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MEETING TIME OF INDEPENDENT RANDOM WALKS IN RANDOM
ENVIRONMENT

Christophe Gallesco
1

Abstract. We consider, in the continuous time version, γ independent random walks on Z+ in
random environment in Sinai’s regime. Let Tγ be the first meeting time of one pair of the γ random
walks starting at different positions. We first show that the tail of the quenched distribution of Tγ ,
after a suitable rescaling, converges in probability, to some functional of the Brownian motion. Then
we compute the law of this functional. Eventually, we obtain results about the moments of this meeting
time. Being Eω the quenched expectation, we show that, for almost all environments ω, Eω[T c

γ ] is finite
for c < γ(γ − 1)/2 and infinite for c > γ(γ − 1)/2.
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1. Introduction and results

1.1. Preliminary facts

Let ω = (ω+
x , ω

−
x )x∈Z+ be a sequence of positive vectors. Then, consider γ independent continuous-time

Markov chains ξi = (ξi(t))t≥0, 1 ≤ i ≤ γ, on Z+, which jump from y to y + 1 with rate ω+
y , and to y − 1

with rate ω−
y if y ≥ 1 and jump from 0 to 1 with rate ω+

0 . Now, we suppose that ω is a fixed realization of an
i.i.d. sequence of positive random variables. We refer to ω as the environment, and to the ξi-s, 1 ≤ i ≤ γ, as
the random walks in the random environment ω. We will denote by P,E the probability and expectation with
respect to ω, and by Pω, Eω the (so-called “quenched”) probability and expectation for random walks in the
fixed environment ω. Observe that the ξi-s are independent under the quenched law Pω but not in general under
the annealed law P × Pω. As usual, we will use the notation Px

ω with x = (x1, . . . , xγ) for the quenched law of
(ξ1, . . . , ξγ) starting from ξi(0) = xi, with xi < xi+1 for 1 ≤ i < γ. Nevertheless, for the sake of brevity, we will
omit the superscript x whenever the initial positions are ξi(0) = i, for 1 ≤ i ≤ γ ( for the sake of simplicity, we
decided to choose these intitial positions, but our results do not depend on the initial positions of the ξi-s). We
also formally define the meeting time of one pair of the random walks as

Tγ = inf{s > 0; ξi(s) = ξj(s), for some 1 ≤ i �= j ≤ γ}.
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In this paper we study only the case of Sinai’s regime, which means that the following condition is satisfied:

Condition S. We have

E ln
ω+

0

ω−
0

= 0, σ2 := E ln2 ω
+
0

ω−
0

∈ (0,+∞).

The one-dimensional RWRE has been a model of constant interest in the last three decades. The first
important results are due to Solomon [19], Sinai [18] and Kesten et al. [14]. Solomon showed that the first part
of condition S is equivalent to recurrence for a random walk ξ on Z. Sinai proved that abnormal diffusion takes
place in the recurrent case: ξ(t) is of order ln2 t; Kesten et al. computed the limit law of the random walk in
the transient case. Since then, we know that this model presents many interesting properties. For example, the
large deviation properties were studied by Greven and den Hollander [11]. The moderate deviation properties
were studied by Comets and Popov in [3, 4]. Moreover, the model presents many variations of interest, for
example, in [5], Comets et al. use Lyapunov functions method to study random strings and in [12] Hu and Shi
use stochastic calculus to obtain results on moderate deviations for the one-dimensional diffusion in a Brownian
potential, which is the continuous-space analogue of the RWRE.

More recently, in the sub-ballistic transient case, Fribergh et al. [8] worked on moderate deviations and
Enriquez et al. [7] refined, in particular, the results of [14]. In Sinai’s regime, Dembo et al. [6] and Gantert
et al. [10] studied the properties of the local times. For surveys on the subject, the reader is referred to the
lecture notes of a course by Zeitouni [20], to the book of Hughes [13] and to the stochastic calculus approach by
Shi [17]. In addition, we mention that the results we obtain in Theorem 1.4 contrast with those of the analogous
deterministic model which is the simple random walk on Z+. In the case of 2 independent random walks, it is
well known that E[τc] <∞ for c < 1/2 and E[τc] = ∞ for c ≥ 1/2. In the case of 3 independent random walks,
we have that E[τc] <∞ for c < 3/2 and E[τc] = ∞ for c > 3/2 (see for example [1]).

For technical reasons we also need the following uniform ellipticity condition:

Condition B. There exists a positive number κ > 1 such that

κ−1 ≤ ω+
0 ≤ κ, κ−1 ≤ ω−

0 ≤ κ P-a.s.

Given the realization of the random environment ω, define the potential function for x ∈ R+, by

V (x) =

{∑[x]−1
i=0 ln ω−

i

ω+
i

, x > 0,
0, x = 0

where [x] is the integer which is the closest to x.
We will focus on estimating the tail of the quenched distribution of Tγ for typical configurations ω of the

environment. This enables us to approximate V by Brownian motion, but it is most convenient to use the well-
known Komlós-Major-Tusnády [15] strong approximation theorem. Indeed, it allows us to relate the features
of long time behavior for the walk to Brownian functionals directly built on the model, simplifying much the
proof of limit properties: in a possibly enlarged probability space there exist a version of our environment ω
and a Brownian motion (W (x), x ∈ R+) with diffusion constant σ (i.e., Var(W (x)) = σ2x), such that for some
K̂ > 0

P

[
lim sup
x→+∞

|V (x) −W (x)|
lnx

≤ K̂

]
= 1. (1.1)

The next definition is central in our construction. Although it applies to more general numerical functions
defined on Z+ or R+, we will use it only in the case of the Brownian motion W .

Definition 1.1. Let t > 1 and m∗ ∈ R+. Denote r = r(t,m∗) the smallest x > m∗ such that W (x) ≥
W (m∗) + ln t (observe that as W is a Brownian motion r exists P-a.s). We will say that m∗ is the first t-stable
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point to the right of the origin if W (m∗) = minx∈[0,r]W (x) and m∗ is the smallest point on R+ verifying this
condition. Then, we define the other t-stable points as follows. For m ∈ R+, denote by l = l(t,m) the largest
x < m such that W (x) ≥ W (m) + ln t (if such an x exists). We say that m is a t-stable point (different from
the first t-stable point m∗) if m �= m∗, l(m, t) and r(m, t) exist and m satisfies W (m) = minx∈[l,r]W (x).

For each t > 1, it is actually possible to enumerate the t-stable points in such a way that the sequence of
t-stable points is P-a.s. strictly increasing to infinity. Besides, observe that, according to Definition 1.1, the
t-stable points are not generally integers. Thus, throughout this paper, the statement “the random walk hits a
t-stable point” means that it hits the site x ∈ Z+ which is closest to the t-stable point. As a rule, real points
x ∈ R+ will be replaced, if the context requires, with the closest integer, that we may still denote by the same
symbol x, if no confusion can occur.

1.2. Results

Let m̂1(t), m̂2(t), . . . , m̂γ(t) be the first γ t-stable points to the right of the origin and for 1 ≤ i ≤ γ − 1

ĥi(t) = argmax
x∈(m̂i(t),m̂i+1(t))

W (x).

We define the process ζγ = (ζγ(t))t>1 by

ζγ(t) :=
γ−1∑
i=1

(γ − i)
W (ĥi(t)) −W (m̂i(t))

ln t
· (1.2)

We obtain the following results.

Theorem 1.2. With the process ζγ defined above it holds that

lim
t→∞

∣∣∣∣ ln Pω[Tγ > t]
ln t

+ ζγ(t)
∣∣∣∣ = 0 in P-probability.

Then we set out results about the distribution of ζγ(t).

Theorem 1.3. The distribution of ζγ(t) does not depend on t. Moreover, for each t > 1, the random variable
ζγ(t) − γ(γ−1)

2 has density fγ given by

fγ(x) =
γ−1∑
i=1

(−1)γ−1−iiγ−2

i!(γ − 1 − i)!
e−x/i (1.3)

for x ≥ 0.

We finish this section by formulating the result about the quenched moments of the meeting time.

Theorem 1.4. Let c be a positive number. Then, we have P-a.s.,

Eω[T c
γ ] <∞ if c <

γ(γ − 1)
2

and

Eω[T c
γ ] = ∞ if c >

γ(γ − 1)
2

·
At this point let us explain why we have chosen to work with reflected random walks on Z+ and not random

walks on Z. Despite the main ideas of our proofs should work for random walks on Z, it is much more difficult
to write them because the number of strategies to reach time t without meeting is much greater in the case
of Z than in the case of Z+. For example, in Figure 1 we represented two random walks on Z+ by black and
grey particles. Imagine that at some time of order smaller than t1, the particles are in two different t1-stable
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Figure 1. Example of a strategy for two random walks on Z+.

wells but in the same t2-stable well with t1 < t2 < t, that is, W (b)−W (a) ≥ ln t1, ln t2 > W (b)−W (c) ≥ ln t1,
W (d) −W (c) ≥ ln t1 and W (d) −W (a) ≥ ln t2. For the two particles not to meet until time t2, we need to
expel the grey one to the right into an other t2-stable well. More generally, in the reflected case, we will see in
the Proof of Theorem 1.4 that at each time scale of smaller order than t, we have to expel the grey particle to
the right into a sufficiently deep well until the two particles are in the first two t-stable wells (indeed, these two
t-stable wells are sufficiently deep to hold the particles until time t with high probability). Therefore, in some
sense the strategy does not depend on the realization ω of our random environment since we always force the
rightmost particle to go to the right. On Z, this not the case anymore. The possible strategies for the random
walks not to meet until time t will strongly depend on the realization ω of our random environment. In Figure 2,
we have two particles on Z which are in two different t1-stable wells but in the same t2-stable well. In this case,
we could expel the black particle to the left into an other t2-stable well instead of expelling the grey one to
the right since the barrier of potential H1 the black particle has to jump over is smaller than the barrier H2

the grey particle has to jump over. Note, however, that we may want to force the grey particle out to the right
because this would lead to a situation when on next steps the “cost” decreases. Thus, we have to know the
exact topography of the potential V (that is the sequence of stable wells at each time scale of smaller order
than t) to determine the strategy which has the cheapest cost. This leads to a great number of strategies to
reach time t, which leaves the problem on Z much more complicated. At the moment we have no conjecture on
the precise behavior of the moments of the meeting time on Z, nevertheless we are inclined to believe that the
behavior should be different from Z+.

In the Proof of Theorem 1.2, another possible approach would be using the Karlin–McGregor formula (see for
example [2]) for determining Pω[Tγ > t]. However, to apply this formula, one would have to obtain estimates on
transition probabilities which are much finer then those obtained in [3]; with the existing estimates the leading
term in the determinant in the Karlin–McGregor formula equals zero, which yields no nontrivial results.

The rest of the paper is organized as follows. In Section 2, we will characterize “good environments” and
prove Lemma 2.4 that will be essential in order to prove Theorem 1.2. Section 3 is dedicated to the proofs of
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Figure 2. Example of two possible strategies for two random walks on Z. H1 < H2.

Theorems 1.2 and 1.4 in the case γ = 2. As we intend to use an inductive argument to prove Theorems 1.2
and 1.4 in the general case, the preliminary treatment of the case γ = 2 is necessary. Section 4 is dedicated to the
proofs of Theorems 1.2 and 1.4 in the general case. Finally, Section 5 is dedicated to the Proof of Theorem 1.3.

We mention here that all the constants that will be defined do not depend on the realization ω of the random
environment but they may depend on the law of the environment and γ. Furthermore, we will denote by K ′

1,
K ′

2, . . . , the “local” constants, that is, those that are used only in a small neighbourhood of the place where
they appear for the first time. In this case we restart the numeration at the beginning of each section.

2. Definition of t-good trajectories

First of all, we need to give more definitions. Observe that between two successive t-stable points m and m′

there is always a point
h = arg max

x∈(m,m′)
W (x)

which is a maximum of W . Thus it is possible to separate two successive t-stable points of W . Denoting by St

the set of all the t-stable points we define

Ht := {h ≥ 0 such that there exist m,m′ ∈ St : h = argmax
x∈(m,m′)

W (x)} ∪ {0}.

Definition 2.1. If m is a t-stable point then we define the t-stable well of m as Dt(m) := [maxHt ∩
[0,m),minHt ∩ (m,∞)).

Furthermore, we have the property that P-a.s., for all t > 1, ∪m∈StDt(m) = R+, where the union is disjoint.
We end this section by giving the definition of the elevation of a finite interval [a, b].

