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NONPARAMETRIC ESTIMATION OF THE DERIVATIVES
OF THE STATIONARY DENSITY FOR STATIONARY PROCESSES

Emeline Schmisser
1

Abstract. In this article, our aim is to estimate the successive derivatives of the stationary density
f of a strictly stationary and β-mixing process (Xt)t≥0. This process is observed at discrete times
t = 0, Δ, . . . , nΔ. The sampling interval Δ can be fixed or small. We use a penalized least-square
approach to compute adaptive estimators. If the derivative f (j) belongs to the Besov space Bα

2,∞, then

our estimator converges at rate (nΔ)−α/(2α+2j+1). Then we consider a diffusion with known diffusion
coefficient. We use the particular form of the stationary density to compute an adaptive estimator of
its first derivative f ′. When the sampling interval Δ tends to 0, and when the diffusion coefficient

is known, the convergence rate of our estimator is (nΔ)−α/(2α+1). When the diffusion coefficient is
known, we also construct a quotient estimator of the drift for low-frequency data.
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1. Introduction

In this article, we consider a strictly stationary, ergodic and β-mixing process (Xt, t ≥ 0) observed at discrete
times with sampling interval Δ. The jth order derivatives f (j) (j ≥ 0) of the stationary density f are estimated
by model selection. Adaptive estimators of f (j) are constructed thanks to a penalized least-square method and
the L2 risk of these estimators is computed.

Numerous articles deal with non parametric estimation of the stationary density (or the derivatives of the
stationary density) for a strictly stationary and mixing process observed in continuous time. For instance,
Bosq [4] uses a kernel estimator, Comte and Merlevède [6] realize a projection estimation and Leblanc [16]
utilizes wavelets. Under the Castellana and Leadbetter’s conditions, when f belongs to a Besov space Bα

2,∞,
the estimator of f converges at the parametric rate T−1/2 (where T is the time of observation). The non
parametric estimation of the stationary density of a stationary and mixing process observed at discrete times
t = 0,Δ, . . . , nΔ has also been studied, especially when the sampling interval Δ is fixed. For example,
Masry [19] constructs wavelets estimators, Comte and Merlevède [5] and Lerasle [17] use a penalized least-
square contrast method. The L2 rate of convergence of the estimator is in that case n−α/(2α+1). Comte and
Merlevède [6] demonstrate that, if the sampling interval Δ → 0, the penalized estimator of f converges with
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emeline.schmisser@math.univ-lille1.fr

Article published by EDP Sciences c© EDP Sciences, SMAI 2012

http://dx.doi.org/10.1051/ps/2011102
http://www.esaim-ps.org
http://www.edpsciences.org


34 E. SCHMISSER

rate (nΔ)−α/(2α+1) and, under the conditions of Castellana and Leadbetter, the parametric rate of convergence
is reached.

There are less papers about the estimation of the derivatives of the stationary density, and the main results
are for independent and identically distributed random variables. For instance, Rao [22] estimates the successive
derivatives f (j) of a multi-dimensional process by a wavelet method. He bounds the L2 risk of his estimator
and computes the rate of convergence on Sobolev spaces. This estimator converges with rate n−α/(2α+2j+1).
Hosseinioun et al. [13] estimate the partial derivatives of the stationary density of a mixing process by a wavelet
method, and their estimators converge with rate (nΔ)−α/(2α+1+2j).

Classical examples of β-mixing processes are diffusions: if (Xt) is solution of the stochastic differential
equation

dXt = b(Xt)dt+ σ(Xt)dWt and X0 = η,

then, with some classical additional conditions on b and σ, (Xt) is exponentially β-mixing. Dalalyan and
Kutoyants [9] estimate the first derivative of the stationary density for a diffusion process observed at continuous
time. They prove that the minimax rate of convergence is T−2α/(2α+1) where T is the time of observation. This
is the same rate of convergence as for non parametric estimator of f .

A possible application is, for diffusion processes, the estimation of the drift function b by quotient. Indeed,
when σ = 1, we have that f ′ = 2bf . The drift estimation is well-known when the diffusion is observed at
continuous time or for high-frequency data (see Comte et al. [8] for instance), but it is far more difficult when
Δ is fixed. Gobet et al. [12] build non parametric estimators of b and σ when Δ is fixed and prove that their
estimators reach the minimax L2 risk. Their estimators are built with eigenvalues of the infinitesimal generator.

In this paper, in a first step, we consider a strictly stationary and β-mixing process (Xt)t≥0 observed at
discrete times t = 0,Δ, . . . , nΔ. The successive derivatives f (j) (0 ≤ j ≤ k) of the stationary density f are
estimated either on a compact set, or on R thanks to a penalized least-square method. We introduce a sequence
of increasing linear subspaces (Sm) and, for each m, we construct an estimator of f (j) by minimising a contrast
function over Sm. Then, a penalty function pen(m) is introduced to select an estimator of f (j) in the collection.
When f (j) ∈ Bα

2,∞, the L2 risk of this estimator converges with rate (nΔ)−2α/(2α+2j+1) and the procedure does
not require the knowledge of α. When j = 0, this is the rate of convergence obtained by Comte and Merlevède
[5,6]. Moreover, when α is known, Rao [22] obtained a rate of convergence n−2α/(2α+2j+1) for independent
variables.

