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POLYNOMIAL DEVIATION BOUNDS FOR RECURRENT HARRIS PROCESSES
HAVING GENERAL STATE SPACE

Eva Löcherbach1 and Dasha Loukianova2

Abstract. Consider a strong Markov process in continuous time, taking values in some Polish state
space. Recently, Douc et al. [Stoc. Proc. Appl. 119, (2009) 897–923] introduced verifiable conditions
in terms of a supermartingale property implying an explicit control of modulated moments of hitting
times. We show how this control can be translated into a control of polynomial moments of abstract
regeneration times which are obtained by using the regeneration method of Nummelin, extended to
the time-continuous context. As a consequence, if a p-th moment of the regeneration times exists, we
obtain non asymptotic deviation bounds of the form

Pν

(∣∣∣∣1t
∫ t

0

f(Xs)ds − μ(f)

∣∣∣∣ ≥ ε

)
≤ K(p)

1

tp−1

1

ε2(p−1)
‖f‖2(p−1)

∞ , p ≥ 2.

Here, f is a bounded function and μ is the invariant measure of the process. We give several examples,
including elliptic stochastic differential equations and stochastic differential equations driven by a jump
noise.
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1. Introduction

Let X be a positive Harris recurrent strong Markov process in continuous time, having invariant probability
measure μ. From the Ergodic theorem we know that for all x ∈ IR, f ∈ L1(μ) and ε > 0
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as t goes to infinity. The purpose of this paper is to establish the rate of convergence in (1.1), for bounded
functions f. In the existing literature, mainly the case of exponential rate of convergence (exponential ergodicity)
has been considered. But recently, there has been growing interest in studying other possible rates such as
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eva.loecherbach@u-cergy.fr
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sub-geometric or polynomial rates. We follow this direction and study in this paper the case when the rate of
convergence in (1.1) is polynomial. More precisely we use the so-called regeneration method and show that if a
certain regeneration time admits a p-th moment, then we obtain non asymptotic deviation bounds of the form

Px

(∣∣∣∣1t
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f(Xs)ds− μ(f)
∣∣∣∣ ≥ ε

)
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‖f‖2(p−1)
∞ , p ≥ 2. (1.2)

Here, f is a bounded function and μ is the invariant measure of the process. Such a bound is of major impor-
tance for many applications, for example non asymptotic problems for statistics of diffusions, concentration for
particular approximations of granular media equations, and many other examples.

Let us give some comments on the history of the problem and compare our result with known results on
deviation inequalities for Markov processes. In the context of Markov chains, Clémençon [6] and Bertail and
Clémençon [3] have obtained bounds in (1.1) which are exponential in time, using the regeneration method of
Nummelin. They work under the conditions of geometric (exponential) ergodicity and stationarity, and within
the space of bounded functions. Our work is close to this in spirit, since we use the regeneration method as
well (however, we use it in a more complicated framework since we work in continuous time). Compared to
their work we do not need to assume stationarity, our results hold for any starting point x or any starting
measure provided it integrates the p-th moment of the regeneration time. Moreover, we weaken the assumption
of exponential ergodicity to polynomial ergodicity. Still in the discrete framework of Markov chains let us also
mention the work by Adamczak [1] who derives, using completely different techniques, concentration inequalities
for empirical processes of Markov chains, in the regime of exponential ergodicity. Finally, Chazottes et al. [5]
obtain concentration inequalities for finite valued random fields on ZZd via coupling both in the exponential
and the sub-exponential regime. For their purposes, the finiteness of the phase space is crucial.

All above mentioned results hold either in discrete time or in discrete state space, and this is not what we are
interested in. In this paper we concentrate on the framework of continuous time and general state space. For
continuous time Markov processes there is a huge literature on the subject, and most of the results are based on
functional inequalities and/or perturbation techniques which are used to obtain non-asymptotic bounds in (1.1).
As a matter of fact, in contrary to our approach, most of these papers deal with the stationary case only or with
the case when the initial law of the process is absolutely continuous with respect to the invariant measure, having
a square integrable density. Wu [24] uses the Lumer–Phillips theorem in order to derive non-asymptotic deviation
bounds which are expressed in terms of a large deviations rate function. He works under the assumption that the
initial law of the process is absolutely continuous with respect to the invariant measure. Based on this, Cattiaux
and Guillin [4] use functional inequalities like the Poincaré inequality in order to derive an exponential deviation
bound; they work under the assumption of a spectral gap and with bounded functions. A small paragraph in
Cattiaux and Guillin [4] is devoted to the polynomial regime as well, under an assumption imposing polynomial
decay of the α-mixing coefficient of the process, but the rate which is obtained is not optimal. In the same spirit,
let us cite Guillin et al. [10] who work in the space of Lipschitz functions under the assumption of a spectral
gap. For bounded functions, they obtain a Hoeffding type inequality. Finally, Lezaud [14] uses Kato’s theory
of perturbation of operators, still in the exponential regime. Let us also mention that in a completely different
setting and having different applications in mind, Pal [18] establishes concentration inequalities for diffusion
laws on the path space C([0,∞)), using quadratic transportation cost inequalities. He studies concentration
around the median of the distribution, in the exponential regime, for Lipschitz functions on the path space with
respect to the uniform norm.

In contrast to most of the above mentioned papers, we do not assume exponential ergodicity, nor the existence
of a spectral gap nor stationarity. We do not need to assume that the process is μ-symmetric. The method we
use is the so-called regeneration method. It appeals to the condition of integrability of regeneration times. Let
us describe briefly what is the idea of regeneration times. In the easiest situation where the process X has a
recurrent point x0, we may introduce a sequence of stopping times Rn, called regeneration times, such that:

1. for all n, Rn <∞, Rn+1 = Rn +R1 ◦ θRn , Rn → ∞ as n→ ∞. (Here, θ denotes the shift operator);
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2. for all n, XRn = x0;
3. for all n, the process (XRn+t)t≥0 is independent of FRn .

In this case, paths of the process can be decomposed into i.i.d. excursions [Ri, Ri+1[, i = 1, 2, . . ., plus an initial
segment [0, R1], and then limit theorems follow immediately from the strong law of large numbers.

In general, recurrent points exist only in one-dimensional models. For one-dimensional recurrent diffusions
it has been shown in Löcherbach et al. [16] that, if for some p > 1 the p-th moment of the regeneration time
exists, then (1.2) holds.

For general multidimensional Harris recurrent processes, there is no direct way of defining regeneration times.
However, there is a well-known method of introducing regeneration times artificially, which is known as method
of “Nummelin splitting” in the case of Markov chains and which has been extended to the case of processes
in continuous time by Löcherbach and Loukianova [15]. This method consists of constructing a bigger process
Z = (Z1, Z2, Z3) taking values in E × [0, 1]×E, along a sequence of jump times 0 = T0 < T1 < . . . < Tn < . . . ,
such that:

1. Z1 is a copy of the original process X , and the Tn are arrival times of a rate-1-Poisson process, independent
of Z1;

2. on each time interval [Tn, Tn+1[, Z2 and Z3 are constant;
3. the sequence (Z3

Tn
)n is a copy of the resolvent chain XTn+1 (the process X observed after independent

exponential times);
4. the sequence (Z2

Tn
)n is a copy of independent random variables, which are uniformly distributed on [0, 1].

The three co-ordinates and the sequence of jump times (Tn)n are constructed in a coupled way, inspired by the
splitting technique of Nummelin [17] and Athreya and Ney [2] in discrete time. We recall the whole construction
in Section 3. The main point of this construction is that there exist a measurable set C having μ(C) > 0 (C
will be a petite set in the Meyn-Tweedie terminology) and a parameter α ∈]0, 1] such that the successive visits
of ZTn to C × [0, α] × E induce regeneration times for the process Z.

To resume, for any Harris recurrent Markov process X , the following holds true: the process X can be
embedded as first co-ordinate into a new Markov process Z. This new process Z possesses regeneration times.
These regeneration times are closely related to the hitting times of a certain petite set C, or in other words: the
moments of regeneration times are closely related to hitting time moments. Once we have a p-th moment for
the regeneration times, we obtain a control on the speed of convergence in the ergodic theorem and (1.2) holds
true.

Note that different coupling techniques in spirit of the so-called Doeblin- or Dobrushin-coupling have been
considered in the literature, for example in the case of diffusions by Veretennikov [22, 23], and for Lévy-noise
driven solutions of SDE’s by Kulik [11]. These couplings are more specific to the concrete models the authors
are interested in – the coupling technique presented in this paper has the advantage of being completely general,
as far as Harris recurrent processes are concerned.

Once the coupling is constructed, it remains to establish sufficient conditions on the generator of the process
ensuring that p-th moments for regeneration times exist. These conditions are inspired by a recent work of
Douc et al. [7] on sub-geometric rates of convergence for strong Markov processes. In this work, the authors
introduce a drift condition towards a closed petite set in the spirit of a condition of existence of a Lyapunov
function. This condition provides an upper bound on the control of sub-geometric or polynomial moments of
hitting times where the dependence on the starting point is precisely given. The drift condition also provides
a verifiable condition ensuring positive Harris recurrence of the process. We recall these results in Section 2.
Section 3 is devoted to give a self-contained description of the state of the art concerning the regeneration or
Nummelin-splitting-method in the multidimensional case. Section 4 provides a link between the two approaches
“Drift Condition” of Douc et al. [7] and “Nummelin splitting”. We show that the drift condition of Douc et al. [7]
provides an upper bound on the regeneration times introduced according to the method of Nummelin splitting.
More precisely, we show in Theorem 4.1 that certain polynomial moments up to a precise order are bounded –
the bound on the order being determined by the Lyapunov condition. The dependence upon the starting point
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is controlled by the Lyapunov function as usual. So even though the moments of regeneration times can not be
explicitly calculated, we get at least upper bounds in the rate of convergence in (1.1). As a main application
of this result, in Section 5 we state and give the proof of the deviation inequality (1.2). Section 6 is devoted to
some examples: multi-dimensional diffusions and SDE’s driven by a jump noise that are treated in the spirit of
a recent work of Kulik [11]. We close the paper with an appendix which recalls the Fuk–Nagaev inequality in
the framework needed in Section 5.

