rA(r) dr which we will treat in the following.
First we are going to compute the (d − 1)-dimensional integral A(r). Setting f̃r(s) = f(

√
r2 + s2) we can write

A(r) as the following integral in R
d−1:

A(r) =
∫
{x2

1+...+x2
d−1≤R2−r2}

f
(√

r2 + x2
1 + . . . + x2
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0

(d − 1)ηd−1s
d−2f̃r(s) ds

= (d − 1)ηd−1
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0

sd−2f
(√

r2 + s2
)

ds.

Plugging in this expression for A(r) we obtain∫ R

r=0

rA(r) dr = (d − 1)ηd−1

∫ R

r=0
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R2−r2

s=0

rsd−2f
(√

r2 + s2
)

ds dr.

Substituting with polar coordinates (r, s) = (u cos θ, u sin θ) with u ∈ [0, R] and θ ∈ [0, π/2], we have∫ R

r=0

∫ √
R2−r2

s=0

rsd−2f
(√

r2 + s2
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ds dr =
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u=0
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u cos θud−2 sind−2 θf(u)u dθ du

=
∫ R

u=0

udf(u)
∫ π/2

θ=0

cos θ sind−2 θ dθ du

=
∫ R

u=0

udf(u)
[

1
d − 1
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]π/2

θ=0

du =
1

d − 1

∫ R

u=0

udf(u) du.

Combining the last two equations we obtain∫ R

r=0

rA(r) dr = ηd−1

∫ R

u=0

udf(u) du.

Note that the integral exists due to the monotonicity of f and the compactness of the interval [0, R]. �

Corollary 6.4 (unweighted kNN-graph). Let Gn be the unweighted k-nearest neighbor graph and let fn be the
unit weight function. Then∣∣∣∣∣ 1

nkn
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and, for a suitable constant C̃ > 0
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Proof. With Lemma 6.22 we have for any s ∈ S ∩ C, plugging in the definition of rn(s),

F
(1)
C (rn(s)) =

ηd−1

d + 1

(
kn

(n − 1)p(s)ηd

)1+1/d

=
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(
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2
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d

∫
S

p1−1/d(s) ds.

Multiplying this term with the factor (kn/(n − 1))−1−1/d we obtain a constant limit. We now multiply the
inequality for the bias term in Proposition 6.1 with this factor and deal with the error terms.

For the first term we derive an upper bound on F
(1)
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n ) similarly to above and obtain
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·

For the second error term we have with δ0 = 3 and fn ≡ 1
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For the last error term we have(
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Thus, considering that n−1 ≤ d
√

kn/n, we obtain∣∣∣∣∣ 1
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cutn − 2ηd−1

(d + 1)η1+1/d
d

∫
S

p1−1/d(s) ds

∣∣∣∣∣ =
(

n − 1
kn

)1+1/d ∣∣∣∣ cutn

n(n − 1)
− 2
∫

S

p2(s)F (1)
C (rn(s)) ds

∣∣∣∣
= O

(
d

√
kn

n
+

√
log n

kn

)
·

For the variance term we have with Proposition 6.1 and fn(0) = 1

Pr
(∣∣∣∣ 1

nkn

d

√
n − 1
kn

cutn −E

(
1

nkn

d

√
n − 1
kn

cutn

)∣∣∣∣ > ε

)
= Pr

(
|cutn −E (cutn)| > nkn

d

√
kn

n − 1
ε

)

≤ 2 exp
(
−C̃

ε2n2k2
n(kn/(n − 1))2/d

nk2
nf2

n(0)

)
≤ 2 exp

(
−C̃ε2n1−2/dk2/d

n

)
.

Since 1/n = O( d
√

kn/n) we can change d
√

(n − 1)/kn in the scaling factor to d
√

n/kn without changing the
convergence rate. �
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Corollary 6.5 (Gaussian weights and 1/σn(kn/n)1/d → 0). Let Gn be the k-nearest neighbor graph with
Gaussian weight function and let 1/σn(kn/n)1/d → 0. Then

∣∣∣∣∣E
(

σd
n

nkn

d

√
n

kn
cutn

)
− 2ηd−1η

−1−1/d
d

(d + 1)(2π)d/2

∫
S

p1−1/d(s) ds

∣∣∣∣∣ = O

⎛
⎝( 1

σn

d

√
kn

n

)2

+ d

√
kn

n
+
√

log n

kn

⎞
⎠

and, for a suitable constant C̃ > 0

Pr
(∣∣∣∣ 1

nkn

d

√
n

kn
cutn −E

(
1

nkn

d

√
n

kn
cutn

)∣∣∣∣ > ε

)
≤ 2 exp

(
−C̃ε2n1−2/dk2/d

n

)
.

Proof. According to Lemma 6.23 we have for all s ∈ S ∩ C∣∣∣∣ σqd
n

rd+1
n (s)

F
(q)
C (rn(s)) − ηd−1

(d + 1)(2π)qd/2

∣∣∣∣ ≤ 2
(

rn(s)
σn

)2

·

Plugging in rn(s) = d
√

kn/((n − 1)ηdp(s)) we obtain

∣∣∣∣∣σqd
n

(
n − 1
kn

)1+1/d

(ηdp(s))1+1/d F
(q)
C (rn(s)) − ηd−1

(d + 1)(2π)qd/2

∣∣∣∣∣ ≤ 2

(
1
σn

d

√
kn

(n − 1)ηdp(s)

)2

and therefore∣∣∣∣∣σqd
n

(
n − 1
kn

)1+1/d

F
(q)
C (rn(s)) − ηd−1η

−1−1/d
d

(d + 1)(2π)qd/2
p(s)−1−1/d

∣∣∣∣∣
≤ 2(ηdp(s))−1−1/d

(
1
σn

d

√
kn

(n − 1)ηdp(s)

)2

≤ C̃1

(
kn

σd
nn

)2/d

for a suitable constant C̃1 > 0. Therefore∣∣∣∣∣σd
n

(
n − 1
kn

)1+1/d

2
∫

S∩C

p2(s)F (1)
C (rn(s)) ds − 2ηd−1η

−1−1/d
d

(2π)d/2(d + 1)

∫
S

p1−1/d(s) ds

∣∣∣∣∣
=

∣∣∣∣∣σd
n

(
n − 1
kn

)1+1/d

2
∫

S∩C

p2(s)F (1)
C (rn(s)) ds − 2

∫
S

p2(s)
ηd−1η

−1−1/d
d

(2π)d/2(d + 1)
p−1−1/d(s) ds

∣∣∣∣∣
≤ 2
∫

S∩C

p2(s)

∣∣∣∣∣σd
n

(
n − 1
kn

)1+1/d

F
(1)
C (rn(s)) − ηd−1η

−1−1/d
d

(2π)d/2(d + 1)
p−1−1/d(s)

∣∣∣∣∣ ds

≤ 2
∫

S∩C

p2(s)C̃1

(
kn

nσd
n

)2/d

ds = 2C̃1

(
kn

nσd
n

)2/d

p2
maxLd−1 (S ∩ C) .

