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SEMIMARTINGALE DECOMPOSITION OF CONVEX FUNCTIONS
OF CONTINUOUS SEMIMARTINGALES BY BROWNIAN PERTURBATION

Nastasiya F. Grinberg
1

Abstract. In this note we prove that the local martingale part of a convex function f of a d-dimensional
semimartingale X = M + A can be written in terms of an Itô stochastic integral

∫
H(X)dM , where

H(x) is some particular measurable choice of subgradient ∇f(x) of f at x, and M is the martingale
part of X. This result was first proved by Bouleau in [N. Bouleau, C. R. Acad. Sci. Paris Sér. I
Math. 292 (1981) 87–90]. Here we present a new treatment of the problem. We first prove the result

for X̃ = X + εB, ε > 0, where B is a standard Brownian motion, and then pass to the limit as ε → 0,
using results in [M.T. Barlow and P. Protter, On convergence of semimartingales. In Séminaire de
Probabilités, XXIV, 1988/89, Lect. Notes Math., vol. 1426. Springer, Berlin (1990) 188–193; E. Carlen
and P. Protter, Illinois J. Math. 36 (1992) 420–427]. The former paper concerns convergence of
semimartingale decompositions of semimartingales, while the latter studies a special case of converging
convex functions of semimartingales.
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1. Introduction

Consider a general convex function f : R
d → R, not necessarily everywhere differentiable. Every differentiable

point x ∈ R
d has a unique tangential hyperplane, while at non-differentiable points there is a whole set of

supporting hyperplanes. For a continuous semimartingale X with decomposition X = M + A we prove that
the (local) martingale part of f(X) can be expressed in terms of a stochastic integral of a measurable selection
of a subgradient ∇f(X) against M . For piecewise linear 1-dimensional convex functions this follows from the
Meyer–Tanaka formula. For example, for f(x) = |x| we have ∇f(x) = sgn(x), where sgn(x) = −1 if x ≤ 0 and 1
otherwise. So at the origin, which is the only point where derivative is not defined, we can take the supporting
line to be y = −x. Moreover, since Brownian motion spends zero time in Lebesgue-null sets, we can in fact
choose ∇f(0) to be any number in the interval [−1, +1] (corresponding to the possible slopes of supporting lines
at 0).

The main result of this note is the following
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Theorem 1.1. Let f : R
d → R be a convex function and let X be a continuous R

d-valued semimartingale with
Meyer decomposition Xt = X0 + Mt + At which is defined on filtered probability space (Ω,F , {Ft}t≥0, P). Then
f(X) is again a continuous semimartingale; in particular, its local martingale part is given by

∫ t

0

∇f(Xs)dMs, locally in H1,

where ∇f(x) is some choice of subgradient of f at x, such that ∇f(Xt) is Ft-measurable for all t ≥ 0.

The first part of the theorem stating that f(X) is a semimartingale was proved by Meyer [11] and later by
Carlen and Protter [4]. Meyer just proves that f(X) is a semimartingale, while Carlen and Protter express the
martingale and the finite variation process parts of the decomposition in terms of certain limits. Neither of the
papers however give an explicit semimartingale decomposition of f(X). In [2], Bouleau took a step further and
proved that at each x ∈ dom(f) there exists a choice H(x) of a subgradient ∇f(x) of f such that the martingale
part of the decomposition of f(X) can be expressed as an Itô stochastic integral

∫
H(X)dM . In the follow-up

paper [3] he proves the conjecture stated in [2] that in fact any measurable choice of H(x) can be used. In this
note we are proving the first of the two results using an approach completely different to that in [2].

There are many other papers on extending the Itô’s formula by considering different classes of functions f or
stochastic processes, or both. In [15], for example, Russo and Vallois derive Itô’s formula for C1(Rd)-functions
of continuous semimartingales whose time-reversals are also continuous semimartingales. They also extend the
formula to the case of C1(Rd)-functions with first order derivatives being Hölder-continuous with any parameter
and the process given by a stochastic flow generated by a so-called C0(Rd, Rd)-semimartingale. In both cases
the quadratic variation process is expressed in terms of the generalised quadratic covariation process 〈f ′(X), X〉t
introduced by the authors in an earlier paper [14] (see also a paper by Fuhrman and Tessitore [8], where authors
extend the notion of the generalised quadratic covariation further to the infinite-dimensional case and to non-
differentiable functions). In [7], Föllmer et al. consider the case of an absolutely continuous function f with a
locally square integrable derivative and X a 1-dimensional Brownian motion, for which a version of Itô’s formula
is derived with the finite variation part expressed again in terms of the quadratic covariation 〈f ′(B), B〉t. The
multidimensional case (where f belongs to the Sobolev space W

1,2) is treated in [6]. In [10], Kendall discusses
a semimartingale decomposition of r(B), where r is a distance function of a Brownian motion on a manifold.
The problem tackled in [10] is similar to ours as r fails to be differentiable on a set of measure zero, called the
cut-locus. It is proved in [10] that r(B) is a semimartingale and its canonical decomposition is found explicitly
in the sequel [5].