Definition 2.2. The elevation of I = [a, b] is defined as the Brownian functional

E(I) = max
x,y∈I

max
z∈[x,y]

{W (z) −W (x) −W (y) + min
v∈I

W (v)},

where [x, y] denotes the interval with endpoints x, y regardless of x < y or x > y.



262 C. GALLESCO

It can be seen that in the definition of E(I) one may assume that y is the global minimum of W on I, x is
one of the local minima, and z is one of the local maxima of W in I.

In order to prove Theorems 1.2 and 1.4, it will be convenient to exclude some particular trajectories of the
Brownian motion W ; that is why we will give in this section a formal definition of what we call a “t-good
trajectory” of the Brownian motion W . We will see that our definition of a t-good trajectory is not very
restrictive since for almost every trajectory, there exists t0 (which depends on the trajectory of W ) such that for
all t > t0 the trajectory is t-good. For the sake of brevity, we will not indicate in our notations the dependence
on t and ω when no confusion can occur.

The following construction is rather technical, its usefulness will appear more clearly in Sections 3 and 4.
In words, to describe the “optimal” strategy for the random walks not to meet until time t, we will construct
a special sequence of time scales (tan)n for typical trajectories of W . To begin, we will fix a positive small
threshold α	 1 and will consider the first γ tα-stable wells. Then, we will identify the smallest height between
two successive tα-stable wells. This height will be denoted by a1 ln t and by construction we have a1 ≥ α.
Considering now the first γ ta1 -stable wells, we will denote by a2 ln t the smallest height between two successive
ta1 -stable wells (we have a2 ≥ a1). Iterating the procedure will produce a non decreasing sequence (tan)n≥1 of
time scales and we will stop the procedure at the first time scale such that an ≥ 1 (because then the random
walks can avoid the collision for free). Observe that, for each n ≥ 1, the configuration where the γ random
walks are in the first γ tan-stable wells avoids the meeting of two of them with high probability until a time of
order tan .

Formally, let us first take a positive decreasing function α(t) such that limt→∞ α(t) = 0 (for the moment it
is not necessary to explicit α, but in Lemma 2.4 we will take α(t) = ln−5/6 t). Fix t > 1 and consider the first γ
tα(t)-stable points to the right of the origin. Let us denote by m1(1), . . . ,mγ−1(1) and m′

γ(1) these γ tα(t)-stable
points. Then let us define for 1 ≤ j ≤ γ − 2,

hj(1) = arg max
x∈(mj(1),mj+1(1))

W (x)

and
hγ−1(1) = arg max

x∈(mγ−1(1),m′
γ(1))

W (x).

Then, for 1 ≤ j ≤ γ − 1, define

rj(1) =
W (hj(1)) −W (mj(1))

ln t
and for 1 ≤ j ≤ γ − 2,

lj(1) =
W (hj(1)) −W (mj+1(1))

ln t
and

lγ−1(1) =
W (hγ−1(1)) −W (m′

γ(1))
ln t

·
Finally let,

a1 = min
j<γ

{rj(1)} ∧ min
j<γ

{lj(1)}.
We will use the following rule for n ≥ 1.

Case 1: an = lγ−1(n)

If the point m′
γ(n) is tan -stable then do the following. Rename m′

γ(n) as mγ(n). Then consider the first
tan -stable point immediately after mγ(n). Let us call it mγ+1(n). Then define

hγ(n) =arg max
x∈(mγ(n),mγ+1(n))

W (x),

rγ(n) =
W (hγ(n)) −W (mγ(n))

ln t
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and

lγ(n) =
W (hγ(n)) −W (mγ+1(n))

ln t
·

Then, for 1 ≤ j ≤ γ − 1, define
mj(n+ 1) = mj(n)

and
m′

γ(n+ 1) = mγ+1(n).

For 1 ≤ j ≤ γ − 2, define
hj(n+ 1) = arg max

x∈(mj(n+1),mj+1(n+1))
W (x)

and
hγ−1(n+ 1) = arg max

x∈(mγ−1(n+1),m′
γ(n+1))

W (x).

For 1 ≤ j ≤ γ − 1, we define

rj(n+ 1) =
W (hj(n+ 1)) −W (mj(n+ 1))

ln t
,

for 1 ≤ j ≤ γ − 2,

lj(n+ 1) =
W (hj(n+ 1)) −W (mj+1(n+ 1))

ln t
and

lγ−1(n+ 1) =
W (hγ−1(n+ 1)) −W (m′

γ(n+ 1))
ln t

·
Note that for 1 ≤ j ≤ γ − 2,

rj(n+ 1) = rj(n)
lj(n+ 1) = lj(n)

and

rγ−1(n+ 1) = rγ−1(n) − lγ−1(n) + rγ(n)

lγ−1(n+ 1) = lγ(n).

Finally define
an+1 = min

j<γ
{rj(n+ 1)} ∧ min

j<γ
{lj(n+ 1)}.

If the point m′
γ(n) is not tan -stable, nevertheless it belongs to a tan -stable well. Then there exists a tan -stable

point xr such that xr > m′
γ(n) and such that m′

γ(n) ∈ Dtan (xr). Then rename xr as mγ(n). In this case we
define

h∗(n) = arg max
x∈(m′

γ(n),mγ(n))
W (x)

and

rγ(n) =
W (h∗(n)) −W (m′

γ(n))
ln t

·
Next, for 1 ≤ j ≤ γ − 1, we define

mj(n+ 1) = mj(n)

and
m′

γ(n+ 1) = mγ(n).
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Define for 1 ≤ j ≤ γ − 2,
hj(n+ 1) = arg max

x∈(mj(n+1),mj+1(n+1))
W (x) (2.1)

and
hγ−1(n+ 1) = arg max

x∈(mγ−1(n+1),m′
γ(n+1))

W (x). (2.2)

For 1 ≤ j ≤ γ − 1,

rj(n+ 1) =
W (hj(n+ 1)) −W (mj(n+ 1))

ln t
(2.3)

and for 1 ≤ j ≤ γ − 2,

lj(n+ 1) =
W (hj(n+ 1)) −W (mj+1(n+ 1))

ln t
(2.4)

and

lγ−1(n+ 1) =
W (hγ−1(n+ 1)) −W (m′

γ(n+ 1))
ln t

· (2.5)

Note that in this case for j ≤ γ − 2,

rj(n+ 1) = rj(n)
lj(n+ 1) = lj(n)

and
rγ−1(n+ 1) = rγ−1(n).

Finally define
an+1 = min

j<γ
{rj(n+ 1)} ∧ min

j<γ
{lj(n+ 1)}.

Case 2: an �= lγ−1(n)

If the point m′
γ(n) is tan -stable then do the following. Rename m′

γ(n) as mγ(n). Then consider the first
tan -stable point immediately after mγ(n). Let us call it mγ+1(n). Then define

hγ(n) = arg max
x∈(mγ(n),mγ+1(n))

W (x),

rγ(n) =
W (hγ(n)) −W (mγ(n))

ln t
and

lγ(n) =
W (hγ(n)) −W (mγ+1(n))

ln t
·

If the point m′
γ(n) is not tan -stable, nevertheless it belongs to a tan -stable well. Hence there exists a tan -

stable point xr such that xr > m′
γ(n) and such that m′

γ(n) ∈ Dtan (xr) then consider the first tan -stable point
immediately after xr . Call it mγ+1(n). Let us also rename xr as mγ(n). Then let us define

hγ(n) = arg max
x∈(mγ(n),mγ+1(n))

W (x)

and

rγ(n) =
W (hγ(n)) −W (mγ(n))

ln t
·

Next, we have to distinguish two cases.
If an = ri(n) for some 1 ≤ i ≤ γ − 1, we define the following.
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For j < i,

mj(n+ 1) = mj(n).

For i ≤ j ≤ γ − 1

mj(n+ 1) = mj+1(n)

and

m′
γ(n+ 1) = mγ+1(n).

Then for 1 ≤ j ≤ γ− 1, define hj(n+ 1), rj(n+ 1) and lj(n+ 1) as in (2.1)−(2.5). Observe that in this case for
j < i− 1,

lj(n+ 1) = lj(n),
li−1(n+ 1) = li−1(n) − ri(n) + li(n),

for i ≤ j ≤ γ − 3,

lj(n+ 1) = lj+1(n)

and

lγ−2(n+ 1) =
W (hγ−1(n)) −W (mγ(n))

ln t
,

lγ−1(n+ 1) =
W (hγ(n)) −W (mγ+1(n))

ln t
·

Besides, for j < i,
rj(n+ 1) = rj(n)

and for i ≤ j ≤ γ − 1
rj(n+ 1) = rj+1(n).

If an = li(n) for some 1 ≤ i ≤ γ − 2, we define the following quantities. For j ≤ i,

mj(n+ 1) = mj(n),

for i < j ≤ γ − 1,

mj(n+ 1) = mj+1(n)

and

m′
γ(n+ 1) = mγ+1(n).

Then for 1 ≤ j ≤ γ − 1, define hj(n + 1), rj(n + 1) and lj(n + 1) as in (2.1)−(2.5). Observe that in this case,
for j < i,

rj(n+ 1) = rj(n),
ri(n+ 1) = ri(n) − li(n) + ri+1(n),
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and for i < j ≤ γ − 1,
rj(n+ 1) = rj+1(n).

For j < i,
lj(n+ 1) = lj(n),

for i ≤ j ≤ γ − 3,
lj(n+ 1) = lj+1(n)

and

lγ−2(n+ 1) =
W (hγ−1(n)) −W (mγ(n))

ln t
,

lγ−1(n+ 1) =
W (hγ(n)) −W (mγ+1(n))

ln t
.

Finally define
an+1 = min

j<γ

{
rj(n+ 1)

}
∧ min

j<γ

{
lj(n+ 1)

}
.

Thus by construction, we obtain a non decreasing sequence (an)n≥1, P-a.s. In the sequel, we will even see
that the sequence reaches 1 very quickly. Hence, heuristically, the sequence (an)n≥1 will allow us to approximate
time t by the sequence (tan)n≥1. For each order of time tan with an ≤ 1, we will define a strategy for the random
walks not to meet during this order of time. This argument will be developed in Sections 3 for 2 random walks
and 4 for the general case. Furthermore, observe that by construction in all the cases we have that

max
1≤j≤γ−1

{E[mj(n), hj(n)] ∨ E[hj(n),mj+1(n)]} ∨ {E[mγ−1(n), hγ−1(n)] ∨ E[hγ−1(n),m′
γ(n)]} ≤ an−1 ln t,

(2.6)

for n ≥ 1, with the convention a0 = α. This last property will turn out to be important in the proofs of
Theorems 1.2 and 1.4. Now, let us introduce N = N(ω, t) = min{n ≥ 1; an ≥ 1}. As, by construction, the
points mj(N), 1 ≤ j ≤ γ are the first t-stable points to the right of the origin, we can give a new definition of
our process ζγ of Theorem 1.2 in function of the ri(N)-s with 1 ≤ i ≤ γ − 1. Observe that we have,

ζγ(t) =
γ−1∑
i=1

(γ − i)ri(N). (2.7)

Now take 0 < ε(t) < α(t) and for 1 ≤ k ≤ γ, let J1
k (n) the number of tan−ε-stable wells in the interval

[mk(n), hk(n)] and J2
k (n) the number of tan−ε-stable wells in [hk(n),mk+1(n)] (if hγ(n) is not defined we pose

J1
γ (n) = 0 and J2

γ (n) = 0). We define the set of t-good trajectories of W in the following way. For the sake of
brevity, we will use the notations ln2 t := ln ln t and ln3 t := ln ln ln t.

Definition 2.3. Fix t > ee. Let A and B be two constants (they do not depend on ω). A realization ω of the
Brownian motion W is called t-good, if

(i) N = N(ω, t) ≤ A ln2 t;
(ii) m′

γ(N) ≤ B ln3 t ln2 t;
(iii) m′

γ(1) ≤ ln1/2 t;
(iv)

∑γ
k=1 J

1
k (i) + J2

k (i) ≤ ln2 t for 1 ≤ i ≤ N ;
(v) max{|W (x)|;x ∈ [0, B ln3 t ln2 t]} ≤ ln3 t ln t.

The following lemma plays a crucial role.
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Lemma 2.4. Take α(t) = ln−5/6 t and ε = ε(t) = ln−11/12 t and let Λt be the set of ω which are t-good. We
can choose A and B sufficiently large such that P[limt→∞ Λt] = 1.