Now, we consider the error terms of Proposition 6.1. For the first one we have, using that F
(1)
C (rmax

n ) =
O((rmax

n )d+1/σd
n) and, furthermore, rmax

n = O( d
√

kn/(n − 1))

σd
n

(
n − 1
kn

)1+1/d

F
(1)
C (rmax

n ) d

√
kn

n
= O

(
σd

n

(
n − 1
kn

)1+1/d

σ−d
n

(
kn

n − 1

)1+1/d
d

√
kn

n

)
= O

(
d

√
kn

n

)
·
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For the second error term we have with δ0 = 4

σd
n

(
n − 1
kn

)1+1/d

n−δ0fn

(
inf
x∈C

rn(x)
)

≤ σd
nn2n−4 1

(2π)d/2σd
n

= O
(
n−2
) ·

For the third error term we have with fn(0) = O(σ−d
n ) and the monotonicity of fn

σd
n

(
n − 1
kn

)1+1/d
(

d

√
kn

n
+

√
log n

kn

)
fn

(
inf
x∈C

r−n (x)
)(

kn

n

)1+1/d

= O

(
d

√
kn

n
+

√
log n

kn

)
·

For the variance term we have with Proposition 6.1 and fn(0) = (2π)−d/2σ−d
n for a suitable constant C̃′ > 0

Pr
(∣∣∣∣ σd

n

nkn

d

√
n − 1
kn

cutn −E

(
σd

n

nkn

d

√
n − 1
kn

cutn

)∣∣∣∣ > ε

)
= Pr

(
|cutn −E (cutn)| >

nkn

σd
n

d

√
kn

n − 1
ε

)

≤ 2 exp
(
−C̃′ ε

2n2k2
nσ−2d

n (kn/(n − 1))2/d

nk2
nf2

n(0)

)
≤ 2 exp

(
−C̃ε2n1−2/dk2/d

n

)
,

where we have set C̃ = (2π)dC̃′.
Since 1/n = O( d

√
kn/n) we can change d

√
(n − 1)/kn in the scaling factor to 1/(nkn) d

√
n/kn without changing

the convergence rate. �

Corollary 6.6 (Gaussian weights and σn(kn/n)−1/d → 0 ). We consider the kNN graph with Gaussian weight
function. Let σn(kn/n)−1/d → 0 and nσd+1

n → ∞ for n → ∞. Then there exists a constant C̃ > 0 such that

∣∣∣∣E
(

1
n2σn

cutn

)
− 2√

2π

∫
S

p2(s) ds

∣∣∣∣ = O

⎛
⎝ d

√
kn

n
+

1
σn

exp

⎛
⎝−C̃

(
1
σn

d

√
kn

n

)2
⎞
⎠
⎞
⎠ ·

Furthermore, suppose d
√

kn/n ≥ σα
n for an α ∈ (0, 1) and n sufficiently large. Then there exist non-negative

random variables D
(1)
n , D

(2)
n such that∣∣∣∣ cutn

n2σn
− E

(
cutn

n2σn

)∣∣∣∣ = O(σn) + D(1)
n + D(2)

n ,

with Pr(D(1)
n > ε) ≤ 2 exp(C̃2nσd+1

n ε2) for a constant C̃2 > 0, and Pr(D(2)
n > σn) ≤ 1/n3.

Proof. With Lemma 6.24 we have for for d
√

kn/n/σn sufficiently large∣∣∣∣ 2
σn

∫
S∩C

p2(s)F (1)
C (rn(s)) ds − 2√

2π

∫
S

p2(s) ds

∣∣∣∣ ≤ 2
∫

S∩C

p2(s)
∣∣∣∣ 1
σn

F
(1)
C (rn(s)) − 1√

2π

∣∣∣∣ ds

= O

⎛
⎝exp

⎛
⎝− 1

4(pmaxηd)2/d

(
1
σn

d

√
kn

n

)2
⎞
⎠
⎞
⎠ ,

where we use that p and Ld−1(S ∩ C) are bounded.
Now we bound the error terms from Proposition 6.1 of the other difference∣∣∣∣E

(
1

n(n − 1)σn
cutn

)
− 2

σn

∫
S∩C

p2(s)F (1)
C (rn(s)) ds

∣∣∣∣ .



402 M. MAIER ET AL.

For the first one we observe that with Lemma 6.24 we have F
(1)
C (rmax

n ) = O(σn) and therefore
σ−1

n F
(1)
C (rmax

n ) d
√

kn/n = O( d
√

kn/n).
For the second one we have with Lemma 6.24

1
σn

(
F

(1)
B (∞) − F

(1)
B ( inf

x∈C
rn(x))

)
= O

⎛
⎝ 1

σn
exp

⎛
⎝− 1

4(pmaxηd)2/d

(
1
σn

d

√
kn

n

)2
⎞
⎠
⎞
⎠ ·

For the third error term we observe that if n is sufficiently large such that δn ≤ 1/2 and ξn ≤ 1/4 then for all
x ∈ C,

r−n (x) = d

√
(1 − 2ξn)(1 − δn)kn

(n − 1)p(x)ηd
≥ d

√
kn

4pmaxηdn
·

Then we have with Lemma 6.24

1
σn

(
F

(1)
C (∞) − F

(1)
C ( inf

x∈C
r−n (x))

)
= O

⎛
⎝exp

⎛
⎝− 1

4(4pmaxηd)2/d

(
1
σn

d

√
kn

n

)2
⎞
⎠
⎞
⎠ ·

Now we proof the bound for the variance term. Unfortunately, the bound in Proposition 6.1 based on
McDiarmid’s inequality does not give good results. Therefore we proof a bound on the variance term directly.
We set cutn to be the cutn in the complete graph with Gaussian weights on the sample and we set cutmiss

n to
be sum of the weights of the edges that are in the cut but not in the kNN graph. Then cutn = cutn − cutmiss

n

and we have∣∣∣∣ cutn

n(n − 1)σn
− E

(
cutn

n(n − 1)σn

)∣∣∣∣ =
∣∣∣∣ cutn

n(n − 1)σn
− E

(
cutn

n(n − 1)σn

)
−
(

cutmiss
n

n(n − 1)σn
− E

(
cutmiss

n

n(n − 1)σn

))∣∣∣∣
≤
∣∣∣∣ cutn

n(n − 1)σn
− E

(
cutn

n(n − 1)σn

)∣∣∣∣+ cutmiss
n

n(n − 1)σn
+ E

(
cutmiss

n

n(n − 1)σn

)
·

The first deviation term is dealt with in Corollary 6.14.
We denote with D the event that the k-nearest neighbor radius of all the points is greater than rmin

n =
d
√

kn/(2pmaxηd(n − 1)). One can show similarly to the proof of Lemma 6.2 that Pr(Dc) ≤ exp(log n − kn/8)
and thus Pr(Dc) ≤ 1/n3 for sufficiently large n, since kn/ log n → ∞. If D holds, all the edges in cutmiss

n must
have weight lower than fn(rmin

n ), whereas if Dc holds the maximum edge weight is fn(0). There are n(n − 1)
possible edges and thus

E

(
cutmiss

n

n(n − 1)σn

)
≤ 1

n(n − 1)σn
n(n − 1)fn(0) Pr(Dc) +

1
n(n − 1)σn

n(n − 1)fn(rmin
n ) Pr(D)

= O

(
1

σd+1
n

1
n3

+
1

σd+1
n

exp

(
− (rmin

n )2

2σ2
n

))
= O

(
1
n2

+
1

σd+1
n

exp

(
− (rmin

n )2

2σ2
n

))
,

since nσd+1
n → ∞ for n → ∞.

