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ASYMPTOTIC NORMALITY OF RANDOMLY TRUNCATED STOCHASTIC
ALGORITHMS

Jérôme Lelong
1

Abstract. We study the convergence rate of randomly truncated stochastic algorithms, which consist
in the truncation of the standard Robbins–Monro procedure on an increasing sequence of compact sets.
Such a truncation is often required in practice to ensure convergence when standard algorithms fail
because the expected-value function grows too fast. In this work, we give a self contained proof of a
central limit theorem for this algorithm under local assumptions on the expected-value function, which
are fairly easy to check in practice.
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1. Introduction

The use of stochastic algorithms is widespread for solving stochastic optimization problems. These algorithms
are extremely valuable for a practical use and particularly well suited to localize the zero of a function u. Such
algorithms go back to the pioneering work of Robbins and Monro [15], who considered the sequence

Xn+1 = Xn − γn+1u(Xn) − γn+1δMn+1 (1.1)

to estimate the zero of the function u. The sequence (γn)n classically denotes the gain or step sequence of
the algorithm and (δMn)n depicts a random measurement error. Nevertheless, the assumptions required to
ensure the convergence – basically, a sub-linear growth of u on average – are barely satisfied in practice, which
dramatically reduces the range of applications. Chen and Zhu [6] proposed a modified algorithm to deal with
fast growing functions. Their new algorithm can be summed up as

Xn+1 = Xn − γn+1u(Xn) − γn+1δMn+1 + γn+1pn+1 (1.2)

where (pn)n is a truncation term ensuring that the sequence (Xn)n cannot jump too far ahead in one step.
In this paper, we are concerned with the rate of convergence of equation (1.2). Numerous results are known

for the sequence defined by equation (1.1), which is known to converge at the rate
√

γn when γn is of the form
γ

nα with 1/2 < α ≤ 1 (see Delyon [7], Duflo [9] or Buche and Kushner [4] for instance). Let x� denote the
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unique root of u, u(x�) = 0. When γn = γ
n and ∇u(x) is of the form λI, Duflo [9] showed that the convergence

rate depends on the relative position of λ and γ
2 . A functional central limit theorem for this algorithm was

proved by Bouton [3] and Benveniste et al. [2]. The convergence rate of constrained algorithms was studied by
Kushner and Yin [10]. The problem of multiple targets was tackled by Pelletier [14] who proved a Central Limit
Theorem. However, very few results are known about the convergence rate of the algorithm devised by Chen and
Zhu [6]. Chen [5] briefly studied the convergence rate under global hypotheses on the noise sequence (δMn)n.
Here, we aim at giving a clarified, self-contained and elementary proof of this result under local assumptions
(see Sect. 2.3 for a detailed comparison of the two results). Besides giving a clarified and self-contained proof of
the central limit theorem for randomly truncated algorithm, the improvement brought by our work is the use
of the local condition supn E[|δMn|2+ρ 1{|Xn−1−x�|≤η}] < ∞ with some ρ > 0 and η > 0 replacing the global
condition supn E[|δMn|2+ρ] < ∞.

First, we define the general framework and explain the algorithm developed by Chen and Zhu [6]. Our
main results are stated in Theorems 2.1 and 2.2 depending on the decreasing speed of the sequence (γn)n. In
Sections 2.3 and 2.4, we discuss the improvements brought by our new results and we give a concrete example
to show the benefits of using local assumptions. Section 3 is devoted to the proof of the main results.

Notations
• If z is a complex number, we denote by Re(z) (resp. Im(z)) its real (resp. imaginary) part.
• The prime notation denotes the transpose operator, e.g. A′ stands for the transpose of A.
• For any vector x, |x| denotes its Eucildean norm and · the associated scalar product.
• For any square matrix A, ||A|| denotes the matrix norm associated to | · |, i.e. ||A|| = sup|x|≤1 |Ax|. For

any matrix A, ||A|| is equal to the square root of the largest eigenvalue of A′A.
• If A is a square matrix, we denote by Sp(A) the eigenvalues of A.
• We say that a square matrix A is repulsive if all the eigenvalues of A have positive real parts.

2. A CLT for randomly truncated stochastic algorithms

It is quite common to look for the root of a continuous function u : x ∈ Rd �−→ u(x) ∈ Rd, which is not
easily tractable. We assume that we can only access u up to a measurement error embodied in the following by
the sequence (δMn)n and that the norm |u(x)|2 grows faster than |x|2 such that the standard Robbins–Monro
algorithm (see Eq. (1.1)) quickly fails. Instead, we consider the alternative procedure introduced by Chen and
Zhu [6]. This technique consists in forcing the algorithm to remain in an increasing sequence of compact sets
(Kj)j such that

∞⋃
j=0

Kj = Rd and ∀j, Kj � int(Kj+1) .

It prevents the algorithm from blowing up during the first iterates. Let (γn)n be a decreasing sequence of
positive real numbers satisfying

∑
n γn = ∞ and

∑
n γ2

n < ∞. For X0 ∈ Rd and σ0 = 0, we define the sequences
of random variables (Xn)n and (σn)n by

⎧⎪⎨
⎪⎩

Xn+ 1
2

= Xn − γn+1u(Xn) − γn+1δMn+1,

if Xn+ 1
2
∈ Kσn Xn+1 = Xn+ 1

2
and σn+1 = σn,

if Xn+ 1
2

/∈ Kσn Xn+1 = X0 and σn+1 = σn + 1.

(2.1)

Let Fn denote the σ−algebra generated by (δMk, k ≤ n), Fn = σ(δMk, k ≤ n). We assume that (δMn)n is a
sequence of martingale increments, i.e. E(δMn+1|Fn) = 0.