2. Drift-condition, Harris-recurrence and modulated moments

Consider a probability space (Ω,A, (Px)x). Let X = (Xt)t≥0 be a process defined on (Ω,A, (Px)x) which is
strong Markov, taking values in a locally compact Polish space (E, E), with càdlàg paths. (Px)x∈E is a collection
of probability measures on (Ω,A) such thatX0 = x Px-almost surely. We write (Pt)t for the transition semigroup
of X. Moreover, we shall write (Ft)t for the filtration generated by the process.

Throughout this paper, we impose the following condition on the transition semigroup (Pt)t of X.

Assumption 2.1. There exists a sigma-finite positive measure Λ on (E, E) such that for every t > 0,
Pt(x, dy) = pt(x, y)Λ(dy), where (t, x, y) 	→ pt(x, y) is jointly measurable.

We are seeking for conditions ensuring that the processX is recurrent in the sense of Harris. The most popular
conditions for Harris-recurrence are drift conditions or more generally conditions in terms of a supermartingale
property for a functional of the Markov process. We follow Douc et al. [7] and impose a drift condition towards
a closed petite set B which implies the Harris recurrence of the process. Recall that a set B ∈ E is petite if there
exists a probability measure a on B(IR+) and a measure νa on (E, E) such that∫ ∞

0

Pt(x, dy)a(dt) ≥ 1B(x)νa(dy). (2.3)

Assumption 2.2. There exists a closed petite set B, a continuous function V : E → [1,∞[, an increasing
differentiable concave positive function Φ : [1,∞) → (0,∞) and a constant b < ∞ such that for any s ≥ 0,
x ∈ E,

Ex(V (Xs)) + Ex

(∫ s

0

Φ ◦ V (Xu)du
)

≤ V (x) + bEx

(∫ s

0

1B(Xu)du
)
. (2.4)

Remark 2.3. If V ∈ D(A) belongs to the domain of the extended generator A of the process X, then Theorem
3.4 of Douc et al. [7] shows that

AV (x) ≤ −Φ ◦ V (x) + b1B(x) (2.5)

implies the above Assumption 2.2.

By Proposition 3.1 of Douc et al. [7], we know that under Assumption 2.2, the process X is positive recurrent
in the sense of Harris. We write μ for its invariant probability measure. Hence, for any set A ∈ E such that
μ(A) > 0, we have lim supt→∞ 1A(Xt) = 1 almost surely. In particular the process is μ-irreducible.

Under Assumption 2.2, Douc et al. [7] give estimates on modulated moments of hitting times. Modulated
moments are expressions of the type

Ex

∫ τ

0

r(s)f(Xs)ds,

where τ is a certain hitting time, r a rate function and f any positive measurable function. Knowledge of the
modulated moments permits to interpolate between the maximal rate of convergence (taking f ≡ 1) and the
maximal shape of functions f that can be taken in the ergodic theorem (taking r ≡ 1). In the present paper we
are interested in the maximal rate of convergence and hence we shall always take f ≡ 1.
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For the function Φ of (2.4) put

HΦ(u) =
∫ u

1

ds
Φ(s)

, u ≥ 1, rΦ(s) = r(s) = Φ ◦H−1
Φ (s). (2.6)

We are interested in choices of the function Φ that yield a polynomial rate function r. This is achieved by the
choice Φ(v) = cvα for 0 ≤ α < 1 giving rise to polynomial rate functions

r(s) ∼ Cs
α

1−α .

We suppose from now on that Assumption 2.2 is satisfied with such a kind of function Φ(v) = cvα for 0 ≤ α < 1.
The most important technical feature about the rate function that will be useful in the sequel is then the following
sub-additivity property

r(t + s) ≤ c(r(t) + r(s)), (2.7)

for t, s ≥ 0 and c a positive constant. We shall also use that

r(t + s) ≤ r(t)r(s),

for all t, s ≥ 0.
We are interested in regeneration time moments. We will see in Section 3 below that regeneration times are

almost hitting times. Concerning hitting times, the following result is known in the literature. Fix δ > 0 and
define for any closed set A ∈ E the delayed hitting time

τA(δ) := inf{t ≥ δ : Xt ∈ A}.
Then Theorem 4.1 and Proposition 4.5, (ii) of Douc et al. [7] imply the following two statements. Firstly, for
the rate function r of (2.6) and for the petite set B of Assumption 2.2,

Ex

∫ τB(δ)

0

r(s)ds ≤ V (x) − 1 +
b

Φ(1)

∫ δ

0

r(s)ds. (2.8)

Second, for the rate function r of (2.6) and for any closed set A with μ(A) > 0, for any δ′ > 0,

Ex

∫ τA(δ′)

0

r(s)ds ≤ c(A, δ′)

[
V (x) − 1 +

b

Φ(1)

∫ δ

0

r(s)ds

]
. (2.9)

Remark 2.4. Suppose that E = IR and that the process X has continuous trajectories. Fix a recurrent point
a ∈ IR. Then we can choose A = [a,∞[, if x < a, A =]−∞, a], if x > a in (2.9) above. In this case, the successive
visits

R1 := τ{a}(δ), Rn+1 := inf{t ≥ Rn + δ : Xt = a}
of the point a are regeneration times of the process. Hence, (2.9) gives a control of regeneration time moments
in the one-dimensional case.

In the general multidimensional case, the times τA(δ) do not define regeneration times any more. In this
case, at least in general, regeneration times can only be introduced in an artificial manner, using the technique
of Nummelin splitting in continuous time, as developed in Löcherbach and Loukianova [15]. However, the
estimates (2.8) and (2.9) can be translated into bounds on moments of these new extended regeneration times
of the process. This is the main issue of this paper and will be treated in Section 4 below.

In the next section we recall the technique of Nummelin splitting and then give the bounds on moments of
the regeneration times. But before doing this we first recall some known facts about modulated moments of the
resolvent chain from Douc et al. [8].
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2.1. Modulated moments for the resolvent chain

Observing the continuous time process after independent exponential times gives rise to the resolvent chain
and allows to use known results in discrete time instead of working with the continuous time process. This trick
is quite often used in the theory of processes in continuous time.

Write U1(x, dy) :=
∫∞
0

e−tPt(x, dy)dt for the resolvent kernel associated to the process. Introduce a sequence
(σn)n≥1 of i.i.d. exp(1)-waiting times, independent of the process X itself. Let T0 = 0, Tn = σ1 + . . .+ σn and
X̄n = XTn . Then the chain X̄ = (X̄n)n is recurrent in the sense of Harris, having the same invariant measure
μ as the continuous time process, and its one-step transition kernel is given by U1(x, dy).

Since X is Harris, it can be shown (Revuz [19], see also Prop. 6.7 of Höpfner and Löcherbach [13]), that the
resolvent satisfies

U1(x, dy) ≥ α1C(x)ν(dy), (2.10)

where 0 < α ≤ 1, μ(C) > 0 and ν a probability measure equivalent to μ(· ∩C). The set C is in general not the
petite set of Assumption 2.2. It can be chosen to be compact. In particular, (2.10) implies that the resolvent
chain is aperiodic.

It is interesting to note that the drift condition (2.4) on the process in continuous time implies a similar drift
condition on the resolvent chain. More precisely, Theorem 4.9 of Douc et al. [7], item (ii), implies that under
Assumption 2.2 the resolvent chain satisfies a drift condition as well, with a different petite set and different
functions Φ̄ and V̄ , but giving rise to the same rate function r since Φ̄(t(1+Φ′(1))) ∼ Φ(t) for t→ ∞. Moreover,

‖V̄ − V (1 + Φ′(1))‖∞ <∞.

Now for any measurable set A with μ(A) > 0, write τ̄A := inf{n ≥ 1 : X̄n ∈ A}. Then, by Douc et al. (2004),
proof of Theorem 2.8, second formula,

Ex

[
τ̄A−1∑
k=0

r(k)

]
≤ c1(A)V̄ (x) + c2(A) ≤ c1V (x) + c2, (2.11)

since V̄ (x) ≤ c1V (x) + c2.
After these preliminaries on resolvent chains we now turn to the description of the regeneration method in

the case of a general state space.

3. Nummelin splitting and regeneration times

Regeneration times can be introduced for any Harris recurrent strong Markov process under the Assump-
tion 2.1 – without any further assumption. We make once more use of the resolvent chain. Recall the definition of
the resolvent kernel U1 and the lower bound (2.10) which holds under the only assumption of Harris recurrence:

U1(x, dy) ≥ α1C(x)ν(dy),

where C is a fixed compact petite set with μ(C) > 0. Note that since μ(C) > 0, (2.9) and (2.11) hold for the
hitting time of this set C.