In a second step, we assume that the process (Xt) is solution of a stochastic differential equation of known
diffusion coefficient σ. In that case, f ′ = 2σ−2bf −2σ′σ−1f : to estimate f ′, it is sufficient to know an estimator
of f and an estimator of 2bf . We can construct an estimator of f by the method given above. It remains to
build an estimator of 2bf . It is build either on a compact set, either on R by a penalized least-square contrast
method. First, we construct a sequence of estimators by minimizing a contrast function over the subspaces
Sm. Those estimators converge only when the sampling interval Δ → 0. Then we choose the best estimator
thanks to a penalty function. When f ′ ∈ Bα

2,∞, this adaptive estimator converges with rate (nΔ)−2α/(2α+1)

which is the minimax rate obtained by Dalalyan and Kutoyants [9] with continuous observations. The rate of
convergence of our first estimator was (nΔ)−2α/(2α+3).

Then, an estimator by quotient of the drift function b is constructed. When Δ is fixed, it reaches the minimax
rate obtained by Gobet et al. [12].

In Section 2, an adaptive estimator of the successive derivatives f (j) of the stationary density f of a stationary
and β-mixing process is computed by a penalized least square method. In Section 3, only diffusions with known
diffusion coefficients are considered. An adaptive estimator of f ′ (in fact, an estimator of 2bf) is built. In
Section 4, a quotient estimator of b is constructed. In Section 5, the theoretical results are illustrated via
various simulations using several models. Processes (Xt) are simulated by the exact retrospective algorithm of
Beskos et al. [3]. The proofs are given in Section 6. In the appendix, the spaces of functions are introduced.
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2. Estimation of the successive derivatives of the stationary density

2.1. Model and assumptions

In this section, a stationary process (Xt)t≥0 is observed at discrete times t = 0,Δ, . . . , nΔ and the successive
derivatives f (j) of the stationary density f = f (0) are estimated for 0 ≤ j ≤ k. The sampling interval Δ is fixed
or tends to 0. The estimation set A is either a compact [a0, a1], or R. Let us consider the norms

‖.‖∞ = sup
A

|.| , ‖.‖L2 = ‖.‖L2(A) and 〈., .〉 = 〈., .〉L2(A) . (2.1)

We have the following assumptions:

Assumption M1. The process (Xt) is ergodic, strictly stationary and arithmetically or exponentially β-mixing.

A process is arithmetically β-mixing if its β-mixing coefficient satisfies:

βX(t) ≤ β0 (1 + t)−(1+θ) (2.2)

where θ and β0 are some positive constants. A process is exponentially (or geometrically) β-mixing if there
exists two positive constants β0 and θ such that:

βX(t) ≤ β0 exp (−θt). (2.3)

Assumption M2. The stationary density f is k times differentiable and, for each j ≤ k, its derivatives f (j)

belong to L2(A) ∩ L1(A). Moreover, f (j) satisfies
∫

A x
2
(
f (j)(x)

)2
dx < +∞.

Remark 2.1. If A = [a0, a1], Assumption M2 is only ∀j ≤ k, f (j) ∈ L2(A).

Our aim is to estimate f (j) by model selection. Therefore an increasing sequence of finite dimensional linear
subspaces (Sm) is needed. On each of these subspaces, an estimator of f (j) is computed, and thanks to a penalty
function depending on m, the best possible estimator is chosen. Let us denote by C l the space of functions l
times differentiable on A and with a continuous �th derivative, and C l

m the set of the piecewise functions C l. To
estimate f (j), 0 ≤ j ≤ k on a compact set, we need a sequence of linear subspaces that satisfies the assumption:

Assumption S1 (estimation on a compact set).

1. The subspaces Sm are increasing, of finite dimension Dm and included in L2(A).
2. For any m, any function t ∈ Sm is k times differentiable (belongs to C k−1 ∩ C k

m) and satisfies:

∀j ≤ k, t(j)(a0) = t(j)(a1) = 0.

3. There exists a norm connection: for any j ≤ k, there exists a constant ψj such that:

∀m, ∀t ∈ Sm,
∥∥∥t(j)∥∥∥2

∞
≤ ψjD

2j+1
m ‖t‖2

L2(A) .

Let us consider (ϕλ,m, λ ∈ Λm) an orthonormal basis of Sm with |Λm| = Dm. We have that∥∥Ψ2
j,m(x)

∥∥
∞ ≤ ψjD

2j+1
m where Ψ2

j,m(x) =
∑

λ∈Λm

(
ϕ

(j)
λ,m(x)

)2

.
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4. There exists a constant c such that, for any m ∈ N, any function t ∈ Sm:

∥∥∥t(j)∥∥∥
L2(A)

≤ cD2j
m ‖t‖2

L2(A) .

5. For any function t belonging to the unit ball of a Besov space Bα
2,∞:

‖t− tm‖2
L2(A) ≤ D−2

m ∨D−2α
m

where tm is the orthogonal (L2) projection of t over Sm.

Remark 2.2. Because of Point 1., the projection tm converges very slowly to t on the boundaries of the compact
A = [a0, a1] and the inequality ‖t− tm‖2

L2(A) ≤ D−2α
m can not be satisfied for any t ∈ Bα

2,∞.

In the appendix, several sequences of linear subspaces satisfying this property are given. To estimate f (j)

on R, slightly different assumptions are needed: let us consider an increasing sequence of linear subspaces Sm

generated by an orthonormal basis {ϕλ,m, λ ∈ Z}. We have that dim(Sm) = ∞, so to build estimators, we use
the restricted spaces Sm,N = Vect (ϕλ,m, λ ∈ Λm,N) with |Λm,N | < +∞. The following assumption involves
the sequences of linear subspaces (Sm) and (Sm,N ).

Assumption S2 (estimation on R).

1. The sequence of linear subspaces (Sm) is increasing.
2. We have that |Λm,N | := dim(Sm,N) = 22m+1N + 1.
3. ∀m,N ∈ N, ∀t ∈ Sm,N : t ∈ C k−1 ∩ C k

m and ∀j < k, lim|x|→∞ t(j)(x) = 0.