Proof. We start by showing that we can choose a constant A sufficiently large such that there exists a set Ω′ of
probability 1 such that for all ω ∈ Ω′ there exists t0(ω) such that for all t > t0(ω) the item (i) of Definition 2.3
is true. First take δ > 0 and define the sequence of times tn = e(1+δ)n

for n ≥ 0. Then we define the family of
events

Gn = {ω;N(ω, tn) > A1 ln2 tn}
for A1 a positive constant. We now argue by contradiction that

P

[
lim sup

n→∞
Gn

]
= 0

for A1 sufficiently large. Suppose that P[lim supn→∞Gn] > 0. Then there exists ω ∈ lim supn→∞Gn such that
there exists a subsequence of times (tnl

)l≥1 such that

N(ω, tnl
) > A1 ln2 tnl

(2.8)

for l ≥ 1. By construction of our t-good environments we know that the sequence (ai)i≥1 is non decreasing. As
W is a Brownian motion, we can even say that this sequence is increasing P-a.s. Nevertheless it is not clear
how fast it grows. After a deeper look at the construction and using Lemma 6.1 of [3], we can check that the
sequence (ui)i≥1 = (aiγ)i≥1 verifies the following properties. For each t > 1 there exists a family of positive
continuous i.i.d. random variables (ϕi(t))i≥1 such that

ui+1(t) ≥ (1 + ϕi(t))ui(t) (2.9)

for i ≥ 1. Using item (ii) of Lemma 6.1 of [3], we can even show that the random variables (ϕi(t))i≥1 have
exponential moments. Moreover, observe that the law of (ϕi(t))i≥1 does not depend on t. Iterating (2.9) and
taking the logarithm of both sides, we obtain

ln ui+1(t) ≥
i∑

j=1

ln(1 + ϕj(t)) + lnu1(t)

for i ≥ 1. Then defining N ′ := max{i ≥ 1;ui < 1} and using the facts that uN ′ < 1 and u1 ≥ α(t) we obtain

5
6

ln2 t ≥
N ′−1∑
j=1

ln(1 + ϕj(t)). (2.10)

Now using (2.10), (2.8) and the fact that γ(N ′ + 1) ≥ N , we obtain that for ω ∈ lim supGn

5
6

ln2 tnl
≥

	(A1/2γ) ln2 tnl

∑

j=1

ln(1 + ϕj(tnl
)) (2.11)

for all sufficiently large l.
On the other hand, by Cramér’s theorem and the Borel–Cantelli lemma, we can deduce that

1
(A1/2γ) ln2 tnl

	(A1/2γ) ln2 tnl

∑

j=1

ln(1 + ϕj(tnl
)) −→ E[ln(1 + ϕ1(t1))]
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P-a.s., as l → ∞ with E[ln(1 + ϕ1(t1))] a positive finite constant. Combining this last result with (2.11) we
obtain for P-a.a. ω ∈ lim supn→∞Gn,

5
6

ln2 tnl
≥ A1

4γ
E [ln(1 + ϕ1(t1))] ln2 tnl

for all l large enough.
Taking A1 >

10γ
3E[ln(1+ϕ1(t1))]

this last relation is clearly impossible, and we showed that

P[lim sup
n→∞

Gn] = 0.

Now let us define the sequence of intervals In = [tn, tn+1) for n ≥ 0. It remains to show that we can find a
new constant A sufficiently large such that P-a.s., N(ω, t) ≤ A ln ln t for t sufficiently large. This is easy if we
observe that for t ∈ In, N(ω, t) ≤ N(ω, tn) +N(ω, tn+1) (this follows from the simple fact that that for t ∈ In,
[α(t) ln t, ln t] ⊂ [α(tn) ln tn, ln tn] ∪ [α(tn+1) ln tn+1, ln tn+1]). This implies together with P[lim supn→∞Gn] = 0
that P-a.s., for every t ∈ In N(ω, t) ≤ 2A1 ln ln tn+1 for all n sufficiently large. With this last observation it is
sufficient to take A ≥ 3A1 to have that (i) of Definition 2.3 holds for P-a.a. ω for all t sufficiently large.

We continue the proof of Lemma 2.4 by showing that item (ii) of Definition 2.3 holds for P-a.a. ω for all t
sufficiently large. Again consider the sequence of intervals In = [tn, tn+1) for n ≥ 0 and define the events

Dn = {there exist γ tn+1-stable wells in the interval [0, ln2 tn]}

for n ≥ 0. By the scaling property of the Brownian motion the probability ofDn is independent of n. Furthermore
observe that

D0 ⊃
2γ−1⋂
j=1

{
W

(
j

2γ

)
−W

(
j − 1
2γ

)
< −3,W

(
j + 1
2γ

)
−W

(
j

2γ

)
> 3
}
,

for δ < 2. As this last event has positive probability we obtain that there exists a positive constant C such that
P[Dn] ≥ C for n ≥ 0 and δ < 2. Then consider the events

En = {there exist γ tn+1-stable wells in the interval [0,M lnn ln2 tn]}

for M > (− ln(1 − C))−1 and n ≥ 1. By the Markov property and the fact that P[Dn] ≥ C we obtain that

P[En] ≥ 1 − n−M ln 1
1−C

for n ≥ 1. Using the Borel–Cantelli lemma, we obtain that P-a.s. there exists n0 = n0(ω) such that for every
n > n0 there exist γ tn+1-stable wells in the interval [0,M lnn ln2 tn]. Now observe that for t ∈ In we have the
two following inequalities

(1 + δ)n ≤ ln t ≤ (1 + δ)n+1 (2.12)

and
Lω(tn+1,M lnn ln2 tn) ≤ Lω(t,M lnn ln2 tn) ≤ Lω(tn,M lnn ln2 tn) (2.13)

where Lω(x, y) is the number of x-stable wells in the interval [0, y]. Inequality (2.13) follows from the fact that
Stn+1 ⊂ St ⊂ Stn . Let us take t ∈ In for n > n0. Then we know that there exist γ tn+1-stable wells in the interval
[0,M lnn ln2 tn]. By inequality (2.13) we know that there exist γ t-stable wells in the interval [0,M lnn ln2 tn].
And by inequality (2.12) we know that there exists γ t-stable wells in the interval

[0,M [ln3 t− ln2(1 + δ)] ln2 t].
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Finally, taking δ = e− 1 we showed that (ii) of Definition 2.3 holds for P-a.a. ω for all t sufficiently large. The
proof of (iii) is completely equivalent to the proof of (ii).

We will now show that item (iv) of Definition 2.3 holds for P-a.a. ω for all t sufficiently large. In fact, it
is sufficient to show the following statement. Fix t > e and consider the first γ t-stable points to the right of
the origin. Let us call the last one m̂γ . We will show that P-a.s., for t sufficiently large Lω(t1−ε, m̂γ) ≤ ln2 t.
Note that as ε(t) → 0 as t→ ∞ we have for t sufficiently large that Lω(t1−ε, m̂γ) ≤ Lω( t

2 , m̂γ). Then, consider
the sequence of intervals In with δ < 2. By the proof of (ii), we know that there exists a positive constant M
such that P-a.s. there exists n0 = n0(ω) such that for all n > n0 there exists γ tn-stable wells in the interval
[0,M lnn ln2 tn].

Now, let ψi be the width of the i-th tn

2 -stable well divided by (1+δ)2n. By Lemma 2.1 of [4] we know that the
variables (ψi)i≥2 are i.i.d. with exponential tail. It follows from Cramér’s theorem that there exists a positive
finite constant M1 such that

P

[
n∑

i=1

ψi < M lnn

]
≤ exp{−M1n},

for all n > 1. Therefore, by the Borel–Cantelli lemma we have that P-a.s. there exists n1 = n1(ω) such that
for every n > n1 we have Lω( tn

2 , m̂γ) ≤ n. Finally, for t ∈ In, by (2.13) we have that Lω( t
2 , m̂γ) ≤ n and by

(2.12) Lω( t
2 , m̂γ) ≤ ln2 t

ln(1+δ) . Taking δ = e − 1 we showed that (iv) of Definition 2.3 holds for P-a.a. ω for all t
sufficiently large. .

We end the proof of Lemma 2.4 by showing that item (v) of Definition 2.3 holds for P-a.a. ω for all t sufficiently
large. By the law of the Iterated Logarithm for Brownian motion, we have that, P-a.s., there exists t1(ω) such
that |W (t)| ≤ 2

√
σ2t ln2 t, ∀t ≥ t1(ω), which at its turn implies that there exists t2(ω) > t1(ω) such that

maxx∈[0,t] |W (x)| ≤ 2
√
σ2t ln2 t, ∀t ≥ t2(ω). And finally we deduce for t sufficiently large,

max
x∈[0,B ln3 t ln2 t]

|W (x)| ≤ ln3 t ln t

which ends the proof of Lemma 2.4. �

3. Proofs of Theorems 1.2 and 1.4 in the case γ = 2

3.1. Some auxiliary results

We will systematically use the following notation,

τA(ξi) = inf{t > 0; ξi(t) ∈ A}
with 1 ≤ i ≤ γ and A ⊂ Z+. We now recall some results that we will need later.

For any integers a < x < b, the probability for a random walk ξ starting at x to reach b before a is given by:

Px
ω[τb(ξ) < τa(ξ)] =

∑x
y=a+1 eV (y)−V (a)∑b
y=a+1 eV (y)−V (a)

, (3.1)

see e.g. Lemma 1 in [18].

We will also need the following upper bound on the probability of confinement which is derived from
Proposition 4.1 of [8]. Let I = [a, b] with 0 ≤ a < b <∞ be an interval of Z+. Then define

H+(I) =max
x∈I

(
max

y∈[x,b]
V (y) − min

y∈[a,x)
V (y)

)
,

H−(I) =max
x∈I

(
max

y∈[a,x]
V (y) − min

y∈(x,b]
V (y)

)
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and let H(I) = H+(I) ∧H−(I). For a < x < b we have

Px
ω[τ{a,b}(ξ) > t] ≤ exp

{
− t

C1(b− a)4eH(I)

}
(3.2)

with C1 a positive constant.

The upper bound (3.2) can be too rough, for our purpose, if we consider an interval [a, b] = [m,m′] where m
and m′ are two neighboring t-stable points (i.e. (m,m′)∩St = ∅). That is why we also need the following upper
bound (see Lem. 3.1 of [3]). Let t > 1, and I+ := [h,m′] and I− := [m,h] with h = argmaxx∈(m,m′)W (x). Let

Δ1 = m′ −m,

γ1 = max
x∈[m,m′]

V (x) − min
x∈[m,m′]

V (x).

For all x ∈ [m,m′], it holds on Γt that

Px
ω[τ{m′,m}(ξ) > t/k] ≤ exp

{
− t

1
2 (1−E(I+) ln−1 t)

(
C2(Δ1 ln2K0 t)−1

−C3eγ1/2 exp

{
− λ(I+)eE(I+)t

1
2 (1−E(I+) ln−1 t)

2k

})}

+ exp

{
− t

1
2 (1−E(I−) ln−1 t)

(
C2(Δ1 ln2K0 t)−1

−C3eγ1/2 exp

{
− λ(I−)eE(I−)t

1
2 (1−E(I−) ln−1 t)

2k

})}
, (3.3)

where C2 and C3 are positive constants, λ(I+) (respectively λ(I−)) is the spectral gap of the reflected random
walk on the interval I+ (respectively I−) and k is such that ln k = o(ln t) as t→ ∞.

We eventually need to estimate the cost of escaping a well to the right. Let again I = [a, b], m =
arg minx∈[a,b]W (x) and suppose that W (b) = maxx∈(m,b]W (x). We will use the following estimate (see e.g.
Lem. 3.4 in [3]), for any s > 0,

Pm
ω [τb(ξ) < s] ≤ C4se−V (b)+V (m) (3.4)

with C4 a positive constant.

3.2. Upper bound for Pω[T2 > t]

Let us remind at this point a useful consequence of the KMT strong approximation theorem: if x is not too
far from the origin, then V (x) and W (x) are rather close for the vast majority of environments. Hence, it is
convenient to introduce the following set of “good” environments, and to restrict our forthcoming computations
to this set. Fix an arbitrary M0 > 0; for any t > e, let

Γt =
{
ω : |V (x) −W (x)| ≤ K0 ln ln t , x ∈

[
0, lnM0 t

]}
, (3.5)

where we can choose K0 ∈ (0,∞) in such a way that for P-almost all ω, it holds that ω ∈ Γt for all t large
enough (cf. e.g. (13) of [3]).