Remark 3.1. Fort and Roberts [9] and Douc et al. [7] impose quite systematically the condition of irreducibility
of some skeleton chain, see e.g. Theorems 3.2 and 3.3 of Douc et al. [7]. This implies the existence of some m
such that Pm satisfies

Pm(x, dy) ≥ α1C(x)ν(dy).

This condition is obviously stronger than (2.10) and implies that the process is not only positive Harris recurrent
but also ergodic, i.e. for all x ∈ E,

||Pt(x, .) − μ||TV → 0.

We do not impose this additional condition.
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We now show how to construct regeneration times in continuous time by using the technique of Nummelin
splitting which has been introduced for Harris recurrent Markov chains in discrete time by Nummelin [17] and
Athreya and Ney [2]. The idea is to define on an extension of the original space (Ω,A, (Px)) a Markov process
Z = (Zt)t≥0 = (Z1

t , Z
2
t , Z

3
t )t≥0, taking values in E × [0, 1] × E such that the times Tn are jump times of the

process and such that ((Z1
t )t, (Tn)n) has the same distribution as ((Xt)t, (Tn)n). We recall the details of this

construction from Löcherbach and Loukianova [15].
First of all, define the split kernel Q((x, u), dy). This is a transition kernel Q((x, u), dy) from E × [0, 1] to E

defined by

Q((x, u), dy) =

⎧⎪⎨
⎪⎩
ν(dy) if (x, u) ∈ C × [0, α]

1
1−α

(
U1(x, dy) − αν(dy)

)
if (x, u) ∈ C×]α, 1]

U1(x, dy) if x /∈ C.

(3.12)

Remark 3.2. This kernel is called split kernel since
∫ 1

0 duQ((x, u), dy) = U1(x, dy). Thus Q is a splitting of
the resolvent kernel by means of the additional “colour” u.

Write u1(x, x′) :=
∫∞
0 e−tpt(x, x′)dt. We now show how to construct the process Z recursively over time

intervals [Tn, Tn+1[, n ≥ 0. We start with some initial condition Z1
0 = X0 = x, Z2

0 = u ∈ [0, 1], Z3
0 = x′ ∈ E.

Then inductively in n ≥ 0, on ZTn = (x, u, x′):

1. choose a new jump time σn+1 according to

e−t pt(x, x′)
u1(x, x′)

dt on IR+,

where we define 0/0 := a/∞ := 1, for any a ≥ 0, and put Tn+1 := Tn + σn+1;
2. on {σn+1 = t}, put Z2

Tn+s := u, Z3
Tn+s := x′ for all 0 ≤ s < t;

3. for every s < t, choose

Z1
Tn+s ∼ ps(x, y)pt−s(y, x′)

pt(x, x′)
Λ(dy).

Choose Z1
Tn+s := x0 for some fixed point x0 ∈ E on {pt(x, x′) = 0}. Moreover, given Z1

Tn+s = y, on s+u < t,
choose

Z1
Tn+s+u ∼ pu(y, y′)pt−s−u(y′, x′)

pt−s(y, x′)
Λ(dy′).

Again, on {pt−s(y, x′) = 0}, choose Z1
Tn+s+u = x0;

4. at the jump time Tn+1, choose Z1
Tn+1

:= Z3
Tn

= x′. Choose Z2
Tn+1

independently of Zs, s < Tn+1, according
to the uniform law U. Finally, on {Z2

Tn+1
= u′}, choose Z3

Tn+1
∼ Q((x′, u′), dx′′).

Note that by construction, given the initial value of Z at time Tn, the evolution of the process Z1 during
[Tn, Tn+1[ does not depend on the chosen value of Z2

Tn
.

We will write Pπ for the measure related toX , under whichX starts from the initial measure π(dx), and IPπ for
the measure related to Z, under which Z starts from the initial measure π(dx)⊗U(du)⊗Q((x, u), dy). Hence, IPx0

denotes the measure related to Z under which Z starts from the initial measure δx0(dx)⊗U(du)⊗Q((x, u), dy).
In the same spirit we denote Eπ the expectation with respect to Pπ and IEπ the expectation with respect
to IPπ . Moreover, we shall write IF for the filtration generated by Z, CG for the filtration generated by the first
two co-ordinates Z1 and Z2 of the process, and IFX for the sub-filtration generated by X interpreted as first
co-ordinate of Z.

The new process Z is a Markov process with respect to its filtration IF. For a proof of this result, the interested
reader is referred to Theorem 2.7 of Löcherbach and Loukianova [15]. In general, Z will no longer be strong
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Markov. But for any n ≥ 0, by construction, the strong Markov property holds with respect to Tn. Thus for
any f, g : E × [0, 1]×E → IR measurable and bounded, for any s > 0 fixed, for any initial measure π on (E, E),

IEπ(g(ZTn)f(ZTn+s)) = IEπ(g(ZTn)IEZTn
(f(Zs))).

Finally, an important point is that by construction,

L((Z1
t )t|IPx) = L((Xt)t|Px)

for any x ∈ E, thus the first co-ordinate of the process Z is indeed a copy of the original Markov process X,
when disregarding the additional colours (Z2, Z3).

However, adding the colours (Z2, Z3) allows to introduce regeneration times for the process Z (not for X
itself). More precisely, write

A := C × [0, α] × E

and put
S0 := 0, R0 := 0, Sn+1 := inf{Tm > Rn : ZTm ∈ A}, Rn+1 := inf{Tm : Tm > Sn+1}. (3.13)

The sequence of IF−stopping times Rn generalises the notion of life-cycle decomposition in the following sense.

Proposition 3.3 (Props. 2.6 and 2.13 of Löcherbach and Loukianova [15]).

(a) under IPx, the sequence of jump times (Tn)n is independent of the first co-ordinate process (Z1
t )t and (Tn −

Tn−1)n are i.i.d. exp(1)−variables;
(b) at regeneration times, we start from a fixed initial distribution which does not depend on the past: ZRn ∼

ν(dx)U(du)Q((x, u), dx′) for all n ≥ 1;
(c) at regeneration times, we start afresh and have independence after a waiting time: ZRn+· is independent

of FSn− for all n ≥ 1;
(d) the sequence of (ZRn)n≥1 is i.i.d.

Since the original process X – under Assumption 2.2 – is Harris with invariant measure μ, the new process Z
will be Harris, too. We shall write Π for its invariant probability measure. Π can be written in terms of an
occupation time formula which is a consequence of Chacon–Ornstein’s ratio limit theorem. In order to state
this theorem, let us recall that an additive functional of the process Z is a ĪR+−valued, IF−adapted process
A = (At)t≥0 such that:

1. almost surely, the process is non-decreasing, right-continuous, having A0 = 0;
2. for any s, t ≥ 0, As+t = At +As ◦ θt almost surely. Here, θ denotes the shift operator.

The additive functional is called integrable if IEΠ(A1) < +∞. Examples for integrable additive functionals are
At =

∫ t

0 f(Zs)ds, where f is a positive measurable function, integrable with respect to the invariant measure Π .

Proposition 3.4 (Chacon–Ornstein’s ratio limit theorem). Let At, Bt be any positive additive functionals of
Z such that IEΠ(B1) > 0. Then

At

Bt
→ IEΠ(A1)

IEΠ(B1)
IPx − almost surely, as t → ∞,

for any x ∈ E. Moreover, Z is recurrent in the sense of Harris and its unique invariant probability measure Π
is given by

Π(f) = � IEπ

∫ R2

R1

f(Zs)ds, (3.14)

where � = IE(R2 −R1)−1 > 0.
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Proof. The proof follows easily from the regeneration property with respect to the regeneration times Rn. �

The invariant measure μ of the original process X is the projection onto the first co-ordinate of Π. From this
we deduce that the invariant probability measure μ of the original process X must be given by

μ(f) = � IEπ

∫ R2

R1

f(Xs)ds, (3.15)

where we recall that � = IE(R2 − R1)−1 > 0. In the above formula we interpret X as first co-ordinate of Z,
under IPπ

3. R2 − R1 is the length of one regeneration period. Under assumption (2.2), the process is positive
recurrent and hence the expected length � of one regeneration period is finite.

We now turn to the main issue of this article which is the control of the speed of convergence in the ergodic
theorem. As a consequence of the above considerations, we can write

Px

(∣∣∣∣1t
∫ t

0

f(Xs)ds− μ(f)
∣∣∣∣ > δ

)
= IPx

(∣∣∣∣∣1t
∫ t

0

f(Z1
s )ds− � IEπ

∫ R2

R1

f(Z1
s )ds

∣∣∣∣∣ > δ

)
, (3.16)

where we recall that IPx denotes the measure related to Z under which Z0 ∼ δx ⊗ U(du) ⊗ Q((x, u), dy). The
more moments of the regeneration period R2 − R1 exist, the more the process is recurrent and the more the
convergence in (3.16) is fast.

We first give estimates on the polynomial moments

IEx

∫ R1

0

r(s)ds,

depending on the starting point x. Integrating this against ν(dx) gives then a control on the corresponding
moment of the regeneration period. This integration does not pose any problems because the support of the
measure ν is the compact set C. Since our regeneration times are built based on the resolvent chain, the main
technical ingredient that allows such a control will be the estimate (2.11) rather than (2.9).