4. ∃ψj ∈ R
+, ∀m ∈ N, ∀t ∈ Sm, ∀j ≤ k,

∥∥t(j)∥∥2

∞ ≤ ψj2(2j+1)m ‖t‖2
L2(R) . Particularly,

∥∥Ψ2
m(x)

∥∥2

∞ =

∥∥∥∥∥
∑
λ∈Z

(
ϕ

(j)
λ,m(x)

)2
∥∥∥∥∥

2

∞
≤ ψj2(2j+1)m.

5. ∃c, ∀m ∈ N, ∀t ∈ Sm, ∀j ≤ k :
∥∥t(j)∥∥2

L2(R)
≤ c22jm ‖t‖2

L2(R) .

6. For any function t ∈ L2 ∩ L1 (R) such that
∫
x2t2(x)dx < +∞,

‖tm − tm,N‖2
L2(R) ≤

C

N

(∫
x2t2(x)dx

)
+
C′

N
‖t‖2

L1(R) .

where tm is the orthogonal (L2) projection of t over Sm and tm,N its projection over Sm,N .
7. There exists r ≥ 1 such that, for any function t belonging to the unit ball of a Besov space Bα

2,∞ (with
α < r),

‖t− tm‖2
L2(R) ≤ 2−2mα.

Proposition 2.3. If the function ϕ generates a r-regular multiresolution analysis of L2, with r ≥ k, then the
subspaces

Sm = Vect {ϕλ,m, λ ∈ Z} and Sm,N = Vect {ϕλ,m, λ ∈ Λm,N}
(where ϕλ,m(x) = 2m/2ϕ (2mx− λ) and Λm,N =

{
λ ∈ Z, |λ| ≤ 22mN

}
) satisfy in Section S2.

For the definition of the multi-resolution analysis, see Meyer [20], Chapter 2.
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2.2. Risk of the estimator for fixed m

An estimator ĝj,m of gj := f (j) is computed by minimising the contrast function

γj,n(t) = ‖t‖2
L2 − 2(−1)j

n

n∑
k=1

t(j)(XkΔ)

where ‖.‖L2 = ‖.‖L2(A) or ‖.‖L2(R). Under Assumptions S1 or S2:

E (γj,n(t)) = ‖t‖2
L2 − 2 (−1)j

〈
t(j), f

〉
= ‖t‖2

L2 − 2
〈
t, f (j)

〉
=

∥∥∥t− f (j)
∥∥∥2

L2
− C where C =

∥∥∥f (j)
∥∥∥2

L2
.

If Assumption S1 is satisfied, let us denote

ĝj,m(t) = arg inf
t∈Sm

γj,n(t),

and, under Assumption S2,
ĝj,m,N(t) = arg inf

t∈Sm,N

γj,n(t).

We have the two following theorems:

Theorem 2.4 (estimation on a compact set). Under Assumptions M1–M2 and S1, the estimator risk satisfies,
for any j ≤ k and m ∈ N:

E

(
‖ĝj,m − gj‖2

L2(A)

)
≤ ‖gj,m − gj‖2

L2(A) + 8cβ0ψj
D2j+1

m

n

(
1 ∨ 1

θΔ

)

where gj,m is the orthogonal (L2) projection of gj over Sm. The constants β0 and θ are defined in (2.2) or (2.3),
ψj is defined in Assumption S1 and c is a universal constant.

Theorem 2.5 (estimation on R). Under Assumptions M1–M2 and S2, for any j ≤ k and m ∈ N:

E

(
‖ĝj,m,N − gj‖2

L2(R)

)
≤ ‖gj,m − gj‖2

L2(R) +
C

N
+ 8cβ0ψj

2(2j+1)m

n

(
1 ∨ 1

θΔ

)

where C ∝ ∫∞
−∞ x2g2(x)dx+ 2−m ‖g‖2

L1(R) and of the chosen sequence of linear subspaces (Sm,N). According to
Assumption S2 2., if N ≥ (n ∧ nθΔ),

E

(
‖ĝj,m,N − gj‖2

L2(R)

)
≤ ‖gj,m − g‖2

L2(R) + cβ0
2(2j+1)m

n

(
1 ∨ 1

θΔ

)
·

If the random variables (X0, . . . , Xn) are independent, the derivatives of the density can be estimated in the
same way and the two previous theorems (as well as the theorems for the adaptive risk) can be applied if we
set θ = +∞.

When Δ = 1, the risk bound is the same as in Hosseinioun et al. [13].

2.3. Optimisation of the choice of m

Under Assumption S1 and if gj belongs to the unit ball of a Besov space Bα
2,∞ with α ≥ 1, then

∥∥gj,m−
gj

∥∥2

L2(A)
≤ cD−2

m and the best bias-variance compromise is obtained for Dm ∼ (n (1 ∨ θΔ))1/(2j+3). In that
case,

E

(
‖ĝj,m − gj‖2

L2(A)

)
≤ (n ∨ nθΔ)−2/(2j+3)

.
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If Assumption S2 is satisfied and if gj belongs to Bα
2,∞, with r ≥ α, then ‖gj,m − gj‖2

L2(R) ≤ c2−2mα. If
N ≥ n (1 ∧ θΔ), the best bias-variance compromise is obtained for

m ∼ 1
2j + 1 + 2α

log2(n (1 ∨ θΔ)) and then E

(
‖ĝj,m,N − gj‖2

L2(R)

)
≤ (n ∨ nΔ)−2α/(2α+2j+1)

.

Rao [22] builds estimators of the successive derivatives f (j) for independent variables. This estimators converge
with rate n−2α/(2α+2j+1).

