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Abstract. We consider representations of a joint distribution law of a family of categorical random
variables (i.e., a multivariate categorical variable) as a mixture of independent distribution laws (i.e.
distribution laws according to which random variables are mutually independent). For infinite families
of random variables, we describe a class of mixtures with identifiable mixing measure. This class is
interesting from a practical point of view as well, as its structure clarifies principles of selecting a
“good” finite family of random variables to be used in applied research. For finite families of random
variables, the mixing measure is never identifiable; however, it always possesses a number of identifiable
invariants, which provide substantial information regarding the distribution under consideration.
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1. Introduction

Linear latent structure (LLS) analysis is aimed at deriving properties of a population as a whole and properties
of individuals from a large number of categorical measurements made on each individual in a sample. An
exposition of LLS analysis is given in [8].

LLS analysis searches for a representation of the observed joint distribution of random variables (representing
measurements) as a mixture of independent distributions, i.e. distributions, in which random variables are
mutually independent. Such an approach is common for all branches of latent structure analysis. The specific
LLS assumption is that the mixing measure is supported by a low-dimensional linear subspace of the space of
independent distributions.

In this article we investigate in detail the question of identifiability of LLS models, i.e., what are conditions
under which the observed distribution uniquely defines the mixing measure.

It is known that mixing distribution is in general not identifiable. More or less substantial results exist for
finite mixtures and for a few special classes (see, for example [2,5,11–14]). From this point of view, the present
article has interest as it discovers a new family of identifiable mixture invariants.
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The results obtained in this article are of great importance for practial applications of LLS analysis. These
results show that given the observations of a multivariate categorical variable (e.g., outcome of a survey) one
can estimate:

• dimensionality of the supporting subspace of mixing measure;
• a basis of the supporting subspace;
• stability level of the observed distribution;
• higher-order (up to stablity level) moments of mixing measure;
• characteristics of individuals in terms of expectation of position in β-space conditional on answers given by

an individual (this topic is not covered in the present article).

The results we will show suggest that estimation of various parameters of an LLS model can be derived from
the moment matrix, which, in turn, can be consistently estimated by frequences. There exists a very efficient
estimation algorithm, which can be used to analyze thousands of categorical variables observed on millions of
individuals.

The detailed exposition of statistical estimators and estimation algorithms is given in [1, 8]. These articles
also discuss other statistical properties of LLS estimators and provide many examples of application of LLS
analysis, both artificial and practical.

The question of identifiability of a mixing measure that produces the observed joint distribution can easily
be formulated without explicitly referencing the LLS analysis. This allows us to make the article self-contained.
We provide such formulation in Section 2.

In Section 3 we develop the notion of the moment matrix of a mixing measure, which we will use as a primary
tool in our subsequent investigation.

Using this tool, we prove in Section 4 that the supporting subspace of a mixing measure is a mixture invariant
in the class of stable essential distributions. We also prove an important Theorem 4.18, which shows that there
are no stable low-dimensional mixing measures except essential ones if the observed distribution has a sufficiently
high level of stability. We discuss the importance of this theorem for practical applications in greater detail in
Section 7.

In Section 5 we describe another set of mixture invariants – low-order moments of mixing measure. The
existence of these invariants allows us to prove that in the infinite-dimensional case the essential mixing measure
is identifiable.

In Section 7 we discuss implications of the results we have obtained for practical applications.
Most of the proofs in the present article are exercises in linear algebra. Although in most cases they are

straightforward, the necessity to consider high-dimensional cases (β-space should have dimensionality at least 6
to observe non-trivial behavior) and complexity of notations may make understanding the proofs difficult. To
help the reader, we have created a number of examples. It might seem natural to have examples spread out over
the text. However, in most cases the examples depend on definitions and theorems that appear in the article
after the first reference to an example; all examples share a common notation; often subsequent examples use
constructions defined in the previous ones; some examples are referenced in the article multiple times. Taking
all of this into account, we have decided to put all of the examples in a separate section (Sect. 6).

2. The problem

We consider an infinite family of random variables {Xj}j
3; variable Xj takes values in a finite set {1, . . . , Lj}.

Without loss of generality, these variables can be considered as being defined on a probability space A∞ =∏∞
j=1{1, . . . , Lj} with Xj(a) = Xj(a1, . . . ) = aj . The space A∞, endowed with Tikhonov topology, is compact

3 As we have to use complex (and, probably, cumbersome) notations, we are trying to be as unambiguous as possible. In this
particular case, we have to distinguish between a set consisting of a single random variable Xj (which we denote as {Xj}) and a
set consisting of multiple random variables Xj where j ranges over set J . The full notation in the latest case is {Xj | j ∈ J}, or
{Xj}j∈J . We abbreviate the last one to {Xj}j if J is obvious from the context or is insignificant.
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and metrizable by metric ρ(a, a′) = 1/ inf{j | aj �= a′
j}; it is complete with respect to this metric4. The

Borel σ-algebra B(A∞) on A∞ coincides with the σ-algebra, generated by random variables {Xj}j ; thus,
joint distributions of {Xj}j are probability Borel measures on A∞. We use P(A∞) to denote the space of all
probability measures on A∞.

Remark 2.1. Here, we use the term “random variable” as a synonym for “measurable function”; no distribution
law is assumed implicitly. Thus, the specification of family {Xj}j is merely the specification of space A∞. In
fact, the whole exposition can be conducted just as a discussion of some properties of P(A∞), without explicit
introduction of random variables {Xj}j. The sole purpose of introducing random variables is to provide better
insight for the subsequent constructions.

We always consider P(A∞) with topology of weak convergence. Topology of weak convergence on P(A∞) is
metrizable, P(A∞) is compact, and thus separable ([4], IV.6.3; [7], IV.3.4.4,5). P(A∞) is a subset of M(A∞),
the linear space of all signed Radon measures on A∞. When we speak about a linear structure of P(A∞), we
always assume the linear structure inherited from M(A∞).

We also consider finite subfamilies {Xj}j=1,...,n. Random variables in such subfamilies are considered as
defined on a space An =

∏n
j=1{1, . . . , Lj}. The space An is finite, and its Tikhonov topology is the discrete

one. The set of probability measures on An, P(An), is a simplex in a finite-dimensional Euclidean space (with
dimensionality |An| = L1 ·. . .·Ln), and the topology of weak convergence on P(An) coincides with the Euclidean
topology.

There are natural projections πn : A∞ → An and πm,n : Am → An (for m ≥ n), defined in an obvious manner:
πn(a1, . . . , an, an+1, . . . ) = (a1, . . . , an), and πm,n(a1, . . . , an, an+1, . . . , am) = (a1, . . . , an). These projections
induce mappings of corresponding spaces of measures πn : P(A∞) → P(An) and πm,n : P(Am) → P(An),
defined as (π(P))(A) = P(π−1(A)). It is important for our purposes that these mappings of measure spaces are
linear.

Most of the considerations in this section apply to both A∞ and An. In such contexts we use A to denote
either A∞ or An; the index is included only when a statement reads differently for finite and infinite cases.

We shall often use elementary cylinders in A, i.e. subsets of A, whose projections on the factors of A are
either the whole factor or a single point (the latter is possible only for finitely many factors). For such cylinders,
we will use notation

Cyl[j1 : l1, . . . , jp : lp]
def= {a ∈ A | aj1 = l1 ∧ · · · ∧ ajp = lp}

(this notation also implicitly assumes that j1, . . . , jp are distinct integers).
Among all joint distributions of {Xj}j, we distinguish independent ones, i.e. those distributions, in which

random variables {Xj}j are mutually independent. To specify an independent distribution, one needs to specify
only probabilities βjl = P(Xj = l). Then, due to independence, one has for elementary cylinders P(Cyl[j1 :
l1, . . . , jp : lp]) = P(Xj1 = l1 ∧ · · · ∧ Xjp = lp) = βj1l1 . . . βjplp . Since elementary cylinders compose a topology
base, this uniquely extends to B(A). Thus, any independent distribution is uniquely described by an infinite-
dimensional vector β = (β11, . . . , β1L1 , . . . , βj1, . . . , βjLj , . . . ). To specify a probability distribution, such a vector
must satisfy conditions: {

0 ≤ βjl ≤ 1 for all j and l∑Lj

l=1 βjl = 1 for all j.
(2.1)

The set P of vectors satisfying (2.1) is convex and bounded; it is closed and compact in Tikhonov topology.
We use Pβ to denote the independent measure on A corresponding to a vector β ∈ P . We refer to the linear
space containing P as β-space. The β-space is either an infinite-dimensional space (when an infinite family of
random variables is considered) or a finite-dimensional space of dimensionality L1 + · · · + Ln (if a finite family
X1, . . . , Xn is considered).

4 Finite spaces {1, . . . , Lj} are endowed with discrete topology.
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The mapping β �→ Pβ is one among many possible parametrizations of the family of independent distributions.
This particular parametrization, however, possesses a number of good properties, one of which is the convexity
of P .

Remark 2.2. Without introduction of random variables Xj , one can define independent measures on A as
those which are products of their marginals, P =

∏
j Pj , where Pj is a measure on a finite set {1, . . . , Lj}. The

vector (βjl)jl that corresponds to measure
∏

j Pj is defined by letting βjl = Pj({l}).
We shall investigate a class of mixtures of independent distributions, i.e. those distributions P on A which

can be represented in form:

P(A) =
∫

P

Pβ(A)μ(dβ) for all A ∈ B(A) (2.2)

where μ is a probability measure on P . For this definition of mixture to be correct, one needs to show that the
mapping β �→ Pβ(A) is measurable for every Borel A ⊆ A. We show a stronger fact (which is also important by
itself, as it clarifies a relation between β-space and the space of probability measures P(A)):

Proposition 2.3. The mapping β �→ Pβ is a homeomorphism of P onto a set of independent distributions in
P(A), with respect to Tikhonov topology on R

∞ and topology of weak convergence on P(A).

Proof. The fact that the mapping β �→ Pβ is one-to-one follows from Remark 2.2.
To prove the continuity in both directions, it is sufficient to show that a sequence {βn}n in P converges to

β ∈ P if and only if the sequence Pβn weakly converges to Pβ . The convergence Pβn → Pβ is equivalent to the
convergence Pβn(C) → Pβ(C) for every elementary cylinder C ([10], III.1.5). (Note that in A every cylinder
is an open-closed set; thus, its boundary is empty.) But for a cylinder C = Cyl[j1 : l1, . . . , jp : lp] one has
Pβn(C) =

∏
q βn

jq lq
, and required convergence is obviously equivalent to the convergence βn → β. �

Corollary 2.4. For every A ∈ B(A), the mapping β �→ Pβ(A) is measurable (w.r.t. corresponding Borel σ-
algebras).