Under the condition d
√

kn/n ≥ σα
n with α ∈ (0, 1) we have for sufficiently large n and a suitable constant C̃1

1
σd+1

n

exp

(
− (rmin

n )2

2σ2
n

)
≤ 1

σd+1
n

exp
(
−C̃1σ

2(α−1)
n

)
≤ σn,

where we use that the exponential term converges to zero faster than any power of σn.
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For the other term we clearly have for n sufficiently large

Pr
(

cutmiss
n

n(n − 1)σn
> σn

)
≤ Pr

(
cutmiss

n

n(n − 1)σn
>

1
σd+1

n

exp

(
− (rmin

n )2

2σ2
n

))
≤ Pr(Dc) ≤ 1

n3
·

Clearly, we can replace n(n − 1) in the scaling factor by n2 without changing the convergence rate. �

6.2.3. The volume term of the kNN graph

Proposition 6.7. Let Gn be the k-nearest neighbor graph with a monotonically decreasing weight function fn

and let H = H+ or H = H−. Then∣∣∣∣E
(

voln(H)
n(n − 1)

)
−
∫

H∩C

F
(1)
B (rn(x)) p2(x) dx

∣∣∣∣
= O

(
d

√
kn

n
F

(1)
B (rmax

n )

)
+ O

(
min
{

f q
n

(
inf
x∈C

rn(x)
)

n−δ0 , F
(1)
B (∞) − F

(1)
B ( inf

x∈C
rn(x))

})

+ O

(
min

{
f q

n

(
inf
x∈C

r−n (x)
)(

d

√
kn

n
+
√

log n

kn

)
kn

n
, F

(1)
B (∞) − F

(1)
B

(
inf
x∈C

r−n (x)
)})

.

where we set δn =
√

(4δ0 log n)/kn for a δ0 ≥ 2 in the definition of r−n (x).
For the variance term we have for a suitable constant C̃ > 0

Pr (|voln(H) − E (voln(H))| > ε) ≤ 2 exp

(
− C̃

ε2

nk2
nf2

n(0)

)
·

Proof. Similarly to the proof of for the cut we define for i, j ∈ {1, . . . , n}, i �= j the random variable Wij as

Wij =

{
fn(dist(xi, xj) if xi ∈ H and (xi, xj) edge in Gn

0 otherwise

and then have E (voln(H)) = n(n− 1)E(W12). With a function c(x, y) that indicates the probability of connect-
edness we obtain

E(W q
12) =

∫
H∩C

∫
C

f q
n(dist(x, y))c(x, y)p(y) dy p(x) dx.

Setting Rn = {y ∈ H ∩ C | dist(y, ∂(H ∩ C)) ≤ 2rmax
n } and In = (H ∩ C) \ Rn we can decompose the outer

integral into integrals over Rn and In.
First suppose x ∈ Rn and let cn denote a bound on the probability that points in distance at least rmax

n are
connected. Then, using cn ≤ 2 exp (−kn/8) and Lemma 6.8,∫

C

f q
n(dist(x, y))c(x, y)p(y) dy ≤ pmax

∫
B(x,rmax

n )∩C

f q
n(dist(x, y)) dy + f q

n (rmax
n ) cn

∫
C

p(y) dy

≤ pmaxdηd

∫ rmax
n

0

ud−1f q
n(u) du + 2f q

n (rmax
n ) exp (−kn/8)

= pmaxF
(q)
B (rmax

n ) + 2f q
n (rmax

n ) exp (−kn/8) .

As was explained in the proof for the cut we can replace the term 2f q
n (rmax

n ) exp (−kn/8) by the term

pmax

(
F

(q)
B (∞) − F

(q)
B (rmax

n )
)

,

which is better suited, for example for the Gaussian.
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Therefore, using that according to Lemma 6.25 the volume of Rn is in O(rmax
n ),∫

Rn

∫
C

f q
n(dist(x, y))c(x, y)p(y) dy dx = O

(
d

√
kn

n
F

(q)
B (rmax

n )

)
+ O

(
min

{
d

√
kn

n

(
F

(q)
B (∞) − F

(q)
B (rmax

n )
)

,

d

√
kn

n
f q

n (rmax
n ) exp (−kn/8)

})
.

For x ∈ In we introduce as in the proof for the cut radii r−n (x) ≤ rmax
n and r+

n (x) ≤ rmax
n that depend on δn

and ξn defined there. These radii approximate the true kNN radius. For a lower bound we obtain∫
C

f q
n(dist(x, y))c(x, y)p(y) dy ≥F

(q)
B (rn(x)) p(x) − pmax

(
F

(q)
B (rn(x)) − F

(q)
B

(
r−n (x)

))
− (ξn + 6 exp

(−δ2
nkn/3

))
pmaxF

(q)
B (rmax

n ) .

For some weight functions, especially the Gaussian, we can use

F
(q)
B (rn(x)) − F

(q)
B

(
r−n (x)

) ≤ F
(q)
B (∞) − F

(q)
B

(
inf
x∈C

r−n (x)
)

,

whereas for other ones it is better to use

F
(q)
B (rn(x)) − F

(q)
B

(
r−n (x)

)
= dηd

∫ rn(x)

r−
n (x)

ud−1f q
n(u) du

≤ ηdf
q
n

(
inf
x∈C

r−n (x)
)

(ξn + δn) (rmax
n )d

.

Similarly we obtain an upper bound, with an additional term f q
n (infx∈C rn(x)) exp

(−δ2
nkn/4

)
or pmax(F

(q)
B (∞)−

F
(q)
B (infx∈C rn(x))) bounding the influence of points that are further away than r+

n (x). Combining the bounds
we obtain ∣∣∣∣

∫
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∫
C

f q
n(dist(x, y))c(x, y)p(y) dy −

∫
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F
(q)
B (rn(x)) p2(x) dx

∣∣∣∣
= O
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(−δ2
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)

+ O
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B (∞) − F
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(
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+ O
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.

Setting δn =
√

(4δ0 log n)/kn we obtain exp
(−δ2

nkn/3
) ≤ n−δ0 and the same for exp

(−δd
nkn/4

)
. Clearly, for

δ0 ≥ 2 we have n−δ0 ≤ ξn and n−δ0 ≤ (ξnrmax
n )d . Thus, with ξn = O(rmax

n ) = O( d
√

kn/n),∣∣∣∣
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∫
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+ O
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.
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Finally, by finding an upper bound on the integrand and the volume of (H ∩ C) \ In we obtain∣∣∣∣
∫
In

F
(q)
B (rn(x)) p(x) dx −

∫
H∩C

F
(q)
B (rn(x)) p2(x) dx

∣∣∣∣ = O

(
d

√
kn

n
F

(q)
B (rmax

n )

)
.

Combining all the bounds above we obtain the result for the bias term. The bound for the variance term can
be obtained with McDiarmid’s inequality similarly to the proof for the cut in Proposition 6.1. �

The following lemma is necessary for the proof of the general theorem for both, the r-graph and the kNN-
graph. It is an elementary lemma and therefore stated without proof.

Lemma 6.8 (integration over balls). Let fn : R≥0 → R≥0 be a monotonically decreasing function and x ∈ R
d.

Then we have for any R ∈ R>0 ∫
B(x,R)

f(dist(x, y)) dy = dηd

∫ R

0

ud−1f(u) du.

Corollary 6.9 (unweighted kNN-graph). Let Gn be the unweighted kNN graph with weight function fn ≡ 1
and let H = H+ or H = H−. Then we have for the bias term∣∣∣∣voln(H)

nkn
−
∫

H

p(x) dx

∣∣∣∣ = O

(
d

√
kn

n
+
√

log n

kn

)
,

and for the variance term for a suitable constant C̃

Pr
(∣∣∣∣voln(H)

nkn
− E

(
voln(H)

nkn

)∣∣∣∣ > ε

)
≤ 2 exp

(
−C̃nε2

)
.

Proof. With Lemma 6.22 we have, plugging in the definition of rn(x),∫
H∩C

F
(1)
B (rn(x))p2(x) dx =

∫
H∩C

ηd
kn

(n − 1)ηdp(x)
p2(x) dx =

kn

n − 1

∫
H

p(x) dx.

