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NONPARAMETRIC ESTIMATION OF THE DERIVATIVES
OF THE STATIONARY DENSITY FOR STATIONARY PROCESSES

EMELINE SCHMISSER '

Abstract. In this article, our aim is to estimate the successive derivatives of the stationary density
f of a strictly stationary and (-mixing process (Xt),.,. This process is observed at discrete times
t =0,A,...,nA. The sampling interval A can be fixed or small. We use a penalized least-square
approach to compute adaptive estimators. If the derivative f) belongs to the Besov space PBS o, then
our estimator converges at rate (nA)fa/(QajLQjH). Then we consider a diffusion with known diffusion
coefficient. We use the particular form of the stationary density to compute an adaptive estimator of
its first derivative f’. When the sampling interval A tends to 0, and when the diffusion coefficient
is known, the convergence rate of our estimator is (nA)~*/?**Y " When the diffusion coefficient is
known, we also construct a quotient estimator of the drift for low-frequency data.
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1. INTRODUCTION

In this article, we consider a strictly stationary, ergodic and S-mixing process (X3, t > 0) observed at discrete
times with sampling interval A. The jth order derivatives f) (j > 0) of the stationary density f are estimated
by model selection. Adaptive estimators of f() are constructed thanks to a penalized least-square method and
the L? risk of these estimators is computed.

Numerous articles deal with non parametric estimation of the stationary density (or the derivatives of the
stationary density) for a strictly stationary and mixing process observed in continuous time. For instance,
Bosq [4] uses a kernel estimator, Comte and Merlevede [6] realize a projection estimation and Leblanc [16]
utilizes wavelets. Under the Castellana and Leadbetter’s conditions, when f belongs to a Besov space %5 .,
the estimator of f converges at the parametric rate T~'/2 (where T is the time of observation). The non
parametric estimation of the stationary density of a stationary and mixing process observed at discrete times
t = 0,A,...,nA has also been studied, especially when the sampling interval A is fixed. For example,
Masry [19] constructs wavelets estimators, Comte and Merlevede [5] and Lerasle [17] use a penalized least-
square contrast method. The L? rate of convergence of the estimator is in that case n=®/(2¢+1)  Comte and
Merlevede [6] demonstrate that, if the sampling interval A — 0, the penalized estimator of f converges with
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rate (nA)_“/ (241 and, under the conditions of Castellana and Leadbetter, the parametric rate of convergence
is reached.

There are less papers about the estimation of the derivatives of the stationary density, and the main results
are for independent and identically distributed random variables. For instance, Rao [22] estimates the successive
derivatives f() of a multi-dimensional process by a wavelet method. He bounds the L? risk of his estimator
and computes the rate of convergence on Sobolev spaces. This estimator converges with rate n—®/(2e+2i+1)
Hosseinioun et al. [13] estimate the partial derivatives of the stationary density of a mixing process by a wavelet
method, and their estimators converge with rate (nA)~*/ (o120

Classical examples of S-mixing processes are diffusions: if (X;) is solution of the stochastic differential
equation

dXt = b(Xt)dt + O'(Xt)th and XO =1,

then, with some classical additional conditions on b and o, (X;) is exponentially [-mixing. Dalalyan and
Kutoyants [9] estimate the first derivative of the stationary density for a diffusion process observed at continuous
time. They prove that the minimax rate of convergence is 7—2%/(22+1) where T is the time of observation. This
is the same rate of convergence as for non parametric estimator of f.

A possible application is, for diffusion processes, the estimation of the drift function b by quotient. Indeed,
when o = 1, we have that f’ = 2bf. The drift estimation is well-known when the diffusion is observed at
continuous time or for high-frequency data (see Comte et al. [8] for instance), but it is far more difficult when
A is fixed. Gobet et al. [12] build non parametric estimators of b and o when A is fixed and prove that their
estimators reach the minimax L? risk. Their estimators are built with eigenvalues of the infinitesimal generator.

In this paper, in a first step, we consider a strictly stationary and [-mixing process (Xi),-, observed at

discrete times t = 0, A, ...,nA. The successive derivatives f) (0 < j < k) of the stationary density f are
estimated either on a compact set, or on R thanks to a penalized least-square method. We introduce a sequence
of increasing linear subspaces (Sy,) and, for each m, we construct an estimator of f () by minimising a contrast
function over S,,,. Then, a penalty function pen(m) is introduced to select an estimator of f () in the collection.

When fU) € B3 o, the L? risk of this estimator converges with rate (nA)_Qa/(2a+2j+1) and the procedure does
not require the knowledge of . When j = 0, this is the rate of convergence obtained by Comte and Merlevede
[5,6]. Moreover, when «a is known, Rao [22] obtained a rate of convergence n~2%/(2¢4+2+1) for independent
variables.

In a second step, we assume that the process (X;) is solution of a stochastic differential equation of known
diffusion coefficient o. In that case, f/ = 20 2bf — 20’0~ ! f: to estimate f’, it is sufficient to know an estimator
of f and an estimator of 2bf. We can construct an estimator of f by the method given above. It remains to
build an estimator of 2bf. It is build either on a compact set, either on R by a penalized least-square contrast
method. First, we construct a sequence of estimators by minimizing a contrast function over the subspaces
Sm. Those estimators converge only when the sampling interval A — 0. Then we choose the best estimator
thanks to a penalty function. When [/ € £%__, this adaptive estimator converges with rate (nA)fm/ (2a+1)

2,007
which is the minimax rate obtained by Dalalyan and Kutoyants [9] with continuous observations. The rate of
. —20/(2a+3)
convergence of our first estimator was (nA) .

Then, an estimator by quotient of the drift function b is constructed. When A is fixed, it reaches the minimax
rate obtained by Gobet et al. [12].

In Section 2, an adaptive estimator of the successive derivatives f() of the stationary density f of a stationary
and f-mixing process is computed by a penalized least square method. In Section 3, only diffusions with known
diffusion coefficients are considered. An adaptive estimator of f’ (in fact, an estimator of 2bf) is built. In
Section 4, a quotient estimator of b is constructed. In Section 5, the theoretical results are illustrated via
various simulations using several models. Processes (X;) are simulated by the exact retrospective algorithm of
Beskos et al. [3]. The proofs are given in Section 6. In the appendix, the spaces of functions are introduced.
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2. ESTIMATION OF THE SUCCESSIVE DERIVATIVES OF THE STATIONARY DENSITY

2.1. Model and assumptions

In this section, a stationary process (X¢),~ is observed at discrete times ¢ = 0, A, ..., nA and the successive

derivatives f(9) of the stationary density f = f(?) are estimated for 0 < j < k. The sampling interval A is fixed
or tends to 0. The estimation set A is either a compact [ag, a1], or R. Let us consider the norms

Moo =supll lLllzz = lll2cay  and €)= Codpagay - (2.1)

We have the following assumptions:
Assumption M1. The process (X:) is ergodic, strictly stationary and arithmetically or exponentially 3-mixing.

A process is arithmetically §-mixing if its S-mixing coefficient satisfies:

Bx(t) < Bo (1+1)~ M9 (2.2)

where 6 and [y are some positive constants. A process is exponentially (or geometrically) S-mixing if there
exists two positive constants 3y and 6 such that:

Bx (t) < Boexp (—0t). (2:3)

Assumption M2. The stationary density f is k times differentiable and, for each j < k, its deriatives f()
belong to L?(A) N L' (A). Moreover, f\9) satisfies [, 2 (f) (ac))2 dz < +o00.
Remark 2.1. If A = [ag, a1], Assumption M2 is only Vj < k, fU) € L?(A).

Our aim is to estimate fU) by model selection. Therefore an increasing sequence of finite dimensional linear
subspaces (S;,,) is needed. On each of these subspaces, an estimator of f () is computed, and thanks to a penalty
function depending on m, the best possible estimator is chosen. Let us denote by € the space of functions [
times differentiable on A and with a continuous /th derivative, and €, the set of the piecewise functions €*. To
estimate f(9), 0 < j < k on a compact set, we need a sequence of linear subspaces that satisfies the assumption:

Assumption S1 (estimation on a compact set).

1. The subspaces Sy, are increasing, of finite dimension D,, and included in L*(A).
2. For any m, any function t € Sy, is k times differentiable (belongs to €*~1 N €~ ) and satisfies:

Vi <k, t9(ap) =tY(a1) = 0.
3. There exists a norm connection: for any j < k, there exists a constant 1p; such that:
o> 2741 1412

Let us consider (©xm, A € Ay) an orthonormal basis of S, with |Ay,| = D,,. We have that
, . 2
|92,0@)]| . < v DEH where W2,,.(@) = Y, (90 (@))
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There exists a constant ¢ such that, for any m € N, any function t € S,,:

j 2
< DAt 4 -

Htm ‘
L2(A) ~

For any function t belonging to the unit ball of a Besov space %3 . :
[t — thi?(A) < D’V D2

where t,, is the orthogonal (L?) projection of t over Sy,.

Remark 2.2. Because of Point 1., the projection t,, converges very slowly to t on the boundaries of the compact
A = [ag, a1] and the inequality ||t — tm||%2(A) < D,2* can not be satisfied for any t € By .

In the appendix, several sequences of linear subspaces satisfying this property are given. To estimate f()
on R, slightly different assumptions are needed: let us consider an increasing sequence of linear subspaces S,
generated by an orthonormal basis {¢x m, A € Z}. We have that dim(S,,) = oo, so to build estimators, we use
the restricted spaces Sy, N = Vect (¢am, A € Ay n) with Ay, n| < +00. The following assumption involves
the sequences of linear subspaces (Sp,) and (Sp, ).