Remark 2.1. Xn+ 1
2

is actually drawn from the dynamics of the Robbins–Monro algorithm (see Eq. (1.1)). If
the standard algorithm wants to jump too far ahead it is reset to a fixed value. When Xn+ 1

2
/∈ Kσn , one can
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set Xn+1 to any measurable function of (X0, . . . , Xn) with values in a given compact set. The existence of such
a compact set is crucial to prove the a.s. convergence of (Xn)n.

It is more convenient to rewrite equation (2.1) as follows

Xn+1 = Xn − γn+1u(Xn) − γn+1δMn+1 + γn+1pn+1 (2.2)

where

pn+1 =
(

u(Xn) + δMn+1 +
1

γn+1
(X0 − Xn)

)
1{

X
n+ 1

2
/∈Kσn

} .

In this paper, we only consider gain sequences of the type γn = γ
(n+1)α , with 1/2 < α ≤ 1. If α = 1, we obtain

a slightly different limit. For values of α outside this range, the almost sure convergence is not even guarantied.

2.1. Hypotheses

In the following, the prime notation stands for the transpose operator. We introduce the following hypotheses.

(A1) i. ∃x� ∈ Rd s.t. u(x�) = 0 and ∀x ∈ Rd, x �= x�, (x − x�) · u(x) > 0.
ii. There exist a function y : Rd → Rd×d satisfying lim|x|→0 ‖y(x)‖ = 0 and a repulsive matrix A such

that

u(x) = A(x − x�) + y(x − x�)(x − x�).

(A2) For any q > 0, the series
∑

n γn+1δMn+11{|Xn−x�|≤q} converges almost surely.

(A3) i. There exist two real numbers ρ > 0 and η > 0 such that

κ = sup
n
E
(
|δMn|2+ρ 1{|Xn−1−x�|≤η}

)
< ∞.

ii. There exists a symmetric positive definite matrix Σ such that

E
(
δMnδM ′

n

∣∣Fn−1

)
1{|Xn−1−x�|≤η}

P−−−−→
n→∞ Σ.

(A4) There exists μ > 0 such that ∀n ≥ 0, d(x�, ∂Kn) ≥ μ.

Remark 2.2. Comments on the assumptions.

(1) Hypothesis (A1-i) is satisfied as soon as u can be interpreted as the gradient of a strictly convex
function. The Hypothesis (A1-ii) is equivalent to saying that u is differentiable at x�.

(2) Hypothesis (A2) ensures that Xn −→ x� a.s. and σn is almost surely finite, see Lelong [12] for a proof
of this result.

(3) Hypothesis (A3-i) corresponds to some local uniform integrability condition and reminds of Lindeberg’s
condition. (A3-ii) guaranties the convergence of the angle bracket of the martingale of interest.

(4) Hypothesis (A4) is only required for technical reasons but one does not need to be concerned with it
in practical applications. It reminds of the case of constrained stochastic algorithms for which the CLT
can only be proved for non saturated constraints.

The idea of using local assumptions, i.e. assumptions to be checked in the neighbourhood of x� was already
used in the results of Duflo [8] but unfortunately her proof cannot be easily adapted as being in a neighbourhood
of x� does not ensure that there is no projection anymore.
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2.2. Main results

For n ≥ 0, we define the renormalized and centered error

Δn =
Xn − x�

√
γn

·

A CLT for 1/2 < α < 1.

Theorem 2.1. If we assume Hypotheses (A1) to (A4), the sequence (Δn)n converges in distribution to a
normal random variable with mean 0 and covariance

V =
∫ ∞

0

exp (−At)Σ exp (−A′t)dt.

A CLT for α = 1.

Theorem 2.2. We assume Hypotheses (A1) to (A4) and
(A5) γA − 1

2I is repulsive
Then, the sequence (Δn)n converges in distribution to a normal random variable with mean 0 and covariance

V = γ

∫ ∞

0

exp
((

I

2
− γA

)
t

)
Σ exp

((
I

2
− γA′

)
t

)
dt.

Remark 2.3. Hypothesis (A5) involves the gradient of function u at the point x�, which is seldom tractable
from a practical point of view but one can definitely not avoid it. The condition Re(Sp(γA − 1

2I)) > 0 is the
border of two different convergence regimes as already noted by Duflo [9] for the Robbins–Monro algorithm.

2.3. Discussion around the assumptions of Theorem 2.2

Theorem 2.2 is actually an extension of Chen [5], Theorem 3.3.1. The main improvements brought by our new
result concern the conditions imposed on the noise term. Our Assumption (A3) is weaker than the one imposed
by Chen [5], A3.3.3, since we only assume local conditions on the noise terms; namely, unlike Chen, we only need
to monitor the behavior of (δMn)n in a small neighborhood of the optimum x� (see Assumptions (A3-i) and
(A3-ii)). Moreover, we only assume the local convergence in probability of the angle bracket of the martingale
of interest built with (δMn)n whereas Chen [5], equation (3.3.22), requires the almost sure convergence which
may be a little harder to prove in practical applications.

Concerning Assumption (A1-ii), it essentially means that u must be differentiable at x�. This is to be
compared to the Hölder continuity property of the remainder of the first order expansion of u at x� required
by Chen [5], A3.3.4, which is not so obvious to check in practice. Our goal in this work was not only to state
a theorem with weaker assumptions but also to present a self contained and elementary proof of a central limit
theorem for truncated stochastic algorithms. In particular, Lemma 3.1 provides a smart way of handling the
truncation terms.

2.4. Example of applications

In this part, we present an application of Algorithm (2.1) to adaptive variance reduction and show the
improvement brought by the localisation of the assumptions. The adaptive Monte-Carlo framework recalled
hereafter was investigated by Arouna [1] and later revisited by Lemaire and Pagès [13], Lapeyre and Lelong [11].

Let G be a d-dimensional standard normal random vector. For any measurable function h : Rd −→ R such
that E(|h(G)|) < ∞, one has for all θ ∈ Rd

E (h(G)) = E

(
e−θ·G− |θ|2

2 h(G + θ)
)

. (2.3)
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Assume we want to compute E(f(G)) using Monte-Carlo simulations for a measurable function f : Rd −→ R

such that P(f(G) �= 0) > 0 and there exists ε > 0, s.t. E(|f(G)|4+ε) < ∞.