Therefore by multiplying the expression in Proposition 6.7 with (n − 1)/kn we obtain for any δ0 ≥ 2∣∣∣∣voln(H)
nkn

−
∫

H

p(x) dx

∣∣∣∣ ≤ O

(
n − 1
kn

d

√
kn

n
F

(1)
B (rmax

n )

)
+ O

(
n − 1
kn

fn

(
inf
x∈C

r−n (x)
)

n−δ0

)

+ O

(
n − 1
kn

kn

n

(
d

√
kn

n
+
√

log n

kn

)
fn

(
inf
x∈C

r−n (x)
))

.

Using F
(1)
B (rmax

n ) ∼ (n − 1)/kn and fn ≡ 1 we obtain∣∣∣∣voln(H)
nkn

−
∫

H

p(x) dx

∣∣∣∣ = O

(
d

√
kn

n
+

√
log n

kn

)
·

For the variance term we use the bound in Proposition 6.7 and plug in fn(0) = 1. �

Corollary 6.10 (Gaussian weights and (kn/n)1/d/σn → 0). Consider the kNN graph with Gaussian weights
and (kn/n)1/d/σn → 0. Let H = H+ or H = H−. Then we have for the bias term

∣∣∣∣ σd
n

nkn
voln(H) − 1

(2π)d/2

∫
H

p(x) dx

∣∣∣∣ = O

⎛
⎝( 1

σn

d

√
kn

n

)2

+ d

√
kn

n
+
√

log n

kn

⎞
⎠
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and for the variance term, for a suitable constant C̃ > 0,

Pr
(∣∣∣∣ σd

n

nkn
voln(H) − E

(
σd

n

nkn
voln(H)

)∣∣∣∣ > ε

)
≤ 2 exp

(
−C̃nε2

)
.

Proof. According to Lemma 6.23 we have for all x ∈ C∣∣∣∣ σqd
n

rd
n(x)

F
(q)
B (rn(x)) − ηd

(2π)qd/2

∣∣∣∣ ≤ 3
(

rn(x)
σn

)2

·

Plugging in rn(x) = d
√

kn/((n − 1)ηdp(x)) and dividing by ηdp(x) we obtain for points in the support of p∣∣∣∣σqd
n

(
n − 1
kn

)
F

(q)
B (rn(x)) − 1

(2π)qd/2p(x)

∣∣∣∣ = O

((
kn

σd
nn

)2/d
)
·

Therefore, using the boundedness of p∣∣∣∣σd
n

(
n − 1
kn

) ∫
H∩C

p2(x)F (1)
B (rn(x)) dx − 1

(2π)d/2

∫
H

p(x) dx

∣∣∣∣ = O

((
kn

nσd
n

)2/d
)
·

Now, we consider the error terms from Proposition 6.7 of the other difference∣∣∣∣ σd
n

nkn
voln(H) − σd

n

(
n − 1
kn

) ∫
H∩C

p2(x)F (1)
B (rn(x)) dx

∣∣∣∣ .
As we have seen above σd

n(n − 1)/knF
(1)
B (rmax

n ) can be bounded by a constant. Thus we have for the first term

σd
n

(
n − 1
kn

)
d

√
kn

n
F

(1)
B (rmax

n ) = O

(
d

√
kn

n

)
·

For the second term we have for n sufficiently large and setting δ0 = 3

σd
n

(
n − 1
kn

)
fn

(
inf
x∈C

r−n (x)
)

n−δ0 ≤ σd
n

(
n − 1
kn

)
fn (0)n−δ0 ≤

(
n − 1
kn

)
n−δ0 ≤ n−2.

For the third term we have

σd
n

(
n − 1
kn

)
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n

(
d

√
kn

n
+
√

log n
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)
fn

(
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r−n (x)
)

≤
(

d

√
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n
+
√

log n

kn

)
σd

nfn (0)

=

(
d

√
kn

n
+
√

log n

kn

)
1

(2π)d/2
·

For the variance term we have for a suitable constant C̃′ > 0

Pr
(∣∣∣∣ σd

n

nkn
voln(H) − E

(
σd

n

nkn
voln(H)

)∣∣∣∣ > ε

)
= Pr

(|voln(H) − E (voln(H))| > nknσ−d
n ε
)

≤ 2 exp
(
−C̃′n

2k2
nσ−2d

n ε2

nk2
nf2

n(0)

)
≤ 2 exp

(
−C̃′ nσ−2d

n ε2

1
(2π)d σ−2d

n

)
= 2 exp

(
−C̃nε2

)
,

where we have set C̃ = (2π)dC̃′. �
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Corollary 6.11 (Gaussian weights and (kn/n)1/d/σn → ∞). Let Gn be the kNN graph with Gaussian weights.
Then for the bias term for a constant C̃1 > 0

∣∣∣∣E
(

voln(H)
n2

)
−
∫

H

p2(x) dx

∣∣∣∣ = O

⎛
⎝ d

√
kn

n
+ exp

⎛
⎝−C̃1

(
1
σn

d

√
kn

n

)2
⎞
⎠
⎞
⎠ ·

Let, furthermore, d
√

kn/n ≥ σα
n for an α ∈ (0, 1) and n sufficiently large. Then there exist non-negative random

variables D
(1)
n , D

(2)
n such that ∣∣∣∣voln(H)

n2
− E

(
voln(H)

n2

)∣∣∣∣ = O(σn) + D(1)
n + D(2)

n ,

with Pr(D(1)
n > ε) ≤ 2 exp(C̃2nσd+1

n ε2) for a constant C̃2 > 0, and Pr(D(2)
n > σn) ≤ 1/n3.

Proof. With Lemma 6.24 we have for n sufficiently large such that rn(x)/σn sufficiently large uniformly over
all x ∈ C ∣∣∣∣

∫
H∩C

F
(1)
B (rn(x))p2(x) dx −

∫
H

p2(x) dx

∣∣∣∣ ≤
∫

H∩C

∣∣∣F (1)
B (rn(x)) − 1

∣∣∣ p2(x) dx

= O

(
exp

(
− 1

4(pmaxηd)2/d

1
σ2

n

(
kn

n

)2/d
))

·

Now we bound the error terms from Proposition 6.7 of the other difference∣∣∣∣E
(

1
n(n − 1)

voln(H)
)
−
∫

H∩C

p2(x)F (1)
C (rn(x)) dx

∣∣∣∣ .
For the first error term we use that according to Lemma 6.24 F

(1)
B (rmax

n ) is bounded by one for n sufficiently
large. Therefore d

√
kn/nF

(1)
B (rmax

n ) = O( d
√

kn/n).
For the second and third error term we observe that if n is sufficiently large such that δn ≤ 1/2 and ξn ≤ 1/4

then

inf
x∈C

rn(x) ≥ inf
x∈C

r−n (x) = inf
x∈C

d

√
(1 − 2ξn)(1 − δn)kn

(n − 1)p(x)ηd
≥ d

√
kn

4pmaxηdn
,

and therefore, for both, the second and the third error term,

F
(1)
B (∞) − F

(1)
B ( inf

x∈C
rn(x)) = O

⎛
⎝exp

⎛
⎝− 1

4(4pmaxηd)2/d

(
1
σn

d

√
kn

n

)2
⎞
⎠
⎞
⎠ ·

The proof of the bound for the variance term is identical to the corresponding part in the proof of Corollary 6.6.
Therefore, we do not repeat it here.

Clearly, we can replace n(n − 1) in the scaling factor by n2 without changing the convergence rate. �

6.2.4. The main theorem for the kNN graph

Proof of Theorem 3.1. As discussed in Section 6.1 we can study the convergence of the bias and variance terms
of the cut and the volume separately.