Assumption S2 (estimation on R).

oo~

The sequence of linear subspaces (S,,) is increasing.

We have that |Ay, y| = dim(S,, n) = 2™ TN + 1.

Vm,N €N, Vt € Sy v t € G 1 NEE and Vj < k, limy, 00t (2) = 0.

By ERY, Vm €N, Vit € Sy, Vi < k, |12, < gy2@0+0m [£]72 gy - Particularly,

2
2

902, = < vz,

> (9, (30)>2

AEZ

oo

Je, Ym €N, Vt € Sy, Vj < k : Ht(j)HiQ(R) < 22 1t 7 g
For any function t € L* N L' (R) such that [ 2*t*(x)dz < +o0,

/

2 C C
||tm - tm,NHLz(R) S N (/thQ(x)dI) + N

where t,, is the orthogonal (L?) projection of t over Sy, and t,, n its projection over Sy, n.
There exists v > 1 such that, for any function t belonging to the unit ball of a Besov space %S ., (with
a<r),

2
7wy -

It =t 72y < 2777

Proposition 2.3. If the function ¢ generates a r-reqular multiresolution analysis of L%, with r > k, then the
subspaces

S = Vect {oam, A€ Z} and Sp,n = Vect {©rm: A€ Ay N}

(where o m(x) =272 2™z — A) and Ap v = {\ € Z, |A| < 2°™N}) satisfy in Section S2.

For the definition of the multi-resolution analysis, see Meyer [20], Chapter 2.
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2.2. Risk of the estimator for fixed m

An estimator g; ., of g; :== f () is computed by minimising the contrast function

2(-1)7 <
Yin(t) = 7 = ==t (Xia)
k=1

where ||| ;2 = [|.|l p2(4) O ||l 2(g)- Under Assumptions S1 or S2:

2

E (0(t)) = I3 —2(-17 (19, 1) = el =2 (5, /O) = o= 5|~ € where =79

If Assumption S1 is satisfied, let us denote
Gjm(t) = argtie%fm Yjn(t),

and, under Assumption S2,
gjm,n(t) =arg inf v;.(t).

tESm, N

We have the two following theorems:

Theorem 2.4 (estimation on a compact set). Under Assumptions M1-M2 and S1, the estimator risk satisfies,
for any 7 <k and m € N:

R 9 D2j+1 1
E (193m = 531200)) < om0y + 800,25~ (1v 55

where gj.m is the orthogonal (L?) projection of g; over Sy,. The constants By and 6 are defined in (2.2) or (2.3),
©; is defined in Assumption S1 and c is a universal constant.

Theorem 2.5 (estimation on R). Under Assumptions M1-M2 and S2, for any j < k and m € N:

. 2 2 C 2(25+1)m 1
B (195m.00 = 5l < W03~ 0l ey + 5 + 8oty —— (1v 5 )

where C o< [ a?g*(x)da +27™ HgHil(R) and of the chosen sequence of linear subspaces (Sm, n). According to
Assumption S2 2., if N > (n A nfA),

. 2 9(2j+1)m 1
E (185m.5 — 511 22(ey ) < N95m — 0122(sy + <1 v G—A)

If the random variables (Xo, ..., X,,) are independent, the derivatives of the density can be estimated in the
same way and the two previous theorems (as well as the theorems for the adaptive risk) can be applied if we
set 0 = 4oc.

When A = 1, the risk bound is the same as in Hosseinioun et al. [13].

2.3. Optimisation of the choice of m

Under Assumption S1 and if g; belongs to the unit ball of a Besov space %5 . with a > 1, then H Gjm—

gj”LQ(A) < ¢D;? and the best bias-variance compromise is obtained for D,, ~ (n(1V 0A))Y@7+3) In that

case,
E (Ig5.m = 951172y ) < (v nfA) >/ G+,
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If Assumption S2 is satisfied and if g; belongs to £S5 .,, with r > «, then [|g;m — ngiz(]R) < c27me If
N >n (1 A6OA), the best bias-variance compromise is obtained for

1

~ 2 —2a/(2a+2j5+1
Uy Y logy(n (1VOA)) and then E (ng,va _ngL2(]R)> < (n Vv nA)” 2/ Ror2itl)

Rao [22] builds estimators of the successive derivatives f () for independent variables. This estimators converge
with rate n—20/(at+2i+1),

2.4. Risk of the adaptive estimator on a compact set

An additional assumption for the process (X;) is needed:

Assumption M3. If the process (X¢),~, is arithmetically 3-mizing, then the constant 0 defined in (2.2) is
such that 6 > 3. B

Let us set A&, = {m, Dy, < Zj,} where Z;, < (nA /\n)l/@j”) is the maximal dimension. For any
m € Mj,, an estimator §;,, € Sm of g; = fU) is computed. Let us introduce a penalty function pen;(m)
depending on D,,, and n:

Dp2it+ 1
en;(m) > —— |1V —
pen;m) = nvs; 22— (17 5 )
Then we construct an adaptive estimator: choose 77; such that

Gj = Gjm, where 1 =arg min [yj, (Gjm) + pen;(m)].
mG.//[j,n

Theorem 2.6 (adaptive estimation on a compact set). There exists a universal constant k such that, if As-
sumptions M1-3 and S1 are satisfied:

| o
7N
—
<
B[ =
~~_

E (13— gl3eca) <€ inf (llgim = 9512) +pen;(m)) + =
J,n

where C' is a universal constant and c depends on 1, By and 0.

Remark 2.7. The adaptive estimator automatically realizes the bias-variance compromise. Comte and Mer-
levede [6] obtain similar results when j = 0 and the sampling interval A is fixed, and their remainder term is
smaller: it is 1/n and not In*(n)/n.

The penalty function depends on 3y and 6. Unfortunately, these two constants are difficult to estimate.
However, the slope heuristic defined in Arlot and Massart [1] enables us to choose automatically a constant A
such that the penalty AD**!/(nA) is good. It is also possible to use the resampling penalties of Lerasle [18].

2.5. Risk of the adaptive estimator on R

Let us denote .#; , = {m, 2™ < %, ,,} with @2J+2 <nAAn and fix N = N, = (n AnA). For any m € .,
an estimator §; m. N, € Sm,n, of g; is computed The best dimension r; is chosen such that

nfA

J,n

. . . 2(2j+1)m  9(2j+1)m
iy = arg min [y (§jm,n,) +pen;(m)] - where  pen;(m) = cy; ( )

and the resulting estimator is denoted by g; := gj m; N, -
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Theorem 2.8 (adaptive estimation on R). Under Assumptions M1-M3 and S2,
~ 2 . 2 c 1
E (ng - gj||L2(]R)) =C (||9j,m = 9illz2(w) +p€”j(m)) + {1V g

where ¢ depends on 1, By and 0.

3. CASE OF STATIONARY DIFFUSION PROCESSES

Let us consider the stochastic differential equation (SDE):
dXt = b(Xt)dt + O'(Xt)th, X() =n, (31)

where 7 is a random variable and (W), a Brownian motion independent of 7. The drift function b: R — R
is unknown and the diffusion coefficient o : R — R** is known. The process (X;),s, is assumed to be strictly
stationary, ergodic and SB-mixing. Obviously, we can construct estimators of the successive derivatives of the
stationary density using the previous section. But in this section, we use the properties of a diffusion process
to compute a new estimator of the first derivative of the stationary density. If the sampling interval A is small,
this new estimator converge faster than the previous one.

3.1. Model and assumptions
The process (Xt)tzo is observed at discrete times t = 0, A, ..., nA.

Assumption M4. The functions b and o are globally Lipschitz and o € €.
Assumption M4 ensures the existence and uniqueness of a solution of the SDE (3.1).

Assumption M5. The diffusion coefficient o belongs to €, is bounded and positive: there exist constants o
and o1 such that:

VI’ER,O<O’1§O’(JJ)§O’0.

Assumption M 6. There exist constants r > 0 and 1 < o < 2 such that
IMy € RT,  Vaz,|z| > My, zb(x) < —rlz|*.

Under Assumptions M4-MG6, there exists a stationary density f for the SDE (3.1), and
f(z) o< o7 %(x) exp <2 /01’ b(s)aQ(s)ds). (3.2)
Then f has moments of any orders and:
/|f’(:c)|2d:c < oo, VmeN, /|x|m |f/(#)| dz < oo (3.3)
Vm e N, [[2™ f(z)], < oo, ||b4(:c)f(gc)Hoo < oo and /exp(|b(z)|)f(:c)d:£ < 0. (3.4)

Assumption M 7. The process is stationary: n ~ f.

According to Pardoux and Veretennikov [21] (Prop. 1 p. 1063) under Assumptions M5-M6, the process (X;)
is exponentially S-mixing: there exist constants 3y and 6 such that Bx (t) < foe™ . Moreover, Gloter [11] prove
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the following property:

Proposition 3.1. Let us set .7 = o (n, Wy, s <t). Under Assumptions M4 and M7, for any k > 1, there
exists a constant c(k) depending on b and o such that:

Vh0<h<1¥t>0 E[ sup [b(X,)—bX)|F|Z: | < c(k)hH? (1 n |Xt|k) .
s€[t,t+h]

Remark 3.2. To estimate f’, it is enough to have an estimator of 2bf and an estimator of f. Indeed, according
to equation (3.2), the first derivative f’ satisfies:

I 26() |
f@) ~ @) o)

By assumption, the diffusion coefficient o is known. Besides, according to Assumptions M4 and M5, ¢/ and o~ *
are bounded. As we have already constructed an estimator of f = gg in Section 2, it remains to estimate 2bf.