By applying equality (2.3) to h = f and h(x) = f2(x) e−θ·x+ |θ|2
2 , one obtains that the expectation and the

variance of the random variable f(G + θ) e−θ·G − |θ|2
2 are respectively equal to E(f(G)) and v(θ) − E2(f(G))

where

v(θ) = E

(
f2(G) e−θ·G+ |θ|2

2

)
.

The function v can be proved to be of infinitely continuously differentiable and strongly convex. Moreover,

∇v(θ) = E
(

f2(G) e−θ·G+
|θ|2
2 (θ − G)

)
.

Hence, v has a unique minimizer characterised by ∇v(θ�) = 0.
As the computation of the expectation E(f(G)) will be carried out using simulations, it is advised to make

the most of the free parameter θ in equation (2.3) by choosing θ = θ�. Obviously, this heavily relies on the
ability to compute θ� numerically.

Note that ∇v can be written as an expectation of a function U : Rd × Rd �−→ Rd defined by U(θ, x) =

f2(x) e−θ·x+ |θ|2
2 (θ − x). If we consider Algorithm (2.1) for our problem, we get

⎧⎪⎨
⎪⎩

θn+ 1
2

= θn − γn+1v(θn) − γn+1δMn+1,

if θn+ 1
2
∈ Kσn θn+1 = θn+ 1

2
and σn+1 = σn,

if θn+ 1
2

/∈ Kσn θn+1 = θ0 and σn+1 = σn + 1

with δMn+1 = U(θn, Gn+1) −∇v(θn) where (Gn)n is a sequence of .i.i.d. standard normal random vectors.

Remark 2.4. Note that using Hölder’s inequality and the assumptions on f , one can show that for any ρ <
ε/2 and A > 0, E(sup|θ|<A |U(θ, G)|2+ρ) < ∞ Let us have a look at the assumptions of Theorems 2.1 and 2.2.

• Assumption (A1) is satisfied as v is strongly convex and the matrix A appearing in the assumption is
symmetric positive definite.

• Let q > 0. The sequence Yn =
∑n

i=0 γi+1δMi+11{|θi−θ�|≤q} is a martingale with angle bracket 〈Y 〉n =∑n
i=0 γ2

i+1E(δMi+1δM
′
i+1|Fi)1{|θi−θ�|≤q}. As

∑
γ2

i < ∞, by Remark 2.4, E(〈Y 〉∞) < ∞ which implies,
using the strong law of large numbers for square integrable martingales, that Yn converges almost surely.

• Let η > 0 and ρ < ε/2. C denotes a positive constant.

E(|δMn|2+ρ 1{|θn−1−θ�|≤η}|Fn−1) ≤ C

(
E( sup

|θ−θ�|≤η

|U(θ,G)|2+ρ) + sup
|θ−θ�|≤η

|∇v(θ)|2+ρ

)

The second term on the r.h.s is bounded as ∇v is continuous and the first term on the r.h.s. is bounded
by applying Remark 2.4. The indicator of the set {|θn−1 − θ�| ≤ η} is definitely essential to prove the
boundedness.

• Assumptions (A1) and (A2) imply that θn converges almost surely to θ�.

E(δMi+1δM
′
i+1|Fi) = E(U(θ, G)U(θ, G))|θ=θi

−∇v(θi)∇v(θi)′.

The continuity of ∇v ensures the convergence of ∇v(θi)∇v(θi)′ to ∇v(θ�)∇v(θ�)′. Moreover thanks
to Remark 2.4, the expectation E(U(θ, G)U(θ, G)′) is continuous w.r.t. θ. Hence, the matrix Σ of
Assumption (Aii) is given by Var(U(θ�, G)) which is therefore positive definite.

As we have just seen it, having local assumptions makes them pretty easy to check in practical situations.
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3. Proofs of Theorems 2.1 and 2.2

In this section, we prove the Theorems presented in Section 2.2 through a series of three lemmas. The proofs
of these lemmas are postponed to Section 3.2.

3.1. Technical lemmas

For any fixed n > 0, we introduce sn,k =
∑k

i=1 γn+i for k > 0 and we set sn,0 = 0. (sn,k)k≥0 can be
interpreted as a discretisation grid of [0,∞) because limk→∞ sn,k = ∞.

Theorems 2.1 and 2.2 are based on the following three lemmas.

Lemma 3.1. Let ε > 0 and η > 0 as in Hypothesis (A3). There exists N0 > 0, such that if we define for
n ≥ N0

An =
{

sup
n≥m≥N0

|Xm − x�| ≤ η

}
,

then
P(An) ≥ 1 − ε ∀n ≥ N0 and sup

n≥N0

E
(
|Δn|2 1{An}

)
< ∞.

Lemma 3.2. For any integers t > 0 and n > 0

Δn+t = e−sn,tQΔn −
t−1∑
k=0

eQ(sn,k−sn,t) √γn+k+1δMn+k+1 −
t−1∑
k=0

eQ(sn,k−sn,t) γn+kRn+k, (3.1)

where
• if α = 1, ⎧⎪⎨

⎪⎩
Q = A − 1

2γ I

Rm = −y(Xm − x�)Δm + 1√
γm+1

pm+1

+γm(amI + bm(A + y(Xm − x�)) + O(γm))Δm,

(3.2)

• if 1/2 < α < 1,
⎧⎪⎨
⎪⎩

Q = A

Rm = y(Xm − x�))Δm − 1√
γm+1

pm+1

− 1
mγm

(amI + bmγn(A + y(Xm − x�)))Δm + O(γm)Δm

(3.3)

with (an)n and (bn)n two real valued and bounded sequences.
Moreover, the last term in (3.1) tends to zero in probability.