2.4. Risk of the adaptive estimator on a compact set

An additional assumption for the process (Xt) is needed:

Assumption M3. If the process (Xt)t≥0 is arithmetically β-mixing, then the constant θ defined in (2.2) is
such that θ > 3.

Let us set Mj,n = {m, Dm ≤ Dj,n} where Dj,n ≤ (nΔ ∧ n)1/(2j+2) is the maximal dimension. For any
m ∈ Mj,n, an estimator ĝj,m ∈ Sm of gj = f (j) is computed. Let us introduce a penalty function penj(m)
depending on Dm and n:

penj(m) ≥ κβ0ψj
D2j+1

m

n

(
1 ∨ 1

θΔ

)
·

Then we construct an adaptive estimator: choose m̂j such that

g̃j := ĝj,m̂j where m̂j = arg min
m∈Mj,n

[γj,n (ĝj,m) + penj(m)] .

Theorem 2.6 (adaptive estimation on a compact set). There exists a universal constant κ such that, if As-
sumptions M1-3 and S1 are satisfied:

E

(
‖g̃j − gj‖2

L2(A)

)
≤ C inf

m∈Mj,n

(
‖gj,m − gj‖2

L2(A) + penj(m)
)

+
c

n

(
1 ∨ 1

Δ

)

where C is a universal constant and c depends on ψj, β0 and θ.

Remark 2.7. The adaptive estimator automatically realizes the bias-variance compromise. Comte and Mer-
levède [6] obtain similar results when j = 0 and the sampling interval Δ is fixed, and their remainder term is
smaller: it is 1/n and not ln2(n)/n.

The penalty function depends on β0 and θ. Unfortunately, these two constants are difficult to estimate.
However, the slope heuristic defined in Arlot and Massart [1] enables us to choose automatically a constant λ
such that the penalty λD2j+1

m /(nΔ) is good. It is also possible to use the resampling penalties of Lerasle [18].

2.5. Risk of the adaptive estimator on R

Let us denote Mj,n = {m, 2m ≤ Dj,n} with D2j+2
j,n ≤ nΔ∧n and fix N = Nn = (n ∧ nΔ). For anym ∈ Mj,n,

an estimator ĝj,m,Nn ∈ Sm,Nn of gj is computed. The best dimension m̂j is chosen such that

m̂j = arg min
m∈Mj,n

[γj,n (ĝj,m,Nn) + penj(m)] where penj(m) = cψj

(
2(2j+1)m

n
∨ 2(2j+1)m

nθΔ

)

and the resulting estimator is denoted by g̃j := ĝj,m̂j,Nn .
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Theorem 2.8 (adaptive estimation on R). Under Assumptions M1–M3 and S2,

E

(
‖g̃j − gj‖2

L2(R)

)
≤ C inf

m∈Mj,n

(
‖gj,m − gj‖2

L2(R) + penj(m)
)

+
c

n

(
1 ∨ 1

Δ

)

where c depends on ψj, β0 and θ.

3. Case of stationary diffusion processes

Let us consider the stochastic differential equation (SDE):

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = η, (3.1)

where η is a random variable and (Wt)t≥0 a Brownian motion independent of η. The drift function b : R → R

is unknown and the diffusion coefficient σ : R → R
+∗ is known. The process (Xt)t≥0 is assumed to be strictly

stationary, ergodic and β-mixing. Obviously, we can construct estimators of the successive derivatives of the
stationary density using the previous section. But in this section, we use the properties of a diffusion process
to compute a new estimator of the first derivative of the stationary density. If the sampling interval Δ is small,
this new estimator converge faster than the previous one.

3.1. Model and assumptions

The process (Xt)t≥0 is observed at discrete times t = 0,Δ, . . . , nΔ.

Assumption M4. The functions b and σ are globally Lipschitz and σ ∈ C 1.

Assumption M4 ensures the existence and uniqueness of a solution of the SDE (3.1).

Assumption M5. The diffusion coefficient σ belongs to C 1, is bounded and positive: there exist constants σ0

and σ1 such that:
∀x ∈ R, 0 < σ1 ≤ σ(x) ≤ σ0.

Assumption M6. There exist constants r > 0 and 1 ≤ α ≤ 2 such that

∃M0 ∈ R
+, ∀x, |x| ≥M0, xb(x) ≤ −r |x|α .

Under Assumptions M4–M6, there exists a stationary density f for the SDE (3.1), and

f(x) ∝ σ−2(x) exp
(

2
∫ x

0

b(s)σ−2(s)ds
)
. (3.2)

Then f has moments of any orders and:∫
|f ′(x)|2 dx <∞, ∀m ∈ N,

∫
|x|m |f ′(x)| dx <∞ (3.3)

∀m ∈ N, ‖xmf(x)‖∞ <∞,
∥∥b4(x)f(x)

∥∥
∞ <∞ and

∫
exp (|b(x)|) f(x)dx <∞. (3.4)

Assumption M7. The process is stationary: η ∼ f .

According to Pardoux and Veretennikov [21] (Prop. 1 p. 1063) under Assumptions M5-M6, the process (Xt)
is exponentially β-mixing: there exist constants β0 and θ such that βX(t) ≤ β0e−θt. Moreover, Gloter [11] prove
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the following property:

Proposition 3.1. Let us set Ft = σ (η, Ws, s ≤ t) . Under Assumptions M4 and M7, for any k ≥ 1, there
exists a constant c(k) depending on b and σ such that:

∀h, 0 < h ≤ 1, ∀t ≥ 0 E

(
sup

s∈[t,t+h]

|b(Xs) − b(Xt)|k|Ft

)
≤ c (k)hk/2

(
1 + |Xt|k

)
.