In this section, we construct an estimator h of h := 2bf either on a compact set [ag, a;], or on R.

3.2. Sequence of linear subspaces

Like in the previous section, estimators B, of h are computed on some linear subspaces S,, or Sy, n, then a
penalty function pen(m) is introduced to choose the best possible estimator h. If h is estimated on a compact
set A = [ag, a1], the following assumption is needed:

Assumption S3 (estimation on a compact set).
1. The sequence of linear subspaces Sy, is increasing, Dy, = dim(S,,) < oo and Vm, S,, C L*(A).
2. There exists a norm connection: for any m € N, any function t € S, satisfies

2 2
[#15 < GoDom [[El[L2a) -

Particularly, if we note @, (x) =Y \cp (oam () where (©xm, A € Ap) is an orthonormal basis of
Sy, then H@,Q,L(I)HOO < ¢poDpp.
3. There exists > 1 such that, for any function t belonging to %5 ., with o <,

[t — tm”iz(A) <D,

where t,, is the orthogonal projection of t over S,,.

In the appendix, several examples of sequences of linear subspaces satisfying this assumption are given. To
estimate h on R, an increasing sequence of linear subspaces Sy, = Vect (pxm A € Z) (Where {¢xm ),y is an
orthonormal basis of S,,) is considered. As the dimension of those subspaces is infinite, the truncated subspaces
Sm.N = Vect (pxm, A € Ay, ) are used.

Assumption S4 (estimation on R).
1. The sequence of linear subspaces (Sy,) is increasing.
2. The dimension of the subspace Sy, N 1S 22mHIN 4 1.
3. 3¢0 , Vm, Vt € Spm , [t < 02" [t|]omy . Let us set Op(z) = Y,y (oam(@))’, then
H@fn(ac)Hoo < @p2™ where ¢g 1s a constant independent of N .
4. For any function t € L?> N L' (R) such that [ 2*t*(z)dx < 400,

1
||tm —tm N”iz(R) <c—=
’ N

where t,, is the orthogonal (L?) projection of t over Sy, and t,, n its projection over S, .
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5. There exists r > 1 such that for any function t belonging to the unit ball of a Besov space %5 ., with
a<sr,

It =t 72 ey < 2727
Proposition 3.3. Let us consider a function ¢ generating a r-reqular multi-resolution analysis of L? with
r > 0. Let us set
Sm = Vect {oxm, A €Z} and Sy n = Vect {oxm, A€ Ap}
where Oy m(x) = 2720 (2Mx — \) and A, = {\ € Z, |\| < 2" N}. Then the subspaces Sy, n satisfy Assumption S4.
Functions p(x) = sin(x)/z also generate a multi-resolution of L*(R), but they are not even O-regular. How-

ever, they satisfy Assumption S4 if Sobolev spaces take the place of Besov spaces in Point 4. The definition of
Sobolev spaces of reqularity « is recalled here:

Wom{a [ 1a" @l (o2 +1)" s < oo}

where g* is the Fourier transform of g.

3.3. Risk of the estimator with m fixed

For any m € #,, where 4, = {m, D, < 2,}, an estimator By of h = 2bf is computed. The maximal
dimension %, is specified later. The following contrast function is considered:

4 n
Lo(t) = [It]7. — X > (Xgena — Xea) t(Xpa)

k=1
where ||.HL2 = H.HLQ(A) or ||'HL2(]R)' As A_l (X(k_;’_l)A*Xk;A) :Ik;A+ZkA+b(XkA) with
1 (k+1)A 1 (k+1)A
IkA = Z (b(Xé) — b(XkA)) ds and ZkA = — O'(Xs)dWs, (3.5)
kA

AkA

we have that E (T',,(t)) = [|t]|3. — 4 (bf,t) — 4E (Iat(Xa)) . According to Lemma 6.4, |E (Iat(Xga))| < A2,
Moreover, h = 2bf, so

E (Tn(t) = [1t32 = 2 bty + O (A2)

This inequality justifies the choice of the contrast function if the sampling interval A is small. If Assumption S3
is satisfied, we consider the estimator

[ in T, (¢
o8 gin Tn(0)

m

and, under Assumption S4, we set

fALm,N = argtenslin T.(t).
m,N

Theorem 3.4 (estimation on a compact set). Under Assumptions M4-M7 and S3,

E (Hﬁm - h‘

where hy, is the orthogonal projection of h over S,, and c a constant depending on b and o. We remind that
the B-mizing coefficient of the process (X3) is such that Bx(t) < Boe %t

2

260¢ Dm
) < o — B0y + A+ <a%; 1l + —) Do

L2(A) 0 nA
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Theorem 3.5 (estimation on R). Under Assumptions M4-M7 and S4

2

N 0

B ([ )
L2(R)

c 2800\ 2™
) M = Al + g+ caot (7 + 2552 ) 22,

where hy, N 15 the orthogonal projection of h on the space Sy, n. If N = Ny = nA, then

2 (Jims

2 2 20800\ 27
gy ) = W = Mgy + et (11 + 2590 ) 22

where hy, is the orthogonal projection of h over S,,.

3.4. Optimisation of the choice of m

Under Assumption S3, if h14 belongs to the unit ball of a Besov space %5 ., then [|h — hm||i2(A) < D2,
To minimise the bias-variance compromise, one have to choose

Dy, ~ (HA)I/(1+2Q)

and in that case the estimator risk satisfies:

(T

L2(A)

) < C (nA)72/ 0120 4 oA
Under Assumption S4, if i belongs to BS ., then ||h — hm||i2(]R) < 9-2ma gnq

2 (Jfws

’ > <C (nA)_%/(H%) + cA.
L2(R)

Remark 3.6. Dalalyan and Kutoyants [9] estimate the first derivative of the stationary density observed at
continuous time (they observe X; for ¢ € [0,77]). In that framework, the diffusion coefficient o2 is known. The
minimax rate of convergence of the estimator is 7~/ (112®) Tt is the rate that we obtain when A tends to 0.

Let us set A ~ n~%. We obtain the following convergence table:

I} Principal term of the bound | Rate of convergence of the estimator
0<p< 42‘11 A n?
<<l (nA) =20/ (120 n~2a(-0)/(da+1)

Those rates of convergence are the same as for the estimator of the drift. If 5 > 1/2, the dominating term
in the risk bound is always (nA)~2*/072%)  The rate of convergence is always smaller than n=1/2. If (n, A) is
fixed and if A < n=29/(42+3) then the second estimator Ay, converges faster than the first one g ,,,. However,
if the sampling interval A is larger than n—2¢/(4+3) it is the opposite.

3.5. Risk of the adaptive estimator on a compact set

For any m € Mpa = {m, Dy, < Z,} where the maximal dimension %, is specified later, an estimator
hy € Sy, of his computed. Let us set
D 8
— <1 + 80

pen(m) > RX 2 ) and 7 = meiilflfn,A {'yn (ﬂm) +pen(m)}.
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The resulting estimator is denoted by h := hy,. Let us consider the asymptotic framework:

Assumption S5.
nA

In?(n)
Theorem 3.7 (adaptive estimation on a compact set). There exists a constant k depending only on the chosen
sequence of linear subspaces (Sy,) such that, under Assumptions M4-M7, S3 and S5,

S([n

where C' is a numerical constant, ¢ depends on ¢ and || f| ., and c depends on b.

/

2 ] 9 c
L2(A)) = Cmel‘rx}{fn,A {Hhm B hHL?(A) +pen(m)} teht nA

Remark 3.8. The estimator is only consistent if A — 0. Moreover, the adaptive estimator i automatically
realizes the bias-variance compromise.

3.6. Risk of the adaptive estimator on R

An estimator lAzmmA € Smna is computed for any m € A, g = {m, 2™ < 2,}. The following penalty
function is introduced:

2m 280 . . -
> _ f— .
pen(m) > IinA (1 + 2 ) and we set M mlen/ffln {'yn (hm,nA) +pen(m)}

Let us denote by ﬁnA the resulting estimator.

Theorem 3.9 (adaptive estimation on R). There exists a constant  depending only on the sequence of linear
subspaces (Sy,) such that, if Assumptions M4-M7, S4 and S5 are satisfied:

e (]

If the process (X¢),5 is the solution of the stochastic differential equation (SDE)

cl

nA

Fona — h‘

2
3 2
< _
L2(R)) - Cmem//zfmK {Hhm A7z ) +p€N(m)} +cA +

4. DRIFT ESTIMATION BY QUOTIENT

dX; = b(Xy)dt + dW;

and satisfies Assumptions M4-M7, then
b= f'/2f.

An estimator of the drift by quotient can therefore be constructed. For high-frequency data, Comte et al. [8]
build an adaptive drift estimator thanks to a penalized least-square method. Their estimator converges with
the minimax rate (nA)_QO‘/ SR belongs to the Besov space %9 . On the contrary, there exist few results
on the drift estimation where the sampling interval A is fixed. Gobet et al. [12] build a drift estimator for
low-frequency data, however, the error bound is not easy to estimate. In this section, a drift estimator by
quotient is constructed and its risk is computed.