4. Polynomial moments of regeneration times

The aim of this section is to show that the results of Douc et al. [7] can be translated immediately into a
control of moments of regeneration times. This yields somehow a link between the two different approaches
“Drift conditions” versus “Nummelin”. Recall the definition of r(s) = rΦ(s) in (2.6).

Theorem 4.1. Grant Assumptions 2.1 and 2.2 with a function Φ(v) = cvα, where 0 ≤ α < 1. Then there exist
constants c1 and c2, such that

IEx

∫ R1

0

r(s)ds ≤ c1V (x) + c2.

Remark 4.2. For Φ(v) = cvα, it can be easily shown that there exists a constant c such that r(s) = rΦ(s) ≥
c s

α
1−α . Hence the above theorem implies the control of polynomial moments of the regeneration time, i.e.

IExR
1

1−α

1 ≤ c̃1V (x) + c̃2. (4.17)

Proof. Recall the definition of the regeneration times in (3.13). Let

S̃1 := inf{Tn : Z1
Tn

∈ C}, S̃n+1 := inf{Tk > S̃n : Z1
Tk

∈ C}.
3Actually, we should write IEπ

∫ R2
R1

f(Z1
s )ds – but if not otherwise indicated, this identification will always be implicitly assumed.
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Obviously, R1 ≥ S̃1.
1) In the following, c will denote a constant that might change from line to line. We first show how to control

IEx

∫ S̃1

0

r(s)ds.

In a first step we show that

IEx

∫ S̃1

0

r(s)ds = IEx

∫ ∞

0

e−
∫

t
0 1C(Z1

s )dsr(t)dt = Ex

∫ ∞

0

e−
∫

t
0 1C(Xs)dsr(t)dt. (4.18)

This can be seen as follows. First, in order to obtain the law of S̃1, we evaluate for any a > 0,

IPx(S̃1 > a) =
∑
n≥1

IPx(S̃1 = Tn, Tn > a)

=
∑
n≥1

IPx(Z1
T1

∈ Cc, . . . , Z1
Tn−1

∈ Cc, Z1
Tn

∈ C, Tn > a)

=
∑
n≥1

Px(XT1 ∈ Cc, . . . , XTn−1 ∈ Cc, XTn ∈ C, Tn > a)

= Ex

⎛
⎝∑

n≥1

(1 − 1C(XT1)) · · · (1 − 1C(XTn−1))f(XTn , Tn)

⎞
⎠ ,

where f(t, x) = 1t>a1C(x).
Now, we make use of the following very useful formula which is taken from Höpfner and Löcherbach [13],

(5.29), page 59.

Ex

⎛
⎝∑

n≥1

(1 − 1C(XT1)) · · · (1 − 1C(XTn−1))f(XTn , Tn)

⎞
⎠ = Ex

(∫ ∞

0

f(t,Xt)e−
∫

t
0 1C(Xs)dsdt

)

= Ex

(∫ ∞

a

1C(Xt)e−
∫ t
0 1C(Xs)dsdt

)
.

Hence we obtain

IPx(S̃1 > a) = Ex

(∫ ∞

a

1C(Xt)e−
∫

t
0 1C(Xs)dsdt

)
= Ex

(
e−

∫
a
0 1C(Xs)ds

)
.

Writing finally that

IEx

∫ S̃1

0

r(s)ds = IEx

∫ ∞

0

1s<S̃1
r(s)ds =

∫ ∞

0

r(s)IPx(S̃1 > s)ds,

we get (4.18). No we apply once more formula (5.29) of Höpfner and Löcherbach [13] and obtain

Ex

∫ ∞

0

e−
∫

t
0 1C(Xs)dsr(t)dt = Ex

( ∞∑
n=1

(1 − 1C(X̄1)) · · · (1 − 1C(X̄n−1))r(Tn)

)
, (4.19)

where we recall that X̄n = XTn is the process observed at the n-th jump time of an independent rate one
Poisson process. The expression at the right hand side of (4.19) is almost a modulated moment for the resolvent
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chain, except that we have to replace r(Tn) by r(n). This is not difficult since for n large we can use the law of
large numbers. Since r is increasing we can write

Ex

(
(1 − 1C(X̄1)) · · · (1 − 1C(X̄n−1))r(Tn)

) ≤ Ex

(
(1 − 1C(X̄1)) · · · (1 − 1C(X̄n−1))r(2n)

)
(4.20)

+Ex

(
(1−1C(X̄1)) · · · (1−1C(X̄n−1))1Tn>2nr(Tn)

)
. (4.21)

Let us start with the control of the first term in this decomposition. Recall that τ̄C = inf{n ≥ 1 : X̄n ∈ C}.
Now, using that r(2n) ≤ cr(n), which follows from r(t + s) ≤ c(r(t) + r(s)) by (2.7),

IEx

( ∞∑
n=1

(1 − 1C(X̄1)) · · · (1 − 1C(X̄n−1))r(2n)

)
= IEx

(
τ̄C∑

n=1

r(2n)

)

≤ cIEx

(
τ̄C∑

n=1

r(n)

)
≤ cIEx

(
τ̄C−1∑
n=1

r(n)

)
+ cIExr(τ̄C). (4.22)

Let R(k) =
∑k−1

j=0 r(j). Since r is polynomial, limk→∞ r(k)/R(k) = 0. Hence there exists a constant c such that
for all k ≥ 1, r(k) ≤ R(k) + c. As a consequence,

IExr(τ̄C) ≤ c+ IEx

(
τ̄C−1∑
n=0

r(n)

)
.

Using (2.11), we can thus conclude that

IEx

( ∞∑
n=1

(1 − 1C(X̄1)) · · · (1 − 1C(X̄n−1))r(2n)

)
≤ c1V (x) + c2.

Now we turn to the second expression in (4.20) above: for any 1 ≤ p, q such that 1
p + 1

q = 1,

IEx

(
(1 − 1C(X̄1)) · · · (1 − 1C(X̄n−1))1Tn>2nr(Tn)

) ≤ [IExr
p(Tn)]1/p · [IPx(Tn > 2n)]1/q

≤ [IExr
p(Tn)]1/p · e−Cn (4.23)

for some suitable constant C. But rp(·) is polynomial and Tn the sum of n independent exp(1) variables, hence
supx IExr

p(Tn) ≤ P (n), where P (.) is a polynomial in n. As a consequence,

∑
n≥1

sup
x
IEx

(
(1 − 1C(X̄1)) · · · (1 − 1C(X̄n−1))1Tn>2nr(Tn)

)
= C2 <∞.

Putting together (4.18), (4.19)–(4.23), we thus get that

IEx

∫ S̃1

0

r(s)ds ≤ c1V (x) + c2. (4.24)

This will be the main contribution to the control of IEx

∫ R1

0 r(s)ds. In the sequel, we shall also use that (4.24)
implies in particular

sup
x∈C

IEx

∫ S̃1

0

r(s)ds < +∞, (4.25)

since C is compact.
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2) Recall the definition of S1 in (3.13). We now show how to use the control of S̃1 in order to obtain a control
of S1. We have, since r(t+ s) ≤ r(s)r(t),

IEx

∫ S1

0

r(s)ds = IEx

∫ S̃1

0

r(s)ds +
∑
n≥1

IEx

(∫ S̃n+1

S̃n

r(s)ds1S̃n<S1

)

= IEx

∫ S̃1

0

r(s)ds +
∑
n≥1

IEx

(∫ S̃n+1−S̃n

0

r(S̃n + s)ds1S̃n<S1

)

≤ IEx

∫ S̃1

0

r(s)ds +
∑
n≥1

IEx

([∫ S̃n+1−S̃n

0

r(s)ds

]
r(S̃n)1S̃n<S1

)
. (4.26)

The first term in this expression can be controlled using (4.24). We study the second term in the above expression

IEx

(
r(S̃n)1S̃n<S1

∫ S̃n+1−S̃n

0

r(s)ds

)
.

We know that IPx(S̃n < S1) = (1 − α)n (see for example the proof of Prop. 2.16 in Löcherbach and
Loukianova [15]). A first idea would be to use Markov’s property with respect to S̃n :

IEx

(
r(S̃n)1S̃n<S1

∫ S̃n+1−S̃n

0

r(s)ds

)
= IEx

(
r(S̃n)1S̃n<S1

IEZS̃n

∫ S̃1

0

r(s)ds

)
.

But unfortunately it is not true that

IEZS̃n

∫ S̃1

0

r(s)ds ≤ sup
x∈C

IEx

∫ S̃1

0

r(s)ds,

we only have that on {S̃n < S1},

IEZS̃n

∫ S̃1

0

r(s)ds ≤ sup
x∈C,u>α,z∈E

IE(x,u,z)

∫ S̃1

0

r(s)ds,

and this can not be directly controlled using (4.24).
Hence, we must be more careful. We use that r(S̃n)1{S̃n<S1} is measurable with respect to GS̃n

where we
recall that (Gt)t is the filtration generated by the first two co-ordinates Z1 and Z2 of Z. Hence we will condition
on GS̃n

. Note that by construction of Z, this means that we condition on the whole history of the whole process,
i.e. the three co-ordinates, up to the last jump time sup{Tk : Tk < S̃n} strictly before S̃n, and on the history
of Z1 and Z2 up to time S̃n. In other words, conditioning on GS̃n

, we know Z1
S̃n

and Z2
S̃n
, but Z3

S̃n
has still

to be chosen. Moreover, on {S̃n < S1}, Z2
S̃n

> α, and hence the second line in the definition of the kernel
Q((x, u), dx′) of (3.12) has to be applied.