The layout of the paper is as follows. In Sections 2 and 3 we introduce some notations and preliminary
results concerning convex functions, including some important results on differentiability; in particular, in
Section 3 we explain that a proper convex function is everywhere differentiable (i.e. has a unique supporting
hyperplane) except on a set of measure zero. Hence, by virtue of observing that a Brownian perturbation of our
semimartingale X̃

(ε)
t = Xt + εBt has a probability density at every time t, we show that for a convex function f

the gradient ∇f(X̃(ε)
t ) is defined for all t almost everywhere. To show that the martingale part of f(X̃(ε)) is

given by
∫ ∇f(X̃(ε))dM̃ (ε), where M̃ (ε) = M + εB and ∇f is some measurable choice of a subgradient, we

approximate f by a sequence of C2 convex functions fn : R
d → R, n ≥ 1; this is done in Section 5. The

martingale part of each fn(X̃(ε)
t ) is known explicitly from Itô’s formula and is equal to

∫ ∇fn(X̃(ε))dM̃ (ε).
Convergence of the stochastic integral

∫ ∇fn(X̃(ε))dM̃ (ε) to
∫ ∇f(X̃(ε))dM̃ (ε) is ensured by the result of Carlen

and Protter [4]. We conclude by proving the convergence limε↓0
∫ ∇f(X̃(ε))dM̃ (ε) =

∫ ∇f(X)dM in Section 6.
Section 4 deals with a special case when f is piecewise linear. By proving a generalised version of Meyer–Tanaka
formula we find the local martingale part of f(X) and thus prove Theorem 1.1 for such f . We conclude by
giving a particular example of a subgradient that satisfies Theorem 1.1.
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2. Convex functions: some notations and results

In order to prove the main result of this note, we require some notations and results from convex analysis.
Proofs of the results stated in this section and more details on convex functions are given in [13]. See also [9].

Let f be any function living on R
d and taking values in [−∞, +∞]. At any point x ∈ R

d we define the
one-directional derivative of f with respect to a vector y ∈ R

d, if it exists, as follows

Df(x)[y] := lim
λ↓0

f(x + λy) − f(x)
λ

·

The two sided derivative at x in direction y exists if and only if −Df(x)[−y], defined by

−Df(x)[−y] := lim
λ↑0

f(x + λy) − f(x)
λ

,

is also well-defined and
Df(x)[y] = −Df(x)[−y]. (2.1)

Now, if the function f is convex, then the one-directional derivative always exists and, moreover, we may
write

Df(x)[y] = inf
λ>0

f(x + λy) − f(x)
λ

· (2.2)

Furthermore, Df(x)[y] is positively homogeneous (i.e. Df(x)[λy] = λDf(x)[y] for λ ∈ (0,∞)), convex in y
with Df(x)[0] = 0 ([13], Thm. 23.1) and

Df(x)[y] ≥ −Df(x)[−y]. (2.3)

If for a convex function f defined on R
d and finite at some x ∈ R

d all directional derivatives at x exist, are
two-sided and finite then we have ([13], Thm. 25.2)

Df(x)[y] = 〈∇f(x), y〉, ∀y ∈ R
d,

where

∇f(x) :=
(

∂f

∂x1
(x), . . . ,

∂f

∂xd
(x)
)

is the gradient of f at x = (x1, . . . , xd). Note that ∂f
∂xi

(x) = Df(x)[ei], where ei is the ith canonical basis vector
of R

d.
Of course a general convex function f is not necessarily everywhere differentiable, a simple example be-

ing f(x) = |x| which is not differentiable at x = 0. We can, however, define a set of subgradients at each
“troublesome” point like this.

Definition 2.1. Let f : R
d → R be a convex function. A subgradient ∇f(x) of f at x ∈ R

d is a gradient of an
affine hyperplane h(x) = α + βT x, for α, β ∈ R

d, passing through the point (x, f(x)) and satisfying

h(x′) ≤ f(x′)

for all x′ �= x.

We say that h is a supporting hyperplane of f at a point (x, f(x)). Clearly, at differentiable points h is unique
and is just the tangent of f . Conversely, at points where f is not differentiable we can construct infinitely many
tangential hyperplanes h. The set of all subgradients at x is called the subdifferential of f at x, denoted ∂f(x).
A convex function with finite values is subdifferentiable everywhere. In subsequent sections we will need the
following result.
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Theorem 2.2 ([13], Thm. 23.2). Let f be a convex function and x a point at which f is finite. Then ∇f(x) is
a subgradient of f at x if and only if

Df(x)[y] ≥ 〈∇f(x), y〉 ∀y ∈ R
d\{0}. (2.4)

The theorem above says that a subgradient at x in the direction of y will always be less or equal to the
one-sided directional derivative at x with respect to y. Relation (2.4) is called the subgradient inequality and
can be used as an alternative definition of a subgradient.

Finally we mention the Lipschitz continuity property of convex functions (see, for example, [9], Chap. 3.1,
Thm. 10): if f is a continuous convex function on R

d and U is an open convex subset of R
d, then for all u ∈ U

there exist constants K > 0 and ε > 0 such that

|f(x) − f(y)| ≤ K‖x − y‖, ∀x, y ∈ Bu(ε),

where Bu(ε) is an open ball of radius ε centered at u and ‖ · ‖ is the usual Euclidean norm.

3. Differential theory of convex functions

In this section we study differntiability of convex functions and also state and prove certain results concerning
convergence of gradients and subgradients of convex functions. In what follows we assume that f is proper, i.e.
f(x) < +∞ for at least one x and f(x) > −∞ for all x. By domf we denote the effective domain of f , that is
domf = {x ∈ R

d : f(x) < ∞}. We denote by int(domf) the interior of domf .
Suppose a convex function f : R

d → R is finite at some point x ∈ R
d. Then f is differentiable at x if and

only if the directional derivative Df(x)[·] is linear on R
d. Moreover, in order for this condition to be satisfied,

it suffices that the partial derivatives with respect to the basis vectors of R
d exist at x ([13], Thm. 25.2). Let

us denote by D the set of points in the domain of f at which the supporting hyperplane is unique, i.e. at
which f is differentiable. It is known ([13], Thm. 25.4) that for a proper convex function f the set D is dense
in int(domf) and that its complement in int(domf) is a set of measure zero. Consequently any process whose
law has a probability density at each time t > 0 spends time of measure zero in Dc, an important fact we will
use in the sequel.