For the unweighted graph we have with Corollary 6.4 that under the condition kn/ log n → ∞ the bias term
for the cut is in O( d

√
kn/n +

√
log n/kn). For some ε > 0 the probability that the variance term exceeds ε is
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bounded by 2 exp(−C̃ε2n1−2/dk
2/d
n ) for a suitable constant C̃. Clearly, the bias term converges to zero under the

condition kn/ log n → ∞. For the almost sure convergence of the variance term we need the stricter condition
in dimension d = 1. The convergence of the volume-term follows with Corollary 6.9, since the requirements for
this convergence are weaker. In the case d ≥ 2 we obtain the optimal rates by equating the two bounds of the
bias term and checking that the variance term converges as well at this rate. In the case d = 1 the optimal rate
is determined by the variance term.

For the kNN-graph with Gaussian weights and rn/σn → ∞ we need the stronger condition rn ≥ σα
n for an

α ∈ (0, 1) in order to show convergence of both, the bias term and the variance term. Under this condition we
have according to Corollaries 6.6 and 6.11 that the bias term of both, the cut and the volume, is in O(rn), since
the exponential term converges as σn.

Furthermore, the almost sure convergence of the variance term can be shown with the Borel−Cantelli lemma
if nσd+1

n / logn → ∞ for n → ∞.
For the kNN-graph with Gaussian weights and rn/σn → 0 according to Corollary 6.5 the bias term of the

cut is in O(rn + (rn/σn)2 +
√

log n/kn). The probability that the variance term of the cut exceeds an ε > 0 is
bounded by 2 exp(−C̃n1−2/dk

2/d
n ) for a suitable constant C̃, which is the same expression as in the unweighted

case. Therefore, we have almost sure convergence of the cut-term to zero under the same conditions as for the
unweighted kNN graph.

From Corollary 6.10 we can see that the convergence conditions for the volume are less strict than that of
the cut. �

6.3. The r-graph and the complete weighted graph

This section consists of three parts: in the first one the convergence of the bias and variance term of the cut
is studied, whereas in the second part that convergence is studied for the volume. Combining these results we
can proof the main theorems on the convergence of NCut and CheegerCut for the r-graph and the complete
weighted graph.

Section 6.3.1 and Section 6.3.2 are built up similarly: first, a proposition for a general weight function is given.
The results are stated in terms of the “cap” and “ball” integrals and some properties of the weight function.
Then four corollaries follow, where the general result is applied to the complete weighted graph with Gaussian
weight function and to the r-graph with the specific weight functions we consider in this paper.

Some words on the proofs: the results on the bias terms for general weight functions can be shown analogously
to the corresponding results for the kNN graph. Since the connectivity in these graphs given the position of two
points is not random they are even simpler. Furthermore, all the error terms in the result for the kNN graph
that are due to the uncertainty in the connectivity radius can be dropped for the r-graph and the complete
weighted graph. Therefore, in the proof of the bias term of the cut we only discuss the adaptations that are
made to the proof of the kNN graph.

As explained in Section 6.1 the situation is different for the variance term, where the convergence proof for
the kNN-graph would lead to suboptimal results when carried over to the other two graphs. For this reason we
give a different proof for the convergence of the variance term in the proof of the general result for the cut. It
can be easily carried over to the volume and thus we omit it there.

As to the corollaries we only proof two of them: that for the complete weighted graph and that for the r-graph
with Gaussian weights and rn/σn → 0 for n → ∞. The proof of the corollary for the unweighted graph is very
simple, that of the corollary for the r-graph with Gaussian weights and σn/rn → 0 is identical to the proof for
the complete weighted graph where we can ignore one term.

The proofs in Section 6.3.2 are completely omitted: the general result on the bias term can be proved
analogously to that for the kNN graph, if the adaptations that are discussed in the proof for the bias term of
the cut are made. The general result on the variance term of the volume is proved analogously to that on the
variance term of the cut. The proofs of the corollaries also work analogously to the corresponding proofs for the
cut.
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The proofs of the main theorems in Section 6.3.3 collect the bounds of the corollaries and identify the
conditions that have to hold for the convergence of NCut and CheegerCut.

6.3.1. The cut term in the r-graph and the complete weighted graph

Proposition 6.12 (the cut in the r-neighborhood and the complete weighted graph). Let (rn)n∈N be a sequence
that fulfills the conditions on parameter sequences of the r-neighborhood graph. Let Gn denote the r-neighborhood
graph with parameter rn or the complete weighted graph on x1, . . . , xn with a monotonically decreasing weight
function fn : R≥0 → R≥0. We set

1c =

{
1 if Gn is the complete weighted graph
0 if Gn is the rn-neighborhood graph.

Then for the bias term∣∣∣∣∣E
(

cutn

n(n − 1)F (1)
C (rn)

)
− 2
∫

S

p2(s) ds

∣∣∣∣∣ = O

(
rn +

F
(1)
B (∞) − F

(1)
B (rn)

F
(1)
C (rn)

1c

)
.

Furthermore, there are constants C̃1, C̃2 such that for the variance term

Pr

(∣∣∣∣∣ cutn

n(n − 1)F (1)
C (rn)

− E

(
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)∣∣∣∣∣ ≥ ε

)
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(
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(2)
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(2)
B (∞) − F

(2)
B (rn))1c + 2εF

(1)
C (rn) fn(0)

⎞
⎟⎠ ·

Proof. As was said in the introduction we do not give the detailed proof of this proposition here, since it is
similar to the proof of the corresponding proposition for the kNN-graph but simpler: the radius rn is the same
everywhere, that is we can set rmax

n = r+
n (s)+ = r−n (s) = rn for all s ∈ S. Furthermore, the connectivity is not

random, that is we can set an = bn = cn = 0 for the r-neighborhood graph, whereas we set an = 0,bn = 1 and
cn = 1 for the complete weighted graph. We obtain∣∣∣∣E (W q

12) − 2F
(q)
C (rn)

∫
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p2(s) ds

∣∣∣∣ = O
(
F

(q)
C (rn)rn +

(
F

(q)
B (∞) − F

(q)
B (rn)

)
1c

)
,

and thus the result for the bias term immediately.
In order to bound the variance term we use a U -statistics argument. We have

cutn

n(n − 1)F (1)
C (rn)

=
1

n(n − 1)

n∑
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n∑
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j �=i

1

F
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For the upper bound on the properly rescaled variable Wij clearly

1

F
(1)
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and for the variance
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E
(
W 2
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.



410 M. MAIER ET AL.

With a Bernstein-type concentration inequality for U -statistics from Hoeffding [6] we obtain

Pr

(∣∣∣∣∣ cutn
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(
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where we have used �n/2� ≥ n/3 for n ≥ 2
Clearly, for rn → 0 we can find constants (depending on p and S) C̃1 and C̃2 such that for n sufficiently large

6E(W 2
ij) ≤ C̃1F

(2)
C (rn) + C̃2(F

(2)
B (∞) − F

(2)
B (rn))1c. �

The following corollary can be proved by plugging in the results of Lemma 6.22 into the bounds of Proposi-
tion 6.12. We do not give the details here.

Corollary 6.13 (unweighted r-graph). For the r-neighborhood graph and the weight function fn = 1 we obtain∣∣∣∣E
(

cutn

n2rd+1
n

)
− 2ηd−1

d + 1

∫
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and, for a suitable constant C̃ > 0,
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≤ 2 exp
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·

Corollary 6.14 (complete weighted graph). Consider the complete weighted graph Gn with Gaussian weight
function. Then we have for the bias term for any α ∈ (0, 1)∣∣∣∣E

(
cutn

n2σn

)
− 2√

2π
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n ) .

For the variance term we can find a constant C̃ > 0 such that for n sufficiently large
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(
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.