Proof. By ([3], III.55, 60), the mapping P �→ P(A) is measurable. Thus, our mapping is measurable as a com-
position of two measurable mappings. �

Remark 2.5. The Tikhonov topology on R
∞ is the topology of pointwise convergence. Proposition 2.3 may

fail to be true if P is considered with other topologies.

Remark 2.6. Note that the mapping β �→ Pβ is not a linear mapping. In a finite-dimensional case, the image
of P under this mapping is a (part of a) polynomial surface (more precisely, it is an intersection of quadratic
hypersurfaces). The family of mixtures of independent distributions is the convex hull of the image of P .

We abbreviate equation (2.2) to P = Mix(μ). We also use Pμ to denote Mix(μ).
The question that we are interested in is what are the conditions for identifiability of mixtures of independent

distributions (in sense of [12]), i.e. under what conditions does the mixture Mix(μ) uniquely define the mixing
measure μ or some of its invariants. It is easy to show, however, that without additional restrictions any
distribution on A can be represented as a mixture of independent ones, and (except degenerate cases) every
distribution has infinitely many such representations.

The additional restrictions that we discuss below are restrictions on the dimensionality of the support of a
mixing measure in β-space.

Remark 2.7. Note that these restrictions are expressed in terms of the chosen parametrization of the family
of independent distributions. Example 6.1 demonstrates that the image of one-dimensional subset of P under
the mapping β �→ Pβ can be infinite-dimensional.
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For a measure μ on P , let L(μ) denote the smallest linear subspace of β-space supporting μ (this subspace
is a linear span of supp(μ)). We refer to this subspace as the supporting subspace of μ.

Remark 2.8. Due to restrictions (2.1), the mixing measure is carried by a (bounded convex subset of a) linear
manifold that never passes through the origin. The supporting subspace is the subspace spanned by this manifold
(and thus has 1 more dimension than the manifold has). This additional “unnecessary” dimension serves a good
purpose as it allows us to avoid separate consideration of special cases. The motivation to use supporting
subspace instead of supporting manifold is very similar to the motivation for “homogeneous coordinates” in
projective geometry or the motivation for the use of “barycentric coordinates” to specify points within a simplex.

Definition 2.9. A rank of mixing measure μ is the dimensionality of its supporting subspace,
rank(μ) def= dim(L(μ)).

Definition 2.10. A rank of a distribution P ∈ P(A) is the smallest rank of a mixing measures generating P,
rank(P) def= min{rank(μ) | P = Mix(μ)}.

Note that according to our definitions of rank, one has rank(Pμ) ≤ rank(μ), but it is possible to have a strict
inequality (see Example 6.6). This suggests the following:

Definition 2.11. A mixing measure μ is essential, if rank(μ) = rank(Pμ).

Obviously, there is no identifiability if nonessential mixing measures are allowed. In subsequent considera-
tions, we shall establish identifiability conditions within the class of essential mixing measures. For the applied
researcher, one motivation for such a restriction is Occam’s razor. We shall also show that a natural class of
“stable mixing measure with ∞-stable support” does not contain nonessential mixing measures (see Thms. 4.18
and 4.20).

The question of identifiability now can be split into two subquestions:

• For a distribution P of rank K, what are conditions for identifiability of the supporting subspace of an
essential mixing measure producing P? More precisely: what are conditions for the following implication

rank(P) = K
P = Mix(μ) = Mix(μ′)
rank(μ) = rank(μ′) = K

⎫⎬⎭ ⇒ L(μ) = L(μ′)

to be true?
• For a fixed K-dimensional subspace L of B, what are conditions for identifiability of mixing measure carried

by this subspace? More precisely: what are conditions for the following implication

Mix(μ) = Mix(μ′)
L(μ) = L(μ′) = L

}
⇒ μ = μ′

to be true?

We shall show that the answer to the first question (identifiability of the supporting subspace) is positive
even in a finite-dimensional case, provided that the dimensionality of the supporting subspace is sufficiently
smaller than the dimensionality of β-space (alongside with some non-degenerality conditions).

In contrast, the second question (identifiability of the mixing measure) has a positive answer only in the
infinite-dimensional case. However, in the finite-dimensional case, there exists a number of identifiable invariants
(i.e. properties which are the same for all mixing measures that produce the observed mixture) – namely, the
low-order moments of the mixing measure.

Here, we give a semi-formal formulation of the main results of this paper (the strict formulation will be
deferred until we introduce more notions).
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The visible rank of distribution P (see Def. 4.9) is what can be concluded from direct observation of its
moment matrix. We say that a distribution of rank K is k-stable if, after removing arbitrary k random variables
from consideration, its visible rank is still K. Similarly, a supporting subspace is k-stable if its dimensionality
does not decrease after removing arbitrary k random variables, and a mixing measure μ is k-stable if L(μ) is
k-stable. We say “stable” instead of “1-stable”.

k-stability essentially means that any dimension of a supporting subspace is confirmed by most random
variables – not just one variable or a few of them.

The main results of the present article are:

Theorem [semi-formal version of Thm. 4.12] Supporting subspace of a stable distribution is identifiable.

The above theorem speaks for itself. The next theorem justifies restricting our attention to essential mixtures.
The theorem states that any possible non-essential mixture is “very far” from the essential one, and thus can
hardly be considered as a “good alternative” to an essential mixture (as it is described in detail in Sect. 7, in
practice one would expect k � K).

Theorem [semi-formal version of Thm. 4.18] Let P be a distribution of rank K with a k-stable supporting
subspace. Then there is no stable mixing measure μ producing P with K < rank(μ) ≤ k.

The infinite-dimensional version of this theorem has an even more elegant form:

Theorem [semi-formal version of Thm. 4.20] Let P be a distribution of rank K with ∞-stable supporting
subspace. Then there is no stable mixing measure μ producing P with rank(μ) > K.

The following theorems clarify how much can be learned about a mixing measure.

Theorem [semi-formal version of Thm. 5.3] For a stable distribution with k-stable supporting subspace, all
moments of a mixing measure up to order k + 1 are identifiable.

Theorem [semi-formal version of Thm. 5.4] For a stable distribution with an ∞-stable supporting subspace,
all moments of a mixing measure are identifiable; consequently, the mixing measure itself is identifiable.

General remark on dimensionality. All definitions and theorems below are applicable both to the case of
finite and infinite numbers of random variables. This follows from the fact that all definitions and proofs are
made in terms of finite submatrices (which may be selected from either finite or infinite matrices).

However, we consider distributions and measures only of finite rank. Most of our results are not applicable
to distributions and measure of infinite rank (and it is not the purpose of this article to investigate the case of
infinite rank).

3. Moment matrix

The main tool for the subsequent reasoning is the moment matrix, which is introduced in this section.
For a cylinder C = Cyl[j1 : l1, . . . , jp : lp] equation (2.2) gives

Pμ(C) =
∫

P

Pβ(C)μ(dβ) =
∫

P

p∏
q=1

βjqlq μ(dβ). (3.1)

Equation (3.1), although obvious, is of great importance. The left-hand side of this equation is the measure of
a cylinder. For the identifiability problem, these measures are known quantities, and the measures of cylinders
uniquely define the measure Pμ on the whole σ-algebra B(A).

The right-hand side of equation (3.1) is a moment of mixing measure. The support of the mixing measure μ
is always compact (as it is contained in a compact set P ). If in addition it is finite-dimensional, the set of all
moments uniquely determines μ ([6], 5.5.2).
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Unfortunately, equation (3.1) does not allow us to find all moments of the mixing measure. For example, for
moments

∫
β2

11μ(dβ) and
∫

β11β12μ(dβ) there are no corresponding cylinders in A.
We shall find conditions under which the known moments of a mixing measure uniquely determine the

unknown ones, which gives us the conditions of identifiability of the mixing measure with a finite-dimensional
support.

The first step is to develop a way of indexing moments of μ. A moment index is an integer vector v with
components indexed by pairs j, l–exactly in the same way as components of vectors in β-space. All components
of a moment index v are nonnegative integers, and only finitely many components are distinct from 0. The order
of moment index v is |v| =

∑
j,l vjl.

Let V be a set of all moment indices. For v ∈ V , the moment of μ with index v, denoted mv(μ) (or simply mv

when μ is obvious from the context), is:

mv = mv(μ) def=
∫

P

∏
j,l

β
vjl

jl μ(dβ). (3.2)

Note that the product under the integral in the right-hand side of the equation contains |v| factors, and thus is
finite.

Moment indices of order 1 are used often in the rest of the paper, so we introduce a special notation for them.
Namely, we use v[j, l] to denote a moment index that has 1 in position j, l and 0s in all other positions.

The height of moment index v is h(v) =
∑

j (
∑

l vjl − 1)+ (where (x − y)+ denotes “positive part”, i.e.
max(x − y, 0)). Informally, the height of a moment index v describes “how far” v is from moments (3.1), all of
which have height 0.

By slightly abusing the language, we will say “height of moment mv” etc. instead of “height of moment
index v of moment mv” etc.

All moments in (3.1) (and only such moments) have height 0; thus, we can define a cylinder that corresponds
to a moment index v of height 0. We denote this cylinder by Cyl[v]; if v has 1 at positions j1l1, . . . , jplp (and
zeroes at all other positions), then Cyl[v] = Cyl[j1 : l1, . . . , jp : lp].

We arrange all moments of μ in the moment matrix. Rows of the moment matrix are indexed by moment
indices of order 1; columns of the moment matrix are indexed by all moment indices. The element of the moment
matrix in row v′ and column v′′ is the moment of μ with index v′ + v′′ (addition of moment indices is the usual
addition of vectors).