We estimate f and f’ on R in order to avoid convergence problems on the boundaries of the compact. Let us
consider two sequences of linear subspaces (Som, m € Ay ) and (S1,m, m € M1 ) satisfying Assumption S2
for £ = 1 and such that

Mo = {m(), log(n) < 2™ < nvnA/ log(nA)} and A1, = {mb 2m < ("A)1/5}

where the constant 1 does not depend on b neither o.
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As in Section 2, adaptive estimators f := Gona and g := g1 pa of f = go and f' = g1 are computed. As b
belongs to %5 ., [ and f’ also belong to # . and the best bias-variance compromise for go,, is obtained for
270 ~ (nA)Y/ (1422 and for gy, it is obtained for 2 ~ (nA)Y(+22) If o > 1, the restrictions on ., and
A, do not modify the rate of convergence of ours estimators. Let us consider the estimator

b= 2%; if §<2nAf and b=0 otherwise.

Theorem 4.1. Ifb € %5, with a > 1, then

2 ([ptll) < 572 (-1

L2(A)
where C' does not depend on n nor on A. Moreover, Vx € A, e 2bloy < flz) < R 17 bl < ba, then
lgally, < 2bae®Pleren and

E(Ha_b\ ) < Pl (H -1l

By Theorem 2.8, we obtain:

!

2 C
—4 2 ~ 2
o) 10 Al E (1= ) + o

2 2

~ c’
)+ R (I - gl ) +

L2(A) L2(A)

~ 2 .
([t =y
L2(4)
So b converges towards b with the minimax rate defined by Gobet et al. [12].

5. SIMULATIONS

5.1. Models

Ornstein-Uhlenbeck. Let us consider the SDE dX; = —bX; + dW; with b > 0. The stationary density is a
Gaussian distribution .4 (0, (2b)_1> and its derivative is

26%/2 o
fl(.f) = —er b .

Hyperbolic tangent. We consider a process (X;) satisfying the SDE
dX; = —atanh(aX;)dt + dW;.
The stationary density related to this SDE is

a

B B a® tanh(ax)
 2cosh?(ax)

and - f'(z) = cosh?(az)

f(z)

Square root. Let us consider the diffusion with parameters

axr

=

and o =1.

The stationary density is

f(z) = cexp (72(1\/ 1+ :c2> and f'(x) = 2b(x) f(z).



DERIVATIVES OF THE STATIONARY DENSITY 45

Model 4. We consider the following SDE:

20X
ax, = — i Ldt+ AW

The process (X;),~, does not satisfy Assumption M6 neither the sufficient conditions to be exponentially
fB-mixing. If @ > 1/2, it admits the stationary density

—2a 4cqax
f(x) =cq (1422 and  f'(z) = ———F=--
( ) ( ) ( ) (1 + x2)1+2
Sine function. Let us consider the diffusion with parameters:
. x
b(z) =sin(ar) - — and o=1.

V14 a2

Its stationary density f satisfies:
f(z) = cqexp (72a_1 cos(ax) — 21+ :E2) and  f'(z) = 2¢,b(x) f ().

5.2. Estimation of the first derivative [’

Here, we estimate the first derivative f’ of the stationary density on a compact set and we compare the two
estimators §; and h defined in Sections 2 and 3. The subspaces S, are generated by trigonometric polynomials:
those functions are orthonormal, very regular and enable very fast computations: to compute g1, (resp ]Alm)
when §1,m—1 (resp izm 1) is known, it is only necessary to compute one or two coefficients.

Figures 1-5 show the differences between the two estimators: g; converges whatever the sampling interval,
and h converges only if A is small. In that case, h is better than g1: the variance term is greater for gy , (is
proportional to D3, /(nA)) than for h,, (is p proportional to D,,/nA).

In Tables 1-3, for each value of n and A, 50 exact simulations of a diffusion process are realized using the
retrospective exact algorithm of Beskos et al. [3] (except for the Ornstein-Uhlenbeck process which is simulated
using Gaussian variables). For each path, we compute the empirical risks of the estimators g; and h:

1 M - 2 2
191 = g1ll}; == 77 D @1(x) — ga(n))®  and Hh—hHE::—Z( ~hlwr))
k=1

where the points x; are equidistributed over A. To check that the estimator is adaptive, the oracles

- 2

- o

ory = — 191 AngE > and or, =
miye #, Hgl,m - 91||E

min,,, EMn

b=

are computed. The mean time of simulation ¢, of a process is measured, and for each kind of estimator, the
means of the empirical risk risy or risp, of the oracles or, or orj, and of the computation times ¢, or ¢ or
computed.

The complexity of the retrospective exact algorithm of Beskos et al. [3] is proportional to ne®® where ¢ depends
on the model. Table 3 shows that for Model 4, g, increases when n or A increases. For the hyperbolic tangent,
the time of simulation only depends on n because the constant c¢ is exactly equal to 0. The Ornstein—Uhlenbeck
process is not simulated thanks to the retrospective algorithm, so its time of simulation does not depend on A.
Tables 1-3 show that the first estimator g; is always faster to compute than the second one h. This is mainly
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-+ estimator g; (differentiating an estimator of f
-.: estimator h (using to f' = 2bf)

FIGURE 1. Ornstein-Uhlenbeck: estimation of f’.

n=10% A=1 n=10° A =102
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0.1

-0.5

5 24
-: true derivative

: estimator g7 (differentiating an estimator of f

-.: estimator h (using to f/ = 2bf)

FIGURE 2. Hyperbolic tangent: estimation of f’.

because we have less models to test: for the first estimator, the maximal dimension %, is bounded by (nA)l/ 4
whereas for the second estimator, %, < (nA)l/ 2,

When A =1, g1 is better than h. If not, the estimators are similar and become better when nA increases.
For the Ornstein-Uhlenbeck process and the hyperbolic tangent, the process (X;),- is exponentially f-mixing
and g; is in general better than h. For Model 4, the process (X;) is not exponentially S-mixing and when A < 1,
h is (in general) better than §i.
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n=10* A=1 n=10* A=10""
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-: true derivative
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FIGURE 3. Square root: estimation of f’.
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FIGURE 4. Model 4: estimation of f.

5.3. Drift estimation by quotient

Two drift estimators are compared: the estimator by quotient defined in Section 4, denoted here by l;quot,
and a penalized least-square estimator denoted by Bpls. The construction of the last estimator is done in
Comte et al. [8]. It only converges when the sampling interval A is small, but in that case, it reaches the minimax
rate of convergence: if b belongs to a Besov space ¢, then the risk of the estimator l;pls is bounded by

—2a/(2a+1)
L2(A)) s¢C ((HA) + A) '

~ 2
(o
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-: true derivative
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FIGURE 5. Sine function: estimation of f’.

TABLE 1. Estimation of f’ for Ornstein—Uhlenbeck.

First estimator Second estimator
n A tsim TiSg org tg 718y, ory, th
10% 1 0.10 ] 0.00025| 2.5 | 0.33 | 0.0090 | 1.0 | 0.73
10* | 107! 0.10 0.0010 | 1.8 | 0.17 | 0.00091 | 1.2 | 0.68
104 {1072 | 0.099 | 0.0060 | 2.6 | 0.097 | 0.0067 | 2.3 | 0.66
103 1 0.0027 | 0.0023 | 4.2 | 0.034 | 0.0097 | 1.0 | 0.12
103 | 101 | 0.0025 | 0.0058 | 3.0 | 0.020 | 0.0077 | 2.3 | 0.12
103 | 1072 | 0.0026 | 0.037 | 3.0 | 0.0070 | 0.078 | 4.0 | 0.035
102 1 0.00022 | 0.0080 | 2.0 | 0.013 | 0.019 | 1.5 | 0.062
102 | 101 | 0.00021 | 0.035 | 2.4 | 0.0046 | 0.078 | 5.5 | 0.019
102 | 1072 | 0.00023 | 0.067 | 2.1 | 0.0048 | 0.11 1.4 | 0.0068

risy and risp: average empirical risks related for ;. and h.

ory and ory: average oracles (empirical risks of g; (resp h) over the empirical risk of the best estimator g1,
(resp h)). )

ty and t;: average time of computation of §; and h (times in seconds).

tsim: average times of simulation of (Xo, Xa,..., Xpa) (times in seconds).

Figures 6-10 show that, for low-frequency data, the quotient estimator Bquot is better than Bpls. For various
values of n and A, 50 exact simulations of (Xo, ..., X,a) are realized and estimators l;quot and l;pls are computed.
Tables 4 and 5 give the average empirical risk for these estimators and the average computation times. The
lowest risk is set in bold. -

Tables 4 and 5 underline that the first estimator is always faster than the second one: to compute by, we
have to inverse a matrix m x m over each space S,,. When A is small and the time of observation nA is large,
the penalized least square contrast estimator converges better than the quotient estimator. Of course, when A
is fixed, Bquot converges faster than Bpls.
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TABLE 2. Hyperbolic tangent: estimation of f’.