To bound the probability distribution tail Pω[T2 > t] from above the main idea is to define a sequence of
increasing stopping times (σi)i≥0 such that on each interval of the form [σi, σi+1] we can find a simple strategy
for the random walks not to meet. We formalize this argument as follows.
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First, for technical reasons let us find an upper bound for Pω[T2 > t1+δ] for δ > 0 arbitrary instead of Pω [T2 > t].
Fix t > 1 and define for 1 ≤ i ≤ N , the following stopping times

σi = inf {s > 0; ξ2(s) = h1(i)}

and the following events
Bi = {T2 /∈ [σi−1, σi]}

for 1 ≤ i ≤ N − 1 (with the convention σ0 = 0) and

BN =
{
T2 /∈

[
σN−1, t

1+δ
]} ∩{σN−1 ≤ t1+δ

2

}
·

To find the upper bound for Pω[T2 > t1+δ], the following decomposition is the key of our analysis

Pω

[
T2 > t1+δ

]
= Pω

[
T2 > t1+δ, σN−1 ≤ t1+δ

2

]
+ Pω

[
T2 > t1+δ, σN−1 >

t1+δ

2

]
. (3.6)

As by (2.6), E[0, h1(N − 1)] < ln t, by a similar argument as that we will use in Section 3.2.1 for the term
Pω[B1, σ1 ≥ tb1 ], we can show that

Pω

[
T2 > t1+δ, σN−1 >

t1+δ

2

]
≤ o

(
exp(− ln8 t)

)
(3.7)

as t→ ∞ and ω ∈ Γt ∩ Λt.

For the upper bound of the term Pω[T2 > t, σN−1 ≤ t1+δ/2] we start by noting that

Pω

[
T2 > t1+δ, σN−1 ≤ t1+δ

2

]
≤ Pω[B1 ∩ . . . ∩BN ]

= Pω[B1]Pω[B2 | B1] . . . Pω[BN | B1 ∩B2 ∩ . . . ∩BN−1]. (3.8)

In the next subsections we will find upper bounds for the terms of the product of the right-hand side of (3.8).

3.2.1. Upper bound for Pω[B1]

Fix t > 1 and let ε′ = ε′(t) = (28 + 8K0) ln2 t ln−1 t where K0 is from (3.5). We bound the event B1 from
above in the following way,

Pω [B1] ≤ Pω

[
B1, σ1 ≥ tα+ε′]

+ Pω

[
σ1 < tα+ε′]

. (3.9)

From now on, for the sake of brevity we will denote b1 = α+ε′. In the next two paragraphs we treat both terms
of the right-hand side of (3.9).

Upper bound for Pω[σ1 < tb1 ]

Using the Markov property, we obtain

Pω

[
σ1 < tb1

] ≤ Pm1(1)
ω [τh1(1)(ξ2) < tb1 ].

Therefore, applying (3.4) to the last term, we obtain for t sufficiently large and ω ∈ Γt ∩ Λt

Pω

[
σ1 < tb1

] ≤ C4t
ε′
t−(r1(1)−α). (3.10)
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Upper bound for Pω[B1, σ1 ≥ tb1 ]

We will show that this term is negligible in comparison with (3.10) as t→ ∞ on the set of environments which
belong to Γt ∩ Λt. To show this, we will couple the two random walks with the random walks restricted to the
interval [0, h1(1)]. So, we need to consider two other processes, which are reflected versions of our random walks
in random environment: let ξ̂1 and ξ̂2 be the reflected RWRE on the interval I1 = [0, h1(1)]. The processes ξ̂1
and ξ̂2 have the same jump rates as ξ1 and ξ2 on [0, h1(1)], but jump from h1 to h1 − 1 at rate ω−

h1(1)
. By

construction we obtain
Pω

[
B1, σ1 ≥ tb1

] ≤ Pω

[
τ̂ > tb1

]
, (3.11)

where τ̂ is the first meeting time of the two random walks ξ̂1 and ξ̂2.
The idea is now to use the spectral properties of the reflected random walks to find an upper bound for the

right-hand side of (3.11). We start by showing that, for ω ∈ Γt ∩ Λt, with probability at least ln−K t, with K a
positive constant, the two random walks restricted to the interval I1 will meet in a time of order tα+ ε′

2 . We will
denote b′1 = α+ ε′

2 . First observe that

Pω

[
τ̂ ≤ tb

′
1

]
≥ Pω

[
ξ̂1(tb

′
1) ∈ [m1(1), h1(1)] , ξ̂2(tb

′
1) ∈ [0,m1(1)]

]
.

As the two random walks in fixed environment are independent we have

Pω

[
τ̂ ≤ tb

′
1

]
≥ Pω

[
ξ̂1(tb

′
1) ∈ [m1(1), h1(1)]

]
Pω

[
ξ̂2(tb

′
1) ∈ [0,m1(1)]

]
.

Then we can write

Pω

[
ξ̂1(tb

′
1) ∈ [m1(1), h1(1)]

]
=

h1(1)∑
i=m1(1)

Pω

[
ξ̂1(tb

′
1) = i

]

and apply Corollary 2.1.5 in [16] to obtain

Pω

[
ξ̂1(tb

′
1) ∈ [m1(1), h1(1)]

]
≥

h1(1)∑
i=m1(1)

μI1(i) − exp(−λ(I1)tb
′
1)

h1(1)∑
i=m1(1)

(
μI1(i)
μI1(1)

) 1
2

(3.12)

where μI1 and λ(I1) are respectively the invariant measure and the spectral gap of the reflected random walks
ξ̂1 and ξ̂2. At this point, let us define

U1 :=
h1(1)∑

i=m1(1)

μI1(i) and U2 :=
h1(1)∑

i=m1(1)

(
μI1(i)
μI1(1)

) 1
2

·

We can write a similar estimate for Pω

[
ξ̂2(tb

′
1) ∈ [0,m1(1)]

]
that is

Pω

[
ξ̂2(tb

′
1) ∈ [0,m1(1)]

]
≥

m1(1)∑
i=0

μI1(i) − exp(−λ(I1)tb
′
1)

m1(1)∑
i=0

(
μI1(i)
μI1(2)

) 1
2

:= V1 − V2 exp(−λ(I1)tb
′
1). (3.13)

Combining (3.12) and (3.13) we obtain that

Pω

[
τ̂ ≤ tb

′
1

]
≥ U1V1 − (U1V2 + U2V1) exp

(
−λ(I1)tb

′
1

)
. (3.14)
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Now, we treat the term U1V1. Note that if ω ∈ Γt ∩ Λt we obtain, using (14) of [3], that

U1 =
m1(1)∑
i=0

μI1(i) ≥ μI1(m1) ≥ K ′
1e

−V (m1(1))∑
y∈I1

e−V (y)
≥ K ′

1

(h1(1) + 1)
ln−2K0 t

where K0 is the positive constant from (3.5) and K ′
1 is a positive constant. Applying the same treatment to V1,

we obtain that

U1V1 ≥ K ′
2

(h1(1) + 1)2
ln−4K0 t

where K ′
2 is a positive constant. On Λt, we have that (h1(1) + 1) ≤ A ln3 t ln2 t, so we obtain

U1V1 ≥ K ′
3 ln−2

3 t ln−4(1+K0) t (3.15)

with K ′
3 a positive constant.

Concerning the second term of (3.14), we will see that if ω ∈ Γt ∩ Λt, it is negligible in comparison with the
first one. We use the upper bound

U1V2 + U2V1 ≤ (h1(1) + 1)

[
1

(μI1(2))
1
2

+
1

(μI1(1))
1
2

]
·

Using (14) of [3], it is then elementary to show that if ω ∈ Γt ∩ Λt,

U1V2 + U2V1 ≤ K ′
4t

ln3 t ln5 t (3.16)

with K ′
4 a positive constant.

On the other hand, by Proposition 3.1 of [3] and the fact that by (2.6), E(I1) < α ln t, we obtain

exp
(
−λ(I1)tb

′
1

)
= o

(
exp

(
− ln3/2 t

))
.

This shows together with (3.16) that the second term of the right-hand side of (3.14) is negligible in comparison
with the first one. Finally, from (3.15) and (3.16), we deduce that

Pω

[
τ̂ ≤ tb

′
1

]
≥ K ′

3

2
ln−2

3 t ln−4(1+K0) t

for t large enough and ω ∈ Γt ∩ Λt.

Now, dividing the time interval [0, tα+ε′
] into (roughly speaking) t

ε′
2 intervals of size tα+ ε′

2 and applying the
Markov property we get that

Pω

[
τ̂ > tb1

]
≤
(
1 −K ′

4 ln−2
3 t ln−4(1+K0) t

)	t ε′
2 


≤ exp (−K ′
4 ln9 t)

for t large enough and ω ∈ Γt ∩Λt. As a consequence, the term Pω[B1, σ1 ≥ tb1 ] is negligible in comparison with
Pω[σ1 < tb1 ].

To sum up this subsection, we obtained

Pω[B1] ≤ 2C4t
−(r1(1)−α−ε′) = t−(r1(1)+o(1)) (3.17)

as t→ ∞ and ω ∈ Γt ∩ Λt.
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3.2.2. Upper bounds for Pω[Bi | B1 ∩ . . . ∩Bi−1], where 2 ≤ i ≤ N − 1

If h1(i) = h1(i − 1) then we obviously have Pω[Bi | B1 ∩ . . . ∩ Bi−1] = 1. If h1(i) > h1(i − 1) we do the
following. Let us write bi = ai−1 + ε′. We will use the following decomposition

Pω[Bi | B1 ∩ . . . ∩Bi−1] ≤ Pω[Bi ∩ {σi − σi−1 ≥ tbi} | B1 ∩ . . . ∩Bi−1]

+ Pω[σi − σi−1 < tbi | B1 ∩ . . . ∩Bi−1].

As the event {σi − σi−1 < tbi} is independent of B1 ∩ . . . ∩Bi−1 we obtain

Pω[Bi | B1 ∩ · · · ∩Bi−1] ≤ Pω[Bi ∩ {σi − σi−1 ≥ tbi} | B1 ∩ . . . ∩Bi−1]

+ Pω[σi − σi−1 < tbi ]. (3.18)

Upper bounds for Pω[σi − σi−1 < tbi ]

Using the Markov property and (3.4), we obtain for ω ∈ Γt ∩ Λt

Pω

[
σi − σi−1 < tbi

] ≤ C4t
ε′
t−(r2(i−1)−ai−1). (3.19)

Upper bounds for Pω[Bi ∩ {σi − σi−1 ≥ tbi} | B1 ∩ . . . ∩Bi−1]

As the event B1∩ . . .∩Bi−1 belongs to Fσi−1 the σ-field generated by ξ1 and ξ2 up to the stopping time σi−1,
applying the Markov property, we obtain

Pω[Bi ∩ {σi − σi−1 ≥ tbi} | B1 ∩ . . . ∩Bi−1] =
h1(i−1)∑

x=0

Pω

[
Bi ∩ {σi − σi−1 ≥ tbi} | ξ1(σi−1) = x

]

×Pω [ξ1(σi−1) = x | B1 ∩ . . . ∩Bi−1]

≤ max
x<h1(i−1)

Pω

[
Bi ∩ {σi − σi−1 ≥ tbi} | ξ1(σi−1) = x

]
.

The next step is to find an upper bound for

Pω

[
Bi ∩ {σi − σi−1 ≥ tbi} | ξ1(σi−1) = x

]
uniformly in x for x ∈ [0, h1(i− 1)). As we did in Section 3.2.1, we can couple the two random walks with the
random walks restricted to the interval Ii = [0, h1(i)]. We immediately conclude that

Pω[Bi ∩
{
σi − σi−1 ≥ tbi

} | B1 ∩ . . . ∩Bi−1] ≤ exp (−K ′
4 ln9 t),

which is negligible in comparison with the right-hand side of (3.19).

Thus, in the case h1(i) > h1(i− 1), we obtain

Pω[Bi | B1 ∩ . . . ∩Bi−1] ≤ 2C4t
−(r2(i−1)−ai−1−ε′) = t−(r2(i−1)−ai−1+o(1)) (3.20)

as t→ ∞ and ω ∈ Γt ∩ Λt.
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3.2.3. Upper bound for Pω[BN | B1 ∩ . . . ∩BN−1]

If h1(N) = h1(N − 1) then we obviously have Pω[BN | B1 ∩ . . . ∩BN−1] = 1.
If h1(N) > h1(N − 1) we use the following decomposition.

Pω [BN | B1 ∩ . . . ∩BN−1] ≤ Pω

[
BN ∩

{
σN − σN−1 ≥ taN−1+ε′} | B1 ∩ . . . ∩BN−1

]
+ Pω

[
σN − σN−1 < taN−1+ε′]

. (3.21)

The upper estimate of the last term of (3.21) is easily computed.

Pω

[
σN − σN−1 < taN−1+ε′] ≤ 2C4t

−(r2(N−1)−aN−1−ε′) (3.22)

for t large enough and ω ∈ Γt ∩ Λt.