Proof. Let rn be a sequence with rn → 0 and rn/σn → ∞ for n → ∞. We use the bound from Proposition 6.12
and the fact that F

(1)
C (rn)/σn can be bounded by a constant due to Lemma 6.24 to obtain∣∣∣∣∣E
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·

On the other hand, using Lemma 6.24, the boundedness of p and Ld−1(S ∩ C), we have for rn/σn sufficiently
large ∣∣∣∣∣2F
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Combining these two bounds und using log σn ≤ 0 for n sufficiently large we obtain∣∣∣∣E
(
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)
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Setting rn = σα
n we have to show that the exponential term converges as fast. We have
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for n → ∞, since xr exp(−x) → 0 for x → ∞ and all r ∈ R.
For the variance term we have with Proposition 6.12 and for constants C̃1, C̃2
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With Lemma 6.24 we have for rn/σn sufficiently large F
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,

if we choose rn = σα
n for α ∈ (0, 1) similarly to above.

For the last term in the denominator we have F
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. Therefore, we can

find a constant C̃3 > 0 such that
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.

Since we assume that nσn → ∞ for n → ∞ we can replace n(n − 1) in the scaling factor by n2. �

We do not state the proof of the following corollary, since it is similar to the proof of the last one. The
difference is, that we do not have to consider the 1c-terms, which are zero in the case of the r-graph.

Corollary 6.15 (r-graph with Gaussian weights and σn/rn → 0). Let Gn be the r-graph with Gaussian weight
function and let σn/rn → 0 for n → ∞. Then we have for the bias term∣∣∣∣E
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For the variance term we can find a constant C̃2 > 0 such that
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Corollary 6.16 (r-graph with Gaussian weights and rn/σn → 0). Consider the r-neighborhood graph with
Gaussian weight function and let rn/σn → 0 for n → ∞. Then we can find a constant C̃ > 0 such that∣∣∣∣E
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∫
S

p2(s) ds

∣∣∣∣ = O

(
rn +

r2
n

σ2
n

)
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and

Pr
(∣∣∣∣ σd

n

rd+1
n

cutn

n2
− E

(
σd

n

rd+1
n

cutn

n2

)∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−C̃nε2rd+1

n

)
.

Proof. Multiplying the bound in Proposition 6.12 with σd
nF

(1)
C (rn)/rd+1

n , which can be bounded by a constant
according to Lemma 6.23, and using 1c = 0 we obtain∣∣∣∣∣E

(
σd

nF
(1)
C (rn)

rd+1
n

cutn

n(n − 1)

)
− 2

σd
nF

(1)
C (rn)

rd+1
n

∫
S

p2(s) ds

∣∣∣∣∣ = O (rn) .

On the other hand, by the boundedness of p and Ld−1(S ∩ C), and with Lemma 6.23∣∣∣∣∣2σd
nF

(1)
C (rn)

rd+1
n

∫
S

p2(s) ds − 2ηd−1

(d + 1)(2π)d/2

∫
S

p2(s) ds

∣∣∣∣∣ = O

(
r2
n

σ2
n

)
·

Combining these two bounds we obtain the result for the bias term.
For the variance term we have with Proposition 6.12 and for a constant C̃1

Pr
(∣∣∣∣ σd

n

rd+1
n

cutn

n(n − 1)
− E

(
σd

n

rd+1
n

cutn

n(n − 1)

)∣∣∣∣ ≥ ε

)

= Pr

(∣∣∣∣∣ cutn

n(n − 1)F (1)
C (rn)

− E

(
cutn

n(n − 1)F (1)
C (rn)

)∣∣∣∣∣ ≥ rd+1
n

σd
nF

(1)
C (rn)

ε

)

≤ 2 exp

(
− n

(
rd+1
n /σd

n

)2
ε2

C̃1F
(2)
C (rn) + 2εF

(1)
C (rn) fn(0)

)
·

With Lemma 6.23 we obtain F
(2)
C (rn) = O(rd+1

n /σ2d
n ) for sufficiently large n. With the same proposition and

plugging in fn(0) we obtain F
(1)
C (rn)fn(0) = O(rd+1

n /σ2d
n ). Plugging in these results above we obtain the bound

for the variance term.
Since we always assume that nrn → ∞ for n → ∞ we can replace n(n − 1) in the scaling factor by n2. �

6.3.2. The volume term in the r-graph and the complete weighted graph

The following results are stated without proof: Proposition 6.17 can be proved analogously to Proposition 6.7 if
the remarks on the difference between the kNN-graph and r-neighborhood graph in the proof of Proposition 6.12
are considered. The corollaries can be shown similarly to the corresponding corollaries in the previous section.

Proposition 6.17. Let Gn be the rn-neighborhood graph or the complete weighted graph with a weight function
fn and set 1c as in Proposition 6.12. Then∣∣∣∣∣E

(
voln(H)

n(n − 1)F (1)
B (rn)

)
−
∫

H

p2(x) dx

∣∣∣∣∣ ≤ O

(
rn +

F
(1)
B (∞) − F

(1)
B (rn)

F
(1)
B (rn)

1c

)
.

For the variance term we have

Pr

(∣∣∣∣∣ voln(H)

n(n − 1)F (1)
B (rn)

− E

(
voln(H)

n(n − 1)F (1)
B (rn)

)∣∣∣∣∣ ≥ ε

)

≤ 2 exp

⎛
⎜⎝−

nε2
(
F

(1)
B (rn)

)2

C̃1F
(2)
B (rn) + C̃21c(F

(2)
B (∞) − F

(2)
B (rn)) + 2εfn(0)F (1)

B (rn)

⎞
⎟⎠ ·
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Corollary 6.18 (unweighted graph). For fn ≡ 1 and the rn-neighborhood graph we have∣∣∣∣E
(

voln(H)
n2rd

n

)
− ηd

∫
H∩C

p2(x) dx

∣∣∣∣ ≤ O(rn)

and, for a constant C̃ > 0,

Pr
(∣∣∣∣voln(H)

n2rd
n

− E

(
voln(H)

n2rd
n

)∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−C̃nε2rd

n

)
.

Corollary 6.19 (complete weighted graph with Gaussian weights). Consider the complete weighted graph with
the Gaussian weight function and a parameter sequence σn → 0. Then we have for any α ∈ (0, 1)∣∣∣∣E

(
voln(H)

n2

)
−
∫

H

p2(x) dx

∣∣∣∣ = O (σα
n) .

Furthermore there is a constant C̃′ > 0 such that

Pr
(∣∣∣∣voln(H)

n2
− E

(
voln(H)

n2

)∣∣∣∣ ≥ ε

)
≤ exp

(
−C̃′nε2σd

n

)
.

Corollary 6.20 (r-graph with Gaussian weights and σn/rn → 0). Let Gn be the r-neighborhood graph with
Gaussian weights and let σn/rn → 0 for n → ∞. Then we have for the bias term for sufficiently large n∣∣∣∣E

(
voln(H)

n2

)
−
∫

H

p2(x) dx

∣∣∣∣ = O

(
rn + exp

(
−1

4
r2
n

σ2
n

))
,

and for the variance term for a suitable constant C̃′ > 0

Pr
(∣∣∣∣voln(H)

n2
− E

(
voln(H)

n2

)∣∣∣∣ ≥ ε

)
≤ exp

(
−C̃′nε2σd

n

)
.

Corollary 6.21 (r-graph with Gaussian weights and rn/σn → 0). Let Gn be the r-neighborhood graph with
Gaussian weights and let rn/σn → 0 for n → ∞. Then we have for the bias term for sufficiently large n∣∣∣∣E

(
σd

n

n2rd
n

voln(H)
)
− ηd

(2π)d/2

∫
H

p2(x) dx

∣∣∣∣ = O

(
rn +

(
rn

σn

)2
)

,

and for the variance term for a suitable constant C̃ > 0

Pr
(∣∣∣∣ σd

n

n2rd
n

voln(H) − E

(
σd

n

n2rd
n

voln(H)
)∣∣∣∣ > ε

)
≤ 2 exp

(
−C̃nε2rd

n

)
.