First estimator Second estimator
n A tsim Tisg | Oryg ty ris, | orp th

10* 1 6.2 |0.0027| 1.1 | 0.33 |0.0087|1.03| 0.71
10* 107t | 1.2 ]0.0018 | 3.7 | 0.17 |0.0014 | 1.4 | 0.68
10* [ 1072 | 1.7 |0.0065 | 2.8 | 0.10 |0.0056 | 1.8 | 0.65
103 1 0.61 | 0.0040 | 1.5 | 0.034 | 0.0097 | 1.1 0.12

103 [ 10~* | 0.19 | 0.0067 | 2.8 | 0.020 | 0.0087 | 2.1 | 0.12
102 1072 ] 0.16 | 0.022 | 2.5 [ 0.0068 | 0.036 | 2.6 | 0.03

102 1 0.066 | 0.011 | 1.7 | 0.014 | 0.021 | 1.80 | 0.063
102 | 1071 1 0.020 | 0.023 | 2.3 [ 0.0048 | 0.044 | 3.4 | 0.020
102 | 1072 | 0.018 | 0.033 | 1.6 | 0.0054 | 0.078 | 1.2 | 0.0080

risy and risp: average empirical risks related for ;. and h.
ory and ory,: average oracles (empirical risks of g1 (resp h) over the empirical risk of the best estimator g1,

(resp h)). .
ty and t: average time of computation of §; and h (times in seconds).
tsim: average times of simulation of (Xo, Xa,..., Xpa) (times in seconds).

n=10* A=1

-15 71‘ 7015 6 O.‘5 1‘ 15
- true drift b B
— — estimation of b by quotient: bgyot

. estimation of b like in Comte et al. [8]: bpis

FI1GURE 6. Ornstein—Uhlenbeck: estimation of b.
6. PROOFS
6.1. Important lemmas
Lemma 6.1 (variance of S-mixing variables). Let us set
1 n
A== "g(Xxa) —E(9(Xka))-

n
k=1

49
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n=10% A=1
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- true drift b R
— —: estimation of b by quotient: bgyot

. estimation of b like in Comte et al. [8]: bpis

FIGURE 7. Hyperbolic tangent: estimation of b.

TABLE 3. Model 4: estimation of f’.

First estimator Second estimator

n A tsim TiSg org ty risp | orp ty
104 1 6.6 |0.00073| 1.8 | 0.33 | 0.020 | 1.0 | 0.71
104 | 1071 | 2.3 | 0.0032 | 4.2 | 0.17 | 0.0019| 1.3 | 0.70
1041 1072 | 2.1 0.016 | 3.8 | 0.10 |0.0090 | 1.7 | 0.68
102 1 0.67 | 0.0049 | 2.4 | 0.035 | 0.022 | 1.1 | 0.12
103 1071 | 0.24 | 0.017 | 3.6 | 0.021 | 0.013 | 2.0 | 0.12
102 | 1072 | 0.18 | 0.043 | 2.0 | 0.0071| 0.094 | 3.5 | 0.035
102 1 |0.071| 0.048 | 81 | 0.014 | 0.041 | 1.6 | 0.065
102 | 1071 | 0.022 | 0.046 | 1.91 |0.0049 | 0.077 | 3.1 | 0.02
102 | 10721 0.019 | 0.070 | 1.4 | 0.005 | 0.12 | 1.1 | 0.0069

risy and risp: average empirical risks related for ;. and h.

ory and ory,: average oracles (empirical risks of g1 (resp h) over the empirical risk of the best estimator g1,
(resp hum)). .

ty and t: average time of computation of §; and h (times in seconds).

tsim: average times of simulation of (Xo, Xa,..., Xpa) (times in seconds).

If the random variables (Xpa) are strictly stationary and 3-mizing, then there exists a function B such that

+oo

+oo
E(B(X0)) <Y Bra and E(B*(Xo)) <> kBra
k=1 k=1
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FIGURE 8. Square root: estimation of b.
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FIGURE 9. Model 4: estimation of b.

and, for any function g such that E (gQ(XO)) < 400,

e

Var(4) < ~E (B(X0)g*(X0)) -

51
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FIGURE 10. Sine function: estimation of b.

TABLE 4. Ornstein-Uhlenbeck: estimation of b.

Quotient estimator | Least-square estimator
n A TiSquot Lquot TiSpls tpls
10| 1 |0.0022 3.6 0.089 7.3
10 | 1071 | 0.0086 1.2 0.0049 1.7
10 | 1072 | 0.069 0.4 0.031 0.7
0% 1 0.011 0.2 0.090 0.7
103 | 107! | 0.061 0.06 0.022 0.3
103 | 1072 | 0.31 0.02 0.50 0.004
102 1 0.073 0.03 0.085 0.3
102|107t | 0.25 0.01 0.34 0.003

T1Squot and 7iS,s: average empirical risks for bgyer and bys.
t and ¢,;s: average computation times of b,,o¢ and b,;s (times in seconds).
quot P q P

Moreover, if the B-mizing coefficients are such that Bx (k) < Boe %A% (that is if (Xpa) are exponentially
B-mizing), then if A > 1:

+o0o +0o0
Zﬁm <28y and Z EBra < 2080

k=1 k=1

and if A <1 and nA — oo:

- 25 - 250
< — < =7
kilﬁkA S No and kilkﬂkA'_AAQGQ
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TABLE 5. Hyperbolic tangent: estimation of b.

Quotient estimator | Least-square estimator
n A T1Squot tquot TiSpls Lpis
104 1 0.0023 3.6 0.086 7.2
104 | 1071 | 0.019 1.2 0.017 1.8
10* [ 1072 | 0.078 0.4 0.052 0.7
100 1 0.036 0.2 0.18 0.7
103 | 1071 | 0.12 0.06 0.065 0.3
1031072 | 0.17 0.02 0.61 0.004
10%2] 1 0.24 0.03 0.10 0.3
102 | 107! | o0.20 0.01 0.53 0.003

TiSquot and 7iS,s: average empirical risks for bgyer and bys.
tquot and tps: average computation times of bguor and bys (times in seconds).

If the random wvariables (Xya) are arithmetically B-mixing, then:

+o0 too
. . 250
if OA > 1, then ,;,1 Bra <2060 and if 0 > 1, ,;,1 kBra < 71

n 280 = 260
: < < ; > <
if A <1, then kgﬂ Bra < ) and if 6 > 1, 2 kBra < A2(01)

This lemma is proved in Viennet [24].

Lemma 6.2 (coupling method for the construction of independent variables). Let us consider a stationary
and (-mizing process (Xi),~, observed at discrete times t = 0,A,...,nA. Let us set n = 2¢q,p, where ¢, =

W a'nd’ fO?” a € {071}; 1<k <py,
Uk,a = (X((g(k_1)+a)qn+1)A, ce X(Qk_Ha)an) )

According to Berbee’s lemma (see Viennet [24]), there exist random variables (XX,...,X:A) such that the
random vectors

Up, = (X;(Q(k_1)+a)%+1)A, N .,X{%_HG)M) where a€{0,1}, 1 <k < p,

satisfy:
— for any a € {0,1} , vectors Uy ,, - . ., U, —1).0 aTe ndependent;
— forany a € {0,1}, any k, 1 <k < p,, U;, and Uy o have the same law;
— foranya € {0,1}, 1 <k < p,:

P (Uk,a # UI:,a) < Bx (QnA) .

Let us set
Q= {Upa=Ufok=1,...,n, a={0,1}}.
If the process is exponentially B-mizing, then P (2*¢) < 2p,Bx (q,) < n~2.
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Lemma 6.3 (Talagrand inequality). Let us consider some random wvariables Xi,..., X, independent and
identically distributed. Let us set g, : t € B — gn(t) where B is a countable set and

gult) = =3 FilXi) — B(F(X0)
k=1

If

sup |Fill. <My, E <sup |gn<t>|> <H, supVar(F/(X)) <V,
teA teA teA

H? M? H
E <sup g2 (t) — 12H2) <C <K exp <k1n > + —21 exp (kgn—>)
teB L n Vv n M,

with k1 = 1/6, ky = 1/(21\/5), and C a universal constant. There exists a constant k independent of the process
(Xt) and of the function Fy such that:

then

2
P(tsgp|gn( )| 22H+)\> < 3exp (mein (2)\_V’7L]\41>> . (6.1)

This proof is done in Lacour [14] page 156 and in Comte and Merlevede [5] page 224.

6.2. Proofs of Theorems 2.4 and 2.5

We only prove here Theorem 2.5 (the Proof of Theorem 2.4 is very similar and easier). According to
Pythagoras, we have

. 2 2 N 2
95,m,N — QHLz(R) = |lgj,m.n — QHLz(R) + [1Gj,m,N — gj,m,N”Lz(R) .

Let us set ay = [; f9(2)pxm(zr)dz. By Assumption S2 1., ay fR gaf\Jzn (x)dz. Let us set
ay = 1)7 Sy ga(j) (XkA). We have

~ 2 ~ 2
135.m. 8 = Gjm T2 = D (@x—an)
AEAm, N

and

3

]E((ax—ax ) Var(lzn: (]) XkA)

k=1
According to Lemma 6.1,

n

Var G sa&%(x'm)) < 28 (B0x0) (+¥,(x0)))
k=

1

where E (B(Xj)) < 206 (1 \ i). So, by Assumption S2 1.,

W~

2(2]+1)m 1
EE (B(Xo)¥?,,(Xo)) < 860tp;———— (1 v —)

. 2
E (ng,mJV - 9j7m,N||L2(R)> < N
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6.3. Proofs of Theorems 2.6 and 2.8

As previously, only Theorem 2.8 is demonstrated. Let us set

n

v (1) = LN 40 D () f ()
1) = 219 (K1) = [ 0@ )

k=1
For any m, we have
Vim(95) + pen; (i) < 7j.n(Gj.m.N.) +pen;(m) < Yjn(gjm,N,) + pen;(m).
As, for any t € S;, N,
2 2
Vin(t) = It = gllz2 = llgllz2 + 205 (1),

for any m € N,

- 2 2 - .