It is not much more difficult to show that the first term of (3.21) is negligible in comparison with the last
one. To this end, just notice that

Pω

[
BN ∩

{
σN − σN−1 ≥ taN−1+ε′} | B1 ∩ . . . ∩BN−1

]
≤ Pω[T2 /∈ [σN−1, σN ∧ t1+δ], σN ∧ t1+δ − σN−1 ≥ taN−1+ε′ | B1 ∩ . . . ∩BN−1]

holds for sufficiently large t since aN−1 + ε′ < 1 + δ/2 for sufficiently large t. This last term can be bounded
from above by the same method we used for the term Pω[B1 ∩ σ1 ≥ tb1 ] of Section 3.2.1. A similar estimate can
be computed which shows that it is negligible in comparison with (3.22).

Finally in the case h1(N) > h1(N − 1) we obtained

Pω[BN | B1 ∩ . . . ∩BN−1] ≤ 2C4t
−(r2(N−1)−aN−1−ε′) = t−(r2(N−1)−aN−1+o(1)) (3.23)

as t→ ∞ and ω ∈ Γt ∩ Λt.

3.2.4. Conclusion

Using the results of the precedent sections, we now show that

N∏
i=1

Pω[Bi | B1 ∩ . . . ∩Bi−1] ≤ t−(r1(N)+o(1)) (3.24)

as t→ ∞ and ω ∈ Γt ∩ Λt.

We will proceed by induction. For every i ≤ 1, consider the product

Πi =
i∏

j=1

Pω[Bj | B1 ∩ . . . ∩Bj−1].

Then we make the following induction hypothesis

Πi ≤ t−(r1(i)+o(1))

for some i ≥ 1. We will show that it implies

Πi+1 ≤ t−(r1(i+1)+o(1)).
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Indeed we have,
Πi+1 = ΠiPω[Bi+1 | B1 ∩ . . . ∩Bi].

If h1(i + 1) = h1(i) we have Pω[Bi+1 | B1 ∩ . . . ∩ Bi] = 1 and Πi+1 = Πi. But in this case note that by
construction we have r1(i+ 1) = r1(i). So, we obtain

Πi+1 ≤ t−(r1(i+1)+o(1)).

If h1(i+ 1) > h1(i) we have by (3.20) and (3.23)

Pω[Bi+1 | B1 ∩ . . . ∩Bi] ≤ t−(r2(i)−ai+o(1))

which implies with the induction hypothesis

Πi+1 ≤ t−(r1(i)−ai+r2(i)+o(1)).

But in this case we have by construction either r1(i+ 1) = r1(i)− ai + r2(i) or r1(i+ 1) = r2(i) and r1(i) = ai.
This leads to

Πi+1 ≤ t−(r1(i+1)+o(1)).

As the induction hypothesis is verified for i = 1 by (3.17), we showed that

N∏
i=1

Pω[Bi | B1 ∩ . . . ∩Bi−1] ≤ t−(r1(N)+o(1)) (3.25)

as t→ ∞ and ω ∈ Γt ∩ Λt.
We are now able to deduce the first part of Theorem 1.4. Indeed, from Lemma 2.4, (3.7) and (3.25), we have

P-a.s.,
Pω[T2 > t1+δ] ≤ t−(r1(N)−o(1))

as t→ ∞. We obtain P-a.s.,

Pω[T2 > t] ≤ t
−
(

r1(N)
1+δ +o(1)

)
(3.26)

as t→ ∞. We can immediately deduce the first part of Theorem 1.4. Indeed, as r1(N) ≥ 1, we obtain P-a.s.,

Pω[T2 > t] ≤ t
−
(

1
1+δ +o(1)

)

as t → ∞. To conclude, fix c < 1, as δ is arbitrary we can choose δ sufficiently small such that δ < 1−c
c . This

shows that Eω[T c
2 ] <∞, P-a.s.

Now, in order to prove Theorem 1.2, we shall improve (3.26). That is why we shall consider convergence in
P-probability instead of P-a.s. to obtain

ln Pω[T2 > t] ≤ −ζ2(t) ln t+ o(ln t) (3.27)

as t → ∞. At this point, we can explain why we chose to bound Pω[T2 > t1+δ] instead of Pω[T2 > t]. We
know by definition of the elevation that E[0, h1(N)] < ln t but when considering P-a.s. convergence, we do
not control the elevation and it can be arbitrarily close to ln t. In order to show (3.7) and to bound the term
Pω[BN | B1 . . . BN−1], we had to consider an order of time greater than t, that is t1+δ. Considering convergence
in P-probability things become easier since from now on, we can control the elevation of the interval [0, h1(N)]
as follows. Fix t > 0 and 0 < ρ < 1. Let Ξt be the set of environments ω such that for every ω ∈ Ξt we have
E[0, h1(N)] < (1 − ρ) ln t. By Lemma 4.1 of [3], for any ε > 0, we can choose ρ > 0 small enough in such a way
that P[Ξt] > (1 − ε) ln t. Furthermore, P[Ξt] does not depend on t. Since our goal is now to prove convergence
in P-probability, we can restrict ourselves to the set Ξt ∩ Λt ∩ Γt and bound directly Pω[T2 > t] instead of
Pω[T2 > t1+δ]. Finally, to obtain (3.27) we can repeat exactly the same computations we used to get (3.26).
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3.3. Lower bound for Pω[T2 > t]

In order to bound Pω[T2 > t] from below, the main idea is to find the best strategy for the two random walks
not to meet until time t. To this end we define the following events. First, let us write τ2

i (ξ2) for the time of
second return to state i for the random walk ξ2. Let

D0 = {τ{0,2}(ξ1) > τm′
2(1)(ξ2)} ∩ {ξ2(u) ≤ ξ2(s), 0 ≤ u ≤ s ≤ τm′

2(1)
(ξ2)}.

Then for 1 ≤ i < N ,

Di = {τh1(i)(ξ1) − τm′
2(i)(ξ2) > tai} ∩ {τm′

2(i+1)(ξ2) < τ2
h1(i)(ξ2)} ∩ {τm′

2(i+1)(ξ2) − τm′
2(i)

(ξ2) ≤ tai}

and finally
DN = {τh1(N)(ξ1) − τm′

2(N)(ξ2) > t} ∩ {τ2
h1(N)(ξ2) − τm′

2(N)(ξ2) > t}.
On the event D0, we want the random walk ξ1 to stay at position 1 until ξ2 reaches the point m′

2(1). On the
events Di, for 1 ≤ i < N , we want ξ1 to reach for the first time the point h1(i) in a time greater than tai and we
want ξ2 to reach the point m′

2(i+ 1) in a time less than tai before it reaches h1(i) for the second time. Finally,
on DN , we want the random walks to stay in their respective t-stable wells until time t.

Thus we obtain

Pω[T2 > t] ≥ Pω[D0 ∩ . . . ∩DN ]
≥ Pω[D0]Pω[D1 | D0] . . .Pω[DN | D0 ∩D1 ∩ . . . ∩DN−1]. (3.28)

We will now find a lower bound for each term of the right-hand side of (3.28).

3.3.1. Lower bound for Pω[D0]

First of all, note that by condition B, the random walks remain in mean a time smaller than κ/2 in every
state. Thus, we can obtain a lower estimate of the event D0 writing

D0 ⊃{τ{0,2}(ξ1) > τm′
2(1)

(ξ2)} ∩ {ξ2(u) ≤ ξ2(s), 0 ≤ u ≤ s ≤ τm′
2(1)(ξ2)} ∩

{
τm′

2(1)(ξ2) ≤ m′
2(1)κ
2

}

which implies by independence of the two random walks

Pω[D0] ≥ Pω

[
ξ2(u) ≤ ξ2(s), 0 ≤ u ≤ s ≤ τm′

2(1)(ξ2), τm′
2(1)(ξ2) ≤ m′

2(1)κ
2

]
Pω

[
τ{0,2}(ξ1) >

m′
2(1)κ
2

]
·

Then, using condition B and the fact that jump Markov processes have independent and exponentially dis-
tributed jump time increments, we can write

Pω[D0] ≥ Pω

[
τ{0,2}(ξ1) >

m′
2(1)κ
2

]
Pω[ξ2(s) ≤ ξ2(t), 0 ≤ s ≤ t ≤ τm′

2(1)
(ξ2)]

(
PX

[
X ≤ κ

2

])m′
2(1)

where X is a random variable with exponential law of parameter 2/κ and PX is the law of X . From the last
expression we obtain

Pω[D0] ≥
(

e−κ2
(e− 1)

2eκ2

)ln1/2 t

(3.29)

for ω ∈ Γt ∩ Λt. Note that, as κ > 1, we have that
(

e−κ2
(e−1)

2eκ2

)
< 1.
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3.3.2. Lower bound for Pω[D1 | D0]

First, for the sake of brevity let us write βi = τm′
2(i)(ξ2) for i ≥ 1. Using again the Markov property and the

independence of the two random walks, we obtain

Pω[D1 | D0] = P
m′

2(1)
ω [τm′

2(2)(ξ2) < τh1(1)(ξ2), τm′
2(2)(ξ2) ≤ ta1 ]P1

ω[τh1(1)(ξ1) > ta1 ]. (3.30)

We first show that the second term of the right-hand side of (3.30) is greater than 1/2 for t sufficiently large
and ω ∈ Γt ∩ Λt. Observe that by the Markov property and (3.4) we have

P1
ω[τh1(1)(ξ1) > ta1 ] ≥ Pm1(1)

ω [τh1(1)(ξ1) > ta1 ] ≥
(
1 − C4t

a1e−V (h1(1))+V (m1(1))
)+

(3.31)

where (·)+ is the positive part. One can see that for ω ∈ Γt ∩ Λt and t sufficiently large the right-hand side
of the last inequality will be larger than 1/2. By construction, we have W (h1(1)) −W (m1(1)) ≥ a1 ln t so we
obtain

C4t
a1e−V (h1(1))+V (m1(1)) ≤ C4 ln−2K0 t ≤ 1

2
(3.32)

for t sufficiently large.
Now we will treat the first term of the right-hand side of (3.30). We have to consider two cases: m′

2(1) is
ta1 -stable and m′

2(1) is not ta1 -stable.

Case 1: m′
2(1) is ta1 -stable

First using the Markov property let us write

P
m′

2(1)
ω

[
τm′

2(2)
(ξ2) < τh1(1)(ξ2), τm′

2(2)(ξ2) ≤ ta1
] ≥ P

m′
2(1)

ω

[
τh2(1)(ξ2) < τh1(1)(ξ2), τh2(1)(ξ2) ≤ ta1

2

]

× Ph2(1)
ω

[
τm′

2(2)(ξ2) < τm′
2(1)

(ξ2), τm′
2(2)(ξ2) ≤ ta1

2

]
:= R1 × U1. (3.33)

Let us bound from below the first term of the right-hand side of (3.33).

Lower bound for R1

In this case m′
2(1) ≡ m2(1). Fix t > e and let ε = ε(t) from Lemma 2.4. Then define

η2(1) = max{x < m2(1);W (x) −W (m2(1)) = (a1 − ε) ln t}.
Furthermore, suppose that we have J1

2 (1) = J1
2 (1)(ω, t) ta1−ε-stable wells in the interval [m2(1), h2(1)]. If

J1
2 (1) ≥ 1, then we define for 1 ≤ i ≤ J1

2 (1) the point wi(1) as the minimum of the ith ta1−ε-stable well and

vi(1) = argmax
wi(1)<x<wi+1(1)

W (x).

We also define v0(1) := arg maxm2(1)<x<w1(1)W (x). See Figure 3.
If J1

2 (1) = 0, we can directly find a lower bound for R1. We write

R1 ≥ Pm2(1)
ω [τh2(1)(ξ2) < τη2(1)(ξ2)] − Pm2(1)

ω

[
τ{η2(1),h2(1)}(ξ2) >

ta1

2

]
·

Then using (3.1) for the first term and (3.2) for the second term (noting that H([η2(1), h2(1)]) ≤ (a1 − ε) ln t+
2K0 ln2 t), we obtain for ω ∈ Γt ∩ Λt and t→ ∞

R1 ≥ e−(W (h2(1))−W (η2(1))) ln−2K0 t

h2(1) − η2(1)
− o(exp(−t ε

2 )). (3.34)
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W (x)

x

η2(1) m2(1) v0(1) w1(1) v1(1)w2(1)

v2(1)

w3(1)

v3(1)

w4(1)

h2(1)

(a1 − ε) ln t

Figure 3. On the definition of η2(1), vi(1) and wi(1). Case J1
2 (1) = 4.