To prove Theorem 1.1 for a general (continuous and proper but not necessarily differentiable) convex f we will
approximate it by a sequence of twice continuously differentiable convex functions fn : R

d → R, n ≥ 1, to which
we know Itô’s formula can be applied. On top of this, working with convex functions gives us an advantage of
being able to deduce from the pointwise convergence of the functions something about the convergence of their
corresponding gradients.

Theorem 3.1 (variation of [13], Thm. 25.7). Let f be a convex function defined on R
d and {fn}n≥1 a sequence

of smooth convex functions on R
d such that limn→∞ fn(x) = f(x) ∀x ∈ R

d. Let D ⊆ int(domf) be the set of
points where f is differentiable. Then

lim
n→∞∇fn(x) = ∇f(x) ∀x ∈ D. (3.1)

Proof. See proof of [13], Theorem 25.7. �

This result will be used several times in Sections 5 and 6.
We next state and prove a result concerning convergence of subgradients of convex functions. Let f be convex;

consider a sequence {xn}n≥1 with xn ∈ int(domf), n ≥ 1, and x ∈ int(domf) such that limn→∞ xn = x. Of
course in general limn→∞ ∇f(xn) need not exist. However, the situation when xn = x + εny for some y ∈ R

d

and εn → 0 as n → ∞, i.e. when xn approaches x from a single direction y, is special. In this case it is
known that ∇f(xn) converges to the part of the boundary of ∂f(x) consisting of points at which y is normal
to ∂f(x) ([13], Thm. 24.6). Moreover,
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Theorem 3.2. Let f : R
d → R be a convex function. For any x ∈ R

d, for almost all y ∈ Sd−1, where Sd−1 is
the unit sphere in R

d,
lim
ε↓0

∇f(x + εy)

exists, belongs to ∂f(x) and is unique for any selection ∇f(x + εy) ∈ ∂f(x + εy) we may make from the
subdifferential of f at x + εy for any ε > 0.

Proof. First of all recall that Df(x)[y] = limε↓0(f(x+εy)−f(x))/ε is a positively homogeneous function, convex
in y with Df(x)[0] = 0. Let g(y) := Df(x)[y]. Hence ∇g(λy) exists and is unique for all λ > 0 for almost all
y ∈ R

d. Fix x, y ∈ R
d and without loss of generality, by adding a suitable affine function to f , assume that

f(x) = g(y) = ∇g(y) = 0.

We argue by contradiction. If theorem fails then we can find a subsequence εn → 0 and a selection ∇f(x +
εny) ∈ ∂f(x + εny) such that

lim
n→∞∇f(x + εny) = h �= 0, (3.2)

and also a vector u ∈ R
d with 〈h, u〉 > 0. For such u consider

f(x + εny + εnλu) − f(x + εny)
εn

= λ
f(x + εny + εnλu) − f(x + εny)

εnλ
·

Using (2.2) and homogeneity of g(y) the above is greater or equal to

λ

εn
Df(x + εny)[εnu] = λDf(x + εny)[u] ≥ λ〈∇f(x + εny), u〉 = λ〈h, u〉 + o(1)

where the last two inequality signs come from expressions (2.4) and (3.2) respectively, and o(1) → 0 as n → ∞.
Thus we obtain

f(x + εny + εnλu) − f(x + εny)
εn

≥ λ〈h, u〉 + o(1), (3.3)

On the other hand, since f(x) = g(y) = 0, we have

f(x + εny) − f(x)
εn

=
f(x + εny)

εn
= o(1). (3.4)

Hence combining (3.3) and (3.4) one obtains

f(x + εny + εnλu) − f(x)
εn

=
f(x + εny + εnλu) − f(x + εny)

εn
+

f(x + εny) − f(x)
εn

≥ λ〈h, u〉 + o(1).

Letting n → ∞, i.e. εn → 0, the above inequality becomes

Df(x)[y + λu] = g(y + λu) ≥ λ〈h, u〉 > 0

⇒ g(y + λu)
λ

=
g(y + λu) − g(y)

λ
≥ 〈h, u〉 > 0.

And so letting λ → 0 one obtains
〈∇g(y), u〉 ≥ 〈h, u〉 > 0.

But this contradicts the assumption that ∇g(y) = 0. �
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Finally we equip the set of convex functions on R
d with the topology of uniform convergence on compact

sets with the corresponding metric ρ, defined by ρ(f, g) =
∑∞

k=1 2−kρk(f, g) where

ρk(f, g) =
sup|x|≤k |f(x) − g(x)|

1 + sup|x|≤k |f(x) − g(x)| ·
In Section 5 we will consider an approximating sequence {fn}n≥1 of twice continuously differentiable convex
functions approximating a general convex function f , such that limn→∞ ρ(fn, f) = 0. We will need the following
lemma (partly adapted from [4], Lemma, p. 2)

Lemma 3.3. Let {fn}n≥1 be a sequence of C2 convex functions on R
d and let f be a convex function on R

d,
such that limn→∞ ρ(fn, f) = 0. Then for any constant r ≥ 0

sup
n

sup
|x|≤r

|∇fn(x)| ≤ Cr < ∞, ∀r > 0, (3.5)

and
sup
|x|≤r

|∇f(x)| ≤ Cr < ∞, ∀r > 0, (3.6)

where Cr is some constant only depending on r, and ∇f(x) is any choice of subgradient ∂f(x).