195 = 9llz2ry < 195m.N, = 9l L2y + 2V5n (g5,m,N, — G5) + penj(m) — pen; ().

According to Cauchy—Schwartz, if we set B,/ = {t € Sm,N,, + Sm/ N, ||t||L2(]R) 1} we have:

~ 2 2 .
lg; — 9||L2(]R) < l1g3,m.N., 9||L2(]R) +7 ||9] gj1m7Nn||L2(]R) + 4tesgla}p Vjn () + penj(m) — pen; ().

~ 2 2
As 1135 = gjm, N T2y < 21195m,850 = 91172y + 2185 — 9l 72w

~ 2 .
195 = 9llz2®) < 31195m,nv, gllLQ(R)+8 Sup Vi (£) + pen(m) — pen; (1i;).

m,m

Let us consider a function p;(m,m’) such that 8p;(m,m’) = pen;(m) + pen;(m’). We have that

E

E<8 sup 17, ()+p6nj(m)—p€nj(mj)>
tEBm

SE ( sup y]2 (t) —pj(m,mj)> + 2pen;(m).

Let us use the set Q* described in Lemma 6.2 where g, is defined later. Let us set, for a € {0,1}, 0 < k < p,, — 1,

qn qn

Uka = — Zt(]) ( (2k+a qn+z>A) v Uka=— Zt (X(@ktaygn+na)

and .
* 1 j * * j *
via(t) = = 319 (Xia) — B (19(Xia) ).
k=1
We have:
sup v2 (t) —pj(m,m;) < sup {(V* (t))2 —p;i(m m)} + sup {’l/z t)— (v (t))2’}
B ST tEBm . m o R teB " o

According to Lemma 6.2, the random variables (U 1:,0) are independent and identically distributed, and so are

the variables (U,j,l) .
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2

Bound of E (SuPte@m,,;L {(Vj*n(t)) — pj(m,mj)}). We have that

E( sup (17 (0))" - Jmmj><ZE< sup Vf,n(t))Q—pj(mm’))- (6.2)

tEBm,m 7 teRB

m,m’

Let us set, for a € {0,1}, 0 < k <p, — 1,

I/j,na 2anUka7 Uka)'

We have that:
Vin(t) = Vjno(t) + 5,1 ().
We want to apply Lemma 6.3 to the random variables Uy ,. So we compute H?,V and M, such that

sup HUI:zHOO <M, Var(Uy;,;) <V and E( sup (uj*n(t))2> < H?.
tERB !

m,m/

Let us denote by {¢x, A € A} an orthonormal basis of S, x4+ S/~ and set D = omyom’, By Assumption S2 4.,
we have

swp Uil < [0 (X0)|_ < VD@02
[ASEZZ Sa— oo
By Lemma 6.1:
4 . 2 4 ; 2\\ /2 9 1/2
Var (07,) = 28 ((1900) B0 ) < L (2((00w))) @ @)
An An
- 1 1
< (OD2+L/2 (_ v ) )
- In A
Besides,
E ( sup (V;,n,a(t))2> =E sup (Z Qv ] n,a 90)\ ) Io- | < Z E ( Vin,a ))2)
LED Yaea <1 \\ea AEA
and

E(( gna(%\)) ) Var (21 :ii%\ (X((2k+a)qn+l)A>>

The random variables (X} 1) are exponentially S-mixing, so according to Lemma 6.1:

2 (5 o0)) = 3 (B(XO) (*”(Aj)<XO)>2) where E (B(Xo)) < 260 (% v ﬁ)

Thus, by Assumption S2 4., we have:

X 2 4 Di+1) 1
B (s (a(0)”) < 2B (BUX0) (Vi (X0) + 9, (X)) < 10500, 2= (1 57 ).
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(2+1)
E ( sup (I/]*n(t))2> < 32601/)]-D :L (1 Vv 9%)

and it follows:

teRB

m,m’

Let us set

F:=E ( sup (V?n(t) — pj(m,m’)) ]lg*>
[ASEZZ S—

+

57

We can apply Lemma 6.3 with H? = 328y1; D+ (L v —x), M1 = /U, DPIHD/2 and V = ¢D?%. Let us set

1
n

p;j(m,m’) = 12H%. We find:

D2i+1/2 D2i+1 D
F<C|——ex (—ch/Q) + ex (—c ° ))
B ( nA P o P vVnA

where ¢ and C are two constants independents of D, n and A.
As D =2™ 4+ 2™ and 2™ > m/ for any m’ > 0:

ZD2j+1/g exp (—ch/Q) < Z K212 oxpy (—Ck1/2) <C.
ml

k=1
Besides,
@j,n
2j+1 2j+1 2j+2
S DS Yk < g <
m’ k=1

and if there exists 77 > 0 such that

n 1/24n
n — S~ 2 nA )
Pn =g (nA)
then:
* 2 / ¢
E (( sup (Vj,n(t)) pj(mvm)>) < A.
tEBm,m 4 n

J,n

Bound of E (supteggmwm {‘V?n(t) - (v (t))Q‘}) We have that:

sup {‘V?n(t) — (l/]*n(t))Q‘} < Z sup {‘V?n(t) — (l/]*n(t))Q‘}

tEBm.m tERB
and
[Vian () = v5n |—2p ZZW’M‘Uk |<2‘t(]) _I;]IUkasﬁU
Moreover,
[vim(t) + v}, ()] < Zi\UkaJrU,m 1 2|E(Uwo)| < 4Ht<J>H
a=0k=1

Lemma 6.2 and Assumption S2 4. ensures that:

E< sup {\v?,n@)—(v;,n(t)f\})ss su ([ Ve o # 020 < 30,92 5 ()

teRB LEB, m!

then

: ( o {[v3(6)- <v;,n<t>>2\}) < 84,9835 (3. ).
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As 9;2” ~nA, and Bx (gnA) < B (1 + an)_(HG), we want that:

(14 g, 0)" M < (nA) 2, (6.4)

Choice of g,. The integers ¢, and p, = n/(2¢,) have to satisfy the inequalities (6.3) and (6.4). If the process
is exponentially [-mixing, then g, = (I + 1)In(n)/(6A) with [ € N~ {0} fits. If the process is arithmetically
[-mixing, let us set g, = (nA)”* /A. According to inequalities (6.3) and (6.4), we need:

1 2
3 0 < - — d > .
77>,04_2 n an a_1+9

This condition can only be fulfilled if # > 3. In that case, we can set o = 2/(1 + 6).
Collecting the results, we obtain:

. 2 . c 1
E (135 - 03l}) <€ int, (losav, — alFsge +pens(m) + = (1v 5 )

6.4. Proof of Theorems 3.4 and 3.5

We only prove Theorem 3.5. We have that A™! (X114 — Xpa) = Tka + Zea + b(Xia) (see Eq. (3.5)).
Then

n

Lo(t) = T'n(s) = ”t”%%]R) - HSH%Q(]R) - % > (Tea + Zra +b(Xka)) (H(Xpa) — 5(Xxa)) -

k=1
Moreover,
[t =hllfem = 7@ + IR *2/t(x)h(=’v)dx = [1t172g) + 121172 g *4/t(fﬂ)b(x)f(fv)dx
= [Ty + IRl 2@ — 4E (B(Xka)t(Xka)) -
Then ,
2
Ly(t) = Tn(s) = It = hllzo@) — Is = Bllpom) — 2vn(t — 5) — 2pn(t — s) — 26u(t — 5)
where
(t) 2 Zn:E(I t(X
y - =
n - kat(Xea))
k=1
(t)y = 2 iZ (X
Pn = rat(Xea)
k=1
2 n
En(t) = g];JkAt(XkA)—E(JkM(XkA))
and
(k+1)A
Ja = Ika + b(XkA) =A"! b(Xs)dS. (6.5)
kA
As

Fn (]Alm,N> S Fn(hm,N)a

we can write

homn — h

2 ~ ~ ~
L2R) < Hhm,N — hHig(R) + 2v, (hm,N — hmJ\[) + 2p, (hmJ\/‘ — hm,N> + 2, (hm,N - gm,N) .
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According to Cauchy—Schwartz, if we set %, = {t € SN, tllp2m@) < 1}, we have:

+6 sup (vp(t) + pa(t) + E2(E))

i =,
L2(R) tEBm

2 Ly
e A e

L3(R)

According to Pythagoras,

Fom v — h‘ N — B2 gy 50

Am,N mN‘ = }
L2(R)

L2(R)

s =]

S ||hm,N - h”iz(R) + 1221%10 (Vi(t) + p%(t) + sz(t)) :

The following lemma is very useful and is proved later.