Remark 3.2. To estimate f ′, it is enough to have an estimator of 2bf and an estimator of f . Indeed, according
to equation (3.2), the first derivative f ′ satisfies:

f ′(x)
f(x)

∝ 2b(x)
σ2(x)

− 2
σ′(x)
σ(x)

·

By assumption, the diffusion coefficient σ is known. Besides, according to Assumptions M4 and M5, σ′ and σ−1

are bounded. As we have already constructed an estimator of f = g0 in Section 2, it remains to estimate 2bf .

In this section, we construct an estimator h̃ of h := 2bf either on a compact set [a0, a1], or on R.

3.2. Sequence of linear subspaces

Like in the previous section, estimators ĥm of h are computed on some linear subspaces Sm or Sm,N , then a
penalty function pen(m) is introduced to choose the best possible estimator h̃. If h is estimated on a compact
set A = [a0, a1], the following assumption is needed:

Assumption S3 (estimation on a compact set).
1. The sequence of linear subspaces Sm is increasing, Dm = dim(Sm) <∞ and ∀m, Sm ⊆ L2(A).
2. There exists a norm connection: for any m ∈ N, any function t ∈ Sm satisfies

‖t‖2
∞ ≤ φ0Dm ‖t‖2

L2(A) .

Particularly, if we note Φm(x) =
∑

λ∈Λm
(ϕλ,m(x))2 where (ϕλ,m, λ ∈ Λm) is an orthonormal basis of

Sm, then
∥∥Φ2

m(x)
∥∥
∞ ≤ φ0Dm.

3. There exists r ≥ 1 such that, for any function t belonging to Bα
2,∞ with α ≤ r,

‖t− tm‖2
L2(A) ≤ D−2α

m

where tm is the orthogonal projection of t over Sm.

In the appendix, several examples of sequences of linear subspaces satisfying this assumption are given. To
estimate h on R, an increasing sequence of linear subspaces Sm = Vect (ϕλ,m λ ∈ Z) (where {ϕλ,m}λ∈Z

is an
orthonormal basis of Sm) is considered. As the dimension of those subspaces is infinite, the truncated subspaces
Sm,N = Vect (ϕλ,m, λ ∈ Λm,N) are used.

Assumption S4 (estimation on R).
1. The sequence of linear subspaces (Sm) is increasing.
2. The dimension of the subspace Sm,N is 22m+1N + 1.
3. ∃φ0 , ∀m, ∀t ∈ Sm , ‖t‖2

∞ ≤ φ02m ‖t‖2
L2(R) . Let us set Φm(x) =

∑
λ∈Z

(ϕλ,m(x))2, then∥∥Φ2
m(x)

∥∥
∞ ≤ φ02m where φ0 is a constant independent of N .

4. For any function t ∈ L2 ∩ L1 (R) such that
∫
x2t2(x)dx < +∞,

‖tm − tm,N‖2
L2(R) ≤ c

1
N

where tm is the orthogonal (L2) projection of t over Sm and tm,N its projection over Sm,N .
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5. There exists r ≥ 1 such that for any function t belonging to the unit ball of a Besov space Bα
2,∞ with

α ≤ r,
‖t− tm‖2

L2(R) ≤ c2−2mα.

Proposition 3.3. Let us consider a function ϕ generating a r-regular multi-resolution analysis of L2 with
r ≥ 0. Let us set

Sm = Vect {ϕλ,m, λ ∈ Z} and Sm,N = Vect {ϕλ,m, λ ∈ Λm}
where ϕλ,m(x) = 2m/2ϕ (2mx− λ) and Λm = {λ ∈ Z, |λ| ≤ 2mN}. Then the subspaces Sm,N satisfy Assumption S4.

Functions ϕ(x) = sin(x)/x also generate a multi-resolution of L2(R), but they are not even 0-regular. How-
ever, they satisfy Assumption S4 if Sobolev spaces take the place of Besov spaces in Point 4. The definition of
Sobolev spaces of regularity α is recalled here:

Wα =
{
g,

∫ ∞

−∞
|g∗(x)|2 (x2 + 1

)α
dx <∞

}

where g∗ is the Fourier transform of g.

3.3. Risk of the estimator with m fixed

For any m ∈ Mn, where Mn = {m, Dm ≤ Dn}, an estimator ĥm of h = 2bf is computed. The maximal
dimension Dn is specified later. The following contrast function is considered:

Γn(t) = ‖t‖2
L2 − 4

nΔ

n∑
k=1

(
X(k+1)Δ −XkΔ

)
t (XkΔ)

where ‖.‖L2 = ‖.‖L2(A) or ‖.‖L2(R). As Δ−1
(
X(k+1)Δ −XkΔ

)
= IkΔ + ZkΔ + b(XkΔ) with

IkΔ =
1
Δ

∫ (k+1)Δ

kΔ

(b(Xs) − b(XkΔ)) ds and ZkΔ =
1
Δ

∫ (k+1)Δ

kΔ

σ(Xs)dWs, (3.5)

we have that E (Γn(t)) = ‖t‖2
L2 − 4 〈bf, t〉 − 4E (IΔt(XΔ)) . According to Lemma 6.4, |E (IkΔt(XkΔ))| ≤ cΔ1/2.

Moreover, h = 2bf , so

E (Γn(t)) = ‖t‖2
L2 − 2 〈h, t〉 +O

(
Δ1/2

)
.

This inequality justifies the choice of the contrast function if the sampling interval Δ is small. If Assumption S3
is satisfied, we consider the estimator

ĥm = arg min
t∈Sm

Γn(t)

and, under Assumption S4, we set
ĥm,N = arg min

t∈Sm,N

Γn(t).