Proof. To see why inequality (3.5) is true, first notice that, since limn→∞ ρ(fn, f) = 0, the variation of the
convex functions fn is uniformly bounded in n on {|x| ≤ r + 1} for any r > 0. Denote this bound by Cr. Let
xn be such that

∇fn(xn) = sup
|x|≤r

|∇fn(x)|

and let un := ∇fn(xn)/|∇fn(xn)|. Then

|∇fn(xn)| =
〈
∇fn(xn),

∇fn(xn)
|∇fn(xn)|

〉
= 〈∇fn(x), un〉 = Dfn(x)[un]

= inf
λ>0

fn(xn + λun) − fn(xn)
λ

≤ fn(xn + un) − fn(xn). (3.7)

But, since |xn + un| ≤ r + 1, the above is less than or equal to Cr for all n and (3.5) follows.
Now, since fn converges to f uniformly on compact sets, we also have fn → f pointwise. Therefore, for any

x, y with |x|, |y| < r+1 the inequality fn(x)− fn(y) ≤ Cr, ∀n ≥ 1, (which follows since Cr bounds the variation
of fn’s) implies f(x)− f(y) ≤ Cr by virtue of taking the limit n → ∞. So, by a calculation similar to (3.7), we
have for any ∇f(x) ∈ ∂f(x)

|∇f(x∗)| = 〈∇f(x∗), u∗〉 ≤ Df(x∗)[u∗] ≤ f(x∗ + u∗) − f(x∗) ≤ Cr,

where x∗ is such that ∇f(x∗) = sup|x|≤r |∇f(x)| and u∗ := ∇f(x∗)/|∇f(x∗)|. �

4. Piecewise linear convex functions and Meyer–Tanaka formula

In this section we start our analysis of the martingale part of f(X). However, instead of treating the case of
a general convex function f , we first prove Theorem 1.1 in a special case when f is piecewise linear. Using the
Meyer–Tanaka formula, we will verify that any piecewise linear convex function of a continuous semimartingale
is itself a continuous semimartingale and find the martingale part of the decomposition explicitly.

This result, although not essential, is a nice warm-up before we start dealing with a more general situation
in the sections to follow. We refer reader to [12], Chapter VI.1, for a detailed discussion of classical Tanaka
and Itô−Tanaka formulas (for d = 1). One might also find a discussion of convex functions in ([12], Appendix
Section 3), useful.
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We first recall the Meyer–Tanaka formula (Tanaka formula, if X = B is a standard Brownian motion):

Theorem 4.1 (Meyer–Tanaka formula for continuous semimartingales). Let X be a continuous semimartingale.
Define the function sgn(x) to be −1 if x ≤ 0 and 1 otherwise. Then f(X), where f(x) = |x|, is again a
semimartingale and, in particular,

|Xt| = |X0| +
∫ t

0

sgn(Xs)dXs + L0
t ,

where L0
t is the local time of X at 0.

Here, by extending the classic Meyer–Tanaka formula, we prove a more general result. Namely, we will prove
that any piecewise linear convex function of a continuous semimartingale is itself a continuous semimartingale
and find the martingale part of the decomposition explicitly.

Proposition 4.2. Let X = (X1, . . . , Xd) be a continuous semimartingale living on R
d, with ith component

having decomposition X i
t = X i

0 + M i
t + Ai

t, i ∈ {1, . . . , d}. Let f : R
d → R be a function defined by f(x) =

l1(x) ∨ . . . ∨ lk(x), x ∈ R
d, where li(x) = αi +

∑d
j=1 βijxj = αi + βT

i x, for αi, βi ∈ R
d, i ∈ {1, . . . , k}, and

x ∨ y := sup{x, y}. Then f(X) is a semimartingale with decomposition

f(Xt) = f(X0) +
k∑

i=1

∫ t

0

1Bi(Xs)βT
i dXs +

1
2
Lt, (4.1)

where Bi = {x : min{k : supj{lj(x)} = lk(x)} = i} and Lt is an increasing process, constant on the complement
of {t : li(Xt) = lj(Xt) for any i �= j}. In particular, the local martingale part of f(X) is given by

k∑
i=1

∫ t

0

1Bi(Xs)βT
i dMs. (4.2)

Proof. We prove the proposition for the case when k = 2 and any d ≥ 1 and the general case follows by
induction. Consider f(x) = l1(x) ∨ l2(x). Denote l1(Xt) = Yt and l2(Xt) = Zt. Since Xt is a continuous
semimartingale so are affine functionals, Yt and Zt, of Xt. Let the corresponding decompositions be Y = M +A
and Z = N + S. Consider f(x) = l1(x) ∨ l2(x) = y ∨ z. We can rewrite y ∨ z as follows

y ∨ z =
1
2

(|y − z| + y + z) .

Hence, using the differential notation for simplicity, we obtain

d(Yt ∨ Zt) =
1
2
d (|Yt − Zt| + Yt + Zt) =

1
2

(d(|Wt|) + dYt + dZt),

where W := Y − Z, and so W = (M − N) + (A − S). Using Meyer–Tanaka formula the above becomes