L*(R)

Lemma 6.4. We have that
L E[I{s| Fra] = A1+ X(a)  and E[Lis| Fra] < cA® (14 XG0).
4
2. E[Zkal| Fral =0, E[Z2:| Fin] < B and E[Zi] Fra] < 2%
3. E [t4(Xka)b* (Xia)] < eIt 172 -

4. E(JZA) < ¢, E(Jp) < c and Var (Jeat(Xia)) < c ||t|\ig(R) .
where the filtration %, = o (77, (Ws)ogsgt) is defined in Proposition 3.1 and the constant ¢ depends on b and o.
Then
2
sup v2(t) = sup ( ZIE IkAt(XkA)))

tEBm tEBm

IN

—ZE t2 Xk;A IkA|yk‘A))

IN

cA toe
— § E (£*(Xka) (L+ X2p)) = CA/ (14 2?) f(x)t*(z)dx
k=1 >

where the constant ¢ depends on b. By (3.3), [|(1 + 2?) f(:n)”oo < ¢ and we have that

sup vy (t) < cA HtHi?(]R)
tEBom

As (‘pA,m)/\eAm is an orthonormal basis of S, for the L?-norm,

sup pr(t) < > pi(eam).

tEBm AEA,

Besides,

n

1

n2

2
E (3 m (Xea)E (Z2a] Fra)) < 2B (3 (X0)):
k=1

E (p7(oam)) <
So, by Assumption S4 3.,

2 2
D
E 2)) < ZE (02 (x,)) < 207 Dm
(i 20) = Sy wh00) = 205
We know that
sup E2(1) < Y &2 (oam)-

tEBm NEA,,
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1 DA
JraA = — b(Xs)ds,
A Jia

the random sequence (Jxa,Xpa) is stationary and G-mixing such that §;x(n) < Bx(nA). According to
Lemma 6.1, we have that

E (& (prm)) < B (B, X0) T3, (X0))

Then, as E (J§) < C and E (B?(Jy, Xo)) < ¢/(602A?),

4 40D,
E ( sup & (t)) < —E(B(Jo, Xo)J307,(Xo)) < %TE(B(JO,XO)J(%)
teABm

460 Dm 2 1/2 an1/2 _ cDy,

< E (B X FE < .

h n (B (B*(Jo, X0))) ** (E () " < nfA

So
p ’ 2 D,, (1 )
E (Hhm,N - h‘ LQ(R)) < Hhm,N - hHLQ(R) +CA + CM (5 +0‘0 .

Proof of Lemma 6.4. According to Proposition 3.1,

E < S[up ] (b(Xkats) — b(XkA))m‘ ﬂm) <cA(1+ X7,
s€[0,A

which proves 1. Points 2. and 3. are obvious, thus we only prove 4. We know that
Var (Jiat(Xia)) < 2E (Igat?(Xa)) + 2Var(b(Xea)t(Xka))

and, by (3.3)
Var(b(Xpa)t(Xra)) < / b2 (2)t* (2) f(2)da < |02 (@) F ()| 1ElFe < C ]l -

According to Proposition 3.1, we have that

E (£(X5a)E (Iia| Fia))

IN

cAE ((1+ X25) t3(Xra))

+oo
cA/_ (14 2?) f(2)t*(2)dz.

IN

By (3.3):

+oo
[ ) @ < el (6.6)

—00

which ends the proof. O
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6.5. Proofs of Theorems 3.7 and 3.9

As previously, we only demonstrate Theorem 3.9. We have:
where By m/ = {t € Sm,N + Smr N [t 2Ry < 1}. Let us consider a function p(m, m’) such that 12p(m, m’) =

pen(m) + pen(m’). We have that

2
7 . 2 2
= oy < iy WP = Bl + 2pen(m) +12 sup (v (8) + AL(8) + €1(8) = plm. ).

2 2 2 ~
sy S it — hl|7a g + 12 S (v (&) + pp(t) + &2 (1) + pen(m) — pen(in))

We already prove that sup;cg,, . v2(t) < e¢A. Moreover,

E( sup pi(t)p(mﬁ%)) <y E( sup pi(t)p(m,m’)>

tE B, m m' e, tERB, .1

m’,m

and

E( sup éi(t)—p(m,m)> < > E( sup €i(t)—p(m7m’)>-

te:@-ﬁz,m m/e//lw tE% /

The triplet (XA, Zka, Jea) is B-mixing and its S-mixing coefficient is smaller than Bpe ™. So we can construct

a set Q* like in Lemma 6.2 with
(20 + 3)1In(n)

Let us set, fora=0,1and 0 < k <p, — 1:

* 1 o * * * 1 o * *
Uia = o > Tkt rnat (X<(2k+a)qn+zm) and Vi (t) = > Lokt +nat <X<<2k+a>qn+z>A) :
=1 =1

Let us set: .

= Z t* (X((2k+a)qn+l)A> (6.7)

As for the proof of Theorem 2.8, we denote D = 2m +2m" and we consider (pr, A € A) a basis of Sy, + Spr.
Let us consider the spaces

* * 2
Oz = {w, Yk, Va € {0,1}, VA€ A, (Vi) <2080 lloal, }
Qy =A{w, V&, | Jial < 21+ 1)In(n)} and O=Q"NQzANQ,. (6.8)
Risk bound on O. We apply Lemma 6.3 to the variables Uy , and V" . We have that
Pn

pn(t) = pno(t) + pn1(t) with  pna( 2pn Z Vk a ™ Vk a)

and
Pn

En(t) = Eno(D) + Ena(t) with  &ua(t) =7 = ZUM— (Ura) -
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Applying Lemma 6.3 to the variables V}’ . We have that

Var (i, Lo) < —E (Z31°(X0)) = —E (*(X0)E (25| ) < o

Let us set & := {t € Sm + S, ||tHi2(R) < 1}. By (6.8), we have that

2
sup (Vk St )110)2 = sup (Z a,\kaa(go,\)]lo> < Z Vi a(oa )1o) <9 92 ||<p>\|\ka

te% Yaea @XS1 \\ea AEA AEA

where the semi-norm ||.[[,, , is defined by (6.7). So by Assumption S4 3.,

tsug% (Vi1 )2 < 202¢00D where D =27 4 2™
€

Moreover, in the previous section it is demonstrated that

¢oD
E sup i Hlp | < ——-
<teggmym, 20 nA

Lemma 6.3 can be applied with H% = ¢oo2D/(nA), V = 02q, *A~! and M? = 202¢0D. We find:

$oD 1 DlIn?
E ((te;up pn( ) — 120—A> 10>+ <C <n_A exp (—cD) + —nzlA(;l) exp <ln(cn)>)

We know that )", exp(—cD) =73, exp <fc (2’” + QmI)) < C where the constant C' does not depend on m
nor on m’. Besides, Y., , D < Z2. As

22 <

In?(n)’

¢oD C
E su 20 —1222 )1 < =
ya((aw 0-20g) )

Applying Lemma 6.3 to the variables Uy ,. According to Lemma 6.1, we have that

we have

Var (U, 1o) < —E (J3#2 (Xo) B (X0)) < — (E (J&* (Xo))) "/ (B (B2 (X0))) ">

qn An

where E (B? (X)) < 28/ (§A). Moreover, as Jo = Iy + b(Xo), we have, by Lemma 6.4:

E(Jot* (Xo)) < cE[t*(Xo) (b* (Xo) +E (13| Fo))]
clltllZ B ([A% (1 + Xjia) +b* (X0)] £ (Xo)) -

IN

By equation (3.3):

E@WﬂxmsdwiAA%rmﬂﬂmﬂ@+wwﬂmﬂmm
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and
E (Jyt* (Xo)) < eD.
Collecting terms, we obtain:
. cD/2 D1/2
Var (Uk,alo) < PN = cm.
Moreover,
Ui o 1ol , < [Tot(X0)Toll, < (20 +1)D"?In(n)

and we have proved in the previous section that

E( sup éi(t)llo> < 850%%-

teggmyml

We can apply Lemma 6.3 with M; = CD'?1n(n), V = C'D'/?/In(n) and H? = 88y¢oD/(nfA). We find that

D D'/? D1n*(n) VnA
E 2(t) — 84 — |1 < —eDV?) 4 = Y —
(om0 -sswagiz) o) < (Tizom (o) Sion (05

where the constant ¢ is independent of D, n and A. We have that

ZD1/2 exp (—cD1/2) < i kY2 exp (—ckzl/2) < 4o00.

m/’ k=1
So, if
nA
P, n < B )
7T 3 (n)
we have that
D C
Z E sup V(1) — 84Bppo—— | 1o < —
iy teB,, nfA N nA

Risk bound on O¢ We know that

1/2
E( sup  (pr (1) + €5 (1)) 1@c>s2 P (0°) (E( sup (pi(t)+€i(t))2>>

tERB, tERB,

m’,m m/,m

and
P(0°) < P(Q) + P (Q%4) +P(25).

According to Lemma 6.2,

P (Q*) <n~2. (6.9)
The following lemma is proved later:
Lemma 6.5. . .
P(Q%4) < ol and P(Q7) < poTR

We have that

E ( sup  (pa(t) + fi(t)f) <E <Z pr(or) + fr%(‘?ﬂ)

teERB,,1 XEA

m’,m
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Besides,
I ’
Prlpa) & (o) = (E > ox(Xka) (Zka + Jra) —E (JOSDA(JO))>
k=1
3 n
= Y03 (Xua) (Zia + Jia) +E (93(X0)) E(J5) -

k=1
According Assumption S4 3., we know that sup, Z/\eA goi(ac) < ¢y, so:
2 1 n 2
2w R e0)) <l S [l ) + @0R)].
m!m k=1

By Lemma 6.4, we obtain that:

2 24\ 2 1
E <te%? m( Pu(t) +6(1) ) sc (1 + p)

where ¢ does not not depend on m, m/, n, nor on A. So, by (6.9) and Lemma 6.5,

E( sup  (pa(t) + &2(t) ]loc><cz lA

tERB 51

m’,m

As 9, <nA, as soon as [ > 2:

C
n

E ( sup  (p2(1) + E(1)) m) <

tERB 01

m’,m

Proof of Lemma 6.5.
Bound of P (2) . We have that

P(Q7) =P Gk, |Jeal = (214 3)In(n)) < nP ([Jo| = (204 3)In(n)).