6.3.3. The main theorems for the r-graph and the complete weighted graph

Proof of Theorem 3.2. As discussed in Section 6.1 we can study the convergence of the bias and variance terms
of the cut and the volume separately.

For the unweighted r-graph we have with Corollary 6.13 that the bias term of the cut is in O(rn) and that for
ε > 0 we can find a constant C̃ such that the probability that the variance term of the cut exceeds ε is bounded
by 2 exp(−C̃nσd+1

n ε2). Thus the cut-term converges almost surely to zero for rn → 0 and nrd+1
n / logn → ∞. It

follows from Corollary 6.18 that under these conditions the vol-term also converges to zero. The best convergence
rate for the cut-term is d+3

√
log n/n, which is achieved setting rn ∼ d+3

√
log n/n. Setting rn in this way the

convergence rate of the vol-term is also d+3
√

log n/n.
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For the r-graph with Gaussian weights and rn/σn → ∞ we have with Corollaries 6.15 and 6.20 that the
bias term of both, the cut and the volume, is in O(rn + exp(−1/4(rn/σn)2)). Furthermore, we can find a
constant C̃ > 0 such that the probability that the variance term of the cut exceeds an ε > 0 is bounded by
2 exp(−C̃nσd+1

n ε2). Similarly, the variance term of the volume would converge almost surely for nσd
n/ logn → ∞.

This implies almost sure convergence of Δn to zero under the condition nσd+1
n / log n → ∞ for n → ∞.

For the r-graph with Gaussian weights and rn/σn → 0 we have with Corollary 6.16 a rate of O(rn +(rn/σn)2)
for the bias term of the cut. Furthermore, the probability that the variance term exceeds an ε > 0 is bounded
by 2 exp(−C̃nε2rd+1

n ) with a constant C̃. Therefore, the cut-term almost surely converges to zero under the
conditions rn → 0 and nrd+1

n / logn → ∞. Under these conditions with Corollary 6.21 the volume-term also
converges to zero. �

Proof of Theorem 3.3. As discussed in Section 6.1 we can study the convergence of the bias and variance terms
of the cut and the volume separately.

With Corollaries 6.14 and 6.19 we have that the bias term of both, the cut and the volume is in O(σα
n ) for

any α ∈ (0, 1). Furthermore, the probability that the variance term of the cut exceeds an ε > 0 is bounded
by 2 exp(−C̃ n σd+1

n ε2) with a suitable constant C̃. For the variance term of the volume the exponent in this
bound is only d. Consequently, we have almost sure convergence to zero under the condition nσd+1

n / logn → ∞.
For any fixed α ∈ (0, 1) the optimal convergence rate is achieved setting σn = ((log n)/n)1/(d+1+2α). Since the

variance term has to converge for any α ∈ (0, 1) we choose σn = ((log n)/n)1/(d+3) and achieve a convergence
rate of σα

n for any α ∈ (0, 1). �

6.4. The integrals F
(q)
C (r) and the size of the boundary strips

Lemma 6.22 (unit weights). Let fn ≡ 1 be the unit weight function. Then for any r > 0

F
(1)
C (r) = F

(2)
C (r) =

ηd−1

d + 1
rd+1

and

F
(1)
B (r) = F

(2)
B (r) = ηdr

d.

Lemma 6.23 (Gaussian weights and rn/σn → 0). Let fn denote the Gaussian weight function with parameter
σn and let rn > 0. Then we have for q = 1, 2 for the cap integral∣∣∣∣ σqd

n

rd+1
n

F
(q)
C (rn) − ηd−1

(d + 1)(2π)qd/2

∣∣∣∣ ≤ 2
(

rn

σn

)2

·

For the ball integral F
(q)
B (rn) we have∣∣∣∣σqd

n

rd
n

F
(q)
B (rn) − ηd

(2π)qd/2

∣∣∣∣ ≤ 3
(

rn

σn

)2

·

Proof. For the “ball integral” we have (with the substitution v = u/rn)

F
(q)
B = dηd

∫ rn

0

ud−1f q
n(u) du = dηd

∫ rn

0

ud−1 1

(2π)qd/2σqd
n

exp
(
− q

2
u2

σ2
n

)
du

=
dηd

(2π)qd/2σqd
n

∫ 1

0

(vrn)d−1 exp
(
− q

2
v2r2

n

σ2
n

)
rn dv

=
dηdr

d
n

(2π)qd/2σqd
n

∫ 1

0

vd−1 exp
(
−qv2

2
r2
n

σ2
n

)
dv.
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Clearly, ∫ 1

0

vd−1 exp
(
−qv2

2
r2
n

σ2
n

)
dv ≤

∫ 1

0

vd−1 dv =
1
d

and, on the other hand

∫ 1

0

vd−1 exp
(
−qv2

2
r2
n

σ2
n

)
dv ≥ exp

(
− q

2
r2
n

σ2
n

)∫ 1

0

vd−1 dv ≥
(

1 − q

2
r2
n

σ2
n

)
1
d
≥
(

1 − r2
n

σ2
n

)
1
d
·

Therefore, (
1 − r2

n

σ2
n

)
ηd

(2π)qd/2
≤ σqd

n

rd
n

F
(q)
B (rn) ≤ ηd

(2π)qd/2
·

Using ηd/
√

2π ≤ 3 we obtain the result for the ball integral. The result for the cap integral is shown similarly. �

Lemma 6.24 (Gaussian weights and σn/rn → 0). Let fn denote the Gaussian weight function with a parameter
σn and let rn/σn ≥ 4d. Then we have F

(1)
C (∞) = σn/

√
2π and∣∣∣∣ 1

σn
F

(1)
C (rn) − 1√

2π

∣∣∣∣ = O

(
exp

(
−1

4

(
rn

σn

)2
))

·

Furthermore, F
(2)
C (∞) = O(σ1−d

n ) and F
(2)
C (∞) − F

(2)
C (rn) = O(σ1−d

n exp
(−(rn/σn)2/4

)
).

For the ball integral we have under the same conditions F
(1)
B (∞) = 1

∣∣∣F (1)
B (rn) − 1

∣∣∣ = O

(
exp

(
−1

4

(
rn

σn

)2
))

·

Furthermore, F
(2)
B (∞) = O(σ−d

n ) and F
(2)
B (∞) − F

(2)
B (rn) = O(σ−d

n exp
(−(rn/σn)2/4

)
).

Proof. We have with an integral table, for example in Harris and Stocker [5], for q = 1, 2∫ ∞

0

xdf q
n(x) dx =

∫ ∞

0

xd 1

(2π)qd/2σqd
n

exp
(
− q

2σ2
n

x2

)
dx

=
1

(2π)qd/2σqd
n

∫ ∞

0

xd exp
(
− q

2σ2
n

x2

)
dx =

1

(2π)qd/2σqd
n

Γ (d+1
2 )

2
(

q
2σ2

n

)(d+1)/2

=
Γ (d+1

2 )2(d−1)/2

(2π)qd/2q(d+1)/2
σ(1−q)d+1

n .

This implies for all rn > 0

F
(2)
C (rn) ≤ F

(2)
C (∞) = ηd−1

∫ ∞

0

xdf q
n(x) dx = O(σ1−d

n ).