Write ν(x) for the density of ν(dx) with respect to the dominating measure Λ(dx) of Assumption 2.1. Then,

IEx

(
r(S̃n)1S̃n<S1

∫ S̃n+1−S̃n

0

r(s)ds

)

= IEx

(
r(S̃n)1S̃n<S1

∫
E

1
1 − α

[
u1(Z1

S̃n
, x′) − αν(x′)

]
Λ(dx′)IE(Z1

S̃n
,Z2

S̃n
,x′)

∫ S̃1

0

r(s)ds

)

≤ 1
1 − α

IEx

(
r(S̃n)1S̃n<S1

∫
E

u1(Z1
S̃n
, x′)Λ(dx′)IE(Z1

S̃n
,Z2

S̃n
,x′)

∫ S̃1

0

r(s)ds

)
. (4.27)
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But for any x, u,

∫
E

u1(x, x′)Λ(dx′)IE(x,u,x′)

∫ S̃1

0

r(s)ds =
∫ 1

0

du
∫

E

Q((x, u), dx′)IE(x,u,x′)

∫ S̃1

0

r(s)ds, (4.28)

since IE(x,u,x′)
∫ S̃1

0 r(s)ds does not depend on u. Moreover,

∫ 1

0

du
∫

E

Q((x, u), dx′)IE(x,u,x′)

∫ S̃1

0

r(s)ds = IEx

∫ S̃1

0

r(s)ds.

Hence, since Z1
S̃n

∈ C,

IEx

(
r(S̃n)1S̃n<S1

∫ S̃n+1−S̃n

0

r(s)ds

)
≤ 1

1 − α
IEx

(
r(S̃n)1S̃n<S1

(
sup
x∈C

IEx

∫ S̃1

0

r(s)ds

))

≤ c

1 − α
IEx

(
r(S̃n)1S̃n<S1

)
. (4.29)

Hence we must control IEx(1S̃n<S1
r(S̃n)). We write S̃n = S̃1 + (S̃n − S̃1) and use once more the sub-

multiplicativity of r. We obtain

IEx

(
r(S̃n)1S̃n<S1

)
≤ IEx

(
r(S̃1)1S̃1<S1

r(S̃n − S̃1)1S̃n<S1

)
. (4.30)

Here, we have cut S̃n = S̃1 +(S̃n − S̃1) into two pieces in order to get a last term which does not depend on the
starting point. The same arguments as above in (4.27) and (4.28) yield, when conditioning on GS̃1

, the following.

IEx

(
r(S̃n)1S̃n<S1

)
≤ IEx

(
r(S̃1)1S̃1<S1

r(S̃n − S̃1)1S̃n<S1

)
≤ IEx

(
r(S̃1)1S̃1<S1

1
1 − α

∫
E

u1(Z1
S̃1
, x′)Λ(dx′)IE(Z1

S̃1
,Z2

S̃1
,x′)[r(S̃n−1)1S̃n−1<S1

]
)

≤ 1
1 − α

IEx

(
r(S̃1)1S̃1<S1

IEZ1
S̃1

[r(S̃n−1)1S̃n−1<S1
]
)

≤ 1
1 − α

sup
y∈C

IEy

(
r(S̃n−1)1S̃n−1<S1

)
IEx

(
r(S̃1)1S̃1<S1

)
. (4.31)

Concerning the last term in the above expression, we use that r(t) ≤ ∫ t

0 r(s)ds + c for some constant c and
obtain

IEx

(
r(S̃1)1S̃1<S1

)
≤ c+ IEx

(∫ S̃1

0

r(s)ds

)

≤ c+ c1V (x) + c2 = c1V (x) + c̃2, (4.32)

using (4.24).
Concerning the first term in (4.31), for p, q ≥ 1 such that 1

p + 1
q = 1, we obtain

sup
y∈C

IEy

(
r(S̃n−1)1S̃n−1<S1

)
≤ sup

y∈C

(
IEyr

p(S̃n−1)
)1/p

IPy(S̃n−1 < S1)1/q

≤ (1 − α)(n−1)/q

(
sup
y∈C

IEyr
p(S̃n−1))

)1/p

. (4.33)
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We have to control this last expression. We claim the following: there exists a κ > 0 and a constant c such that
for p > 1 sufficiently small, (

sup
y∈C

IEyr
p(S̃n−1))

)1/p

≤ cnκ. (4.34)

Once (4.34) is proven, we obtain, using (4.26), (4.29) and (4.31)–(4.34) the following:

IEx

∫ S1

0

r(s)ds ≤ (c1V (x) + c2) +
c

(1 − α)2
(c1V (x) + c̃2)

∑
n≥1

(1 − α)(n−1)/qnκ

= c̄1V (x) + c̄2. (4.35)

It remains to show (4.34): by our assumptions, r is polynomial and r(x) ∼ Cx
α

1−α as x→ ∞, hence rp(x) ≤ cxκp,
where κ = α/(1 − α). We now fix the choice of p and q in (4.33). We choose

p ∈
]

1
κ
, 1 +

1
κ

[
=
]
1 − α

α
,
1
α

[
.

Then κp ≥ 1, and we use Jensen’s inequality to obtain

rp(S̃n−1) ≤ cS̃κp
n−1 ≤ (n− 1)pκ−1

(
S̃κp

1 + . . .+ (S̃n−1 − S̃n−2)κp
)
. (4.36)

Now since p < 1 + 1
κ = 1

α , we have tκp ≤ c
∫ t

0 r(s)ds for some constant c. Then for any of the above terms
(k ≥ 2), by (4.25),

sup
y∈C

IEy(S̃k − S̃k−1)κp ≤ c sup
y∈C

IEy

∫ S̃1

0

r(s)ds <∞.

As a consequence, coming back to (4.36),

sup
y∈C

IEyr
p(S̃n−1) ≤ c(n− 1)pκ sup

y∈C
IEx

∫ S̃1

0

r(s)ds = c̃(n− 1)pκ,

and this yields (4.34).
3) Finally we proceed to the control of R1. Clearly,

IEx

∫ R1

0

r(s)ds ≤ IEx

∫ S1

0

r(s)ds + IEx

[
r(S1)

∫ R1−S1

0

r(s)ds

]
.

We have to control the last term above. We condition on GS1 , notice that Z2
S1

≤ α and use step 1. of the
construction of Z, hence

IEx

[
r(S1)

∫ R1−S1

0

r(s)ds

]
= IEx

[
r(S1)

(∫
E

ν(x′)Λ(dx′)
∫ ∞

0

e−t pt(Z1
S1
, x′)

u1(Z1
S1
, x′)

dt
∫ t

0

r(s)ds
)]

.

But by (2.10), ν(x′) ≤ 1
αu

1(Z1
S1
, x′), since Z1

Sn
∈ C, thus

IEx

[
r(S1)

∫ R1−S1

0

r(s)ds

]
≤ 1
α
IEx

[
r(S1)

(∫
E

Λ(dx′)
∫ ∞

0

e−tpt(Z1
S1
, x′)dt

∫ t

0

r(s)ds
)]

=
1
α
IEx

[
r(S1)

∫ ∞

0

e−tdt
(∫

E

pt(Z1
S1
, x′)Λ(dx′)

)
[
∫ t

0

r(s)ds]
]

=
1
α
IEx

[
r(S1)

∫ ∞

0

e−tdt
∫ t

0

r(s)ds
]

=
c

α
IEx(r(S1)),
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since
∫∞
0 e−t

∫ t

0 r(s)dsdt <∞. Finally, r(t) ≤ ∫ t

0 r(s)ds+ c gives

IEx(r(S1)) ≤ IEx

∫ S1

0

r(s)ds + c,

which is controlled due to (4.35). This concludes the proof. �

Remark 4.3. The fact that the rate function is polynomial was crucial at two points in the above proof: in
equations (4.23) and (4.34). The general sub-geometrical case could probably be handled by paying in particular
attention to the constants that arrive in expressions like IExr

p(Tn) ≤ [IExr
p(T1)]n.

5. Polynomial deviation inequality

We impose Assumption 2.2 with a function Φ(v) = cvα, where 0 ≤ α < 1. As a consequence, we obtain a
control for polynomial moments IExR

p
1 of the regeneration time for all p ≤ 1/(1 − α), due to (4.17). Since V is

continuous and since the measure ν of (2.10) which is used in order to construct the regeneration periods is of
compact support, also IEνR

p
1 is finite for all p ≤ 1/(1 − α).

In order to derive the deviation inequality we first state a deviation inequality for the counting process
associated to the life cycle decomposition

Nt = sup{n : Rn ≤ t} =
∞∑

n=1

1{Rn≤t}, N0 = 0.

We have almost surely, as t→ ∞, Nt/t→ IEΠN1 = �, where we recall that

� = (IEνR1)−1 = (IE(R2 −R1))−1,

see Proposition 3.4 and equation (3.14).
The deviation inequality for the counting process associated to the life cycle decomposition is the following.