To unambiguously write a moment matrix, we have to impose some ordering on V .
First, we order moment indices of order 1. We say that v′ = v[j′, l′] is smaller than v′′ = v[j′′, l′′], denoted

v′ ≺ v′′, if either j′ < j′′ or j′ = j′′ and l′ < l′′. Informally, v′ ≺ v′′, if 1 in v′ is on the left from 1 in v′′.
Second, we order moments of order k for k = 2, . . . . For this, note that if |v| = k, there exists a unique

representation v = v(1) + · · ·+ v(k) such that |v(1)| = · · · = |v(k)| = 1 and v(1) � · · · � v(k). Now for arbitrary v′

and v′′ of order k with representations v′ = v′(1) + · · · + v′(k) and v′′ = v′′(1) + · · · + v′′(k) we say that v′ ≺ v′′

if representation of v′ is lexicographically smaller than representation of v′′, i.e. if for some p < k one has
v′(1) = v′′(1), . . . , v′(p) = v′′(p) and v′(p+1) ≺ v′′(p+1).

Finally, for arbitrary v′, v′′ ∈ V we say that v′ ≺ v′′, if either |v′| < |v′′| or |v′| = |v′′| and v′ ≺ v′′ in the
above sense.

The moment matrix always has infinitely many columns. It has finitely or infinitely many rows depending on
whether we consider a finite or infinite family of random variables.

The following is an example of the moment matrix for the case of two binary variables:

(0,0;0,0) (1,0;0,0) (0,1;0,0) (0,0;1,0) (0,0;0,1) (2,0;0,0) (1,1;0,0) . . .

(1,0;0,0)

(0,1;0,0)

(0,0;1,0)

(0,0;0,1)

⎛⎜⎝
m(1000) m(2000) m(1100) m(1010) m(1001) m(3000) m(2100) . . .
m(0100) m(1100) m(0200) m(0110) m(0101) m(2100) m(1200) . . .
m(0010) m(1010) m(0110) m(0020) m(0011) m(2010) m(1110) . . .
m(0001) m(1001) m(0101) m(0011) m(0002) m(2001) m(1101) . . .

⎞⎟⎠.
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Note that the indices of the rows of the moment matrix correspond to indices of coordinates in β-space. This
allows us to consider columns of the moment matrix as vectors in β-space. We use Mv to denote the column
of the moment matrix indexed by moment index v. We also use M0 to denote the first column of the moment
matrix (instead of lengthy M(0,...,0)).

The importance of the above structure of the moment matrix is explained by the following:

Theorem 3.1. If measure μ is supported by a finite-dimensional subspace L of β-space, then each column of
the moment matrix belongs to L.

Proof. Let λ1, . . . , λK be a basis of L. Then the mapping (g1, . . . , gK) �→ ∑
k gkλk is a linear isomorphism of

arithmetic space R
K and L. This isomorphism allows us to consider an equivalent measure μg on R

K (which is
an image of measure μ under this isomorphism).

For arbitrary v ∈ V one obtains:

mv+v[j0,l0] =
∫ (∏

j,l

β
vjl

jl

)
βj0l0 μ(dβ)

=
∫ (∏

j,l

(∑
k

gkλk
jl

)vjl
)(∑

k

gkλk
j0l0

)
μg(dg)

=
∑

k

λk
j0l0

∫ (∏
j,l

(∑
k

gkλk
jl

)vjl
)

gk μg(dg). (3.3)

Let bk =
∫ (∏

j,l

(∑
k gkλk

jl

)vjl
)
gk μg(dg). Note that bk does not depend on j0, l0. Combining equations (3.3)

for all possible j0, l0, one obtains a vector equation:

Mv =
∑

k

bkλk

which means exactly that the column v of the moment matrix belongs to L. �

On the other hand, the submatrix of the moment matrix consisting of columns indexed by moment indices
of order 1 is a shifted covariance matrix of μ. Namely, let Cjl denote a column of the covariance matrix,
Cjl =

(
Cov(βjl, βj′l′)

)
j′,l′ . Then one has:

Cjl = Mv[j,l] − mv[j,l] · M0. (3.4)

It is a well-known fact that a measure ν in Euclidean space is carried by a linear manifold m + Lin(Cov(ν)),
where m is a vector of means and Lin(Cov(ν)) is a linear subspace spanned by columns of the covariance matrix
of ν. Furthermore, Lin(m, Cov(ν)) is the smallest linear subspace carrying ν. In addition, the linear manifold
carrying a mixing measure never passes through the origin (due to the property

∑
l βjl = 1). Thus, taking into

account equation (3.4), we obtain:

Theorem 3.2. The supporting subspace of μ coincides with the linear span of all columns of the moment matrix
and coincides with the linear span of the columns indexed by moment indices of order 1,

L(μ) = Lin({Mv}v∈V) = Lin({Mv}|v |=1).
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4. Identifiability of the supporting subspace

Equation (3.1) allows us to conclude that equality Pμ = Pμ′ implies

mv(μ) = mv(μ′) for all v of height 0. (4.1)

It follows from Theorem 3.2 that equality

mv(μ) = mv(μ′) for all v of order ≤ 2 (4.2)

is sufficient for L(μ) = L(μ′).
We shall show that (4.1) implies (4.2) provided that μ and μ′ are essential and the mixture P = Pμ = Pμ′ is

stable in the sense defined later on. To proceed, we need tools for referring various minors of moment matrices.
The following definitions serve this purpose.

Definition 4.1. A row selector of size k is a sequence of k moment indices of order 1, r = (v1, . . . , vk), satisfying
v1 ≺ · · · ≺ vk.

Definition 4.2. A column selector of size k is a sequence of k moment indices (of arbitrary order), c =
(v1, . . . , vk), satisfying v1 ≺ · · · ≺ vk.

Definition 4.3. A minor selector is a pair of a row selector and a column selector of equal size, s = (r, c).

Definition 4.4. The height of a minor selector s = ((v1, . . . , vk), (w1, . . . , wk)) is h(s) = maxi,j h(vi + wj).

Notation 4.5. For a mixing measure μ and a minor selector s = ((v1, . . . , vk), (w1, . . . , wk)), s(μ) denotes a
minor of the moment matrix of μ:

s(μ) =

⎛⎝mv1+w1(μ) . . . mv1+wk(μ)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
mvk+w1(μ) . . . mvk+wk(μ)

⎞⎠ .

Notation 4.6. For a distribution P and a minor selector s = ((v1, . . . , vk), (w1, . . . , wk)) of height 0, s(P)
denotes a matrix constructed from probabilities of cylinders:

s(P) =

⎛⎝P(Cyl[v1 + w1]) . . . P(Cyl[v1 + wk ])
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
P(Cyl[vk + w1]) . . . P(Cyl[vk+wk ])

⎞⎠ .

Notation 4.7. For a moment index v, let J (v) denote a set of js such that v has a nonzero component at
position j, l for some l, J (v) = {j | ∃l : vjl > 0}. We also extend this notation to sets of moment indices:
J (v1, . . . , vk) = J (v1) ∪ · · · ∪ J (vk).

Definition 4.8. A minor selector s (respectively, row selector r, column selector c) touches variable Xj (or,
simply, touches j), if j ∈ J (s) (respectively, J (r), J (c)).

Definition 4.9. A distribution P has visible rank k if there exist a minor selector s of size k and height 0 such
that s(P) is nondegenerate.

The following definition is a key property of distribution P that is required to prove various identifiability
results.

Definition 4.10. A distribution P of rank K is k-stable if it retains visible rank K after removing from
consideration any arbitrary subfamily of k random variables.
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More formally, this means that for every j1, . . . , jk there exists a minor selector s of size K and height 0 such
that s does not touch j1, . . . , jk and s(P) is nondegenerate.

We say stable instead of 1-stable.

Remark 4.11. Note that according to our definition there might be distributions which are not even 0-stable –
and Example 6.5 presents such a distribution.

With the above definitions at hand, we can formulate and prove the main theorem about identifiability of
the supporting subspace of an essential mixing measure.

Theorem 4.12. Let P ∈ P(A) be a stable distribution of rank K, and μ, μ′ be essential mixing measures
producing P (i.e. Pμ = Pμ′ = P).

Then L(μ) = L(μ′).

Proof. Due to Theorem 3.2, it is sufficient to show that under the assumptions of the theorem one has mv(μ) =
mv(μ′) for all moment indices v of order 2. It follows from Pμ = Pμ′ that equality mv(μ) = mv(μ′) holds for
moment indices v of height 0; thus, we need to prove this equality for moment indices of height 1. Figure 1
illustrates the proof.

⎛⎜⎜⎜⎜⎜⎝
mv0+w0(µ) = mv0+w0(µ′) mv0+w1 . . . mv0+wK

mv1+w0 mv1+w1 . . . mv1+wK

... . . . . . . . . . . . . . . . . . . . . . . . . . .
mvK+w0 mvK+w1 . . . mvK+wK

⎞⎟⎟⎟⎟⎟⎠

Figure 1. Illustration to the proof of Theorem 4.12.

Consider an arbitrary moment index v of height 1. It can be represented as v = v0 + w0 with v0 = v[j, l] and
w0 = v[j, l′]. As P is stable, there exists a minor selector s = ((v1, . . . , vK), (w1, . . . , wK)) that does not touch j,
consists of moments of height 0 and is nondegenerate.

Note that as s does not touch j, moment indices v1 + w0, . . . , vK + w0 and v0 + w1, . . . , v0 + wK also have
height 0. Moments with these indices are equal for mixing measures μ and μ′; therefore, we omit their mixing
measure in Figure 1.

As the rank of the moment matrix is K for both μ and μ′, there exists a unique set of coefficients α1, . . . , αK

such that ⎛⎜⎝mv1+w0

...
mvK+w0

⎞⎟⎠ = α1

⎛⎜⎝mv1+w1

...
mvK+w1

⎞⎟⎠+ · · · + αK

⎛⎜⎝mv1+wK

...
mvK+wK

⎞⎟⎠.

Consequently, we have for columns of moment matrices of μ and μ′:

Mw0(μ) =
∑

k

αkMwk(μ) and Mw0(μ′) =
∑

k

αkMwk(μ′)

and in particular:

mv0+w0(μ) =
∑

k

αkmv0+wk(μ) =
∑

k

αkmv0+wk(μ′) = mv0+w0(μ′)

which proves the required equality. �
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According to this theorem, a supporting subspace of any essential mixing measure is uniquely determined if
distribution P is stable. This allows us to speak about the supporting subspace of a stable distribution P. We
use L(P) to denote this subspace.

Example 6.2 demonstrates applications of this theorem. Example 6.7 shows that the nonstability of distribu-
tion P may lead to nonidentifiability of the supporting subspace.

The important question arising from Theorem 4.12 is whether the case of stable distribution is generic, i.e.
whether “almost all” (in some strict sense) distributions are stable? We shall give an affirmative answer to this
question elsewhere.