1
2
(
sgn(Wt)dWt + dL0

t + dYt + dZt

)
,

where L0
t is the local time of W at 0. Next

1
2
(
sgn(Wt)d(Mt − Nt) + sgn(Wt)d(At − St) + d(Mt + At) + d(Nt + St) + dL0

t

)
=

1
2
[(

sgn(Wt) + 1
)
dMt

− (sgn(Wt) − 1
)
dNt + (sgn(Wt) + 1)dAt − (sgn(Wt) − 1) dSt + dL0

t

]
.
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Now sgn(Wt) = sgn(Yt−Zt) = 1[Yt>Zt]−1[Yt≤Zt] and so sgn(Wt)+1 = 21[Yt>Zt] and sgn(Wt)−1 = −21[Yt≤Zt].
Hence we obtain

d (Yt ∨ Zt) = 1[Yt>Zt]dMt + 1[Yt≤Zt]dNt + 1[Yt>Zt]dAt + 1[Yt≤Zt]dSt +
1
2
dLt

= 1[Yt>Zt]dYt + 1[Yt≤Zt]dZt +
1
2
dLt

or

Yt ∨ Zt = Y0 ∨ Z0 +
∫ t

0

1[Ys>Zs]dYs +
∫ t

0

1[Ys≤Zs]dZs +
1
2
dLt,

where Lt is a continuous increasing process, constant on the complement of {t : l1(Xt) = l2(Xt)}. The above
expression is exactly (4.1) for n = 2. Noticing that x∨ y ∨ z = (x∨ y)∨ z, the general case follows by induction.

�

Clearly the integrand in (4.2) is a measurable selection of the multivalued map ∂f(x) and so Theorem 1.1
holds in the special case of convex piecewise linear functions. To illustrate this result we consider our simple
example again: for f(x) = |x| we have d = 1, k = 2, l1(x) = −x and l2(x) = x and so B1 = {x : x < 0},
B2 = {x : x ≥ 0} and Lt is an increasing process constant on the complement of {t : Xt = 0}.

5. Semimartingale decomposition of f(X̃t)

We are now ready to start the analysis of the general case of a convex function f defined over the whole of
the Euclidean space R

d. Let X be a continuous semimartingale in R
d with decomposition X = M + A and

defined on some filtered probability space (Ω,F , {Ft}t≥0, P). Let (Ω̃, F̃ , {F̃t}t≥0, P̃) be some enlargement of this
space and let B be an (F̃t)-standard Brownian motion independent of X . Define the perturbed process X̃ on
(Ω̃, F̃ , {F̃t}t≥0, P̃) by

X̃
(ε)
t := X̃t := Xt + εBt, ε > 0, t ≥ 0.

For simplicity of notation we shall suppress the superscript (ε) wherever possible. For simplicity also but without
loss of generality we can assume that X0 = X̃0 = 0.

In this section we find the martingale part of f(X̃(ε)) explicitly in order to take the limit as ε → 0 in the next
section and hence prove Theorem 1.1. The reasoning behind adding a small amount of Brownian motion to X
is as follows: we know very little about the behaviour of X as it is a general semimartingale. For instance, it
can at some times be trivial, i.e. constant. Hence, it might spend positive amount of time in the points where
f is not differentiable, that is, where it has more than one supporting hyperplane. To avoid this happening we
perturb X by adding εB. Then

Lemma 5.1. X̃t has a probability density at each t > 0 and, in particular, spends zero time in any null set.

Proof. It suffices to prove that P̃(X̃t ∈ N) = 0 for any t > 0 and N ⊂ R
d with Leb(N) = 0. Then it will follow

that for all t > 0 the law of X̃t under P̃ is absolutely continuous with respect to the Lebesgue measure. For any
Lebesgue-null set N we have

P̃(X̃t ∈ N) = E

[
P̃(X̃t ∈ N |Ft)

]
,

where Ft = σ({Xs; 0 ≤ s ≤ t}), and we use the tower property of conditional expectation. Next we express X̃t

in terms of Xt and Bt and use the fact that Bt is independent of Xt, and hence of Ft, to obtain

E
[
P̃(Xt + εBt ∈ N |Ft)

]
=
∫

P̃(x + εBt ∈ N)dμt(x),
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where μt is the law of Xt (under P). Observe that B̂t := x + εBt is a Brownian motion started at x with
〈B̂t, B̂t〉 = ε2t. But we know that Brownian motion hits null-sets with probability zero. Hence, the above
integral is equal to zero and the lemma is proved. �

In Section 3 we have seen that Dc, the set of points at which f is not differentiable, is Lebesgue-null.
Consequently, by the above lemma, X̃ spends zero time at those “ambiguous” points. Hence, ∇f(X̃) is almost
surely everywhere defined. Moreover, a particular measurable choice of ∇f(x) ∈ ∂f(x) at each x ∈ Dc is
unimportant as it does not change the value of the stochastic integral

∫ t

0 ∇f(X̃s)dM̃s, which we will show is the
martingale part of f(X̃). To do that we approximate f by a sequence of convex twice continuously differentiable
functions.

Let {fn}n≥1 be a sequence of such twice continuously differentiable convex functions on R
d converging to f

with respect to the metric ρ described at the end of Section 3, i.e. limn→∞ ρ(fn, f) = 0. We need to prove that
the stochastic integral

∫ t

0 ∇fn(X̃s)dM̃s, the martingale part of fn(X̃), converges in some sense to
∫ t

0 ∇f(X̃s)dM̃s

for some measurable choice of ∇f(x) ∈ ∂f(x), and that it is indeed the martingale part of f(X̃). It turns out
that the convergence is in the H1 norm: for a continuous semimartingale X with decomposition X = M + A
we define

‖ X ‖Hp=‖ 〈M, M〉1/2
∞ +

∫ ∞

0

|dAs| ‖Lp .

The Hp-space consists of all semimartingales X such that ‖ X ‖Hp< ∞. Once the convergence is established,
the fact that

∫ ∇f(X̃)dX̃ is a local martingale part of f(X̃) will follow from ([4], Thm. 1), of Carlen and
Protter.

Suppose {Xn}n≥1 is a sequence of continuous semimartingales with the decomposition Xn = Xn
0 +Mn +An,

such that limn→∞ E[(Xn −X)∗] = 0. Here X∗ = supt |Xt|. Barlow and Protter prove ([1], Thm. 1) that under
some regularity conditions imposed on Mn and An not only that the limiting process X is again a continuous
semimartingale but that there is also convergence of the corresponding martingale and finite variation process
parts of the decompositions.