Theorem 5.1. Grant Assumptions 2.1 and 2.2 with Φ(v) = cvα, 0 ≤ α < 1. Let x ∈ E be any starting point
and 0 < ε < 1. Then for any 1 < p ≤ 1/(1−α) there exists a positive constant C(�, p, ν) such that the following
inequality holds:

IPx

(∣∣∣∣Nt

t
− �

∣∣∣∣ > �ε

)
≤ C(�, p, ν)V (x)

1
εp ∧ ε2(p−1)

1
tp−1

· (5.37)

Here C(�, p, ν) is given by

C(�, p, ν) =

{
C(p)

[
(1 + (1/�)p−1) + (mp + σ2(p−1))

] (
�p−1 ∨ �) if p ≥ 2

C(p)
[
(1 + (1/�)p−1) +mp�C

p
p

]
if p ∈]1, 2[

}
,

where C(p) is a constant depending only on p, Cp is the constant of the Burkholder–Davis–Gundy inequality,
mp = IE(R2 −R1 − 1


 )p and σ2 = Var(R2 −R1), in the case p ≥ 2.

Proof. The proof is basically the same as in Löcherbach et al. [16], proof of Theorem 3.1. Put in contrary to
there we use the Fuk–Nagaev inequality given in the appendix (Thm. A.1) in the case p ≥ 2. We decompose:

IPx (|Nt/t− �| > �ε) ≤ IPx (Nt/t > �(1 + ε)) + IPx (Nt/t < �(1 − ε)) . (5.38)

Put for k ≥ 1, η̄k = −1(Rk+1 −Rk − 1/�). For the first term of (5.38), we have

IPx (Nt/t > �(1 + ε)) ≤ IPx (R1 − 1/� ≤ −tε/2) + IPx

⎛
⎝[t
(1+ε)]∑

k=1

η̄k ≥ tε/2

⎞
⎠ . (5.39)
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In an analogous way,

IPx (Nt/t < �(1 − ε)) ≤ IPx

(
R1 − 1

�
≥ tε/2

)
+ IPx

⎛
⎝[t
(1−ε)]−1∑

k=1

η̄k ≤ −tε/2
⎞
⎠ . (5.40)

The random variables η̄k, k ≥ 1, are identically distributed centred random variables such that IEx|η̄k|p < ∞.
Moreover, they are two-dependent. Indeed, η̄k is not independent of FRk

, but only independent of FRk−1 . This
is due to step 1 of the construction of Z, where the waiting time for the new jump is chosen depending on the
actual value of Z at time Rk.

If p ≥ 2, we can apply Theorem A.1. Let M0 = 0 and Mn =
∑n

k=1 η̄k. Denote M∗
n = supk≤n |Mk|. As a

consequence of (5.39) and (5.40) we can write

IPx (|Nt/t− �| > �ε) ≤ IPx (|R1 − 1/�| ≥ tε/2) + IPx

(
M∗

[t
(1+ε)] ≥ tε/2
)
. (5.41)

We use Theorem A.1 with n = [t�(1 + ε)] and λ = tε/8 and obtain

IPx (|Nt/t− �| > �ε) ≤ 2p−1IEx|R1 − 1/�|p−1

(tε)p−1
+ C(p)[mp + σ2(p−1)]

(
�p−1 ∨ �) ε−2(p−1)t−(p−1)

≤
(
2p−1IEx|R1 − 1/�|p−1 + C(p)[mp + σ2(p−1)]

(
�p−1 ∨ �)) 1

ε2(p−1)
t−(p−1),

since ε < 1, where mp = IEx|η̄1|p, σ2 = Var(η̄1). Finally we use that

IEx|R1 − 1/�|p−1 ≤ C(p)[IExR
p−1
1 + (1/�)p−1],

and that for some constants c and d,

IEx(Rp−1
1 ) ≤ 1 + IExR

p
1 ≤ cV (x) + d

to conclude that, since V (.) ≥ 1,

IPx (|Nt/t− �| > �ε) ≤ C(p)V (x)
(
(1 + (1/�)p−1) + [mp + σ2(p−1)]

(
�p−1 ∨ �)) 1

ε2(p−1)
t−(p−1).

This finishes the proof in the case p ≥ 2.
In the case 1 < p < 2, we apply the Burkholder–Davis–Gundy inequality. In order to produce independent

random variables, we define

η
(1)
k =

{
η̄k if k odd
0 elseif

}
, η

(2)
k =

{
η̄k if k even
0 elseif

}
. (5.42)

Let M1
0 = 0 and M1

n =
∑n

k=1 η
(1)
k . In the same way, M2

0 = 0 and M2
n =

∑n
k=1 η

(2)
k .

We also introduce the following two sub-filtrations, associated to the sum of odd and the sum of even terms.
Let

A(1)
n := σ

{
η
(1)
k : k ≤ n, k odd

}
= σ

{
M

(1)
k , k ≤ n

}
,

and
A(2)

n := σ
{
η
(2)
k : k ≤ n, k even

}
= σ

{
M

(2)
k , k ≤ n

}
.

Then (M1
n)n and (M2

n)n are discrete A(1)
n -martingales (A(2)

n -martingales, respectively). Both martingales are Lp

martingales such that [M (i)]n =
∑n

k=1(η
(i)
k )2, for i = 1, 2. Denote (M (i))∗n = supk≤n |M (i)

k |, i = 1, 2. In this
case, as a consequence of (5.39) and (5.40) we write

IPx (|Nt/t− �| > �ε) ≤ IPx (|R1 − 1/�| ≥ tε/2) + IPx

(
(M (1))∗[t
(1+ε)] ≥ tε/4

)
+ IPx

(
(M (2))∗[t
(1+ε)] ≥ tε/4

)
.

(5.43)
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We use the Burkholder–Davis–Gundy inequality to bound the last terms in (5.43): for all p > 1 there
exists a constant Cp depending only p such that ‖(M (i))∗n‖p ≤ Cp‖[M (i)]1/2

n ‖p, hence IEx((M (i))∗n)p ≤
Cp

pIEx

(∑n
k=1(η

(i)
k )2

)p/2

.

Notice that by definition, the term
∑n

k=1(η
(1)
k )2 contains [n+1

2 ] terms whereas
∑n

k=1(η
(2)
k )2 contains [n/2]

terms. Since 1 < p < 2, the sub-additivity of the function x 	→ xp/2 implies

(
n∑

k=1

(η(1)
k )2

)p/2

≤
n∑

k=1

|η̄(1)
k |p, hence IEx((M (1))∗n)p ≤ Cp

pnIE|η̄1|p. (5.44)

The same kind of bound holds also for the even terms.
Now we can conclude similarly to Löcherbach et al. [16]: For 1 < p < 2,

IPx (|Nt/t− �| > �ε) ≤ 2p−1IEx|R1 − 1/�|p−1

(tε)p−1
+ 2 4pCp

pIEx|η̄1|p [t�(1 + ε)]
1

(tε)p

≤ (2p−1IEx|R1 − 1/�|p−1 + 22p+2Cp
pIEx|η̄1|p �

) 1
εp

1
tp−1

≤ C(p)V (x)
(
(1 + (1/�)p−1) +mp�C

p
p

) 1
εp

1
tp−1

·

This concludes the proof. �

Once the deviation inequality for the counting process (Nt)t is proven, we obtain on the lines of Löcherbach
et al. [16], Theorem 3.2, the following general deviation inequality for additive functionals of the original Markov
process X, built of bounded functions.

Theorem 5.2. Grant Assumptions 2.1 and 2.2 with Φ(v) = cvα, 0 ≤ α < 1. Put p = 1/(1−α). Let f ∈ L1(μ).
Suppose that ‖f‖∞ <∞. Let x be any initial point and 0 < ε < ‖f‖∞. Then for all t ≥ 1 the following inequality
holds:

Px

(∣∣∣∣1t
∫ t

0

f(Xs)ds− μ(f)
∣∣∣∣ > ε

)
≤ K(�, p, ν,X)V (x) t−(p−1)

{
1

ε2(p−1) ‖f‖2(p−1)
∞ if p ≥ 2

1
εp ‖f‖p∞ if 1 < p < 2

}
. (5.45)

Here K(�, p, ν,X) is a positive constant, different in the two cases, which depends on �, p, ν and on the process X
through the life cycle decomposition, but which does not depend on f , t, ε.

Remark 5.3. The above result holds for any starting measure ν such that IEν(Rp
1) is finite, so a fortiori for any

measure ν such that V ∈ L1(ν). In contrary to most of the existing results in the literature (see e.g. Cattiaux
and Guillin [4]) we do not need to assume absolute continuity of the initial law of the process with respect to
the invariant measure μ.

Proof. First of all, since the law of X starting from a fixed point x is the same as the law of Z1 starting from
the initial measure IPx, we certainly have that

Px

(∣∣∣∣1t
∫ t

0

f(Xs)ds− μ(f)
∣∣∣∣ > ε

)
= IPx

(∣∣∣∣1t
∫ t

0

f(Z1
s )ds− μ(f)

∣∣∣∣ > ε

)
.

Now for p < 2 the rest of the proof is exactly the same as the proof of Theorem 3.2 in Löcherbach et al. [16]. The
only difference compared to there is that the variables ξn =

∫ Rn+1

Rn
(f − μ(f))(Z1

s )ds are no longer independent
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but only 2-dependent. Hence, the same trick as in the proof of Theorem 5.1 applies: one has to separate even
and odd terms. But this does only change the constants in the upper bound.

For p ≥ 2, we use the Fuk–Nagaev inequality again. We start as in the proof of Theorem 3.2 of Löcherbach
et al. [16]. Denote

Ωt =
{∣∣∣∣Nt

t
− �

∣∣∣∣ ≤ �δ

}
, δ = ε/‖f‖∞ < 1.