If J1
2 (1) ≥ 1 we have a bit more work to do. By the Markov property we obtain

R1 ≥
J1
2 (1)∏
i=0

Pwi(1)
ω

[
τwi+1(1)(ξ2) < τvi−1(1)(ξ2), τwi+1(1)(ξ2) ≤ ta1

2(J1
2 (1) + 1)

]
(3.35)

with the conventions v−1(1) = η2(1), w0(1) = m2(1) and wJ1
2 (1)+1(1) = h2(1).

Let us first bound from below the first term of the product. The other terms of the product will be treated
in a similar way. First note that by the Markov property we have

Pm2(1)
ω

[
τw1(1)(ξ2) < τη2(1)(ξ2), τw1(1)(ξ2) ≤ ta1

2(J1
2 (1) + 1)

]

≥ Pm2(1)
ω

[
τv0(1)(ξ2) < τη2(1)(ξ2), τv0(1)(ξ2) ≤ ta1

4(J1
2 (1) + 1)

]

× Pv0(1)
ω

[
τw1(1)(ξ2) < τm2(1)(ξ2), τw1(1)(ξ2) ≤ ta1

4(J1
2 (1) + 1)

]
:= R2 ×R3. (3.36)

We have

R2 ≥ Pm2(1)
ω [τv0(1)(ξ2) < τη2(1)(ξ2)] − Pω

[
τ{v0(1),η2(1)}(ξ2) >

ta1

4(J1
2 (1) + 1)

]
·

Then, using (3.1) for the first term and (3.2) for the second term, we obtain for ω ∈ Γt

R2 ≥ e−(W (v0(1))−W (η2(1))) ln−2K0 t

v0(1) − η2(1)
− o(exp(−t ε

2 )) (3.37)

as t→ ∞.
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For R3 we write

R3 ≥ Pv0(1)
ω [τw1(1)(ξ2) < τm2(1)(ξ2)] − Pv0(1)

ω

[
τ{w1(1),m2(1)}(ξ2) >

ta1

4(J1
2 (1) + 1)

]
·

Analogously, using (3.1) for the first term and (3.3) for the second term, we obtain for ω ∈ Γt ∩ Λt

R3 ≥ ln−2K0 t

w1(1) −m2(1)
− o(exp (−t ε

3 )) (3.38)

as t→ ∞. To obtain o(exp (−t ε
3 )) we used Proposition 3.1 of [3] and the facts that on Γt∩Λt, Δ1 ≤ B ln3 t ln2 t,

γ1 ≤ 2 ln3 t ln t, J1
2 (1) ≤ ln2 t and a1 − E(I+)∨E(I−)

ln t ≥ ε.
We will now bound the terms of the right-hand side product of (3.35) from below, for 1 ≤ i ≤ J1

2 (1). First
note that by the Markov property we have

Pwi(1)
ω

[
τwi+1(1)(ξ2) < τvi−1(1)(ξ2), τwi+1(1)(ξ2) ≤

ta1

2(J1
2 (1) + 1)

]

≥ Pwi(1)
ω

[
τvi(1)(ξ2) < τvi−1(1)(ξ2), τvi(1)(ξ2) ≤

ta1

4(J1
2 (1) + 1)

]

× Pvi(1)
ω

[
τwi+1(1)(ξ2) < τwi(1)(ξ2), τwi+1(1)(ξ2) ≤ ta1

4(J1
2 (1) + 1)

]
:= Ri

4 ×Ri
5.

Now, to bound Ri
4, we are going to distinguish two cases: W (vi−1(1)) < W (vi(1)) and W (vi−1(1)) > W (vi(1)).

In the first case, we can directly use a similar computation as that we used for R2. In the second case note that
W (vi−1(1)) −W (vi(1)) < ε ln t since (a1 − ε) ln t ≤ W (vi(1)) −W (wi(1)) < a1 ln t. With this observation, we
can use a similar computation as that we used for R2. So, suming up, we obtain in both cases

Ri
4 ≥ e−(W (vi(1))−W (vi−1(1)))t−ε ln−2K0 t

vi(1) − vi−1(1)
− o(exp(−t ε

2 ) (3.39)

as t→ ∞ and ω ∈ Γt ∩ Λt.

Then, for Ri
5 using (3.1) and (3.3), we obtain for ω ∈ Γt ∩ Λt

Ri
5 ≥ ln−2K0 t

wi+1(1) − wi(1)
− o(exp (−t ε

3 )). (3.40)

as t→ ∞.

Finally from (3.34) and (3.37)−(3.40) we obtain for ω ∈ Γt ∩ Λt and sufficiently large t

R1 ≥
[
t−ε ln−2K0 t

(2h2(1))2

]J1
2 (1)+1

t−(r2(1)−a1). (3.41)

Now let us go back to equation (3.33).

Lower bound for U1

First observe that in this case, m′
2(2) = m3(1). Now, we divide the interval [h2(1),m3(1)] into ta1−ε-

stable wells. We denote by J2
2 (1) = J2

2 (1)(ω, t) the number of ta1−ε-stable wells in the interval [h2(1),m3(1)].
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W (x)

xh2(1) l1(1) g1(1) l2(1)g2(1) l3(1) g3(1)

l4(1)

g4(1)

m3(1)

Figure 4. On the definition of li(1) and gi(1). Case J2
2 (1) = 4.

If J2
2 (1) ≥ 1, then we define for 1 ≤ i ≤ J2

2 (1) the point li(1) as the minimum of the ith ta1−ε-stable well and
gi(1) := arg maxli(1)<x<li+1(1)W (x). We also define g1

J2
2 (1)

= arg maxl
J2
2 (1)(1)<x<m3(1)W (x). See Figure 4. If

J2
2 (1) = 0, using (3.1) and (3.3), we can directly compute a lower bound for U1 for ω ∈ Γt ∩ Λt. As t → ∞, we

obtain

U1 ≥ ln−2K0 t

m3(1) − wJ1
2
(1)

− o(exp(−t ε
3 ). (3.42)

If J2
2 (1) ≥ 1 we use the following decomposition

U1 ≥ Ph2(1)
ω

[
τl1(1)(ξ2) < τw

J1
2 (1)(1)

(ξ2), τl1(1)(ξ2) ≤ ta1

2(J2
2 (1) + 1)

]

×
J2
2 (1)∏
i=1

Pli(1)
ω

[
τli+1(1)(ξ2) < τgi−1(1)(ξ2), τli+1(1)(ξ2) ≤

ta1

2(J2
2 (1) + 1)

]
· (3.43)

Let us define

U i
2 := Pli(1)

ω

[
τli+1(1)(ξ2) < τgi−1(1)(ξ2), τli+1(1)(ξ2) ≤ ta1

2(J2
2 (1) + 1)

]

for 0 ≤ i ≤ J2
2 (1). Then, let us note that by the Markov property,

U i
2 ≥ Pli(1)

ω

[
τgi(1)(ξ2) < τgi−1(1)(ξ2), τgi(1)(ξ2) ≤

ta1

4(J2
2 (1) + 1)

]

× Pgi(1)
ω

[
τli+1(1)(ξ2) < τli(1)(ξ2), τli+1(1)(ξ2) ≤

ta1

4(J2
2 (1) + 1)

]
:= U i

3 × U i
4. (3.44)

Now, to bound the term U i
3 we have to distinguish two cases.
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Case 1: W (gi(1)) < W (gi−1(1))
In this case, by a similar computation as that we used for Ri

4 in the case W (vi−1(1) < W (vi(1), we obtain
for ω ∈ Γt ∩ Λt,

U i
3 ≥ ln−2K0 t

gi(1) − gi−1(1)
− o(exp

(−t ε
2
)

(3.45)

as t→ ∞.

Case 2: W (gi(1)) > W (gi−1(1))
By a similar computation as that we used for Ri

4 in the caseW (vi−1(1)) > W (vi(1)), we obtain for ω ∈ Γt∩Λt,

U i
3 ≥ t−ε ln−2K0 t

gi(1) − gi−1(1)
− o(exp(−t ε

2 ) (3.46)

t→ ∞.

Then, for U i
4, using (3.1) and (3.3), we obtain for ω ∈ Γt ∩ Λt,

U i
4 ≥ ln−2K0 t

li+1(1) − li(1)
− o(exp(−t ε

3 ) (3.47)

as t → ∞. Finally as the first term of the right-hand side of (3.43) is completely similar to the term U i
3,

from (3.42), (3.45), (3.46) and (3.47) we obtain for ω ∈ Γt ∩ Λt and sufficiently large t,

U1 ≥
[
t−ε ln−2K0 t

(2m3(1))2

]J2
2 (1)+1

· (3.48)

Case 2: m′
2(1) is not ta1 -stable

In this case we have to distinguish two subcases.

• a1 = l1(1)
To find a lower bound for P

m′
2(1)

ω [τm′
2(2)(ξ2) < τh1(1)(ξ2), τm′

2(2)(ξ2) ≤ ta1 ] in this case, we can use a similar
computation as for the term U1 above. We obtain that for ω ∈ Γt ∩ Λt and sufficiently large t,

P
m′

2(1)
ω [τm′

2(2)(ξ2) < τh1(1)(ξ2), τm′
2(2)(ξ2) ≤ ta1 ] ≥

[
t−ε ln−2K0 t

(2m2(1))2

]J2
1 (1)

· (3.49)

• a1 = r1(1)
In this case, we use the decomposition (3.33). The unique difference is that, using the Markov property we
decompose the term R1 as follows

P
m′

2(1)
ω

[
τh2(1)(ξ2) < τh1(1)(ξ2), τh2(1)(ξ2) ≤ ta1

2

]
≥ P

m′
2(1)

ω

[
τm2(1)(ξ2) < τh1(1)(ξ2), τm2(1)(ξ2) ≤ ta1

4

]

×Pm2(1)
ω

[
τh2(1)(ξ2) < τh1(1)(ξ2), τh2(1)(ξ2) ≤ ta1

4

]
·

(3.50)
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To find a lower bound for the first term of the right-hand side of (3.50) we can use a similar computation as
for the term U1. For the second term of the right-hand side of (3.50) we can use a similar computation as
for R1. We obtain for ω ∈ Γt ∩ Λt and sufficiently large t

P
m′

2(1)
ω [τm′

2(2)
(ξ2) < τh1(1)(ξ2), τm′

2(2)(ξ2) ≤ ta1 ]

≥
[
t−ε ln−4K0 t

(2m3(1))2

]J1
2 (1)+J2

1 (1)+J2
2 (1)+2

t−(r2(1)−a1). (3.51)

Finally, using (3.32), (3.41), (3.48), (3.49) and (3.51) we obtain

Pω[D1 | D0] ≥ 1
2

[
t−ε ln−4K0 t

(2m′
2(2))2

]J1
2 (1)+J2

1 (1)+J2
2 (1)+2

t−(r2(1)−a1)
+

= t−((r2(1)−a1)++o(1)) (3.52)

as t→ ∞ and ω ∈ Γt ∩ Λt.

3.3.3. Lower bounds for Pω[Di | D0 ∩ . . . ∩Di−1], where 2 ≤ i < N

Using the Markov property, we first obtain

Pω[Di | D0 ∩ . . . ∩Di−1] =
h1(i−1)∑

x=0

Pω[Di | ξ1(βi) = x, ξ2(βi) = m′
2(i)]Pω [ξ1(βi) = x | D0 ∩ . . . ∩Di−1] .

Let us bound Pω[Di | ξ1(βi) = x, ξ2(βi) = m′
2(i)] uniformly in x for x < h1(i − 1). We have by the Markov

property and the independence of the two random walks

Pω[Di | ξ1(βi) = x, ξ2(βi) = m′
2(i)]

= Px
ω[τh1(i)(ξ1) > tai ]Pm′

2(i)
ω [τm′

2(i+1)(ξ2) < τh1(i)(ξ2), τm′
2(i+1)(ξ2) ≤ tai ]

:= V i
1 × V i

2 . (3.53)

Let us first treat the first term of the right-hand side of (3.53).

Lower bounds for V i
1

If h1(i) > h1(i− 1), then by the Markov property and as x < h1(i− 1) we obtain,

V i
1 ≥ Pm1(i)

ω [τh1(i)(ξ1) > tai ].