Theorem 3.4 (estimation on a compact set). Under Assumptions M4–M7 and S3,

E

(∥∥∥ĥm − h
∥∥∥2

L2(A)

)
≤ ‖hm − h‖2

L2(A) + cΔ +
(
σ2

0 ‖f‖∞ +
2β0φ0

θ

)
Dm

nΔ

where hm is the orthogonal projection of h over Sm and c a constant depending on b and σ. We remind that
the β-mixing coefficient of the process (Xt) is such that βX(t) ≤ β0e−θt.
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Theorem 3.5 (estimation on R). Under Assumptions M4–M7 and S4

E

(∥∥∥ĥm,N − h
∥∥∥2

L2(R)

)
≤ ‖hm,N − h‖2

L2(R) +
c

N
+ cΔ +

(
‖f‖∞ +

2β0φ0

θ

)
2m

nΔ
,

where hm,N is the orthogonal projection of h on the space Sm,N . If N = Nn = nΔ, then

E

(∥∥∥ĥm,Nn − h
∥∥∥2

L2(R)

)
≤ ‖hm − h‖2

L2(R) + cΔ +
(
‖f‖∞ +

2β0φ0

θ

)
2m

nΔ

where hm is the orthogonal projection of h over Sm.

3.4. Optimisation of the choice of m

Under Assumption S3, if h�A belongs to the unit ball of a Besov space Bα
2,∞, then ‖h− hm‖2

L2(A) ≤ D−2α
m .

To minimise the bias-variance compromise, one have to choose

Dm ∼ (nΔ)1/(1+2α)

and in that case the estimator risk satisfies:

E

(∥∥∥ĥm − h
∥∥∥2

L2(A)

)
≤ C (nΔ)−2α/(1+2α) + cΔ.

Under Assumption S4, if h belongs to Bα
2,∞, then ‖h− hm‖2

L2(R) ≤ 2−2mα and

E

(∥∥∥ĥm,nΔ − h
∥∥∥2

L2(R)

)
≤ C (nΔ)−2α/(1+2α) + cΔ.

Remark 3.6. Dalalyan and Kutoyants [9] estimate the first derivative of the stationary density observed at
continuous time (they observe Xt for t ∈ [0, T ]). In that framework, the diffusion coefficient σ2 is known. The
minimax rate of convergence of the estimator is T−α/(1+2α). It is the rate that we obtain when Δ tends to 0.

Let us set Δ ∼ n−β . We obtain the following convergence table:

β Principal term of the bound Rate of convergence of the estimator

0 < β ≤ 2α
4α+1 Δ n−β

2α
4α+1 ≤ β < 1 (nΔ)−2α/(1+2α)

n−2α(1−β)/(4α+1)

Those rates of convergence are the same as for the estimator of the drift. If β ≥ 1/2, the dominating term
in the risk bound is always (nΔ)−2α/(1+2α). The rate of convergence is always smaller than n−1/2. If (n,Δ) is
fixed and if Δ ≤ n−2α/(4α+3), then the second estimator ĥm converges faster than the first one ĝ1,m. However,
if the sampling interval Δ is larger than n−2α/(4α+3), it is the opposite.

3.5. Risk of the adaptive estimator on a compact set

For any m ∈ Mn,A = {m, Dm ≤ Dn} where the maximal dimension Dn is specified later, an estimator
ĥm ∈ Sm of h is computed. Let us set

pen(m) ≥ κ
Dm

nΔ

(
1 +

8β0

θ

)
and m̂ = inf

m∈Mn,A

{
γn

(
ĥm

)
+ pen(m)

}
.
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The resulting estimator is denoted by h̃ := ĥm̂. Let us consider the asymptotic framework:

Assumption S5.
nΔ

ln2(n)
→ ∞ and D2

n ≤ nΔ
ln2(n)

·

Theorem 3.7 (adaptive estimation on a compact set). There exists a constant κ depending only on the chosen
sequence of linear subspaces (Sm) such that, under Assumptions M4–M7, S3 and S5,

E

(∥∥∥h̃− h
∥∥∥2

L2(A)

)
≤ C inf

m∈Mn,A

{
‖hm − h‖2

L2(A) + pen(m)
}

+ cΔ +
c′

nΔ

where C is a numerical constant, c′ depends on φ0 and ‖f‖∞ and c depends on b.

Remark 3.8. The estimator is only consistent if Δ → 0. Moreover, the adaptive estimator h̃ automatically
realizes the bias-variance compromise.

3.6. Risk of the adaptive estimator on R

An estimator ĥm,nΔ ∈ Sm,nΔ is computed for any m ∈ Mn,R = {m, 2m ≤ Dn}. The following penalty
function is introduced:

pen(m) ≥ κ
2m

nΔ

(
1 +

2β0

θ

)
and we set m̂ = inf

m∈Mn

{
γn

(
ĥm,nΔ

)
+ pen(m)

}
.

Let us denote by h̃nΔ the resulting estimator.

Theorem 3.9 (adaptive estimation on R). There exists a constant κ depending only on the sequence of linear
subspaces (Sm) such that, if Assumptions M4–M7, S4 and S5 are satisfied:

E

(∥∥∥h̃nΔ − h
∥∥∥2

L2(R)

)
≤ C inf

m∈Mn,R

{
‖hm − h‖2

L2(R) + pen(m)
}

+ cΔ +
c′

nΔ
·

4. Drift estimation by quotient

If the process (Xt)t≥0 is the solution of the stochastic differential equation (SDE)

dXt = b(Xt)dt+ dWt

and satisfies Assumptions M4–M7, then
b = f ′/2f.