Put f̄ := f − μ(f). Then

IPx

(∣∣∣∣
∫ t

0

f(Z1
s )ds− tμ(f)

∣∣∣∣ > tε

)

≤ IPx

(∣∣∣∣∣
∫ R1

0

f̄(Z1
s )ds

∣∣∣∣∣ > tε

3

)
+ IPx

(∣∣∣∣∣
∫ RNt+1

R1

f̄(Z1
s )ds

∣∣∣∣∣ > tε

3
;Ωt

)

+IPx

(∣∣∣∣∣
∫ RNt+1

t

f̄(Z1
s )ds

∣∣∣∣∣ > tε

3
;Ωt

)
+ IPx (Ωc

t )

= A+B + C +D.

The terms A and C are handled as in Löcherbach et al. [16]. Term D is controlled thanks to Theorem 5.1. So
the main term that has to be controlled is the term B, and we have

B ≤ IPx

⎛
⎝[t
(1+δ)]∑

k=1

|ξk| ≥ tε/3

⎞
⎠, ξk =

∫ Rk+1

Rk

f̄(Z1
s )ds.

Put ξ̄k = 1
‖f‖∞

ξk, then ξ̄k =
∫ Rk+1

Rk
(g − μ(g))(Z1

s )ds, where g = f/‖f‖∞, ‖g‖∞ = 1. We write

IPx

⎛
⎝[t
(1+δ)]∑

k=1

|ξk| ≥ tε/3

⎞
⎠ = IPx

⎛
⎝[t
(1+δ)]∑

k=1

|ξ̄k| ≥ tε

3‖f‖∞

⎞
⎠ ≤ IPx

(
sup

k≤[t
(1+δ)]

Sk ≥ tδ/3

)
, δ = ε/‖f‖∞ < 1,

Sk =
∑k

i−1 |ξ̄k|, and apply the Fuk–Nagaev inequality of Theorem A.1 with n = t�(1 + δ) and λ = tδ/12. This
gives the following upper bound

IPx

⎛
⎝[t
(1+δ)]∑

k=1

|ξk| ≥ tε/3

⎞
⎠ ≤ C(p)[mp + σ2(p−1)]

(
�p−1 ∨ �) δ−2(p−1)t−(p−1),

where
mp = IE(|ξ̄1|p) ≤ 2p IE((R2 −R1)p), σ2 = V ar(ξ̄1) ≤ 4 IE((R2 −R1)2.

Therefore, since δ = ε/‖f‖∞, there exists a constant K(�, p, ν,X) depending only on the process and the life
cycle decomposition, but not on the function f, such that

IPx

⎛
⎝[t
(1+δ)]∑

k=1

|ξk| ≥ tε/3

⎞
⎠ ≤ K(�, p, ν,X)‖f‖2(p−1)

∞ ε−2(p−1)t−(p−1).

This finishes the proof. �

6. Examples

We close our paper with two examples where the above deviation inequalities can be applied.
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6.1. Multi-dimensional diffusions

Consider the solution of the following stochastic differential equation in IRd

dXt = b(Xt)dt+ σ(Xt)dWt,

where Wt is an n-dimensional Brownian motion, n ≥ d, such that b is a locally bounded Borel measurable
function IRd → IRd and σ is a bounded continuous function IRd → IRd×n which is uniformly elliptic: Writing
a := σσ∗, we suppose that there exists ε > 0 such that

〈a(x)ξ, ξ〉 ≥ ε‖ξ‖2

for all x ∈ IRd. Classical results on lower bounds for transition densities of diffusions (see for instance Kusuoka
and Stroock [12]) imply that in this case any compact set of IRd is petite. We cite the following recurrence
conditions from Fort and Roberts [9]. Suppose there exist M,β, γ > 0 and l < 2 such that

sup
x:‖x‖>M

‖x‖−(2+l)〈x, a(x)x〉 = β, sup
x:‖x‖>M

‖x‖−ltr(a(x)) = γ,

sup
x:‖x‖>M

‖x‖−l〈b(x), x〉 = −r, for some r > (γ − βl)/2.

We choose

κ ∈
]
0, l+

2r − γ

β

[
and put m = 2−l+κ, thus 2−m = l−κ. Let V (x) = ‖x‖m outside a compact set. Then supx:‖x‖>M AV (x) <∞,
and standard calculus shows that for all ‖x‖ > M,

AV (x) ≤ m

(
−r +

1
2
[γ + (m− 2)β]

)
V (x)
‖x‖2−l

·

Then by our choice of κ, r̃ := r − 1
2 [γ + (m− 2)β] > 0. Hence for ‖x‖ > M,

AV (x) ≤ −Φ ◦ V (x),

where
Φ(x) = mr̃ x1−α, with α =

2 − l

m
< 1.

Hence we get polynomial moments of regeneration times up to the order m/(2 − l) = 1 + κ/(2 − l).

6.2. Solutions to SDE’s driven by a jump noise

This chapter is inspired by a recent work of Kulik [11] on exponential ergodicity for solutions to SDE’s driven
by a jump noise. More precisely, consider the solution of the following stochastic differential equation on IRd

driven by a jump noise

dXt = b(Xt)dt+
∫
‖u‖≤1

c(Xs−, u)μ̃(dt, du) +
∫
‖u‖>1

c(Xs−, u)μ(dt, du). (6.46)

Here μ is a Poisson random measure (PRM) on IR+ × IRq, having compensator μ̂(dt, du) = dtν(du), and
μ̃(dt, du) = μ(dt, du) − dtν(du) denotes the compensated PRM. We follow Kulik [11] and impose the following
conditions on the coefficients b and c. The drift function b belongs to C1(IRd, IRd) and satisfies a linear growth
condition. The jump rate c(x, u) is one times continuously differentiable with respect to x. Moreover,

‖c(x, u) − c(y, u)‖ ≤ K(1 + ‖u‖)‖x− y‖, ‖c(x, u)‖ ≤ ψ(x)‖u‖, x, y ∈ IRd, u ∈ IRq,
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where K is some constant and where ψ : IRd → IR+ satisfies a linear growth condition. Finally we impose a
moment condition on the Lévy measure ν. For all R > 0,∫

sup
x:‖x‖≤R

(‖c(x, u)‖ + ‖∇xc(x, u)‖) ν(du) < +∞.

Then for any fixed x ∈ IRd, there exists a unique strong solution Xt to (6.46), which is a strong Markov process,
having càdlàg trajectories.

We quote sufficient conditions implying that compact sets are petite from Kulik [11]. For this sake, we have
to introduce some notation. Let Sq = {v ∈ IRq : ‖v‖ = 1} be the unit sphere in IRq. For any w ∈ Sq and for any
� ∈]0, 1[, let V+(w, �) = {y ∈ IRq : 〈y, w〉 ≥ �‖y‖}, and V (w, �) = {y ∈ IRq : |〈y, w〉| ≥ �‖y‖}. Then Kulik [11]
obtains the following result.

Proposition 6.1 ([11]). Suppose that the following assumptions hold.

1. Cone condition: for every w ∈ Sq, there exists � ∈]0, 1[, such that for every δ > 0,

ν (V (w, �) ∩ {u : ‖u‖ ≤ δ}) > 0.

2. Non-degeneracy condition: there exists a point x∗ ∈ IRd and a neighbourhood O∗ of x∗ such that c(x, u) =
χ(x)u + δ(x, u), for all x ∈ O∗, and

‖δ(x∗, u)‖ + ‖∇xδ(x∗, u)‖ = o(‖u‖),
as ‖u‖ → 0. Moreover, the functions b̃(.) = b(.) − ∫‖u‖≤1 c(., u)ν(du) and χ are one times continuously
differentiable and satisfy the joint non-degeneracy condition

rank
(
∇b̃(x∗)χ(x∗) −∇χ(x∗)b̃(x∗)

)
= d.

3. Support condition: for any R > 0 there exists t such that for all x with ‖x‖ ≤ R,

x∗ ∈ suppPt(x, ·).
If the above conditions hold, then any compact set is petite.

Remark 6.2.

1. In the one-dimensional case d = q = 1, the above conditions can be stated in a simpler way. For example,
condition 1. can then be written as follows: for all δ > 0, ν(u : 0 < ‖u‖ ≤ δ) > 0;

2. Simon [21], Theorem I, gives a sufficient condition for condition 3. above to hold, see also Proposition 4.7 in
Kulik [11].

Proof. Theorem 1.3, Proposition 4.3 and 4.4 of Kulik [11] show that under the above conditions, the following
Dobrushin condition holds: for all R > 0, there exists t∗ = t∗(R) such that

inf
x,y:‖x‖,‖y‖≤R

∫
[Pt∗(x, ·) ∧ Pt∗(y, ·)] (dz) > 0, (6.47)

where for any two probability measures P and Q,

[P ∧Q](dz) :=
(

dP
d(P +Q)

(z) ∧ dQ
d(P +Q)

(z)
)

(P +Q)(dz).

From this the claim follows since (6.47) implies that any compact set is a petite set. �
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It remains to give conditions that are sufficient for the recurrence condition (2.4), (2.5) respectively. There is
a wide range of possible conditions and in what follows we restrict attention to a particular sufficient condition
which is stated in the same spirit as the conditions of Proposition 4.1 of Kulik [11].