Now we show that a stronger identifiability statement holds. To do that, we need a couple more notions.

Notation 4.13. Let Λ = {λ1, . . . , λk} be a family of vectors in β-space, and let r = (v1, . . . , vk) be a row
selector. Then r(Λ) denotes a matrix:

r(Λ) =

⎛⎝λ1
v1 . . . λk

v1

. . . . . . . . . . . . . . .
λ1

vk . . . λk
vk

⎞⎠ .

(Recall that a row selector consists of moment indices of order 1, and every moment index of order 1 has form
v[j, l] for some j and l; further, βv[j,l] is the same as βjl.)

Definition 4.14. A family of vectors Λ = {λ1, . . . , λK} is k-stable if it retains full rank after removing compo-
nents corresponding to any arbitrary subfamily of k random variables.

A subspace L of β-space is k-stable, if it has a k-stable basis.
A mixing measure μ is k-stable, if L(μ) is k-stable.

More formally, family Λ is k-stable, if for arbitrary distinct j1, . . . , jk there exists a row selector r of size K
such that r does not touch j1, . . . , jk and r(Λ) is nondegenerate.

Note that if some basis of a subspace is k-stable, then every one of its bases is k-stable. Also, as k-stability
is defined in terms of L(μ), any two mixing measures with the same support have the same level of stability.

Note that the statements “P is k-stable” (Def. 4.10) and “L(P) is k-stable” (Def. 4.14) are not equivalent.
The first statement obviously implies the second one, but the opposite implication is not true. Corollary 4.17
and the subsequent discussion shed some light on what one can say about the level of stability of P given the
stability level of L(P).

We need to clarify a possible structure of a row selector that selects a nondegenerate minor. A system of
vectors Λ = (λ1, . . . , λK) in β-space can be thought of as being constructed from blocks Λj , which correspond
to individual random variables:

Λ =

⎛⎜⎝Λ1

...
ΛJ

⎞⎟⎠ , Λj =

⎛⎝ λ1
j1 . . . λK

j1

. . . . . . . . . . . . . . . . .
λ1

jLj
. . . λK

jLj

⎞⎠ . (4.3)

Due to restrictions (2.1), each matrix Λj has rank at least 1, and any such matrix of rank 1 consists of equal
columns. Consequently, any minor r(Λ) that touches only submatrices Λj of rank 1, itself has rank 1.

Proposition 4.15. Let Λ = (λ1, . . . , λK), K > 1, be a system of linearly independent vectors in β-space, and
let r be a row selector of size K that selects a nondegenerate minor.

Then there exists a row selector r̃ such that r̃(Λ) is nondegenerate, J (r̃) ⊆ J (r), and |J (r̃)| < K.

Proof. If |J (r)| < K, it is sufficient to take r̃ = r. Assume that |J (r)| = K. At least one of matrices Λj ,
j ∈ J (r), has rank 2 or greater (otherwise, r(Λ) has rank 1; see paragraph before this proposition). Take 2
linearly independent rows from this matrix and add K −2 rows from matrices Λj , j ∈ J (r), to obtain a linearly
independent system of K rows. This gives the required row selector r̃. �
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Figure 2. Illustration to the proof of Proposition 4.16.

The statement of the above proposition cannot be strengthened. To show this, consider the case when all
random variables are binary (which means that all matrices Λj consist of two rows). If row selector r̃ touches
K − 2 variables or less, it has to select both rows from at least two matrices, say Λj and Λj′ . But in such a case
one has (λ1

j1, . . . , λ
K
j1) + (λ1

j2, . . . , λ
K
j2) = (1, . . . , 1) = (λ1

j′1, . . . , λ
K
j′1)+ (λ1

j′2, . . . , λ
K
j′2) which implies that r̃(Λ) is

degenerate.
The following technical result is a key to subsequent theorems regarding identifiability.

Proposition 4.16. Let μ be a k-stable measure with rank(μ) = K ≤ k and let Λ be some basis of L(μ). Then
for each row selector r of size K such that r(Λ) is nondegenerate and for every set J0 such that J0 ∩J (r) = ∅

and |J0| ≤ k − |J (r)| there exists a column selector c such that the minor (r, c)(μ) is nondegenerate and c does
not touch J0 ∪ J (r) (which implies that the height of (r, c) is 0).

Proof. Figure 2 illustrates the proof. Without loss of generality, one can assume that J0 consists of the first
indices, and J (r) touches the next indices (which justifies placement of elements in the figure). For our purposes
it is sufficient to consider the part of the moment matrix consisting of moments of order 2, M2(μ).

As μ is k-stable and |J0|+ |J (r)| ≤ k, there exists row selector r̃ such that r̃(Λ) is nondegenerate and r̃ does
not touch J0 ∪ J (r). We claim that one can take c = r̃.

As r(Λ) is nondegenerate, the rank of the horizontal dashed strip in M2(μ) is K, and as M2(μ) is sym-
metric, the same is true for the vertical dashed strip. Thus, the vertical dashed strip spans L(μ). As r̃(Λ) is
nondegenerate, minor A = (r̃, r)(μ) is also nondegenerate, and as M2(μ) is symmetric, minor AT = (r, c)(μ) is
nondegenerate as well, q.e.d. �

Corollary 4.17. Let μ be an essential mixing measure of rank K. Assume that μ is K-stable. Then Pμ is
stable.

Proof. Let Λ be a some basis of the supporting subspace of μ.
Take an arbitrary j. As μ is stable, there exists a row selector r such that r(Λ) is nondegenerate and r does

not touch j. Due to Proposition 4.15, we cat take r so that it touches only K − 1 variables.
Now, by applying Proposition 4.16 to μ, J = {j}, r, we obtain a nondegenerate minor of height 0 that does

not touch j. Thus, Pμ is stable. �

As Example 6.9 shows, the statement of the above proposition cannot be strengthened: if the level on stability
of μ is smaller than its rank, some row selectors may have no required column selectors.

Example 6.9 also shows that for a stable distribution P of rank K its supporting subspace L(P) need not to
be K-stable. This, in particular, means that the following theorem is not a generalization of Theorem 4.12.
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Figure 3. Illustration to the proof of Theorem 4.18.

Theorem 4.18. Let P be a stable distribution with L(P) being k-stable. Then there is no stable mixing measure
μ̄ such that:

• Pμ̄ = P;
• rank(μ̄) ≤ k ;
• L(μ̄) �= L(P).

Proof. Note that if k < rank(P), there is no measure μ̄ such that Pμ̄ = P and rank(μ̄) ≤ k, and the statement
of the theorem trivially holds. Thus we have to prove the theorem for the case k ≥ rank(P).

Assume Pμ̄ = P and rank(μ̄) ≤ k. Let μ be any essential mixing measure generating P. We shall show that
L(μ̄) = L(μ). As in Theorem 4.12, to prove this fact we have to show that mv(μ̄) = mv(μ) for all moment
indices of order 2 and height 1.

Let K = rank(μ) = rank(P) and K̄ = rank(μ̄). Let Λ = (λ(1), . . . , λ(K)) be a basis of L(μ) and Λ̄ =
(λ̄(1), . . . , λ̄(K̄)) be a basis of L(μ̄). Take an arbitrary moment index v of order 2 and height 1. Without loss of
generality, we may assume that v = v[1, 1] + v[1, 1].

As μ̄ is stable, one can find a row selector r̄ such that it does not touch the first random variable and r̄(Λ̄)
is nondegenerate. By Proposition 4.15, r̄ can be selected in such a way that it touches only K̄ − 1 random
variables.

Next, as Λ is k-stable, one can find a row selector r such that r(Λ) is nondegenerate and r does not touch
J (r̄) ∪ {1}. Again, one can find r that touches only K − 1 random variables.

By Proposition 4.16, there exists a column selector c such that c does not touch X1 and A = (r, c)(P) is
nondegenerate and contains only moments of height 0. As M2(P) is symmetric, AT = (c, r)(P) is also nonde-
generate.

Let r′′ = r̄ ∪ c and r′ = r′′ ∪ {v[1, 1]}. From now on, we restrict our attention to rows in r′ (the rows above
dotted line in Fig. 3). For use in subsequent notations, we let r′′ = (v1, . . . , vp). (In the figure, c is shown to lie
inside r̄. This is just for convenience of drawing; c and r̄ may overlap arbitrarily, or may even be disjoint).

The submatrix (r′, r)(P) (in the figure, the block on the right surrounded by a dashed line) consists only from
moments of height 0 and has rank K. Thus, the linear span of columns of this submatrix coincides with L(r′(Λ)).
On the other hand, it is a subspace of L(r′(Λ̄)). Thus, L(r′(Λ)) ⊆ L(r′(Λ̄)), and without loss of generality we
can assume that ⎧⎪⎨⎪⎩

r′(λ̄1) = r′(λ1)
. . .

r′(λ̄K) = r′(λK).
(4.4)
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Now look at the first column of r′(M2(P)). Except for the topmost element, mv, it consists of moments of
height 0. As both r′′(Λ) and r′′(Λ̄) are nondegenerate, there are two unique linear combinations⎛⎜⎝mv1

...
mvp

⎞⎟⎠ = α1 ·

⎛⎜⎝λ1
v1
...

λ1
vp

⎞⎟⎠+ · · · + αK ·

⎛⎜⎝λK
v1
...

λK
vp

⎞⎟⎠
and ⎛⎜⎝mv1

...
mvp

⎞⎟⎠ = ᾱ1 ·

⎛⎜⎝λ̄1
v1
...

λ̄1
vp

⎞⎟⎠+ · · · + ᾱK ·

⎛⎜⎝λ̄K
v1
...

λ̄K
vp

⎞⎟⎠+ ᾱK+1 ·

⎛⎜⎝λ̄K+1
v1
...

λ̄K+1
vp

⎞⎟⎠+ · · · + ᾱK̄ ·

⎛⎜⎝λ̄K̄
v1
...

λ̄K̄
vp

⎞⎟⎠ .