Lemma 3.3. In equation (3.1), the sequence (
∑t−1

k=0 eQ(sn,k−sn,t) √γn+k+1δMn+k+1)t converges in distribution
to N (0, V ) for any fixed n when t goes to infinity, where V =

∫∞
0 e−Qu Σ e−Q′u du.

Proof of Theorems 2.1 and 2.2. Let us consider equation (3.1) for a fixed n > N0, where N0 is defined in
Lemma 3.1. Because the matrix Q is definite positive and Δn is almost surely finite, e−sn,tQΔn tends to zero
almost surely when t goes to infinity. Thanks to Lemma 3.2, the last term in equation (3.1) tends to zero in
probability when t goes to infinity.

Combining these two convergences in probability to zero with Lemma 3.3 yields the convergence in distri-
bution of (Δn+t)t to a normal random variable with mean 0 and variance V when t goes to infinity, where V
is defined in Lemma 3.3. Plugging the value of the matrix Q (see Eqs. (3.2) and (3.3)) in the expression of V
yields the result. �

Note that the proof for the classical Robbins Monro algorithm is much simpler since we do not need to
introduce the An sets, which are only used here to handle the truncation terms.
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3.2. Proofs of the lemmas

3.2.1. Proof of Lemma 3.1

We only do the proof in the case α = 1, as in the other case, it is sufficient to slightly modify a few Taylor
expansions and the same results still hold. From equation (2.2), we have the following recursive relation

Δn+1 =
Xn+1 − x�

√
γn+1

=
√

γn

γn+1
Δn −√

γn+1(u(Xn) + δMn+1 − pn+1).

Using Hypothesis (A1-ii), the previous equation becomes

Δn+1 =
(√

γn

γn+1
I −√

γn+1γn(A + y(Xn − x�))
)

Δn −√
γn+1δMn+1 +

√
γn+1pn+1. (3.4)

The following Taylor expansions hold√
γn

γn+1
= 1 +

γn

2γ
+ O (γ2

n

)
and

√
γnγn+1 = γn + O (γ2

n

)
. (3.5)

There exist two real valued and bounded sequences (an)n and (bn)n such that
√

γn

γn+1
= 1 +

γn

2γ
+ γ2

nan and
√

γnγn+1 = γn + γ2
nbn.

This enables us to simplify equation (3.4)

Δn+1 =Δn − γnQΔn − γny(Xn − x�)Δn −√
γn+1δMn+1

+
√

γn+1pn+1 + γ2
n(anI + bn(A + y(Xn − x�)))Δn, (3.6)

where Q = A − I
2γ . Let Δn+ 1

2
=

Xn+ 1
2
− x�

√
γn+1

, where Xn+ 1
2
, defined by equation (2.1), is the value of the new

iterate obtained before truncation.∣∣∣Δn+ 1
2

∣∣∣2 =
∣∣Δn − γnQΔn − γny(Xn − x�)Δn −√

γn+1δMn+1

+γ2
n(anI + bn(A + y(Xn − x�)I))Δn

∣∣2
≤|Δn − γnQΔn − γny(Xn − x�)Δn|2 + γn+1|δMn+1|2

+ γ4
n|(anI + bn(A + y(Xn − x�)I))Δn|2

+ 2γn(Δn − γnQΔn − γny(Xn − x�)Δn)′δMn+1

+ 2γ4
n((anI + bn(A + y(Xn − x�)I))Δn)′(Δn − γnQΔn − γny(Xn − x�)Δn)

+ 2γ5/2
n δM ′

n+1(anI + bn(A + y(Xn − x�)I))ΔMn.

If we take the conditional expectation with respect to Fn – denoted En – in the previous equality, we find

En

∣∣∣Δn+ 1
2

∣∣∣2 ≤|Δn − γnQΔn − γny(Xn − x�)Δn|2 + γn+1En|δMn+1|2

+ γ4
n ‖anI + bn(A + y(Xn − x�)I)‖2 |Δn|2

+ 2γ4
n ‖(anI + bn(A + y(Xn − x�)I))‖(1 + γn ‖Q + y(Xn − x�)‖)|Δn|2.
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En

(∣∣∣Δn+ 1
2

∣∣∣2) ≤ Δ′
n(I − 2γnQ)Δn + γn ‖y(Xn − x�)‖ |Δn|2 + γn+1En|δMn+1|2

+ O (γ2
n

)
(1 + |y(Xn − x�)|) |Δn|2 . (3.7)

Note that in the previous equation the quantity O (γ2
n

)
is non random.

Let ε > 0. Since (Xn)n converges almost surely to x�, there exists a rank N0 such that

P( sup
m>N0

|Xm − x�| > η) < ε.

Hence, P(An) ≥ 1 − ε for all n > N0.
Let λ = min{Re(l); l ∈ Sp(Q)} > 0 and 0 < ζ < λ. We can assume that for n > N0, γn ≤ 1/ζ, then it ensues

from Proposition A.1 that ‖I − γnQ‖ ≤ 1 − γnζ. Moreover, since lim|x|→0 ‖y(x)‖ = 0, there exists η > 0 such
that for all |x| < η, ‖y(x)‖ < ζ/2. We assume that this value of η satisfies Hypothesis (A3). On the set An,

Δ′
n(I − 2γnQ)Δn + γn ‖y(Xn − x�)‖ |Δn|2 ≤ ((1 − γnζ) + γnζ/2) |Δn|2 ≤ (1 − γnζ) |Δn|2 .

Hence, we can deduce from equation (3.7) that

E

(∣∣∣Δn+ 1
2

∣∣∣2 1{An}

)
− E

(
|Δn|2 1{An}

)
≤− γnζE

(
|Δn|2 1{An}

)
+ γnκ

+ O(γ2
n)(1 +

1
2
ζ)E

(
|Δn|2 1{An}

)
.