In ([4], Thm. 1), Carlen and Protter prove that the assumptions of ([1], Thm. 1), are satisfied in the case
when the sequence of C2 convex functions {fn}n≥1 of a (not necessarily continuous) semimartingale X = M +A
converges to a convex f , thus making the result applicable in our situation.

We are now ready to prove the following

Lemma 5.2. The local martingale part of f(X̃t) is given by the limit

lim
n→∞

∫ t

0

∇fn(X̃s)dM̃s =
∫ t

0

∇f(X̃s)dM̃s (5.1)

locally in H1, where ∇f(x) ∈ ∂f(x) is some measurable choice of a subgradient of f at x.

Proof. Since for each n ≥ 1 fn is a C2 function, the martingale part of fn(X̃) is given by
∫ ∇fn(X̃)dM̃ , where

M̃ = M + εB. The result of Carlen and Protter, applied to our sequence {fn}n≥1 and the semimartingale X̃ ,
then ensures that the martingale part of the limiting process f(X̃t) is given by the limit of

∫ ∇fn(X̃)dM̃ as
n tends to infinity, locally in H1. Our aim is to prove that this limit is indeed equal to

∫ ∇f(X̃)dM̃ for some
measurable choice of a subgradient ∇f ∈ ∂f .

We first need to suitably localise our process. Let B(r) be an open ball of radius r and B(r′) an open ball of
radius r′ with r′ > r > 0, both centred at the origin. For all r, r′ > 0 define stopping times Tr := inf{t : Xt /∈
B(r)} and T̃r′ := inf{t : X̃t /∈ B(r′)} and take T̃ = Tr ∧ T̃r′ . Assume also that X̃t∧T̃ , Xt∧T̃ ∈ H1 for all t ≥ 0;
we know that continuous semimartingales are at least locally in H1. We consider the stopped process X̃t∧T̃ .
Note that Xt∧T̃ ∈ B(r) ⊂ B(r′) and X̃t∧T̃ ∈ B(r′) for all t ≥ 0. By Lemma 5.1 the law of the localised process
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X̃t∧T̃ under P̃ has the density for all t < T̃ ; whether X̃T̃ is in D or not is not important, since it doesn’t affect

the value of the integrals
∫ T̃

0
∇fn(X̃s)dM̃s, for n ≥ 1, and

∫ T̃

0
∇f(X̃s)dM̃s.

Note that for proving Lemma 5.2 it would have sufficed to stop X̃ at T̃r′ . However, in order to be consistent
with localisation we will be using to prove Theorem 1.1 and also to prove Lemma 5.3 below, we use T̃ = Tr∧ T̃r′

instead.
Notice that convergence of a continuous (local) martingale M in Hp is equivalent to convergence of 〈M, M〉1/2

in Lp. So, in this case convergence in Hp implies convergence in Hl for 1 ≤ l < p. In our case it is easier to
prove convergence (5.1) in H2 and then deduce convergence in H1. For any measurable selection ∇f ∈ ∂f and
t > 0 we have

lim
n→∞

∣∣∣∣∣
∣∣∣∣∣
∫ t∧T̃

0

(
∇fn(X̃s) −∇f(X̃s)

)
dM̃s

∣∣∣∣∣
∣∣∣∣∣
H2

= lim
n→∞ E

[∫ t∧T̃

0

(
∇fn(X̃s) −∇f(X̃s)

)2

d〈M̃, M̃〉s
]1/2

.

Using inequalities (3.5) and (3.6) we can bound the expression inside the expectation sign above as follows

∫ t∧T̃

0

(
∇fn(X̃s) −∇f(X̃s)

)2

d〈M̃, M̃〉s ≤ 4C2
r′

∫ t∧T̃

0

d〈M̃, M̃〉s
≤ 4C2

r′〈M̃, M̃〉t∧T̃ < ∞,

where the quadratic variation 〈M̃, M̃〉t∧T̃ is finite because it is the bracket of a bounded continuous semimartin-
gale X̃t∧T̃ (see [12], Chap. IV, Thm. 1.3). Using dominated convergence theorem we can now take the limit
inside the expectation sign and, since the integrand is bounded above by 4C2

r′ , we can also pull the limit inside
the integral sign. We can then use almost sure convergence of ∇fn(X̃t) to ∇f(X̃t) for all X̃t ∈ D and the fact
that particular choices ∇f(X̃t) ∈ ∂f(X̃t) for X̃t ∈ Dc are not charged by the integral to conclude that the limit
in question is equal to

E

[ ∫ t∧T̃

0

lim
n→∞

(
∇fn(X̃s) −∇f(X̃s)

)2

d〈M̃, M̃〉s
]1/2

= 0.

It follows that
∫ t∧T̃

0 ∇fn(X̃s)dM̃s converges to
∫ t∧T̃

0 ∇f(X̃s)dM̃s in H2 and, hence, in H1. This is true for
any radii r′ > r > 0 of localisation, and so (5.1) follows.

�

We also prove the following lemma concerning the semimartingale decomposition of f(X̃) which we will
require for the Proof of Theorem 1.1.