An estimator of the drift by quotient can therefore be constructed. For high-frequency data, Comte et al. [8]
build an adaptive drift estimator thanks to a penalized least-square method. Their estimator converges with
the minimax rate (nΔ)−2α/(2α+1) if b belongs to the Besov space Bα

2,∞. On the contrary, there exist few results
on the drift estimation where the sampling interval Δ is fixed. Gobet et al. [12] build a drift estimator for
low-frequency data, however, the error bound is not easy to estimate. In this section, a drift estimator by
quotient is constructed and its risk is computed.

We estimate f and f ′ on R in order to avoid convergence problems on the boundaries of the compact. Let us
consider two sequences of linear subspaces (S0,m, m ∈ M0,n) and (S1,m, m ∈ M1,n) satisfying Assumption S2
for k = 1 and such that

M0,n =
{
m0, log(n) ≤ 2m0 ≤ η

√
nΔ/ log(nΔ)

}
and M1,n =

{
m1, 2m1 ≤ (nΔ)1/5

}
where the constant η does not depend on b neither σ.
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As in Section 2, adaptive estimators f̃ := g̃0,nΔ and g̃ := g̃1,nΔ of f = g0 and f ′ = g1 are computed. As b
belongs to Bα

2,∞, f and f ′ also belong to Bα
2,∞ and the best bias-variance compromise for ĝ0,m is obtained for

2m0 ∼ (nΔ)1/(1+2α), and for ĝ1,m it is obtained for 2m1 ∼ (nΔ)1/(3+2α). If α > 1, the restrictions on M0,n and
M1,n do not modify the rate of convergence of ours estimators. Let us consider the estimator

b̃ =
g̃

2f̃
if g̃ ≤ 2nΔf̃ and b̃ = 0 otherwise.

Theorem 4.1. If b ∈ Bα
2,∞ with α > 1, then

E

(∥∥∥b̃− b
∥∥∥2

L2(A)

)
≤ f−2

0 E

(∥∥∥f̃ − f
∥∥∥2

L2(A)

)
+ f−4

0 ‖gA‖2
∞ E

(
‖g̃ − g‖2

L2(A)

)
+

C′

nΔ

where C′ does not depend on n nor on Δ. Moreover, ∀x ∈ A, e−2‖b‖L1(A) ≤ f(x) ≤ e2‖b‖L1(A) . If |b| ≤ bA, then
‖gA‖∞ ≤ 2bAe2‖b‖L1(A) and

E

(∥∥∥b̃ − b
∥∥∥2

L2(A)

)
≤ e4‖b‖L1(A)E

(∥∥∥f̃ − f
∥∥∥2

L2(A)

)
+ 4b2Ae12‖b‖L1(A)E

(
‖g̃ − g‖2

L2(A)

)
+

C′

nΔ
·

By Theorem 2.8, we obtain:

E

(∥∥∥b̃− b
∥∥∥2

L2(A)

)
≤ c(nΔ)−2α/(2α+3).

So b̃ converges towards b with the minimax rate defined by Gobet et al. [12].

5. Simulations

5.1. Models

Ornstein-Uhlenbeck. Let us consider the SDE dXt = −bXt + dWt with b > 0. The stationary density is a
Gaussian distribution N

(
0, (2b)−1

)
and its derivative is

f ′(x) = −2b3/2

√
π
xe−bx2

.

Hyperbolic tangent. We consider a process (Xt) satisfying the SDE

dXt = −a tanh(aXt)dt+ dWt.

The stationary density related to this SDE is

f(x) =
a

2 cosh2(ax)
and f ′(x) = −a

2 tanh(ax)
cosh2(ax)

·

Square root. Let us consider the diffusion with parameters

b(x) = − ax√
1 + x2

and σ = 1.

The stationary density is

f(x) = c exp
(
−2a

√
1 + x2

)
and f ′(x) = 2b(x)f(x).
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Model 4. We consider the following SDE:

dXt = − 2aXt

1 +X2
t

dt+ dWt.

The process (Xt)t≥0 does not satisfy Assumption M6 neither the sufficient conditions to be exponentially
β-mixing. If a > 1/2, it admits the stationary density

f(x) = ca
(
1 + x2

)−2a
and f ′(x) = − 4caax

(1 + x2)1+2a ·

Sine function. Let us consider the diffusion with parameters:

b(x) = sin(ax) − x√
1 + x2

and σ = 1.

Its stationary density f satisfies:

f(x) = ca exp
(
−2a−1 cos(ax) − 2

√
1 + x2

)
and f ′(x) = 2cab(x)f(x).

5.2. Estimation of the first derivative f ′

Here, we estimate the first derivative f ′ of the stationary density on a compact set and we compare the two
estimators g̃1 and h̃ defined in Sections 2 and 3. The subspaces Sm are generated by trigonometric polynomials:
those functions are orthonormal, very regular and enable very fast computations: to compute ĝ1,m (resp ĥm)
when ĝ1,m−1 (resp ĥm−1) is known, it is only necessary to compute one or two coefficients.

Figures 1–5 show the differences between the two estimators: g̃1 converges whatever the sampling interval,
and h̃ converges only if Δ is small. In that case, h̃ is better than g̃1: the variance term is greater for ĝ1,m (is
proportional to D3

m/(nΔ)) than for ĥm (is p proportional to Dm/nΔ).
In Tables 1–3, for each value of n and Δ, 50 exact simulations of a diffusion process are realized using the

retrospective exact algorithm of Beskos et al. [3] (except for the Ornstein-Uhlenbeck process which is simulated
using Gaussian variables). For each path, we compute the empirical risks of the estimators g̃1 and h̃:

‖g̃1 − g1‖2
E :=

1
M

M∑
k=1

(g̃1(xk) − g1(xk))2 and
∥∥∥h̃− h

∥∥∥2

E
:=

1
M

M∑
k=1

(
h̃(xk) − h(xk)

)2

,

where the points xk are equidistributed over A. To check that the estimator is adaptive, the oracles

org =
‖g̃1 − g1‖2

E

minm∈Mn ‖ĝ1,m − g1‖2
E

and orh =

∥∥∥h̃− h
∥∥∥2

E

minm∈Mn

∥∥∥ĥm − h
∥∥∥2

E

are computed. The mean time of simulation tsim of a process is measured, and for each kind of estimator, the
means of the empirical risk risg or rish, of the oracles ōrg or ōrh and of the computation times tg or th or
computed.