It is known that
P (|Jo| > (20 + 3)In(n)) < n~FFIE (exp (|Jo])) -

For any m, by stationarity,

E(|Jo|™) < E (|b(Xo)[™ /|b da.
By (3.3),

B (exp () < [ " exp (b(@)]) f()dz < ¢
and

P(Q5) <n 2.
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Bound of P (Q‘ZA) According to Lemma 2, page 533 of Comte et al. [8], we have that

« 2
P((Vialon)’ 2 2080 oall.) < 2exp(~0u00).

As g, = (21 + 3)/(6A), we obtain:

P ((Via(en)” 2 2080 [oally ) < 20 G

k,a (') = 40 ["25% ka) S n .
So we can write:
cy * 2 2 2 * 2 2 2
P(0%) =P (30, 3k 37, (Via(en)” 2 2030 lI0all7., ) < IAInP (Vea(en)” = 2080 a7, )-
As |A| < D - K, with K,, = nA, we have:
P(Q%) < Zn(nA)n 272 < (nA)*? 22 < 2, 0

6.6. Proof of Theorem 4.1
This proof follows the lines of Lacour [15], Section 6.8. Let us set £ = {w,
Risk bound on £. On &, f > fu/2. We know that

gx) = Y <% ZSD'A(XM)> ea(z),
k=1

AEA

= fHOO < f0/2}~

SO
1< ’ 2
~112 m
= 3 (23a0n) <| @] v
AEAm, \ ' k=1 AEAM,

As (113, < ¢o2™ gl g, and 27 < nA,

oo

1312 < Yot 2™ < ghotpy (nA)°

and for nA large enough, HgHio < nAfo/2 <nAmingea f(z). So, on &, b= g/(2f) and:
~ g— 1 1
s (523 9)
of  2\f f

~ 2 ~
2 ([5-l, %) 5% 10— otca) + 5 = (J

Risk bound on £°€. As “5“ < nA, we have that
o0

Therefore

2
L2<A>> '

B ([i-oal,,, 16) < (002 4 10al2) B,

It is known that:
7= < it (1F = fmolloo + o = 7]| )

moE€Mon
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As f € %3 ,, by DeVore and Lorentz [10] page 182 and Barron et al. [2] (Lem. 12):
1f = fmolloo < C20CF2) < Cln(nA)~*H/2,

So ||f = fmollee < fo/4 for n large enough, and £°¢ C {Hfmo fj?H > f0/4}. As fi, and f belongs to the

linear space Sy, + Sm, which satisfies Assumption S2, we have that

~ 2 ’7
Jmo — fH <4 sup 2moVmollf. o fo,
H 0 oo mlyEtlo 0 oflL2r)
We know:
1 n
Hfmo fmo L) teggui) , Vgﬁn(t) where g, ( = z;t Xia) /]R () f(z)dz.
m, ,mo =
Then

P(&°) < sup ]P’( sup  vg,(t) > > 27 moVmo fO)

mf)e.//fgyn teA ’ 16¢0

mo
As in Section 6.3, we use the set Q*. We have that
1

JUSE

so P(£°) <P (E°NQ*°) + —L. Let us consider the random variables

dn qn

Uir =21 (X gusna) and Uiy = —2t (Xt nguina) -
n

=1 =1

The random variables (U i a) are independent and identically distributed. It is demonstrated in Section 6.3
"/ 1<k<pn
that
sup ||UgZH <\ D??, Var(U,:j) <c¢ and H?:=E sup  vg, (1) <C—
S - Tee ’ B gt nA

where D = 270 4 2™, As by assumption, D?> < nA/log*(nA) for n large enough, we have that
H? = CD/(nA) < f2/6410D. then

myEMo,n teB ’ 641D

mo,m6

2
PENQ*) < sup IP’( sup 12, (t) > 2H? + fo )
According to (6.1), we have that

. cnA
P(gch ) S sup exp (W)

myEMn .o
where the constant c is independent of n and D,,. By assumption, D? < n?nA/ 1n2(nA), o)

P(E°NQY) < (nA)~°
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If n? is large enough, P (£°N Q*) < (nA)~3 and if [ > 2, we have that

2 (o0l 1) <5

which ends the proof.

APPENDIX A. LINEAR SUBSPACES

A.1. Linear subspaces satisfying Assumptions S1 or S3

To use simple notations, we set in this section A = [0, 1].

Trigonometric polynomials

The trigonometric polynomial linear subspaces Vi, = Vect {1, cos(mAz)}, <\ <o, satisfy Assumption S3. The
linear subspaces Sy, = {sin(rAz)}, -, ,,, satisfy Assumption S1 for £ =0, 1.

Proof. DeVore and Lorentz [10] (Cor. 2.5, p. 205) and Barron et al. [2] (p. 120) prove that Assumption S3 is
satisfied by subspaces V,,.
Points 1. and 2. of Assumption S1 are fulfilled by the subspaces (S,,). Moreover, for any t € S,,,

Z sin?(\z)
A=1

2
< D [tll72(4) -

[e}

2 2
[#l5e < N1tl1z2a

We have that

|7, (2) <m*=D3.

le =

Z M cos? ()
A=1

Besides, any function ¢ € Sy, can be written \/(2/7) Y\, axsin(Az), so

[e )

9 m ) m )
[0 124y = p Za?\)\Q HCOSQ()\x)HLz(A) = Za?\)\Q <m® 72 (a) -
A=1 A=1
Points 3. and 4. of Assumption S1 are satisfied. O

Piecewise polynomials

Let us set
go(x) = Ljo.1y(x), g1(x) = 211)(%), ..., gr(x) = 2 110 1)(x)

and pg xm = 2m/2g, (2mx — X). The linear subspaces
Vi = Vect (parm, 0<a<r, 0<A<2™—1)
satisfy Assumption S3. The linear subspaces
Sm = Vect ({‘Pa,/\,m}’ogagr, 1<A<2m 1 U {(Pa,)\,m}lgag.,.7 )\6{0727n})

satisfy Assumption S1 for k < r.
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Proof. DeVore and Lorentz [10] (Thm. 3.4 p. 362) and Barron et al. [2] (p. 120) prove that (V;,) satisfy
Assumption S3.

The linear subspaces (S,) satisfy Points 1. and 2. of Assumption S1. Moreover, the functions ¢4 x,m, have
disjoint supports if A # X', and for any a, ||ga]|, < 1. So

Z Z (‘Pa,)\,m)Q

A€A, a=0

T

Z (Cpa,)\,m)Q

a=0

m 2
< (r+ 127 [t 2 a) -

2 2 2
1#15 < 11#1z2(a = [1tllz2a

') o0

In the same way, we obtain:

Z 27: (@Z,A,m) ’

AeA,, a=0

T

Z (‘p:z,)\,m)Q

a=0

- = < (r+1)2°m.

197 ()

le =

S 28 (gr (2™ — )
a=0

o0 oo

o0
For any function t € S,
2

2 2

T T T
2 m m m m
112200y = || 2= D (Parm) = 2|y 2mg, (2ma = ) =22 11> " g, (2)
AEA,, a=0 L2(A) AeA, a=0 L2(A) a=0 L2(A)
< r(r+1)2%m,
Points 2., 3., and 4. are proved. i

Spline functions restricted to [0, 1]

Spline functions g,, where g, is the r + 1 time convolution of the indicator function of [0,1], generates
a r-regular multi-resolution analysis of L?(R). Their supports are included in [0, + 1] and they belong to
Gy NE 1. Let us set oxm =2"g, (2™x — A) 1 3j(2). Then

Vin = Vect (pam, A= —r+1,...,2™)
satisfies Assumption S3 for k£ < r and
S = Vect (oam, A=0,...,2" —7)

satisfies Assumption S2.4 for k < r.

Proof. Schmisser [23] proved that the linear subspaces (V;,,) satisfy Assumption S3.4. The functions g, have a
compact support: to prove that the subspaces (S,,) fulfil Assumption S1, we use the same arguments as in the
previous paragraph. U

A.2. Restricted spaces of wavelets

The properties of wavelets are defined in Meyer [20] pages 21-22 (Defs. 1 and 2).

Definition A.6. Let us consider
S = {%,m — /2,2 ), A€ Z}
a multi-resolution analysis of L?(R) such that (¢xm),cy is an orthonormal basis of S,,. Let us set
Smx = {@am = 2"/2p(2". — 3, |\ < 22N |

and denote, for any function ¢t € L?(R), t,, (resp t,, n) its orthogonal projection over S, (resp Sy n)-
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Lemma A.7. If
+oo
/ 2 (z)dr < +oo, t€L; and sup (lre(r)|) < +oo,
— 0o rz€eR
then
2 C
||tm,N - tm||L2(R) § N
where the constant ¢ is equal to

(1]

[20]

+oo
1
c= / 2?2 (z)dx + g S (|2%@*@)]) 1t ) -

The proof is done in Comte et al. [7].
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