As we did in (3.31) we show that for ω ∈ Γt ∩ Λt and t large enough we have

Pm1(i)
ω

[
τh1(i)(ξ1) > tai

] ≥ 1
2
·

If h1(i) = h1(i− 1), we use the following decomposition

V i
1 ≥ Px

ω[τm1(i)(ξ1) < τh1(i)(ξ1), τm1(i)(ξ1) ≤ tai ]Pm1(i)
ω

[
τh1(i)(ξ1) > tai

]
. (3.54)

Again we have

Pm1(i)
ω

[
τh1(i)(ξ1) > tai

] ≥ 1
2
· (3.55)
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For the first term of the right-hand side of (3.54), we can perform exactly the same computation as in
Section 3.3.2 for the term U1, to find that, being J1

1 (i) the number of tai−ε-stable wells in the interval
[m1(i), h1(i)],

Px
ω[τm1(i)(ξ1) < τh1(i)(ξ1), τm1(i)(ξ1) ≤ tai ] ≥

[
t−ε ln−2K0 t

(2h1(i))2

]J1
1 (i)+1

(3.56)

for ω ∈ Γt ∩ Λt and sufficiently large t.

Lower bounds for V i
2

This term is completely similar to the term

P
m′

2(1)
ω [τm′

2(2)
(ξ2) < τh1(1)(ξ2), τm′

2(2)(ξ2) ≤ ta1 ]

of Section 3.3.2. We follow step by step the method we applied in that section to obtain that

V i
2 ≥

[
t−ε ln−4K0 t

(2m′
2(i+ 1))2

]J1
2 (i)+J2

1 (i)+J2
2 (i)+2

t−(r2(i)−ai)
+
. (3.57)

Finally using (3.55)−(3.57) we obtain

Pω[Di | D0 ∩ · · · ∩Di−1] ≥ 1
2

[
t−ε ln−4K0 t

(2m′
2(i+ 1))2

]J1
1 (i)+J1

2 (i)+J2
1 (i)+J2

2 (i)+3

t−(r2(i)−ai)
+

= t−((r2(i)−ai)
++o(1)) (3.58)

as t→ ∞ and ω ∈ Γt ∩ Λt.

3.3.4. Lower bound for Pω[DN | D0 ∩ . . . ∩DN−1]

As we have already done in Section 3.3.3 , we have by the Markov property

Pω[DN | D1 ∩ . . . ∩DN−1] =
h1(N−1)∑

x=0

Pω[DN | ξ1(βN ) = x, ξ2(βN ) = m′
2(N)]

× Pω[ξ1(βN ) = x, ξ2(βN ) = m′
2(N) | D0 ∩ . . . ∩DN−1].

Then, we have by the Markov property and the independence of the two random walks

Pω[DN | ξ1(βN ) = x, ξ2(βN ) = m′
2(N)] = Px

ω[τh1(N)(ξ1) > t]Pm′
2(N)

ω [τh1(N)(ξ2) > t]

with x < h1(N − 1). As we did in Section 3.3.3 for V i
1 , one can see that

Px
ω[τh1(N)(ξ1) > t] ≥ 1

2

[
t−ε ln−2K0 t

(2h1(N))2

]J1
1 (N)

for t large enough and ω ∈ Γt ∩ Λt. Using (3.4), we show that for t large enough and ω ∈ Γt ∩ Λt,

P
m′

2(N)
ω [τh1(N)(ξ2) > t] ≥ 1

2
·

Therefore, we obtain

Pω[DN | D0 ∩ . . . ∩DN−1] ≥ 1
4

[
t−ε ln−2K0 t

(2m′
2(N))2

]J1
1 (N)

= to(1) (3.59)

as t→ ∞ and ω ∈ Γt ∩ Λt.
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3.3.5. Conclusion

Using the results of the precedent subsections, it is possible to show, using the same kind of induction
argument as in 3.2.4, that

N∏
i=1

Pω[Di | D1 ∩ . . . ∩Di−1] ≥ t−(r1(N)+o(1)) (3.60)

as t→ ∞ and ω ∈ Γt ∩ Λt.
By Lemma 2.4, (3.29) and (3.60), we obtain that P-a.s.

Pω[T2 > t] ≥ t−(r1(N)+o(1)) = t−(ζ2(t)+o(1)) (3.61)

as t→ ∞. Together with (3.27), the inequality (3.61) proves Theorem 1.2.

To conclude, we deduce the second part of Theorem 1.4. Note first that by Theorem 1.3, we have for θ > 0
and every t ≥ e

P[ζ2(t) < 1 + θ] = P[ζ2(e) < 1 + θ] > 0 (3.62)

the last inequality is obtained using the fact that, as W is a Brownian motion, ζ2(e) is absolutely continuous
in relation to the Lebesgue measure with density non almost surely zero in [1, 1 + θ]. From (3.62) and as the
sequence (ζ2(n))n≥3 is ergodic, there exists an increasing subsequence (ni)i such that 1 ≤ ζ2(ni) < 1 + θ, P-a.s.
for all i ≥ 1. Now by Markov’s inequality, we get

Eω[T c
2 ] ≥ Pω[T2 > ni]nc

i (3.63)

for every ni. Thus from (3.61), (3.63) and the fact that 1 ≤ ζ2(ni) < 1+ θ for the subsequence (ni)i we get that

Eω[T c
2 ] ≥ n

(c−(1+θ)+o(1))
i

for i sufficiently large. If c > 1, taking θ < c− 1 and letting i→ ∞ we obtain Eω[T c
2 ] = +∞, P-a.s.

4. Proofs of Theorems 1.2 and 1.4 in the general case

4.1. Upper bound for Pω[Tγ > t]

First, as we did in the case γ = 2, let us find an upper bound for Pω[Tγ > t1+δ] for δ > 0 arbitrary instead
of Pω[Tγ > t]. Then we write

Pω[Tγ > t1+δ] = Pω[T{γ−1,γ} > t1+δ | Tγ−1 > t1+δ]Pω[Tγ−1 > t1+δ]

where T{γ−1,γ} = inf{s > 0; ξγ−1(s) = ξγ(s)}. Let us suppose that for some γ > 2,

Pω[Tγ−1 > t1+δ] ≤ t−(
∑γ−2

i=1 (γ−i)ri(N)+o(1)) (4.1)

as t→ ∞ and ω ∈ Γt ∩ Λt. The goal of this section is to show that this implies

Pω[Tγ > t1+δ] ≤ t−(
∑γ−1

i=1 (γ−i)ri(N)+o(1)) (4.2)

as t → ∞ and ω ∈ Γt ∩ Λt. As by Section 3.2, (4.1) is true for γ = 3, we will conclude by induction that (4.2)
is true for all γ ≥ 2.

Now, we have to bound from above the term Pω[T{γ−1,γ} > t1+δ | Tγ−1 > t1+δ] for γ ≥ 3 to obtain an upper
bound for Pω[Tγ > t1+δ]. For the sake of brevity, let us write P∗ω[·] := Pω[ · | Tγ−1 > t1+δ].

Fix t > 1 and define, for 1 ≤ i ≤ N , the following stopping times

σi = inf{s > 0; ξγ(s) = hγ−1(i)}, (4.3)



286 C. GALLESCO

the following events
Bi = {T{γ−1,γ} /∈ [σi−1, σi]} (4.4)

for 1 ≤ i ≤ N − 1, with the convention σ0 = 0 and

BN = {T{γ−1,γ} /∈ [σN−1, t
1+δ]} ∩

{
σN−1 <

t1+δ

2

}
·

To find the upper bound for P∗ω[T{γ−1,γ} > t1+δ], we will use the following decomposition

P∗ω[T{γ−1,γ} > t1+δ] = P∗ω

[
T{γ−1,γ} > t1+δ, σN−1 <

t1+δ

2

]
+ P∗ω

[
T{γ−1,γ} > t1+δ, σN−1 ≥ t1+δ

2

]
· (4.5)

Using the same kind of arguments as in Section 3.2, it is possible to show that the second term of the right-hand
side of (4.5) is negligible in comparison with the first one as t tends to infinity (see [9] Sect. 4.1 for more details).
For the upper bound of the first term of (4.5) we start by noting that

P∗ω

[
T{γ−1,γ} > t1+δ, σN−1 <

t1+δ

2

]
≤ P∗ω[B1 ∩ . . . ∩BN ]

= P∗ω[B1]P∗ω[B2 | B1] . . . P∗ω[BN | B1 ∩B2 ∩ . . . ∩BN−1]. (4.6)

We now give upper bounds for the terms of the product of the right-hand side of (4.6) (see [9] Sects. 4.1.1
to 4.1.3 for more details). We have

P∗ω[B1] ≤ t−(
∑γ−1

j=1 rj(1)+o(1)) (4.7)

as t→ ∞ and ω ∈ Γt ∩ Λt.

If hγ−1(N) = hγ−1(N − 1), we have P∗ω[Bi | B1 ∩ · · · ∩ Bi−1] = 1 for 1 ≤ i ≤ N . Otherwise if hγ−1(N) >
hγ−1(N − 1), we have for 1 ≤ i ≤ N ,

P∗ω[Bi | B1 ∩ · · · ∩Bi−1] ≤ 2C4t
εt−(rγ(i−1)−ai−1) = t−(rγ(i−1)−ai−1+o(1)) (4.8)

as t→ ∞ and ω ∈ Γt ∩ Λt.
By (4.7), (4.8) and the construction of Section 2 we can deduce by the same type of induction as that we

used in Section 3.2.4 that for γ ≥ 3,

P∗ω[T{γ−1,γ} > t] ≤ t
−
(

1
1+δ

∑γ−1
j=1 rj(N)+o(1)

)

as t→ ∞ and ω ∈ Γt ∩ Λt. This leads to

Pω[Tγ > t] ≤ t
−
(

ζγ (t)
1+δ +o(1)

)

as t→ ∞ and ω ∈ Γt ∩Λt. We can immediately deduce the first part of Theorem 1.4. Indeed, as rj(N) ≥ 1, for
1 ≤ j ≤ γ − 1, we obtain P-a.s.,

Pω[Tγ > t] ≤ t
−
(

γ(γ−1)
2(1+δ) +o(1)

)

as t→ ∞. To conclude, fix c < γ(γ−1)
2 , as δ is arbitrary we can choose δ sufficiently small such that δ < γ(γ−1)−2c

2c .
This shows that Eω[T c

γ ] <∞, P-a.s.



MEETING TIME OF INDEPENDENT RANDOM WALKS IN RANDOM ENVIRONMENT 287

Now, in order to prove Theorem 1.2, we shall improve (3.26). That is why we shall consider convergence in
P-probability instead of P-a.s. convergence to obtain

ln Pω[Tγ > t] ≤ −ζγ(t) ln t+ o(ln t) (4.9)

as t → ∞. By a similar argument as that we used in Section 3.2.4 for the case γ = 2 we can obtain (4.9) in
P-probability.

4.2. Lower bound for Pω[Tγ > t]

Let τ2
i (ξj) the time of second return to state i for the jth random walk.

We define the following events

D1
0 = ∩γ−1

i=1 {τ{i−1,i+1}(ξi) > τm′
γ(1)(ξγ)} ∩ {ξγ(s) ≤ ξγ(t), 0 ≤ s < t ≤ τm′

γ(1)(ξγ)}
and for 2 ≤ j ≤ γ − 1,

Dj
0 = ∩γ−j

i=1 {τ{i−1,i+1}(ξi) > τmγ−j+1(1)(ξγ−j+1)}
∩γ−1

i=γ−j+2 {τ2
mi(1)−1(ξi) ∧ τmi(1)+1(ξi) > τmγ−j+1(1)(ξγ−j+1)}

∩ {τ2
m′

γ(1)−1(ξγ) ∧ τm′
γ (1)+1(ξγ) > τmγ−j+1(1)(ξN−j+1)}

∩ {ξγ−j+1(s) ≤ ξγ−j+1(t), 0 ≤ s < t ≤ τmγ−j+1(1)(ξγ−j+1)}

with the convention ∩γ−1
i=γ {. . .} = Ω. We define D0 = ∩γ−1

j=1D
j
0. For 1 ≤ n ≤ N , define

β(n) = max
2≤j≤γ

{τmj(n)(ξj)}.

Next, for 1 ≤ n < N , if an = lγ−1(n) then define

Dn = {τ2
hγ−1(n)(ξγ) > τm′

γ(n+1)(ξγ), τm′
γ (n+1)(ξγ) − β(n) ≤ tan}

∩γ−1
j=1 {(τ2

hj−1(n)(ξj) ∧ τhj(n)(ξj)) − β(n) > tan}

with the convention τ2
h0(n)(ξ1) = τh1(n)(ξ1).