But due to equation (4.4) we have ᾱ1 = α1, . . . , ᾱK = αK , ᾱK+1 = 0, . . . , ᾱK̄ = 0, and consequently

mv(μ) = α1λ
1
v[1,1] + · · · + αKλK

v[1,1] = ᾱ1λ̄
1
v[1,1] + · · · + ᾱK̄ λ̄K̄

v[1,1] = mv(μ̄)

which completes the proof of the theorem. �

As Example 6.8 shows, the requirement for μ̄ to be stable is important.
To clarify the meaning of the above theorem, consider the case of 100 random variables and stable distribution

P of rank 4 with L(P) being 90-stable (see Sect. 7 for motivations of importance of this case). Then there is
no stable mixing measure of rank 5, 6, . . . , 90 that produces P. One may hope only to find a stable mixing
distribution producing P of rank 91.

Theorems 4.12 and 4.18 are true in both finite and infinite cases. It appears that in infinite case there is a
simpler and more natural version of Theorem 4.18.

Definition 4.19. A finite family of vectors Λ in an infinite-dimensional β-space (finitely-dimensional subspace
L, mixing measure μ with finitely-dimensional support) is ∞-stable, if it is k-stable for every k.

The following theorem is a direct corollary of Theorem 4.18.

Theorem 4.20. Let P be a stable distribution of rank K with L(P) being ∞-stable.
Then there is no stable mixing measure μ̄ of finite rank such that Pμ̄ = P and rank(μ̄) > K.

5. Identifiability of the mixing measure

In the case of finite family of random variables, the mixing measure is not identifiable in general. To see
this, note first that a distribution Pa which puts all the mass at point a = (a1, . . . , an) ∈ An is independent.
The corresponding vector β[a] has coordinates βjl[a] = 1 if l = aj and βjl[a] = 0 if l �= aj. Thus, any joint
distribution P can be represented as a trivial finite mixture:

P =
∑
a∈A

paPa =
∑
a∈A

paPβ[a] (5.1)

where pa = P({a}). Now take arbitrary measure μ on P which does not have form 5.1. Then for the distribution
P = Pμ there exist at least two mixing measures producing P: first, measure μ and, second, trivial finite mixing
measure.

Even if we restrict the set of mixing measure to essential ones, there is no identifiability – see Example 6.4.
In rare cases, the mixing measure can be identifiable (see Example 6.10). But in the case of finite family of

random variables this is rather an exclusion than a rule.
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In the absence of identifiability, one would like to learn those properties of mixing measures which are common
for all mixing measures producing a given joint distribution P. This suggests the following:

Definition 5.1 [12]. A functional F defined on the family of mixing measures is a mixture invariant of distri-
bution P, if for arbitrary mixing measures μ and μ′ the equality Pμ = Pμ′ = P implies F (μ) = F (μ′).

This definition, unfortunately, is not satisfactory: in general, a joint distribution P has no mixture invariants
other than moments of height 0. One possibility to improve the situation is to restrict attention to essential
mixing measures.

Definition 5.2. A functional F defined on the family of mixing measures is an essential mixture invariant
of distribution P, if for arbitrary essential mixing measures μ and μ′ the equality Pμ = Pμ′ = P implies
F (μ) = F (μ′).

In this terminology, Theorem 4.12 states that for a stable distribution P the supporting subspace is an
essential mixture invariant. Other important essential mixture invariants are given by the following:

Theorem 5.3 (finite-dimensional case). Let P be a stable distribution with L(P) being k-stable. Then all mo-
ments of order ≤ k + 1 are essential mixture invariants of P.

Proof. The proof uses the method similar to the method of Theorem 4.12. Example 6.3 illustrates the proof.
Take arbitrary p ≤ k + 1. Moments of order p occupy columns of the moment matrix indexed by moment

indices of order p− 1. Moment indices of order p− 1 can be split into p groups: indices of height 0, . . . , indices
of height p − 1. We use induction over the height of a moment index to show that all moments of order p are
identifiable.

Basis of induction: all moments of height 0 are identifiable due to equation (3.1).
Induction step. Assume that all moments of height q are known and let us show that we can identify all

moments of height q + 1. Note that all moments of height q + 1 appear in columns indexed by moment indices
of height q. Take an arbitrary column index w of height q. The moments in the corresponding column consist
of moments of height q and moments of height q + 1. For a moment in this column to have height q + 1, it is
required that its row index v touches one of the random variables that are touched by w. Thus, if we exclude
random variables J (w) from consideration, the remaining moments have height q–i.e., are already known. But
|J (w)| ≤ p − 1 ≤ k, and, due to k-stability of L(P), a basis Λ of L(P) keeps full rank after exclusion of the
random variables J (w). Thus, we can determine the unique linear combination of Λ that produces column w –
which gives us moments of height q + 1. �

In the infinite-dimensional case, this theorem has a more elegant form:

Theorem 5.4 (infinite-dimensional case). Let P be a joint distribution of an infinite family of random vari-
ables X1, . . . . Assume that P has finite rank, is stable, and L(P) is ∞-stable. Then all moment of the mixing
distribution are essential mixture invariants of P.

Corollary 5.5. Let P be a joint distribution of an infinite family of random variables X1, . . . . Assume that
P has finite rank, is stable, and L(P) is ∞-stable. Then an essential mixing distribution μ producing P is
identifiable.

Proof. Follows from the fact that measure supported by a compact subset of finite-dimensional Euclidean space
is uniquely determined by its moments ([6], 5.5.2). �
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6. Examples

Most of the examples in this section deal with the case of 3 binary random variables and rely on the moment
matrix. The (part of the) moment matrix shown in such examples usually contains only moments of order 1
and 2, and these moments always are listed in the following order:

(0,0;0,0;0,0) (1,0;0,0;0,0) (0,1;0,0;0,0) (0,0;1,0;0,0) (0,0;0,1;0,0) (0,0;0,0;1,0) (0,0;0,0;0,1)

(1,0;0,0;0,0)

(0,1;0,0;0,0)

(0,0;1,0;0,0)

(0,0;0,1;0,0)

(0,0;0,0;1,0)

(0,0;0,0;0,1)

⎛⎜⎜⎜⎜⎜⎝
m(100000) m(200000) m(110000) m(101000) m(100100) m(100010) m(100001)
m(010000) m(110000) m(200000) m(011000) m(010100) m(010010) m(010001)
m(001000) m(101000) m(011000) m(002000) m(001100) m(001010) m(001001)
m(000100) m(100100) m(010100) m(001100) m(000200) m(000110) m(000101)
m(000010) m(100010) m(010010) m(001010) m(000110) m(000020) m(000011)
m(000001) m(100001) m(010001) m(001001) m(000101) m(000011) m(000002)

⎞⎟⎟⎟⎟⎟⎠

(commas and semicolons are not shown in the moment indices in order to save space).
Occasionally, the moment matrix in an example will contain, in addition, a column with moments of order 3.

In such cases, the column index of the included column is given in the text.
The moments of height 0 (which are common for all mixing measures producing the observed distribution P)

are typeset in plain font; moments of greater height are typeset in bold. Slightly abusing language, we speak
sometime about the moment matrix of distribution P, which means that we include only moments of height 0
in the moment matrix and replace all other moments with question marks.

Example 6.1 (dimensionality of a set in β-space is not equal to dimensionality of its image in P(A)). This
examples clarifies some properties of the parametrization β �→ Pβ . We show that the image of a low-dimensional
subset of P may be infinite-dimensional (in P(A)).

Consider an infinite family of binary random variables (which means that A = {1, 2}N). Let

β′ = (1, 0; 1, 0; . . . ), β′′ = (0, 1; 0, 1; . . . ).

Further, let P0 be a closed interval with endpoints at β′ and β′′ and let P0 be its image under mapping β �→ Pβ :

P0 = {t · β′ + (1 − t) · β′′ | t ∈ [0, 1]}, P0 = {Pβ | β ∈ P0}

P0 is a one-dimensional subset of P . We shall show that P0 is infinite-dimensional. For this, we show a stronger
fact that for every n the natural projection of P0 on P(An), denoted P(n)

0 , has dimensionality at least n.
Recall that P(An) is the unit simplex in 2n-dimensional space; we use elements of An to index coordinates

in this space. A distribution P ∈ P(An) is represented by the vector p = (pa)a∈An ∈ R
2n

with coordinates
pa = P(a). To show that P(n)

0 is at least n-dimensional, it is sufficient to present n + 1 linearly independent
vectors belonging to P(n)

0 = πn(P0).
For this, take arbitrary 0 ≤ t0 < t1 < · · · < tn ≤ 1, and let

β(i) = ti · β′ + (1 − ti) · β′′, i = 0, 1, . . . , n.

Further, let P(i) = Pβ(i) , and let p(i) be a vector from R
2n

representing measure πn(P(i)). We have to show
that vectors p(0), p(1), . . . , p(n) are linearly independent – or, equivalently, that the 2n × (n + 1) matrix, which
has these vectors as columns, is nondegenerate. To show the latter, it is sufficient to present a nondegenerate
(n +1)× (n +1) minor of this matrix. Let us choose rows with indices a(0) = (1, . . . , 1), a(1) = (1, . . . , 1, 2), . . . ,
a(n−1) = (1, 2, . . . , 2), a(n) = (2, . . . , 2). Then the corresponding minor is:⎛⎜⎜⎜⎝

tn0 tn1 . . . tnn
tn−1
0 (1 − t0) tn−1

1 (1 − t1) . . . tn−1
n (1 − tn)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
t0(1 − t0)n−1 t1(1 − t1)n−1 . . . tn(1 − tn)n−1

(1 − t0)n (1 − t1)n . . . (1 − tn)n

⎞⎟⎟⎟⎠ .
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By applying elementary transformation “add row (i−1) to row (i)” subsequently for i = n, n−1, . . . , 2, 1; n, n−
1, . . . , 2; . . . ; n, n − 1; n, one obtains:⎛⎜⎜⎜⎝

tn0 tn1 . . . tnn
tn−1
0 tn−1

1 . . . tn−1
n

. . . . . . . . . . . . . . . . . . . . . . . .
t0 t1 . . . tn
1 1 . . . 1

⎞⎟⎟⎟⎠
which is a Vandermonde matrix and it is known to be nondegenerate.