For q = 1 we have

F
(1)
C (∞) = ηd−1

∫ ∞

0

xdfn(x) dx =
π(d−1)/2

Γ (d+1
2 )

Γ (d+1
2 )2(d−1)/2

(2π)d/2
σn =

σn√
2π

·
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We now bound the error we make, when the integral does not run to ∞ but to rn. We have∫ ∞

rn

xdf q
n(x) dx =

1
(2π)qd/2

∫ ∞

rn

xd 1

σqd
n

exp
(
− q

2
x2

σ2

)

=
1

(2π)qd/2

∫ ∞

rn/σn

(uσn)d 1

σqd
n

exp
(
− q

2
u2
)

σn du =
σ

(1−q)d+1
n

(2π)qd/2

∫ ∞

rn/σn

ud exp
(
− q

2
u2
)

du,

where we applied the substitution u = x/σn.
We have for rn/σn ≥ 4d∫ ∞

rn/σn

ud exp
(
− q

2
u2
)

du ≤
∫ ∞

rn/σn

exp
(

d log u − 1
2
u2

)
du ≤

∫ ∞

rn/σn

exp
(

du − 1
2
u2

)
du

≤
∫ ∞

rn/σn

exp
(
−1

4
u2

)
du ≤

∫ ∞

rn/σn

u

2
exp
(
−1

4
u2

)
du = exp

(
−1

4

(
rn

σn

)2
)
·

For the ball integral we have with the substitution v = u/σn

F
(q)
B (∞) = dηd

∫ ∞

0

ud−1 1

(2π)qd/2σqd
n

exp
(
− q

2
u2

σ2

)
du

= dηd

∫ ∞

0

(σnv)d−1 1

(2π)qd/2σqd
n

exp
(
− q

2
v2
)

σn dv =
dηd

(2π)qd/2
σ(1−q)d

n

∫ ∞

0

vd−1 exp
(
− q

2
v2
)

dv

=
dηd

(2π)qd/2
σ(1−q)d

n

Γ (d/2)
2(q/2)d/2

= σ(1−q)d
n

d

2qd/2πqd/2

πd/2

Γ (d/2 + 1)
Γ (d/2)

2(q/2)d/2

= σ(1−q)d
n π(1−q)d/22(1−q)d/2,

since Γ (d/2 + 1) = d/2Γ (d/2).
We have, again with the substitution v = u/σn and for rn/σn ≥ 1

dηd

∫ ∞

rn

ud−1 1

(2π)qd/2σqd
n

exp
(
− q

2
u2

σ2

)
du = dηd

∫ ∞

rn/σn

(σv)d−1 1

(2π)qd/2σqd
n

exp
(
− q

2
v2
)

σn dv

=
dηd

(2π)qd/2
σ(1−q)d

n

∫ ∞

rn/σn

vd−1 exp
(
− q

2
v2
)

dv

≤ dηd

(2π)qd/2
σ(1−q)d

n

∫ ∞

rn/σn

vd exp
(
− q

2
v2
)

dv.

We have for rn/σn ≥ 4d∫ ∞

rn/σn

ud exp
(
− q

2
u2
)

du ≤
∫ ∞

rn/σn

exp
(

d log u − 1
2
u2

)
du ≤

∫ ∞

rn/σn

exp
(

du − 1
2
u2

)
du

≤
∫ ∞

rn/σn

exp
(
−1

4
u2

)
du ≤

∫ ∞

rn/σn

u

2
exp
(
−1

4
u2

)
du = exp

(
−1

4

(
rn

σn

)2
)
· �

The following lemma is necessary to bound the influence of points close to the boundary on the cut and the
volume. The first statement is used for the cut, whereas the second statement is used for the volume.

Lemma 6.25. Let the general assumptions hold and let (rn)n∈N be a sequence with rn → 0 for n → ∞. Define
Rn = {x ∈ R

d | dist(x, ∂C) ≤ 2rn}. Then Ld−1(S ∩Rn) = O(rn).
For H = H+ or H = H− define R̄n = {x ∈ H ∩ C | dist(x, ∂(H ∩ C)) ≤ 2rn}. Then Ld(R̄n) = O(rn).
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Appendix. Table of notation

The following table contains an overview of the most important notation used througout the paper:

x1, . . . , xn sample points in R
d

n sample size
d dimension of the space R

d

p(x) density, the points are sampled from
C compact support of the density p
pmin, pmax minimum and maximum value of the density p on C
p′max supremum of the norm of the gradient ‖∇p(x)‖ in the interior

of C
μ measure induced by the density p, that is, μ(A) =

∫
A

p(x) dx
∂C boundary of the set C
κ minimal curvature radius of ∂C
nx normal to the surface ∂C at the point x ∈ ∂C
γ, rγ for balls of radius r ≤ rγ around points in C at least γ of the total

volume of the ball is within C
S hyperplane in R

d that defines the cuts we consider in the neigh-
borhood graphs

H+, H− halfspaces of R
d defined by S

nS normal of S pointing towards H+

α minimum angle between nS and nx for all x ∈ S ∩ ∂C
〈x1, x2〉 Euclidean dot product of x1, x2 ∈ R

d

‖x‖ Euclidean norm of x ∈ R
d, i.e. ‖x‖ =

√〈x, x〉
dist(x, y) distance between x and y
L the Lebesgue volume
Ld−1 the (d−1)-dimensional Lebesgue measure in a (d−1)-dimensional

affine subspace or the (d − 1)-dimensional area of a (d − 1)-
dimensional surface

Ld−2 the (d − 2)-dimensional area of a (d − 2)-dimensional surface
B(x, r) the closed ball of radius r around x ∈ R

d, that is, B(x, r) = {y ∈
R

d| dist(x, y) ≤ r}
ηd volume of the d-dimensional unit ball in the Euclidean metric,

that is, ηd = Ld(B(0, 1))
τd kissing number in dimension d
Pr(A) probability of the event A
E(U) expectation of the random variable U
Var(U) variance of the random variable U
Bin(n, p) discrete density of the binomial distribution with parameters n

and p
a.s.→ almost sure convergence
f = O(g) f is bounded above by g asymptotically up to a constant factor
∇f(x) gradient of f at x
∂f(x)
∂xi

partial derivative of the function f in the direction xi

k neighborhood parameter of the k-nearest neighbor graph
r neighborhood size of the r-neigborhood graph
σ bandwidth of the Gaussian weight function
1c 1 for complete graph, 0 otherwise
cut(C, V \ C) cut size of the cut defined by (C, V \C) in the graph G(V, E) with

vertice set V and edge set E
vol(C) volume of C ⊆ V in the graph G(V, E)
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NCut(C, V \ C) the normalized cut measure for the partition (C, V \ C) in the
graph G(V, E)

cutn cut in neighborhood graph on n points defined by S
voln(H) volume of sample points in the halfspace H in neighborhood graph

on n points
NCutn normalized cut in neighborhood graph on n points
rmax
n maximum (with a high probability) k-nearest neighbor radius

rn(x) expected k-nearest neighbor radius in point x
r+
n , r−n (x) sequences that converge to rn(x) from above and below

ξn variation of the density in balls of radius 2rmax
n

δn sequence determining the convergence of r+
n and r−n (x) to rn(x)

Cij event that there is an edge between xi and xj in the undirected
neighborhood graph

Dij event that there is an edge between xi and xj in the directed
neighborhood graph

c(x, y) probabilty of an edge between a point in x and a point in y
(scut

n )n∈N, (svol
n )n∈N scaling sequences for the cut and the volume

Wij random variable for the weight of an edge between xi and xj

F
(q)
B (r) integral over balls dηd

∫ r

0 ud−1f q
n(u) du

F
(q)
C (r) integral over caps ηd−1

∫ r

0
udf q

n(u) du
CutLim limit of the cut induced by S on the neighborhood graph
V olLim(H) limit of the volume of the halfspace H .
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