We can assume that for n > N0, |O(γ2
n)(1 + ζ/2)| ≤ γnζ/2. Hence we get, for n ≥ N0,

E

(∣∣∣Δn+ 1
2

∣∣∣2 1{An}

)
− E

(
|Δn|2 1{An}

)
≤− γn

ζ

2
E
(
|Δn|2 1{An}

)
+ γnκ.

Since An+1 ⊂ An,

E

(∣∣∣Δn+ 1
2

∣∣∣2 1{An+1}

)
− E

(
|Δn|2 1{An}

)
≤ −γn

ζ

2
E
(
|Δn|2 1{An}

)
+ κγn. (3.8)

Now, we would like to replace Δn+ 1
2

by Δn+1 in equation (3.8).

|Δn+1|2 =
|X0 − x�|2

γn+1
1{pn+1 	=0} +

∣∣∣Δn+ 1
2

∣∣∣2 1{pn+1=0},

|Δn+1|2 ≤
∣∣∣Δn+ 1

2

∣∣∣2 +
|X0 − x�|2

γn+1
1{

X
n+1

2
/∈Kσn

} ·

Taking the conditional expectation w.r.t. Fn on the set An gives

En |Δn+1|2 ≤ En

∣∣∣Δn+ 1
2

∣∣∣2 +
|X0 − x�|2

γn+1
P
(
Xn+ 1

2
/∈ Kσn |Fn

)
,

En |Δn+1|2 1{An} ≤ En

∣∣∣Δn+ 1
2

∣∣∣2 1{An} +
|X0 − x�|2

γn+1
1{An}P

(
Xn+ 1

2
/∈ Kσn |Fn

)
,

E
(
|Δn+1|2 1{An+1}

)
≤ E

(∣∣∣Δn+ 1
2

∣∣∣2 1{An}

)
+

|X0 − x�|2
γn+1

P
(
An ∩ {Xn+ 1

2
/∈ Kσn}

)
. (3.9)
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The probability on the right hand side can be rewritten

P
(
An ∩ {Xn+ 1

2
/∈ Kσn}

)
= E

(
1{γn+1 |u(Xn)+δMn+1|≥d(Xn,∂Kσn )}1{An}

)
.

Moreover using the triangle inequality, we have d(Xn, ∂Kσn) ≥ d(x�, ∂Kσn) − |Xn − x�|. Due to Hypothesis
(A4), d (x�, ∂Kσn) ≥ μ and on An, |Xn − x�| ≤ η. Hence, d (Xn, ∂Kσn) ≥ μ − η. One can choose η < μ/2
for instance, so that d(Xn, ∂Kσn) > μ

2 ·

P
(
An ∩ {Xn+ 1

2
/∈ Kσn}

)
≤ E

(
En

(
1{γn+1 |u(Xn)+δMn+1|≥μ

2 }
)
1{An}

)
,

≤ 8γ2
n+1

μ2
E
(
|u(Xn)|2 1{An} + |δMn+1|2)1{An}

)
. (3.10)

Thanks to Hypothesis (A3) and the continuity of u, the expectation on the r.h.s of (3.10) is bounded by a
constant c > 0 independent of n. So, we get

P
(
Xn+ 1

2
/∈ Kσn , An

)
≤ cγ2

n+1.

Hence, from equation (3.9) we can deduce

E
(
|Δn+1|2 1{An+1}

)
≤ E

(∣∣∣Δn+ 1
2

∣∣∣2 1{An}

)
+ cγn. (3.11)

By combining equations (3.11) and (3.8), we come up with

E
(
|Δn+1|2 1{An+1}

)
≤

(
1 − γn

ζ

2

)
E
(
|Δn|2 1{An}

)
+ cγn,

where c = c + κ.
Let I =

{
i ≥ N0 : − ζ

2E
(
|Δi|2 1{Ai}

)
+ c > 0

}
, then

sup
i∈I

E
(
|Δi|2 1{Ai}

)
<

2c

ζ
< ∞.

Note that we can always assume that 2c/ζ ≥ E
(
|ΔN0 |2 1{AN0}

)
, such that the set I is non empty. Assume

i /∈ I, let i0 = sup{k < i : k ∈ I}.

E
(
|Δi|2 1{Ai}

)
− E

(
|Δi0 |2 1{Ai0}

)
≤

i−1∑
k=i0

γk

(
c − ζ

2
E
(
|Δk|2 1{Ak}

))

Since all the terms for k = i0 + 1, . . . , i − 1 are negative and i0 ∈ I, we find

E
(
|Δi|2 1{Ai}

)
≤ γi0c +

2c

ζ
·

Finally, we come with the following upper bound.

sup
n≥N0

E
(
|Δn|2 1{An}

)
< ∞.
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Remark 3.1 (case 1/2 < α < 1). This proof is still valid for α < 1 if we replace the Taylor expansions of
Equation (3.5) by √

γn

γn+1
= 1 +

an

n
and

√
γnγn+1 = γn +

γnbn

n
·

Then, equation (3.6) becomes

Δn+1 = Δn − γnQΔn − γny(Xn − x�)Δn −√
γn+1δMn+1

+
√

γn+1pn+1 +
1
n

(anI + bnγn(A + y(Xn − x�))Δn,

with Q = A this time, which is still positive definite.

3.2.2. Proof of Lemma 3.2

Let us go back to equation (3.6). For any n > N0 and k > 0, we can write

Δn+k =Δn+k−1 − γn+k−1QΔn+k−1 −√
γn+kδMn+k + γn+k−1Rn+k−1

where

Rm = −y(Xm − x�)Δm +
1√

γm+1
pm+1 + γm(amI + bm(A + y(Xm − x�)))Δm.

We can actually notice that the previous equation pretty much looks like a discrete time ODE. Based on this
remark, it is natural to multiply the previous equation by esn,kQ to find

esn,kQ Δn+k − (esn,kQ − esn,kQ γn+k−1Q)Δn+k−1 = − esn,kQ √
γn+kδMn+k + γn+k−1 esn,kQ Rn+k−1.