Example 6.2 (mixture with identifiable supporting subspace).
Consider a case of 3 binary variables, and let mixing measure μ be concentrated at two points,

β(1) = (1/6, 5/6; 1/8, 7/8; 1/6, 5/6), β(2) = (5/6, 1/6; 7/8, 1/8; 5/6, 1/6),

with weights 1/2.
The observed distribution P = Pμ = 1

2Pβ(1) + 1
2Pβ(2) has the following elementary probabilities

p(1,1,1) = 11/36 p(1,2,1) = 1/18 p(2,1,1) = 5/72 p(2,2,1) = 5/72

p(1,1,2) = 5/72 p(1,2,2) = 5/72 p(2,1,2) = 1/18 p(2,2,2) = 11/36

and its moment matrix is ⎛⎜⎜⎜⎜⎜⎝
1/2 ? ? 3/8 1/8 13/36 5/36
1/2 ? ? 1/8 3/8 5/36 13/36
1/2 3/8 1/8 ? ? 3/8 1/8
1/2 1/8 3/8 ? ? 1/8 3/8
1/2 13/36 5/36 3/8 1/8 ? ?
1/2 5/36 13/36 1/8 3/8 ? ?

⎞⎟⎟⎟⎟⎟⎠.

The rank of the observed part of the moment matrix is 2 (the left bottom 2 × 2 minor is non-degenerate,
and there is no non-degenerate minors of size 3 × 3). Thus, the rank of the mixing measure that produces the
observed one is at least 2. One can also see that the distribution P is stable (i.e., after removing any variable the
rank of the visible part of the moment matrix is 2). Thus, according to Theorem 4.12, the supporting subspace
of an essential mixing distribution is identifiable.

Let us forget for a moment that we know the fact that P = 1
2Pβ(1) + 1

2Pβ(2) , and try to find the supporting
subspace of an essential mixing measure using the method of Theorem 4.12.

First, we restrict our attention to the last two rows of moment matrix. Subcolumns 1 and 4 are linearly
independent, and thus there exists a unique linear combination of them that produces the subcolumn 2:

(13/36, 5/36) = 1/18 · (1/2, 1/2) + 8/9 · (3/8, 1/8).

Consequently, the value of the moment of height 1 at the top left corner is:

m(200000) = 1/18 · 1/2 + 8/9 · 3/8 = 13/36.

Continuing this process for other moments of height 1, we obtain the moment matrix:⎛⎜⎜⎜⎜⎜⎝
1/2 13/36 5/36 3/8 1/8 13/36 5/36
1/2 5/36 13/36 1/8 3/8 5/36 13/36
1/2 3/8 1/8 25/64 7/64 3/8 1/8
1/2 1/8 3/8 7/64 25/64 1/8 3/8
1/2 13/36 5/36 3/8 1/8 13/36 5/36
1/2 5/36 13/36 1/8 3/8 5/36 13/36

⎞⎟⎟⎟⎟⎟⎠ .
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Now, to obtain a basis of supporting subspace, we can take any two linearly independent columns of completed
moment matrix (if we want to have vectors satisfying conditions 2.1, we have to normalize any column except
the first). In particular, we can take the first and the second columns as basis vectors:

λ(1) = (1/2, 1/2; 1/2, 1/2; 1/2, 1/2) λ(2) = (13/18, 5/18; 3/4, 1/4; 13/18, 5/18).

As it was expected, one can see that Lin(λ(1), λ(2)) = Lin(β(1), β(2)).

Example 6.3 (identifiable moments of a stable distribution). Consider distribution P from Example 6.2. We
can see that P is stable and L(P) is 2-stable. Thus, according to Theorem 5.3, all its moments of order 3 are
identifiable.

In Example 6.2, we have already recovered all moments of order 2. Here we show how the process of recovery
of moments of order 3 works.

For the purpose of this example, consider columns of moment matrix indexed by (1, 0; 1, 0; 0, 0), (1, 0; 0, 1; 0, 0),
and (1, 1; 0, 0; 0, 0): ⎛⎜⎜⎜⎜⎜⎝

. . . m(2,0;1,0;0,0) . . . m(2,0;0,1;0,0) . . . m(2,1;0,0;0,0) . . .

. . . m(1,1;1,0;0,0) . . . m(1,1;0,1;0,0) . . . m(1,2;0,0;0,0) . . .

. . . m(1,0;2,0;0,0) . . . m(1,0;1,1;0,0) . . . m(1,1;1,0;0,0) . . .

. . . m(1,0;1,1;0,0) . . . m(1,0;0,2;0,0) . . . m(1,1;0,1;0,0) . . .

. . . m(1,0;1,0;1,0) . . . m(1,0;0,1;1,0) . . . m(1,1;0,0;1,0) . . .

. . . m(1,0;1,0;0,1) . . . m(1,0;0,1;0,1) . . . m(1,1;0,0;0,1) . . .

⎞⎟⎟⎟⎟⎟⎠ .

At the beginning, we know only moments of height 0:⎛⎜⎜⎜⎜⎜⎝
. . . m(2,0;1,0;0,0) . . . m(2,0;0,1;0,0) . . . m(2,1;0,0;0,0) . . .
. . . m(1,1;1,0;0,0) . . . m(1,1;0,1;0,0) . . . m(1,2;0,0;0,0) . . .
. . . m(1,0;2,0;0,0) . . . m(1,0;1,1;0,0) . . . m(1,1;1,0;0,0) . . .
. . . m(1,0;1,1;0,0) . . . m(1,0;0,2;0,0) . . . m(1,1;0,1;0,0) . . .
. . . 11/36 . . . 1/18 . . . m(1,1;0,0;1,0) . . .
. . . 5/72 . . . 5/72 . . . m(1,1;0,0;0,1) . . .

⎞⎟⎟⎟⎟⎟⎠ .

This allows us to find 2 linear combinations:⎛⎜⎜⎜⎜⎜⎝
m(2,0;1,0;0,0)

m(1,1;1,0;0,0)

m(1,0;2,0;0,0)

m(1,0;1,1;0,0)
11/36
5/72

⎞⎟⎟⎟⎟⎟⎠ = −5/32λ
(1) + 17/32λ

(2),

⎛⎜⎜⎜⎜⎜⎝
m(2,0;0,1;0,0)

m(1,1;0,1;0,0)

m(1,0;1,1;0,0)

m(1,0;0,2;0,0)
1/18
5/72

⎞⎟⎟⎟⎟⎟⎠ = 5/32λ
(1) − 1/32λ

(2).

This allows us to recover all moments in the first two columns – and, consequently, two moments in the third
column: ⎛⎜⎜⎜⎜⎜⎝

. . . 11/36 . . . 1/18 . . . m(2,1;0,0;0,0) . . .

. . . 5/72 . . . 5/72 . . . m(1,2;0,0;0,0) . . .

. . . 41/128 . . . 7/128 . . . 5/72 . . .

. . . 7/128 . . . 9/128 . . . 5/72 . . .

. . . 11/36 . . . 1/18 . . . m(1,1;0,0;1,0) . . .

. . . 5/72 . . . 5/72 . . . m(1,1;0,0;0,1) . . .

⎞⎟⎟⎟⎟⎟⎠ .

Now, we can find one more linear combination:⎛⎜⎜⎜⎜⎜⎝
m(2,1;0,0;0,0)

m(1,2;0,0;0,0)
5/72
5/72

m(1,1;0,0;1,0)

m(1,1;0,0;0,1)

⎞⎟⎟⎟⎟⎟⎠ = 5/36λ
(1) + 0λ(2).
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This allows us to recover remaining moments in the third column:⎛⎜⎜⎜⎜⎜⎝
. . . 11/36 . . . 1/18 . . . 5/72 . . .
. . . 5/72 . . . 5/72 . . . 5/72 . . .
. . . 41/128 . . . 7/128 . . . 5/72 . . .
. . . 7/128 . . . 9/128 . . . 5/72 . . .
. . . 11/36 . . . 1/18 . . . 5/72 . . .
. . . 5/72 . . . 5/72 . . . 5/72 . . .

⎞⎟⎟⎟⎟⎟⎠ .

The remaining columns with moments of order 3 are handled in similar manner.

Example 6.4 (mixture with identifiable supporting subspace is not identifiable itself). Now consider mixing
measure μ̄ concentrated at 3 points

β̄(1) = (1/18, 17/18; 0, 1; 1/18, 17/18), β̄(2) = (1/2, 1/2; 1/2, 1/2; 1/2, 1/2),

β̄(3) = (17/18, 1/18; 1, 0; 17/18, 1/18).

Mixture P̄ = Pμ̄ coincides with mixture P from Example 6.2 (which one can see by ensuring that they have
the same elementary probabilities).

As mixing measure μ̄ is essential (rank(β̄(1), β̄(2), β̄(3)) = 2), its supporting subspace, according to
Theorem 4.12, must coincide with the one of μ – and, in fact, one can see that L(μ̄) = Lin(β̄(1), β̄(2), β̄(3)) =
Lin(β(1), β(2)) = L(μ).

Moreover, one can see that μ and μ̄ have equal moments of order 2 and 3.
This example illustrates that one can identify the supporting subspace of an essential mixing measure and

some of its moments – but not the mixing measure itself.

Example 6.5 (visible rank of a distribution can be smaller its rank).
Consider a case of 3 binary variables and mixing measure μ, concentrated at points

β(1) = (1, 0; 1, 0; 1, 0), β(2) = (0, 1; 1, 0; 1, 0),

β(3) = (0, 1; 0, 1; 1, 0), β(4) = (0, 1; 0, 1; 0, 1)

with weights 1/4.
The observed distribution Pμ has the elementary probabilities:

p(1,1,1) = 1/4 p(1,2,1) = 0 p(2,1,1) = 1/4 p(2,2,1) = 1/4

p(1,1,2) = 0 p(1,2,2) = 0 p(2,1,2) = 0 p(2,2,2) = 1/4

and its moment matrix is ⎛⎜⎜⎜⎜⎜⎝
1/4 ? ? 1/4 0 1/4 0
3/4 ? ? 1/4 1/2 1/2 1/4
1/2 1/4 1/4 ? ? 1/2 0
1/2 0 1/2 ? ? 1/4 1/4
3/4 1/4 1/2 1/2 1/4 ? ?
1/4 0 1/4 0 1/4 ? ?

⎞⎟⎟⎟⎟⎟⎠ .

It is easy to see from the moment matrix that the visible rank of Pμ is 2. (Note that moments of order > 2
do not help to construct a minor of size 3, as any column containing such moments has at most 2 observable
moments.)

As the visible rank is 2 and the mixing measure is concentrated at 4 points, we may conclude that 2 ≤
rank(Pμ) ≤ 4. We shall show that rank(Pμ) �= 2.