Lemma 5.3. Let Ñ (ε) and S̃(ε) be the martingale and the finite variation parts of the semimartingale decom-
position of f(X̃(ε)) respectively. Then for all ε ≤ 1

E

[
sup
t≤T̃

∣∣∣Ñ (ε)
t

∣∣∣] ≤ Kr,r′ , (5.2a)

E

[∫ T̃

0

∣∣∣dS̃
(ε)
t

∣∣∣] ≤ Kr,r′ , (5.2b)

where Kr,r′ is a constant depending on r and r′ and independent of ε.
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Proof. The proof largely follows proof of ([4], Thm. 1) we prove that the sequence of continuous semimartingales
{fn(X̃)}n≥1 satisfies the conditions of [1], Theorem 1, i.e. that

lim
n→∞ E

[
sup
t≤T̃

∣∣∣fn(X̃t) − f(X̃t)
∣∣∣] = 0 (5.3a)

sup
n≥1

E

[
sup
t≤T̃

∣∣∣Ñn
t

∣∣∣] ≤ Kr,r′, (5.3b)

sup
n≥1

E

[∫ T̃

0

∣∣∣dS̃n
t

∣∣∣] ≤ Kr,r′, (5.3c)

where Ñn and S̃n, for n ≥ 1, are the martingale and the finite variation part of the decomposition of fn(X̃)
respectively. Then (5.2a) and (5.2b) will follow immediately by [1] Theorem 1. The difference from the proof
of [4] Theorem 1 is only in the fact that we need to ensure that for small enough ε the constant Kr,r′ above can be
taken to be independent of ε (this is necessary in order to apply [1], Thm. 1, to the sequence of semimartingales
{f(X̃(ε))}ε>0 in the proof of Thm. 1).

First of all notice that (5.3a) follows from the fact that limn→∞ ρ(fn, f) = 0. Next we consider (5.3b);
for each n ≥ 1 the martingale part of fn(X̃) is given by the stochastic integral Ñn =

∫ ∇fn(X̃)dM̃ . By the
Burkholder−Davis−Gundy inequality we have for some constant p < ∞

E

[
sup
t≤T̃

|Ñn
t |
]
≤ pE

[
〈Ñn, Ñn〉1/2

T̃

]

= pE

[(∫ T̃

0

|∇fn(X̃t)|2d〈M̃, M̃〉t
)1/2]

≤ pCr′E

[
〈M̃, M̃〉1/2

T̃

]
,

where the second inequality follows by inequality (3.5) in Lemma 3.3. To finish we need to bound 〈M̃, M̃〉T̃ by
some constant independent of ε. We have 〈M̃, M̃〉T̃ = 〈M, M〉T̃ + ε2T̃ which for all ε ≤ 1 is less or equal to
〈M, M〉T̃ + T̃ which is in turn bounded above by 〈M, M〉Tr + Tr, since Tr ≥ T̃ = Tr ∧ T̃r′. Hence, for all ε ≤ 1

E

[
sup
t≤T̃

|Ñn
t |
]
≤ pCr′E

[
(〈M, M〉Tr + Tr)1/2

]
,

where the right-hand side is independent of ε as well as n, and so (5.3b) follows.
The proof of (5.3c) largely mimics the argument in Carlen and Proter ([4], pp. 4–5), modulo obvious simpli-

fications to allow for the fact that our case is continuous and using Lipschitz continuity of f in B(r′).
The assertion of the lemma now follows by Theorem 1 in [1]. �

6. Proof of Theorem 1.1

Finally we need to derive the analogous result for our original object of interest, continuous semimartingale X .

Proof of Theorem 1.1. We have limε↓0 X̃(ε) = X almost surely and, thus, for a continuous convex f , limε↓0 f(X̃(ε))
= f(X) almost surely. Note that the limit of the process X̃(ε) as ε tends to zero lives in the enlarged probability
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space (Ω̃, F̃ , {F̃t}t≥0, P̃), even though the original process X is defined on (Ω,F , {Ft}t≥0, P). We use the same
localisation as in the proof of Lemma 5.2, i.e. we consider X̃t∧T̃ with T̃ = Tr ∧ T̃r′ = inf{t : Xt /∈ B(r)}∧ inf{t :
X̃t /∈ B(r′)}, with r′ > r > 0.

Crucially by Itô’s lemma f(X̃(ε)) is a continuous semimartingale for every ε > 0. Hence, we can apply the
result of Barlow and Protter ([1], Thm. 1), if we can show that the conditions of the theorem are satisfied in
our case, i.e. that

lim
ε↓0

E

[
sup
t≤T̃

|f(X̃(ε)
t ) − f(Xt)|

]
= 0

sup
ε>0

E

[
sup
t≤T̃

|Ñ (ε)
t |
]
≤ Kr,r′ ,

sup
ε>0

E

[∫ T̃

0

|dS̃
(ε)
t |
]
≤ Kr,r′ ,

where Ñ (ε) and S̃(ε) are the martingale and the finite variation parts of the semimartingale decomposition of
f(X̃(ε)) respectively and Kr,r′ is some finite constant which only depends on r and r′. In view of Lemma 5.3
we need to check only the first of the three conditions above (we can assume that ε ≤ 1). Using the fact that f
is Lipschitz in the ball B(r′), we have

E

[
sup
t≤T̃

|f(X̃t) − f(Xt)|
]
≤ Kr′E

[
sup
t≤T̃

|X̃t − Xt|
]

= εKr′E

[
sup
t≤T̃

|Bt|
]
,

where Kr′ < ∞ is a Lipschitz constant depending on r′. Taking the limit ε → 0 gives the desired result.
Together with expressions (5.2a) and (5.2b) of Lemma 5.3 this ensures that the conditions of [1], Theorem 1
are satisfied in our case. From Lemma 5.2 we know that for each ε > 0 the martingale part of f(X̃(ε)) is equal
to Ñ (ε) =

∫ ∇f(X̃(ε))dM̃ (ε); it now follows immediately that the martingale part of f(X) is given by the limit
as ε → 0 of Ñ (ε), locally in H1. All is left to prove now is that this limit is given by