Note that esn,kQ − esn,kQ γn+k−1Q = esn,k−1Q(1 +O(γ2
n+k−1)). Hence, we come up with the following equation

esn,kQ Δn+k − esn,k−1Q Δn+k−1 = − esn,kQ √
γn+kδMn+k + γn+k−1 esn,kQ Rn+k−1

where

Rm = −y(Xm − x�)Δm +
1√

γm+1
pm+1 + γm(amI + bm(A + y(Xm − x�)) + O(1))Δm. (3.12)

When summing the previous equalities for k = 1, . . . , t − 1 for any integer t > 0, we get

Δn+t = e−sn,tQ Δn −
t−1∑
k=0

e(sn,k−sn,t)Q √
γn+k+1δMn+k+1 −

t−1∑
k=0

e(sn,k−sn,t)Q γn+kRn+k.

Let us a have a closer look at the different terms of equation (3.12)
• limm y(Xm − x�)Δm1{|Xm−x�|>η} = 0 a.s. thanks to the a.s. convergence of (Xm)m and using

Lemma 3.1, the sequence (y(Xm − x�)Δm1{|Xm−x�|≤η})m is uniformly integrable and tends to zero
in probability because limm y(Xm − x�) = 0 a.s.

• pm is almost surely equal to 0 for m large enough thanks to Remark 2.2, so 1√
γm

pm = 0 a.s. for m large
enough.

• γm(amI +bm(A+y(Xm−x�))+O(1))Δm1{|Xm−x�|>η} −→ 0 almost surely because for m large enough
the indicator equals 0. The sequence γm(amI+bm(A+y(Xm−x�))+O(1))Δm1{|Xm−x�|≤η} is uniformly
integrable by Lemma 3.1 and tends to zero in probability because γm −→ 0.
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Hence, Rm can be split in two terms: one tending to zero almost surely and an other one which is uniformly
integrable and tends to zero in probability. Then, we can apply Propositions A.2 and A.3 to prove the conver-
gence in probability of (

∑t−1
k=0 e(sn,k−sn,t)Q γn+kRn+k)t. This last point ends the proof of Lemma 3.2.

3.2.3. Proof of Lemma 3.3

To prove Lemma 3.3, we need a result on the rate of convergence of martingale arrays. First, note that for
1√
γn

δMn1{|Xn−1−x�|>η} tends to 0 a.s. when n goes to infinity because 1{|Xn−1−x�|>η} = 0 for n large enough.

Then, it ensues from Proposition A.2 that
∑t

k=1 eQ(sn,k−sn,t) √γn+k−1δMn+k1{|Xn+k−1−x�|>η} converges to zero
in probability when t goes to infinity. Henceforth, it is sufficient to prove a localized version of Lemma 3.3 by
considering

∑t
k=0 eQ(sn,k−sn,t) √γn+kδMn+k1{|Xn+k−1−x�|≤η}.

We will use the following Central Limit Theorem for martingale arrays adapted from Dulfo [9], Theorem 2.1.9.

Theorem 3.4. Suppose that {(F t
l )0≤l≤t; t > 0} is a family of filtrations and {(N t

l )0≤l≤t; t > 0} a square
integrable martingale array with respect to the previous filtration. Assume that:

(A6) there exists a symmetric positive definite matrix Γ such that 〈N〉tt P−−−→
t→∞ Γ.

(A7) There exists ρ > 0 such that

t∑
l=1

E
(∣∣N t

l − N t
l−1

∣∣2+ρ ∣∣F t
l−1

)
P−−−→

t→∞ 0.

Then,

N t
t

L−−−→
t→∞ N (0, Γ).

Using this theorem, we can now prove Lemma 3.3.

Proof of Lemma 3.3. Let us define N t
l for all 0 ≤ l ≤ t and t > 0

N t
l =

l∑
k=1

e(sn,k−sn,t)Q √
γn+kδMn+k1{|Xn+k−1−x�|≤η}.

We should have written sn,k−1 instead of sn,k, but as e(sn,k−1−sn,t)Q = e(sn,k−sn,t)Q e−γn+kQ and e−γn+kQ

converges to the identity matrix, we can make this little change without altering the rigor of the proof and this
way, N t

l naturally fits in the framework of Propositions A.2 and A.4.
(N t

l )0≤l≤p is obviously a martingale with respect to (Fn+l)l. Let us compute its angle bracket

〈N〉tt =
t∑

k=1

e(sn,k−sn,t)Q γn+kE
(
δMn+kδM ′

n+k1{|Xn+k−1−x�|≤η}|Fn+k−1

)
e(sn,k−sn,t)Q

′
. (3.13)

Thanks to Hypotheses (A3), the conditional expectation in (3.13) is uniformly integrable and converges in
probability to Σ when k goes to infinity. Applying Proposition A.4 proves the convergence in probability of
〈N〉tt to

∫∞
0 e−Q′u Σ e−Qu du. Let ρ be the real number defined in Theorem 2.1.

t∑
l=1

E
(∣∣N t

l − N t
l−1

∣∣2+ρ
)

=
t∑

k=1

∥∥∥e(sn,k−sn,t)Q
∥∥∥2+ρ

γ
1+ ρ

2
n+kE

(
|δMn+k|2+ρ 1{|Xn+k−1−x�|≤η}

)
. (3.14)