Assume, in contrary, that rank(Pμ) = 2. Then Pμ is stable, and we can use Theorem 4.12 to find a basis of
supporting subspace.
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Using the same calculations from Example 6.2, we obtain completion of the moment matrix:

⎛⎜⎜⎜⎜⎜⎝
1/4 1/8 1/8 1/4 0 1/4 0
3/4 1/8 5/8 1/4 1/2 1/2 1/4
1/2 1/4 1/4 1/2 0 1/2 0
1/2 0 1/2 0 1/2 1/4 1/4
3/4 1/4 1/2 1/2 1/4 5/8 1/8
1/4 0 1/4 0 1/4 1/8 1/8

⎞⎟⎟⎟⎟⎟⎠ .

Any 2 linearly independent columns of the moment matrix can be taken as a basis of the supporting subspace.
Let us take the second and the last columns, multiplied by 4, i.e.:

λ(1) = (1/2, 1/2; 1, 0; 1, 0), λ(2) = (0, 1; 0, 1; 1/2, 1/2).

Having this, we can parametrize the support of a mixing measure by parameter t:

β(t) = (t/2, 1 − t/2; t, 1 − t; 1 − t/2, t/2), t ∈ [0, 1]

(note that supporting subspace has dimensionality 2, but support, which is a (subset of a) linear manifold, has
dimensionality 1).

If there exists a mixing measure μ̄ that is carried by this subspace and produces the observed distribution Pμ,
it should satisfy:

1/4 = p(1,1,1) =
∫ 1

0

t/2 · t · (1 − t/2) μ̄(dt) =
∫ 1

0

(1 − t/2) · t · t/2 μ̄(dt) = p(2,1,2) = 0

which gives us a contradiction.

Thus, rank(Pμ) ≥ 3, while the visible rank of Pμ is 2. This, in particular, means that Pμ is not even 0-stable.

Example 6.6 (essential and non-essential mixing measures may have very different supporting subspaces).

Now consider mixing measure μ̃, concentrated at 4 points

β̃(1) = (1, 0; 1, 0; 1, 0), β̃(2) = (0, 1; 0, 1; 0, 1),

β̃(3) = (1/3, 2/3; 1/2, 1/2; 2/3, 1/3), β̃(4) = (2/3, 1/3; 1/2, 1/2; 1/3, 2/3)

with weights 1/4 each.
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Again, distribution P̃ = Pμ̃ coincides with distribution P from Example 6.2. However, rank(μ̃) = 3, i.e. μ̃ is
not essential.

Looking to the moment matrix of μ̃:⎛⎜⎜⎜⎜⎜⎝
1/2 7/18 1/9 3/8 1/8 13/36 5/36
1/2 1/9 7/18 1/8 3/8 5/36 13/36
1/2 3/8 1/8 3/8 1/8 3/8 1/8
1/2 1/8 3/8 1/8 3/8 1/8 3/8
1/2 13/36 5/36 3/8 1/8 7/18 1/9
1/2 5/36 13/36 1/8 3/8 1/9 7/18

⎞⎟⎟⎟⎟⎟⎠
one can observe that it differs from the moment matrix of μ only in moments of height 1 (and higher).

One can also observe that L(μ) �⊆ L(μ̃). It is not by coincidence: it is impossible to construct a stable
nonessential mixing measure μ̃′ such that L(μ) ⊆ L(μ̃). This impossibility is a key point in the proof of
Theorem 4.18.

Example 6.7 (nonstable distribution may have nonidentifiable supporting subspace).
Once more, consider a case of 3 binary variables, and 2 mixing measures: μ, concentrated at points

β(1) = (1, 0; 1/3, 2/3; 1, 0), β(2) = (0, 1; 2/3, 1/3; 1, 0)

with weights 1/2, and μ̄, concentrated at points

β̄(1) = (1/3, 2/3; 1, 0; 1, 0), β̄(2) = (2/3, 1/3; 0, 1; 1, 0)

also with weights 1/2.
The observed distributions Pμ and Pμ̄ are equal and have the following elementary probabilities

p(1,1,1) = 1/6 p(1,2,1) = 1/3 p(2,1,1) = 1/3 p(2,2,1) = 1/6

p(1,1,2) = 0 p(1,2,2) = 0 p(2,1,2) = 0 p(2,2,2) = 0

and the observed part of their moment matrix is⎛⎜⎜⎜⎜⎜⎝
1/2 ? ? 1/6 1/3 1/2 0
1/2 ? ? 1/3 1/6 1/2 0
1/2 1/6 1/3 ? ? 1/2 0
1/2 1/3 1/6 ? ? 1/2 0
1 1/2 1/2 1/2 1/2 ? ?
0 0 0 0 0 ? ?

⎞⎟⎟⎟⎟⎟⎠ .

The rank of the observer part of the moment matrix is 2, and rank(μ) = rank(μ̄) = 2. Thus, both μ and μ̄
are essential.

However, the observed distribution is not stable: removing the first (or the second) random variable decreases
the rank of the observed part of the moment matrix to 1. Consequently, Theorem 4.12 is not applicable here,
and in fact one can see that L(μ) �= L(μ̄).

Example 6.8 (there may exist nonstable mixing measures of ranks prohibited by Thm. 4.18).
Consider a case of 4 binary variables, and 2 mixing measures: μ, concentrated at 2 points

β(1) = (5/6, 1/6; 1, 0; 1, 0; 1, 0), β(2) = (1/6, 5/6; 0, 1; 0, 1; 0, 1)

with weights 1/2, and μ̃, concentrated at 4 points

β̃(1) = (1, 0; 1, 0; 1, 0; 1, 0), β̃(2) = (0, 1; 0, 1; 0, 1; 0, 1),

β̃(3) = (2/3, 1/3; 1, 0; 1, 0; 1, 0), β̃(4) = (1/3, 2/3; 0, 1; 0, 1; 0, 1)

with weights 1/4.
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Elementary probabilities for Pμ and Pμ̃ are equal; they are:

p(1,1,1,1) = p(2,2,2,2) = 5/12, p(2,1,1,1) = p(1,2,2,2) = 1/12, pa = 0 for all other a.

We have the following facts:

• Pμ = Pμ̃;
• Pμ is stable;
• L(Pμ) is 3-stable;
• rank(Pμ) = 2;
• rank(μ̃) = 3.

The only condition of Theorem 4.18 that is not satisfied is that μ̃ is not stable—and this is enough to obtain
rank(Pμ) < rank(μ̃) ≤ stability level of L(Pμ).

Example 6.9 ((K − 1)-stable mixing measure of rank K may have a row selector with all minors of height 0
being degenerate). Consider a case of 4 ternary random variables (i.e., J = 4, L1 = L2 = L3 = L4 = 3). Let μ be
a measure concentrated in 3 points β(1), β(2), β(3) with equal weights (i.e., μ = 1

3δ(β(1))+ 1
3δ(β(2))+ 1

3δ(β(1))),
where

β(1) = (1, 0, 0; 1, 0, 0; 1, 0, 0; 1, 0, 0)

β(2) = (0, 1, 0; 0, 1, 0; 0, 1, 0; 1, 0, 0)

β(3) = (0, 0, 1; 0, 0, 1; 0, 0, 1; 1, 0, 0).

As β(1), β(2), β(3) are linearly independent, they can be taken as a basis of L(μ). The second-order moments
of μ are: ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/3 0 0 1/3 0 0 1/3 0 0 1/3 0 0
0 1/3 0 0 1/3 0 0 1/3 0 1/3 0 0
0 0 1/3 0 0 1/3 0 0 1/3 1/3 0 0
1/3 0 0 1/3 0 0 1/3 0 0 1/3 0 0
0 1/3 0 0 1/3 0 0 1/3 0 1/3 0 0
0 0 1/3 0 0 1/3 0 0 1/3 1/3 0 0
1/3 0 0 1/3 0 0 1/3 0 0 1/3 0 0
0 1/3 0 0 1/3 0 0 1/3 0 1/3 0 0
0 0 1/3 0 0 1/3 0 0 1/3 1/3 0 0
1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1/3 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Let r be a row selector that selects the boxed rows, r = (v[1, 3], v[2, 2], v[3, 1]). Then we have the following
properties:

• rank(μ) = 3;
• Pμ is stable;
• μ is 2-stable but not 3-stable;
• r(β(1), β(2), β(3)) is nondegenerate.

However, there is no column selector c such that height of (r, c) is 0 and (r, c)(μ) is nondegenerate (the only
way for c to produce a minor selector of height 0 is to select the last 3 columns of the above matrix, which gives
a minor of rank 1).
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Example 6.10 (special case: joint distribution of 3 binary random variables with identifiable mixing distribu-
tion). Consider a joint distribution of 3 binary random variables given by elementary probabilities:

p(1,1,1) = a p(1,2,1) = 0 p(2,1,1) = 0 p(2,2,1) = d

p(1,1,2) = 0 p(1,2,2) = b p(2,1,2) = c p(2,2,2) = 0
(6.1)

(a, b, c, d ≥ 0 and a + b + c + d = 1).
The moment matrix of this distribution is:⎛⎜⎜⎜⎜⎜⎝

a + b ? ? a b a b
c + d ? ? c d d c
a + c a c ? ? a c
b + d b d ? ? d b
a + d a d a d ? ?
b + c b c c b ? ?

⎞⎟⎟⎟⎟⎟⎠ .

Note that if P is represented as a probabilistic mixture
∫

Pβμ(dβ), then P(A) = 0 implies Pβ(A) = 0 for
μ-almost all β.

We shall show that there are only 4 independent distributions that have form (6.1). The independence
condition

P(X1 = l1 ∧ X2 = l2 ∧ X3 = l3) = P(X1 = l1) · P(X2 = l2) · P(X3 = l3)

gives the equations:

(c + d)(a + c)(a + d) = 0 (for l1 = 2, l2 = 1, l3 = 1)
(a + b)(b + d)(a + d) = 0 (for l1 = 1, l2 = 2, l3 = 1)
(a + b)(a + c)(b + c) = 0 (for l1 = 1, l2 = 1, l3 = 2)
(c + d)(b + d)(b + c) = 0 (for l1 = 2, l2 = 2, l3 = 2).

Assume that a �= 0. Then from the first equation one obtains c+d = 0, and consequently c = d = 0; from the
second equation one obtains b + d = 0, and consequently b = 0. Similarly, assuming b �= 0 gives a = c = d = 0,
etc. Thus, the only 4 independent distributions having form (6.1) are:

(a) a = 1, b = c = d = 0 (b) b = 1, a = c = d = 0
(c) c = 1, a = b = d = 0 (d) d = 1, a = b = c = 0

and the corresponding vectors in β-space are:

β(a) = (1, 0; 1, 0; 1, 0) β(b) = (1, 0; 0, 1; 0, 1)

β(c) = (0, 1; 1, 0; 0, 1) β(d) = (0, 1; 0, 1; 1, 0).