If an = ri(n) for some 1 ≤ i ≤ γ − 1 or li(n) for some 1 ≤ i ≤ γ − 2 then define

Dn = ∩γ
j=i{τ2

hj−1(n)(ξj) > τmj+1(n)(ξj), θjt
an < τmj+1(n)(ξj) − β(n) ≤ θ′jt

an}
∩i−1

j=1 {(τ2
hj−1(n)(ξj) ∧ τhj(n)(ξj)) − β(n) > tan}

∩γ
j=i {τhj+1(n)(ξj) − β(n) > tan}

with the conventions τ2
h0(n)(ξ1) = τh1(n)(ξ1), ∩0

j=1{. . .} = Ω,

hγ+1(n) = min
x>mγ+1(n)

{W (x) −W (mγ+1(n)) = an ln t}

and
θj =

γ − j

γ − i+ 1
, θ′j =

γ − j + 1
γ − i+ 1

·

Finally define

DN = {τ2
hγ−1(N)(ξγ) − β(N)) > t} ∩γ−1

j=1 {(τ2
hj(N)(ξj) ∧ τhj+1(N)(ξj)) − β(N) > t}

∩ {τh1(N)(ξ1) − β(N) > t}.
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On the event D0 we place all the γ random walks at the points mj(1), for 1 ≤ j ≤ γ − 1 and m′
γ(1). Then,

on the event Dn for 1 ≤ n ≤ N − 1, suppose that the smallest well is I(n) = [hi−1(n), hi(n)], that is to say,
ri(n) ∧ li−1(n) = an. By (3.2), we know that the random walk in the well I(n) could escape from it in a time
of order tan+ε with high probability. In order for the random walk which is in this well not to meet the random
walks which are in the neighboring wells, we will oblige this random walk and those that are in the following
wells to move to the right to occupy the first γ− i+1 tan -stable wells to the right of the well I(n). Furthermore,
we want this to occur in a time of order less than tan , avoiding the random walks meeting by controlling the
intervals of time each random walk moves to its well to the next well. The random walks to the left of the
well I(n) stay in their respective wells. Finally on DN we oblige all the random walks to stay in their respective
t-stable wells until time t.

Observe that
Pω[Tγ > t] ≥ Pω[D0]Pω[D1 | D0] . . . Pω[DN | D0 ∩D1 ∩ . . . ∩DN−1]. (4.10)

We now give a lower bound for each term of the right-hand side of (4.10) (see [9] Sects. 4.2.1 to 4.2.3 for more
details).

For Pω[D0], we obtain

Pω[D0] ≥
(

e−(γ−1)κ2
(e− 1)

2eκ2

)γ ln1/2 t

(4.11)

for ω ∈ Γt ∩ Λt. For Pω[Dn | D0 ∩D1 ∩ . . . ∩Dn−1], with 1 ≤ n ≤ N − 1, if an = lγ−1(n), we have

Pω[Dn | D0 ∩ · · · ∩Dn−1] ≥ t−((rγ(n)−an)++o(1)) (4.12)

as t→ ∞ and ω ∈ Γt ∩ Λt. If an = ri(n) for some 1 ≤ i ≤ γ − 1 or li(n) for some 1 ≤ i ≤ γ − 2, we obtain

Pω[Dn | D0 ∩ · · · ∩Dn−1] ≥ t−(
∑γ

j=i rj+1(n)−(γ−i+1)an+o(1)) (4.13)

as t→ ∞ and ω ∈ Γt ∩ Λt. Finally, it is possible to show that

Pω[DN | D0 ∩ · · · ∩DN−1] ≥ to(1) (4.14)

as t→ ∞ and ω ∈ Γt ∩ Λt.

We now show by induction that the total cost of our strategy immediately after step n− 1 is bounded from
below by t−(

∑γ−1
j=1 (γ−j)rj(n)+o(1)). That is to say, if we denote by

Πn−1 = Pω[D0]Pω[D1 | D0] . . . Pω[Dn−1 | D0 ∩D1 ∩ . . . ∩Dn−2]

for 1 ≤ n ≤ N , we have
Πn−1 ≥ t−(

∑γ−1
j=1 (γ−j)rj(n)+o(1))

as t→ ∞ and ω ∈ Γt ∩ Λt.
So suppose that

Πn−1 ≥ t−(
∑γ−1

j=1 (γ−j)rj(n)+o(1))

is true for some 1 ≤ n < N . We will show that it implies that

Πn ≥ t−(
∑γ−1

j=1 (γ−j)rj(n+1)+o(1)).
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Case 1: an = lγ−1(n)

In this case we have by (4.12),

Pω[Dn | D0 ∩ · · · ∩Dn−1] ≥ t−((rγ(n)−an)++o(1)).

In the case (rγ(n) − an)+ > 0, let us compute the total cost using the construction of Section 2.

γ−1∑
j=1

(γ − j)rj(n) + rγ(n) − an =
γ−2∑
j=1

(γ − j)rj(n) + rγ−1(n) + rγ(n) − an

=
γ−2∑
j=1

(γ − j)rj(n+ 1) + rγ−1(n+ 1)

=
γ−1∑
j=1

(γ − j)rj(n+ 1)

where we use the fact that, in this case, rγ−1(n+ 1) = rγ−1(n) + rγ(n)− an. In the case (rγ(n)− an)+ = 0, we
have directly

γ−1∑
j=1

(γ − j)rj(n) =
γ−1∑
j=1

(γ − j)rj(n+ 1).

since rj(n) = rj(n+ 1) for 1 ≤ j ≤ γ − 1.
Therefore, in both cases (rγ(n) − an)+ > 0 and (rγ(n) − an)+ = 0 we obtain

Πn ≥ t−(
∑γ−1

j=1 (γ−j)rj(n+1)+o(1)).

Case 2: an = ri(n) for some 1 ≤ i ≤ γ − 1 or li(n) for some 1 ≤ i ≤ γ − 2

By (4.13) we have

Pω[Dn | D0 ∩ · · · ∩Dn−1] ≥ t−(
∑γ

j=i rj+1(n)−(γ−i+1)an+o(1)). (4.15)

As an example, let us treat the case an = ri(n). Let us compute the total cost using the construction of Section 2.
We have

γ−1∑
j=1

(γ − j)rj(n) +
γ∑

j=i

rj(n) − (γ − i+ 1)an = rγ(n) +
γ−1∑

j=i+1

(γ − j + 1)rj(n) + (γ − i+ 1)ri(n)

+
i−2∑
j=1

(γ − j)rj(n) + (γ − i+ 1)ri−1(n) − (γ − i+ 1)an

=
γ−1∑
j=i

(γ − j)rj(n+ 1) +
i−2∑
j=1

(γ − j)rj(n+ 1)

+ (γ − i+ 1)ri−1(n+ 1)

=
γ−1∑
j=1

(γ − j)rj(n+ 1)

where we used the fact that for j < i, rj(n+ 1) = rj(n) and for j ≥ i, rj(n+ 1) = rj+1(n). Hence, we obtain

Πn ≥ t−(
∑γ−1

j=1 (γ−j)rj(n+1)+o(1)).
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By (4.11) and Definition 2.3 item (iii), we have

Π0 ≥ t−(
∑γ−1

j=1 (γ−j)rj(1)+o(1))

as t→ ∞ and ω ∈ Γt ∩ Λt. Thus, the induction is right for every 1 ≤ 1 < N , in particular we obtain

ΠN−1 ≥ t−(
∑γ−1

j=1 (γ−j)rj(N)+o(1))

as t→ ∞ and ω ∈ Γt ∩ Λt. Finally by (4.14), we have

ΠN ≥ t−(
∑γ−1

j=1 (γ−j)rj(N)+o(1))

as t→ ∞ and ω ∈ Γt ∩ Λt. Which implies

Pω[Tγ > t] ≥ t−(
∑γ−1

j=1 (γ−j)rj+1(N)+o(1))

or by definition of the process ζγ ,
Pω[Tγ > t] ≥ t−(ζγ(t)+o(1))

as t tends to infinity and ω ∈ Γt∩Λt. Together with (4.9), this last inequality concludes the Proof of Theorem 1.2
in the general case. To obtain the second part of Theorem 1.4 we use a similar argument as in Section 3.3.5 for
the case γ = 2.

5. Proof of Theorem 1.3

We will start this last section by treating the case γ = 2. From this special case, we will deduce the proof of
the general case.

Consider the Brownian motions W and W ′ given by W ′(·) = λW (·/λ2) for λ > 0. Denoting respectively
by St(W ) and St(W ′) the sets of the t-stable points of W and W ′, it is elementary to observe that

St(W ′) = λ2St(W )

and as Ht(W ) = St(−W ) we also have
Ht(W ′) = λ2Ht(W ).

Then using these two properties and expression (1.2) of ζ2(t) we obtain

ζ2(t,W ) = ζ2(tλ,W ′).

As W and W ′ are identically distributed we deduce ζ2(t)
law= ζ2(tλ). With this scaling property, we observe that

the distribution of ζ2(t), for fixed t, does not depend on t. Let us now compute the distribution of ζ2(e). To this
end, define the following random variables

V0 = inf
{
t > 0 : W (t) − inf

0≤s≤t
W (s) = 1

}
,

M0 = inf
{
t ∈ [0, V0] : W (t) = inf

0≤s≤V0
W (s)

}
,

V1 = inf
{
t > V0 : sup

V0≤s≤t
W (s) −W (t) = 1

}
,

H1 = inf
{
t ∈ [V0, V1] : W (t) = sup

V0≤s≤V1

W (s)
}
.

See Figure 5.
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V1

W (x)
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1

1

Figure 5. On the definition of V0, M0, V1 and H1.

By definition of ζ2(e), one can immediately see that ζ2(e) = W (H1) −W (M0). Then we have

P[ζ2(e) − 1 > u] = P[W (H1) −W (M0) − 1 > u]
= P[W (H1) −W (V0) +W (V0) −W (M0) − 1 > u]
= P[W (H1) −W (V0) > u].

By Lemma 6.1 (ii) of [3] we know that the random variable W (H1) −W (V0) is exponentially distributed with
mean 1. So, this ends the Proof of Theorem 1.3 in the case γ = 2.

In the general case, observe that by the same argument we used for the case γ = 2, we show that the
distribution of ζγ(t) does not depend on t. Finally to obtain the distribution of ζγ(e) observe that by the fact
that W has independent increments, ζγ(e)− γ(γ−1)

2 is the sum of γ−1 independent exponential random variables
with parameters 1/(γ − i), 1 ≤ i ≤ γ − 1. Finally after some elementary computations we get expression (1.3).

Final comments

In this last part, we discuss two other natural questions closely related to ours. Suppose that we have γ ≥ 2
random walks starting at positions x1 < x2 < · · · < xγ .

The first question concerns the coalescing time of the γ random walks. Indeed, suppose that whenever two
random walks meet they stay together forever. Thus, we can define the coalescing time T ′

γ as the moment when
all the random walks coalesce. Observe that this time is equal to the time when the first and the γth random
walks meet. Thus, we can deduce that T ′

γ behaves like T2 for all γ ≥ 2.
The second question concerns the meeting time T ′

γ of all the γ random walks at the same time, that is

T ′′
γ = inf{s > 0; ξ1(s) = ξ2(s) = · · · = ξγ(s)}.

Unlike the case of standard random walks, for which T ′′
γ is almost surely finite only for γ ≤ 3, in the case of

random walks in random environment, it is possible to prove, analogously to what is shown in the Appendix
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of [20], that for all γ ≥ 2, the γ random walks will all meet in the origin P-a.s., and from this follows the
finiteness of T ′′

γ .
In fact, it is possible to show that T ′′

γ also has the same behavior as the meeting time T2 of two random walks.
First, it is possible to show that when the γ random walks are in the same t-stable well they meet at the same
time with high probability. Then, in the light of the Proofs of Theorems 1.2 and 1.4, for the γ random walks
not to meet at the same time until time t, the strategy which has the “cheapest cost” is to keep the first γ − 1
random walks in the first t-stable well and to send the γth random walk into the second t-stable well. This is
exactly what we have done in the Proof of Theorem 1.4 for the case of two random walks.

To conclude, Theorems 1.2 and 1.4 for T2 should also be true for T ′
γ and T ′′

γ .
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Poincaré 46 (2010) 525–536.

[11] A. Greven and F. den Hollander, Large deviations for a random walk in random environment. Ann. Probab. 22 (1994)
1381−1428.

[12] Y. Hu and Z. Shi, Moderate deviations for diffusions with Brownian potentials. Ann. Probab. 32 (2004) 3191–3220.

[13] B. Hughes, Random Walks and Random Environments. The Clarendon Press, Oxford University Press, New York. Random
Environments 2 (1996).

[14] H. Kesten, M.V. Kozlov and F. Spitzer, A limit law for random walk in a random environment. Compos. Math. 30 (1975)
145–168.
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