Proposition 6.3. Suppose that the conditions of Proposition 6.1 hold. Suppose moreover that there exist M,γ >
0 and 0 < l < 1 such that

1. Moment-condition: there exists m ≥ 1 such that
∫
‖u‖≥1 ‖u‖mν(du) <∞.

2. Moderate jumps: the function c can be decomposed into c = c1 + c2 such that
(a) ‖c1(x, u)‖ ≤ γ‖x‖l‖u‖, u ∈ IRq, ‖x‖ > M.
(b) ‖x+ c2(x, u)‖ ≤ ‖x‖, ‖u‖ > 1, ‖x‖ > M, and c2(·, u) = 0, if ‖u‖ ≤ 1.

3. Drift-condition: supx:‖x‖>M ‖x‖−(1+l)〈b(x), x〉 = −r, for some constant r satisfying r >

2γ
∫
‖u‖>1

‖u‖mν(du).

Then there exists M0 ≥ M such that (2.5) holds with B = {x : ‖x‖ ≤ M0}, B petite, V (x) = ‖x‖m and
Φ(x) = cx1−α, where α = 1−l

m < 1.

Proof. We use the drift condition for the generator defined for all functions F in the extended domain of the
generator

AF (x) = 〈b(x),∇F (x)〉 +
∫

IRq

(
F (x+ c(x, u)) − F (x) − 1{‖u‖≤1}〈∇F (x), c(x, u)〉) ν(du).

Applying this to V (x) = ‖x‖m yields for all ‖x‖ > M,

AV (x) = m〈b(x), x〉‖x‖m−2 +
∫
‖u‖>1

(‖x+ c(x, u)‖m − ‖x‖m) ν(du)

+
∫
‖u‖≤1

(‖x+ c(x, u)‖m − ‖x‖m −m〈x, c(x, u)〉‖x‖m−2
)
ν(du)

≤ −m · r‖x‖m−1+l +
∫
‖u‖>1

(‖x+ c(x, u)‖m − ‖x‖m) ν(du)

+
∫
‖u‖≤1

(‖x+ c(x, u)‖m − ‖x‖m −m〈x, c(x, u)〉‖x‖m−2
)
ν(du). (6.48)

We start with the term in the last line. By Taylor’s formula, writing h = c(x, u) = c1(x, u), since ‖u‖ ≤ 1, we
certainly have that∣∣∣ ‖x+ c(x, u)‖m − ‖x‖m −m〈x, c(x, u)〉‖x‖m−2

∣∣∣ ≤ 1
2

sup
y∈]x,x+h[

|〈h,∇2V (y)h〉|

≤ 1
2
m [1 + |m− 2|] ‖h‖2 sup

y∈]x,x+h[

‖y‖m−2.

Here, ]x, x+ h[ denotes the d-dimensional interval ]x1, x1 + h1[× . . .×]xd, xd + hd[.
Applying condition 2. (a) to h = c1(x, u), where ‖u‖ ≤ 1, yields

‖h‖2 ≤ γ2‖x‖2l‖u‖2.

If m− 2 > 0, we choose M0 ≥M such that (1 + γM l−1
0 )m−1 ≤ 2 (recall that l < 1). Then we obtain

sup
y∈]x,x+h[

‖y‖m−2 = ‖x+ h‖m−2 ≤ ‖x‖m−2
[
1 + γ‖x‖l−1

]m−2

≤ ‖x‖m−2
[
1 + γM l−1

0

]m−2

≤ 2‖x‖m−2.
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If m < 2, we can proceed similarly,

sup
y∈]x,x+h[

‖y‖m−2 ≤ ‖x‖m−2
[
1 − γ‖x‖l−1

]m−2

≤ ‖x‖m−2
[
1 − γM l−1

0

]m−2

≤ 2‖x‖m−2,

where we choose M0 such that (1 − γM l−1
0 )m−2 ≤ 2.

As a consequence, for any ‖x‖ ≥M0, the last line of (6.48) is bounded from above by

m

(
[1 + |m− 2|]γ2

∫
‖u‖≤1

‖u‖2ν(du)

)
‖x‖m−2+2l ≤ C M l−1

0 ‖x‖m−1+l, (6.49)

since ‖x‖l−1 ≤M l−1
0 . Here, M l−1

0 → 0 as M0 → ∞, and C is some constant. Hence the last term of (6.48) will
be neglectable for our purposes.

Concerning the first jump term in (6.48) we proceed as Kulik [11], proof of Proposition 4.1: for ‖u‖ > 1,
using condition 2. (b), we have

‖x+ c(x, u)‖m − ‖x‖m ≤ ‖x+ c(x, u)‖m − ‖x+ c2(x, u)‖m = ‖x(u) + c1(x, u)‖m − ‖x(u)‖m,

where x(u) = x+ c2(x, u), and then, applying Taylor’s formula,

‖x(u) + c1(x, u)‖m − ‖x(u)‖m ≤ m‖c1(x, u)‖ sup
y∈]x(u),x(u)+c1(x,u)[

‖y‖m−1.

Now, since m ≥ 1, we argue as before and obtain, using successively condition 2. (a) and 2. (b) and ‖u‖ > 1,

m‖c1(x, u)‖ sup
y∈]x(u),x(u)+c1(x,u)[

‖y‖m−1 ≤ mγ‖x‖l‖u‖ (‖x(u)‖ + γ‖x‖l‖u‖)m−1

≤ mγ‖x‖l‖u‖ (‖x‖ + γ‖x‖l‖u‖)m−1

≤ mγ‖x‖m−1+l‖u‖m
(
1 + γM l−1

0

)m−1

≤ 2mγ‖x‖m−1+l‖u‖m,

by the choice of M0. As a consequence, the first jump term in (6.48) can be upper bounded as follows:∫
‖u‖>1

(‖x+ c(x, u)‖m − ‖x‖m) ν(du) ≤ m‖x‖m−1+l

[
2γ
∫
‖u‖>1

‖u‖mν(du)

]
.

Collecting all the above results, we finally obtain that for all ‖x‖ ≥M0,

AV (x) ≤ m

(
−r + 2γ

∫
‖u‖>1

‖u‖mν(du) + CM l−1
0

)
V (x)
‖x‖1−l

·

By condition 3, for M0 sufficiently large, −r + 2γ
∫
‖u‖>1

‖u‖mν(du) + CM l−1
0 < 0 eventually, and this implies

the assertion. �

Appendix

For the convenience of the reader we give in this section a Fuk–Nagaev inequality for sums of two-dependent
identically distributed centred random variables admitting a moment of order p. This inequality is the key tool
to our deviation inequalities, and its proof can be found in the book of Rio [20].

Let X1, X2, . . . be centred identically distributed random variables which are two-dependent and such that
E(|X1|p) <∞ for some p ≥ 2. Put Sk := X1 + . . .+Xk. Then the following deviation inequality holds.
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Theorem A.1. For any λ > 0 we have that

P

(
sup
k≤n

|Sk| ≥ 4λ
)

≤ C(p)
(
σ2(p−1)λ−2(p−1)np−1 +mp n λ

−p
)
,

where σ2 = Var(X1) and mp = E(|X1|p).

Proof. We use the Fuk–Nagaev inequality presented in Rio [20], Theorem 6.2. First of all, since the variables are
two-dependent, we certainly have the upper bound on the α-mixing coefficients αn = supk≥n α(σ(X1), σ(Xk+1)):

α0 =
1
2
, α1 ≤ 1

2
, αn ≡ 0 for all n ≥ 2.

Hence, using the notation (1.21) of Rio [20], we can upper bound

α−1(u) ≤ 2 1[0, 12 [(u).

As a consequence the expression R(u) of Theorem 6.2 of Rio [20] is given as

R(u) ≤ 2Q(u)1[0, 12 [(u) ≤ 2Q(u),

where Q(u) = inf{x : HX1(x) ≤ u} is the quantile of |X1|, HX1(t) = P (|X1| > t). But since X1 admits a p−th
moment, we certainly have that

HX1(t) ≤ mp t
−p,

by Markov’s inequality (recall that mp = E(|X1|p)). Since Q is the generalised inverse function of HX1 , this
implies that

Q(u) ≤ m1/p
p u−1/p,

and this in turn leads to
H(u) = R−1(u) ≤ 2p mpu

−p.

Now we can apply (6.5) of Rio [20]. First of all notice that by the two-dependency structure

s2n =
n∑

i=1

n∑
j=1

|Cov(Xi, Xj)| ≤ 3nσ2.

Thus we obtain, for any r ≥ 1,

P

(
sup
k≤n

|Sk| ≥ 4λ
)

≤ 4
(

1 +
λ2

rs2n

)−r/2

+ 4nλ−1

∫ H(λ/r)

0

Q(u)du

≤ 4
(

1 +
λ2

rs2n

)−r/2

+ 4nλ−1

∫ H(λ/r)

0

m1/p
p u−1/pdu

= 4
(

1 +
λ2

rs2n

)−r/2

+
4nλ−1m

1/p
p

(1 − 1
p )

H(λ/r)1−
1
p

≤ 4
(

1 +
λ2

rs2n

)−r/2

+ C(p)mp nλ
−p rp−1

≤ 4
(

1 +
λ2

3nrσ2

)−r/2

+ C(p)mp nλ
−p rp−1.
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Here, C(p) is a constant depending only on p. Now we choose r = 2(p− 1). By assumption on p, r ≥ 1. Finally
we get

P

(
sup
k≤n

|Sk| ≥ 4λ
)

≤ C(p)
(
σ2(p−1)λ−2(p−1)np−1 +mp n λ

−p
)
.
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