Summarizing, one can conclude that any distribution in form (6.1) has a unique representation as a mixture
of independent distributions:

P = a · Pβ(a) + b · Pβ(b) + c · Pβ(c) + d · Pβ(d)

Example 6.11 (dimensionality of the supporting subspace may be smaller if nonprobabilistic mixtures are
allowed). Consider a distribution (denoted P) as in Example 6.10 with a = 0.4, b = 0.3, c = 0.2, and d = 0.1.
The moment matrix of distribution P is:⎛⎜⎜⎜⎜⎜⎝

0.7 ? ? 0.4 0.3 0.4 0.3 . . . ? . . .
0.3 ? ? 0.2 0.1 0.1 0.2 . . . ? . . .
0.6 0.4 0.2 ? ? 0.4 0.2 . . . 0 . . .
0.4 0.3 0.1 ? ? 0.1 0.3 . . . 0.3 . . .
0.5 0.4 0.1 0.4 0.1 ? ? . . . ? . . .
0.5 0.3 0.2 0.2 0.3 ? ? . . . ? . . .

⎞⎟⎟⎟⎟⎟⎠
(the rightmost shown column has index (1, 0; 0, 0; 0, 1)).
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As it follows from Example 6.10, rank(P) = 4 (it is easy to verify that vectors β(a), β(b), β(c), and β(d) are
linearly independent). The moment matrix of distribution P, however, does not contain nondegenerate minors of
size 4 (it even does not contain nondegenerate minors of size 3). Thus, according to Definition 4.10, distribution
P is not even 0-stable.

On the other hand, the moment matrix satisfies other conditions of Definition 4.10 if one takes K = 2
and k = 1: for every j = 1, 2, 3 one can find a minor selector s such that s does not touch j, is of
height 0 and is nondegenerate. For example, for j = 2 one can take r = ((1, 0; 0, 0; 0, 0), (0, 1; 0, 0; 0, 0)),
c = ((0, 0; 0, 0; 0, 0), (0, 0; 0, 0; 0, 1)), s = (r, c), which gives minor

s(P) =
(

0.7 0.3
0.3 0.2

)
.

This suggests that one can uniquely construct a matrix of rank 2 that coincides with the moment matrix of
distribution P in places corresponding to moments of height 0. (Note, however, that at this point there are no
reasons to think that such a matrix is a moment matrix of some mixing measure.) This matrix is:

M =

⎛⎜⎜⎜⎜⎜⎝
0.7 0.48 0.22 0.4 0.3 0.4 0.3 . . . 0.12 . . .
0.3 0.22 0.08 0.2 0.1 0.1 0.2 . . . 0.18 . . .
0.6 0.4 0.2 0.32 0.28 0.4 0.2 . . . 0 . . .
0.4 0.3 0.1 0.28 0.12 0.1 0.3 . . . 0.3 . . .
0.5 0.4 0.1 0.4 0.1 0 0.5 . . . 0.6 . . .
0.5 0.3 0.2 0.2 0.3 0.5 0 . . . −0.3 . . .

⎞⎟⎟⎟⎟⎟⎠ .

Obviously, this matrix cannot be a moment matrix of a probabilistic mixture of independent probability
measures: such a mixture must have only nonnegative moments, while this one has m(1,0;0,0;0,2) = −0.3.

Moreover, if M is a moment matrix of some measure μ, its covariance matrix, according to equation (3.4),
should be: ⎛⎜⎜⎜⎜⎜⎝

−0.01 0.01 −0.08 0.02 0.05 −0.05
0.01 −0.01 0.02 −0.02 −0.05 0.05

−0.08 0.02 −0.04 0.04 0.1 −0.1
0.02 −0.02 0.04 −0.04 −0.1 0.1
0.05 −0.05 0.1 −0.1 −0.25 0.25

−0.05 0.05 −0.1 0.1 0.25 −0.25

⎞⎟⎟⎟⎟⎟⎠ .

As this matrix is not positive-semidefinite, it cannot be a covariance matrix of any probability measure.
Summarizing, we may conclude that the distribution P cannot be represented as a mixture of independent

distributions with the mixing measure carried by a 2-dimensional subspace of β-space. Such a representation
does not exist even if we allow the support of a mixing measure to include vectors β that correspond to signed
measures (i.e., if we remove restrictions 0 ≤ βjl ≤ 1 from conditions (2.1)).

One can obtain distribution P as a mixture of independent distributions with the mixing distributions sup-
ported by a 2-dimensional subspace of β-space only if both the distributions being mixed and the mixing
measure are allowed to be signed measures. One possible way to do this is to take the mixing measure μ being
concentrated at two points,

β(1) =

⎛⎜⎜⎜⎜⎜⎜⎝

1.2 + 0.2
√

6
−0.2 − 0.2

√
6

1.6 + 0.4
√

6
−0.6 − 0.4

√
6

−2 −√
6

3 +
√

6

⎞⎟⎟⎟⎟⎟⎟⎠ , β(2) =

⎛⎜⎜⎜⎜⎜⎜⎝

1.2 − 0.2
√

6
−0.2 + 0.2

√
6

1.6 − 0.4
√

6
−0.6 + 0.4

√
6

−2 +
√

6
3 −√

6

⎞⎟⎟⎟⎟⎟⎟⎠
with weights w1 = 0.5−1.25/

√
6 and w2 = 0.5+1.25/

√
6. One can verify that the equality P = w1Pβ(1) +w2Pβ(2)

holds.
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The columns of the moment matrix M span a 2-dimensional subspace of β-space. One possible basis of this
subspace is:

λ1 = (0.8, 0.2; 0.8, 0.2; 0, 1), λ2 = (0.6, 0.4; 0.4, 0.6; 1, 0).

As one would expect, both β(1) and β(2) belong to this subspace:

β(1) = (3 +
√

6)λ1 + (−2 −
√

6)λ2, β(2) = (3 −
√

6)λ1 + (−2 +
√

6)λ2.

7. Discussion

The results of this article are very important for the foundation of Linear Latent Structure (LLS) analysis [8].
One domain of application of LLS analysis is the analysis of surveys, where individuals from a sample are asked
multiple questions in order to obtain a description of a relatively simple (but directly unobservable) underlying
phenomenon.

In this context, the mixing distribution can be thought of as a description of a latent variable that characterizes
the underlying phenomenon. The dimensionality of a mixing distribution corresponds to the “complexity” of
the underlying phenomenon.

Stability is a characteristic of how well a questionnaire is “balanced.” A small (in comparison to the number
of questions in a survey) level of stability means that a questionnaire is poorly balanced: many questions are
devoted to discover one “side” of the underlying phenomenon, while only a few of them are devoted to discover
another “side.” From this perspective, stability of the LLS model can be considered as a mathematical measure
of “quality” of a questionnaire.

On the other hand, application of LLS analysis (as of any statistical method) is an attempt to infer something
from a number of imprecise evidences. One has to avoid inferences that are supported by a single (or very few)
evidence(s). Thus, stability characterizes how reliable is our inference.

The above arguments suggest that it is very natural to restrict consideration to stable cases.
The other point that we want to stress is the importance of k-stability for reliability of LLS inference.
To give the reader a sense of numbers, let us assume that we have an observed distribution P of 100 binary

random variables, which is stable, rank(P) = 5, and L(P) is 90-stable. (This should be considered as a very
realistic case. In [1], LLS analysis was applied to the National Long Term Care Survey, containing 49 binary
variables and 8 quaternary variables. The estimate of rank is 3, while the estimate of stability level is 405).

According to Theorem 4.12, there exists a 5-dimensional model for P. But one may ask a question: “OK,
5-dimensional model exists, it is fine. But maybe there exists a 6-dimensional model that is much-much better
than the 5-dimensional one in a sense that was not taken into account so far?”.

Theorem 4.18 gives quite a strong answer to this question: there are no stable mixing measures of rank 6, 7,
. . . , 90. One may find a mixing measure of rank 91. It is hard to believe, however, that a 91-dimensional model
would be better than a 5-dimensional one.

There are a few questions that were not answered in this article.
The first one is how generic are stable distributions. One would be much more convinced of the importance of

our theorems (which are in many cases applicable only to stable distributions) if stability is a “common case”,
and nonstable distributions are “rare”.

The answer to this question is not simple, primarily because there is no single notion of genericity. The
two most important synonyms of “be generic” are “have Lebesgue measure 1” and “have Baire category 2” [9].
However, on the one hand, these notions do not coincide, and, on the other hand, in the infinite-dimensional case
there is no good equivalent of Lebesgue measure (and the family of all mixing measures is infinite-dimensional
even if finitely many random variables are considered).

Still we hope that a convincing notion of genericity can be formulated and proved for the case of stable
distributions. Our belief is based on the simple fact that nondegenerate matrices are the “common case” and

5 The estimate of stability level was performed later and was not included in [1].
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degenerate ones are “rare.” Consider, for example, matrix
(

a b
b x

)
with a, b > 0. The only value of x which makes

this matrix degenerate is b2/a, while all other values of x produce nondegenerate matrices.
Another question is raised by Example 6.11. This example shows that one can obtain a lower-dimensional

model (2 instead of 4 in the example) if signed measures are allowed.
From the point of view of linear algebra considerations employed in the present article, using signed measures

is very natural (vectors with negative coordinates are “first-class citizens” in linear algebra). But notions like
“negative probability,” although sometimes discussed, are not a practical tool of an applied statistician.

It would be good to find out practical examples where the LLS model involves signed measures and investigate
whether it is possible to give a reasonable interpetation to these measures.

One more question is raised by Example 6.5. As this example shows, the visible rank of a distribution can
be smaller than its rank. But to prove the fact that the example distribution has rank bigger than 2, we used
a method beyond the direct analysis of the moment matrix.

The question is whether the rank of a distribution can be derived from the visible part of its moment matrix
using only linear algebra methods.

Note that if stability level is bigger than rank (which, as discussed above, is true in practically interesting
cases) the visible rank of P is equal to its rank: the proof of Corollary 4.17 constructs a required minor. Thus,
this question has rather theoretical than practical interest.
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