γ
ρ
2
n+k converges to 0 when k goes to infinity and the sequence of expectations is bounded using Hypothesis (A3),

so γ
ρ
2
n+kE

(
|δMn+k|2+ρ 1{|Xn+k−1−x�|≤η}

)
tends to zero when k goes to infinity. Proposition A.2 proves that
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the l.h.s. of equation (3.14) tends to 0 when t goes to infinity. Hence,
∑t

l=1 E
(∣∣N t

l − Np
l−1

∣∣2+ρ ∣∣F t
l−1

)
tends to

zero in L1, and consequently in probability. Then, the Hypotheses of Theorem 3.4 are satisfied.
Finally, we have proved that

t∑
k=0

eQ(sn,k−sn,t) √γn+kδMn+k
law−−−→

t→∞ N
(

0,

∫ ∞

0

e−Qu Σ e−Q′u du

)
. �

4. Conclusion

In this work, we have proved a Central Limit Theorem with rate
√

γn for randomly truncated stochastic
algorithms under local assumptions. We have also tried to clarify the proof of the convergence rate of randomly
truncated stochastic algorithms under assumptions which can be easily verified in practice. The improvement
brought by this new set of assumptions is that all they should only be checked in a neighbourhood of the target
value x�, which means that in the case where u(x) = E(U(x, Z)) the assumptions can be reformulated in terms
of some local regularity properties of U .

Appendix A. Some elementary results

Proposition A.1. Let Q be a square matrix such that all its eigenvalues have positive real parts. Let λ >
0 = min{Re(μ); μ ∈ Sp(Q)}. Then, for all 0 < λ < λ, there exists 0 < γ < 1/λ, such that for all γ ≤ γ,
‖I − γQ‖ ≤ (1 − γλ).

Proof. We consider the Jordan decomposition J of Q such that Q = PJP−1. ‖I − γQ‖ ≤ ‖I − γJ‖. Let
M = sup{Im(μ); μ ∈ Sp(Q)} and γ1 = max{Re(μ); μ ∈ Sp(Q)}. If γ < max(γ1, 1/λ), the diagonal terms of

I − γJ are bounded by
√

(1 − γλ)2 + (γM)2 = (1 − γλ)(1 + O(γ2)). The conclusion follows easily. �

Proposition A.2. Let (Yn)n be a sequence of random vectors of Rd converging almost surely to a non random
vector x ∈ Rd. For any fixed integer n > 0 and repulsive matrix Q ∈ Rd×d, we define, for all integers t ≥ 0,
Zt =

∑t
k=0 eQ(sn,k−sn,t) γn+kYn+k. Then, limt Zt =

∫∞
0 e−Qu x du almost surely.

Proof. It is clear that limt→∞
∫ sn,t

0 e−Qu du x =
∫∞
0 e−Qu du x. Hence, it is sufficient to consider

∣∣∣∣Zt −
∫ sn,t

0

e−Qu du x

∣∣∣∣ ≤
t∑

k=0

γn+k

∥∥∥eQ(sn,k−sn,t)
∥∥∥ |Yn+k − x|

+

∥∥∥∥∥
t∑

k=0

γn+k eQ(sn,k−sn,t) −
∫ sn,t

0

e−Qu du

∥∥∥∥∥ |x|. (A.1)

Let q = min{Re(λ); λ ∈ Sp(Q)} > 0 and q = max{Re(λ); λ ∈ Sp(Q)} > 0.

Step 1: We will prove that the first term in equation (A.1) tends to 0 almost surely.

t∑
k=0

γn+k

∥∥∥eQ(sn,k−sn,t)
∥∥∥ |Yn+k − x| ≤

t∑
k=0

∫ sn,k

sn,k−1

eq(sn,k−sn,t) |Yn+k − x| du

≤
∫ sn,t

0

eq(u−sn,t) eqγn+tn(u) |Yn+tn(u) − x| du (A.2)
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where for any real number u > 0, tn(u) is the largest integer k such that sn,k−1 ≤ u < sn,k. Note that
limu→+∞ tn(u) = +∞. limu→+∞ eqγn+tn(u) |Yn+tn(u) −x| = 0 a.s., hence it is obvious that the term on the r.h.s
of equation (A.2) tend to 0 almost surely.

Step 2: We will now prove that the second term in equation (A.1) tends to 0.
We use the convention sn,−1 = 0 and recall that sn,k = sn,k−1+γn+k. Note that

∫ sn,t

0
e−Qu du =

∫ sn,t

0
eQ(u−sn,t)

du, hence the following inequality holds

∥∥∥∥∥
t∑

k=0

γn+k eQ(sn,k−sn,t) −
∫ sn,t

0

e−Qu du

∥∥∥∥∥ ≤
t∑

k=0

∫ sn,k

sn,k−1

∥∥∥eQ(sn,k−sn,t) − eQ(u−sn,t)
∥∥∥du

≤
t∑

k=0

∫ sn,k

sn,k−1

∥∥∥eQ(u−sn,t)
∥∥∥∥∥∥eQ(sn,k−u) −I

∥∥∥du.

≤
t∑

k=0

∫ sn,k

sn,k−1

eq(u−sn,t)(eqγn+k −1)du. (A.3)

Let ε > 0, there exits T1 > 0 such that for all t ≥ T1, (eqγn+t −1) ≤ ε, hence for all t > T1,

t∑
k=0

∫ sn,k

sn,k−1

eq(u−sn,t)(eqγn+k −1)du ≤
T1∑

k=0

∫ sn,k

sn,k−1

eq(u−sn,t)(eq −1)du + ε

t∑
k=T1+1

∫ sn,k

sn,k−1

eq(u−sn,t) du,

≤
∫ sn,T1

0

eq(u−sn,t)(eq −1)du + ε

∫ sn,t

sn,T1

eq(u−sn,t) du,

≤ (eq(sn,T1−sn,t) − e−qsn,t)
eq −1

q
+ ε

1
q
·

There exists T2 > T1 such that for all t > T2, (eq(sn,T1−sn,t) − e−qsn,t)(eq −1) ≤ ε, hence for all t > T2,

t∑
k=0

∫ sn,k

sn,k−1

eq(u−sn,t)(eqγn+k −1)du ≤ 2ε

q
·

This ends to prove that the second term in equation (A.1) tends to 0 when t goes to infinity. �

Proposition A.3. Let (Yn)n be a sequence of random vectors of Rd uniformly integrable and converging in
probability to a non random vector x ∈ Rd. For any fixed integer n > 0 and repulsive matrix Q ∈ Rd×d, we
define, for all integers t ≥ 0, Zt =

∑t
k=0 eQ(sn,k−sn,t) γn+kYn+k. Then, limt Zt =

∫∞
0

e−Qu xdu in probability.