∫ ∇f(X)dM for some
measurable choice of ∇f(x) ∈ ∂f(x), i.e. that for all t > 0

lim
ε↓0

∫ t

0

∇f(X̃(ε)

s∧T̃
)dM̃

(ε)

s∧T̃
=
∫ t

0

∇f(Xs∧Tr )dMs∧Tr (6.2)

in H1 for all r′ > r > 0.
Proving the above convergence will require us to consider the limit of ∇f(X̃(ε)

t∧T̃
) as ε tends to 0. From

Theorem 3.2 we know that for all t ≥ 0 for almost all values of Bt the limit limε↓0 ∇f(Xt + εBt) exists and
belongs to ∂f(Xt). Denote this limit by ∇f(Xt). Also for any path of X and B for small enough ε, i.e.
eventually for all ε, we have Tr < T̃r′ . That is T̃ = Tr ∧ T̃r′ → Tr as ε → 0 a.s. and so

lim
ε↓0

∇f(Xt∧T̃ + εBt∧T̃ ) = ∇f(Xt∧Tr) a.s. (6.3)



LTO’S FORMULA FOR CONVEX FUNCTIONS VIA BROWNIAN PERTURBATION 305

Again we consider convergence in H2 first, and convergence in H1 follows. We have, using the fact that
limε↓0 M̃t∧T̃ = limε↓0(Mt∧T̃ + εBt∧T̃ ) = limε↓0 Mt∧T̃ a.s.

lim
ε↓0

∣∣∣∣∣
∣∣∣∣∣
∫ t

0

∇f(X̃s∧T̃ )dM̃s∧T̃ −
∫ t

0

∇f(Xs∧Tr )dMs∧Tr

∣∣∣∣∣
∣∣∣∣∣
H2

=

lim
ε↓0

E

[∫ T̃

0

∇f(X̃s)2d〈Ms, Ms〉 +
∫ Tr

0

∇f(Xs)2d〈Ms, Ms〉

− 2
∫ ∞

0

∇f(X̃s∧T̃ )∇f(Xs∧Tr )d〈Ms∧T̃ , Ms∧Tr〉
]1/2

. (6.4)

Once again we can use Lemma 3.3 to see that the first integrand in (6.4) is bounded above by C2
r′ < ∞,

while the third integrand is bounded above by Cr′Cr < ∞. Thus we have∫ T̃

0

∇f(X̃s)2d〈Ms, Ms〉 ≤ C2
r′〈MT̃ , MT̃ 〉 < ∞

and ∫ ∞

0

∇f(X̃s∧T̃ )∇f(Xs∧Tr )d〈Ms∧T̃ , Ms∧Tr 〉 ≤ Cr′Cr〈MTr , MTr〉 < ∞,

where we use the fact that 〈M, M〉t∧Tr , resp. 〈M, M〉t∧T̃ , is finite being the bracket of the bounded continuous
semimartingale Xt∧Tr , resp. Xt∧T̃ . Appealing to the dominated and bounded convergence theorems we can
interchange the limit in (6.4) with the expectation and the integration signs respectively. Convergence (6.3)
and the fact that T̃ → Tr a.s. then lead us to conclude that the limit (6.4) is equal to 0 and so we obtain (6.2).
Noticing that the above is true for all r′ > r > 0 concludes the proof. �
Example. As was mentioned before, in [3], Bouleau has proved that any measurable choice of subgradient
∇f(Xt) works for the stochastic integral of Theorem 1.1. A function

∇e
f(x) = lim

θ↓0
E[∇f(x + θN)], (6.5)

where N is a standard d-dimensional Gaussian random variable, is a particular example. ∇e
f(x) can be

regarded as a sort of an average of (sub)gradients within the vicinity of x. To verify that it does indeed define a
subgradient of f at each x ∈ R

d we check the subgradient inequality (2.4) of Theorem 2.2. For any y ∈ R
d\{0}

we have 〈
∇e

f(x), y
〉

=
〈

lim
θ↓0

E[∇f(x + θN)], y
〉

= lim
θ↓0

E

[〈
∇f(x + θN), y

〉]
. (6.6)

Now, by the Lipschitz property of f and by the subgradient inequality (2.4) we have

〈∇f(x + θN), y〉 ≤ D(x + θN)[y] = inf
λ>0

f(x + θN + λy) − f(x + θN)
λ

≤ f(x + θN + y) − f(x + θN) ≤ K|y|

for some Lipschitz constant K < ∞ depending on x and N . Appealing to the bounded convergence theorem
now allows us to take the limit inside the expectation in equation (6.6) above〈

∇e
f(x), y

〉
= E

[〈
lim
θ↓0

∇f(x + θN), y
〉]

. (6.7)
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But by Theorem 3.2 limθ↓0 ∇f(x + θN) exists, is unique and belongs to ∂f(x) for almost all N . Denote this
limit by ∇∗

f(x). Then (6.7) is equal to

E

[〈
∇∗

f(x), y
〉]

≤ E[Df(x)[y]] = Df(x)[y].

Hence, we have 〈∇e
f(x), y〉 ≤ Df(x)[y] for any y ∈ R

d\{0} for all x, and so ∇e
f(x) is a well-defined subgradient

of f .
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supported my studies. I would also like to thank Michel Émery for helpful discussions during Probability Summer School
at Saint-Flour in July 2008 and Larbi Alili and the anonymous referee for helpful comments on the earlier versions of
this note.

References

[1] M.T. Barlow and P. Protter, On convergence of semimartingales. In Séminaire de Probabilités, XXIV, 1988/89, Lect. Notes
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