Proof. We recall the decomposition given by equation (A.1)

∣∣∣∣Zt −
∫ sn,t

0

e−Qu du x

∣∣∣∣ ≤
t∑

k=0

γn+k

∥∥∥eQ(sn,k−sn,t)
∥∥∥ |Yn+k − x|

+

∥∥∥∥∥
t∑

k=0

γn+k eQ(sn,k−sn,t) −
∫ sn,t

0

e−Qu du

∥∥∥∥∥ |x|.
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The last term in the above equation has already been proved to tend to 0 in the proof of Proposition A.2
Step 2. So, we only need to prove that limu→+∞

∑t
k=0 γn+k

∥∥eQ(sn,k−sn,t)
∥∥ |Yn+k − x| = 0 in probability.

Let q = min{Re(λ); λ ∈ Sp(Q)} > 0 and q = max{Re(λ); λ ∈ Sp(Q)} > 0.

t∑
k=0

γn+k

∥∥∥eQ(sn,k−sn,t)
∥∥∥ |Yn+k − x| ≤

t∑
k=0

∫ sn,k

sn,k−1

eq(sn,k−sn,t) |Yn+k − x| du

≤
∫ sn,t

0

eq(u−sn,t) eqγn+tn(u) |Yn+tn(u) − x| du

where for any real number u > 0, tn(u) is the largest integer k such that sn,k−1 ≤ u < sn,k. Let Y k = γk|Yk−x|.
The sequence (Y k)k tends to zero in probability, is uniformly integrable and positive.

E

(∫ sn,t

0

eq(u−sn,t) Y n+tn(u) du

)
=
∫ sn,t

0

eq(u−sn,t) E(Y n+tn(u))du. (A.4)

Since (Y k)k is uniformly integrable and converges to 0 in probability, limu→+∞ E(Y n+tn(u)) = 0, hence the
term on the r.h.s of equation (A.4) tends to 0 when t goes to infinity. This proves that limu→+∞

∑t
k=0 γn+k∥∥eQ(sn,k−sn,t)

∥∥ |Yn+k − x| = 0 in L1 and in probability. �

Proposition A.4. Let (Yn)n ∈ Rd×d be a sequence of random square matrices Rd uniformely integrable and
converging in probability to a non random matrix X ∈ Rd×d. For any fixed integer n > 0 and repulsive
matrix Q ∈ Rd×d, we define, for all integers t ≥ 0, Zt =

∑t
k=0 eQ(sn,k−sn,t) γn+kYn+k eQ′(sn,k−sn,t). Then,

limt Zt =
∫∞
0

e−Qu X e−Q′u du in probability.

Proof. The proof is very similar to the previous but for sake of completeness we make it. Let q = min{Re(λ); λ ∈
Sp(Q)} > 0 and q = max{Re(λ); λ ∈ Sp(Q)} > 0.

We use a decomposition similar to equation (A.1)

∣∣∣∣Zt −
∫ sn,t

0

e−Qu X e−Q′u du

∣∣∣∣ ≤
t∑

k=0

γn+k

∥∥∥eQ(sn,k−sn,t)(Yn+k − X) eQ′(sn,k−sn,t)
∥∥∥

+

∥∥∥∥∥
t∑

k=0

γn+k eQ(sn,k−sn,t) X eQ′(sn,k−sn,t) −
∫ sn,t

0

e−Qu X e−Q′u du

∥∥∥∥∥
≤

t∑
k=0

γn+k e2q(sn,k−sn,t) ‖Yn+k − X‖

+

∥∥∥∥∥
t∑

k=0

γn+k eQ(sn,k−sn,t) X eQ′(sn,k−sn,t) −
∫ sn,t

0

e−Qu X e−Q′u du

∥∥∥∥∥ .
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The convergence in probability to zero of the first term on the r.h.s of the above equation is ensured by
Proposition A.3. We rewrite the second term as follows∥∥∥∥∥

t∑
k=0

γn+k eQ(sn,k−sn,t) X eQ′(sn,k−sn,t) −
∫ sn,t

0

e−Qu X e−Q′u du

∥∥∥∥∥
=

∥∥∥∥∥
t∑

k=0

∫ sn,k

sn,k−1

eQ(sn,k−sn,t) X eQ′(sn,k−sn,t) − eQ(u−sn,t) X eQ′(u−sn,t) du

∥∥∥∥∥
=

∥∥∥∥∥
t∑

k=0

∫ sn,k

sn,k−1

eQ(u−sn,t)(eQ(sn,k−u) X eQ′(sn,k−u) −X) eQ′(u−sn,t) du

∥∥∥∥∥
=

∥∥∥∥∥
t∑

k=0

∫ sn,k

sn,k−1

eQ(u−sn,t)(eQ(sn,k−u) −I)X eQ′(sn,k−u) +X(eQ′(sn,k−u) −I) eQ′(u−sn,t) du

∥∥∥∥∥
≤

t∑
k=0

∫ sn,k

sn,k−1

e2q(u−sn,t)
{
(eq(sn,k−u) −1) eq(sn,k−u) +(eq(sn,k−u) −1)

}
du ‖X‖

≤
t∑

k=0

∫ sn,k

sn,k−1

e2q(u−sn,t)(eq(sn,k−u) −1)(eq(sn,k−u) +1)du ‖X‖ .

The proof is ended by closely following the same reasoning as to prove that the r.h.s of equation (A.3) tends
to 0. �
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