The complexity of the retrospective exact algorithm of Beskos et al. [3] is proportional to necΔ where c depends
on the model. Table 3 shows that for Model 4, tsim increases when n or Δ increases. For the hyperbolic tangent,
the time of simulation only depends on n because the constant c is exactly equal to 0. The Ornstein–Uhlenbeck
process is not simulated thanks to the retrospective algorithm, so its time of simulation does not depend on Δ.
Tables 1–3 show that the first estimator g̃1 is always faster to compute than the second one h̃. This is mainly
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-: true derivative
· · · : estimator g̃1 (differentiating an estimator of f

-.: estimator h̃ (using to f ′ = 2bf)

Figure 1. Ornstein-Uhlenbeck: estimation of f ′.

-: true derivative
· · · : estimator g̃1 (differentiating an estimator of f

-.: estimator h̃ (using to f ′ = 2bf)

Figure 2. Hyperbolic tangent: estimation of f ′.

because we have less models to test: for the first estimator, the maximal dimension Dn is bounded by (nΔ)1/4

whereas for the second estimator, Dn ≤ (nΔ)1/2.
When Δ = 1, g̃1 is better than h̃. If not, the estimators are similar and become better when nΔ increases.

For the Ornstein-Uhlenbeck process and the hyperbolic tangent, the process (Xt)t≥0 is exponentially β-mixing
and g̃1 is in general better than h̃. For Model 4, the process (Xt) is not exponentially β-mixing and when Δ < 1,
h̃ is (in general) better than g̃1.
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-: true derivative
· · · : estimator g̃1 (differentiating an estimator of f

-.: estimator h̃ (using to f ′ = 2bf)

Figure 3. Square root: estimation of f ′.

-: true derivative
· · · : estimator g̃1 (differentiating an estimator of f

-.: estimator h̃ (using to f ′ = 2bf)

Figure 4. Model 4: estimation of f ′.

5.3. Drift estimation by quotient

Two drift estimators are compared: the estimator by quotient defined in Section 4, denoted here by b̃quot,
and a penalized least-square estimator denoted by b̃pls. The construction of the last estimator is done in
Comte et al. [8]. It only converges when the sampling interval Δ is small, but in that case, it reaches the minimax
rate of convergence: if b belongs to a Besov space Bα

2,∞, then the risk of the estimator b̃pls is bounded by

E

(∥∥∥b̃pls − b
∥∥∥2

L2(A)

)
≤ C

(
(nΔ)−2α/(2α+1) + Δ

)
.
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-: true derivative
· · · : estimator g̃1 (differentiating an estimator of f

-.: estimator h̃ (using to f ′ = 2bf)

Figure 5. Sine function: estimation of f ′.

Table 1. Estimation of f ′ for Ornstein–Uhlenbeck.

First estimator Second estimator
n Δ tsim risg ōrg tg rish ōrh th

104 1 0.10 0.00025 2.5 0.33 0.0090 1.0 0.73

104 10−1 0.10 0.0010 1.8 0.17 0.00091 1.2 0.68

104 10−2 0.099 0.0060 2.6 0.097 0.0067 2.3 0.66

103 1 0.0027 0.0023 4.2 0.034 0.0097 1.0 0.12

103 10−1 0.0025 0.0058 3.0 0.020 0.0077 2.3 0.12

103 10−2 0.0026 0.037 3.0 0.0070 0.078 4.0 0.035

102 1 0.00022 0.0080 2.0 0.013 0.019 1.5 0.062

102 10−1 0.00021 0.035 2.4 0.0046 0.078 5.5 0.019

102 10−2 0.00023 0.067 2.1 0.0048 0.11 1.4 0.0068

risg and rish: average empirical risks related for g̃1. and h̃.
ōrg and ōrh: average oracles (empirical risks of g̃1 (resp h̃) over the empirical risk of the best estimator ĝ1,m

(resp ĥm)).
tg and th: average time of computation of g̃1 and h̃ (times in seconds).
tsim: average times of simulation of (X0, XΔ, . . . , XnΔ) (times in seconds).

Figures 6–10 show that, for low-frequency data, the quotient estimator b̃quot is better than b̃pls. For various
values of n and Δ, 50 exact simulations of (X0, . . . , XnΔ) are realized and estimators b̃quot and b̃pls are computed.
Tables 4 and 5 give the average empirical risk for these estimators and the average computation times. The
lowest risk is set in bold.

Tables 4 and 5 underline that the first estimator is always faster than the second one: to compute b̃pls, we
have to inverse a matrix m×m over each space Sm. When Δ is small and the time of observation nΔ is large,
the penalized least square contrast estimator converges better than the quotient estimator. Of course, when Δ
is fixed, b̃quot converges faster than b̃pls.
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Table 2. Hyperbolic tangent: estimation of f ′.

First estimator Second estimator
n Δ tsim risg ōrg tg rish ōrh th

104 1 6.2 0.0027 1.1 0.33 0.0087 1.03 0.71

104 10−1 1.2 0.0018 3.7 0.17 0.0014 1.4 0.68

104 10−2 1.7 0.0065 2.8 0.10 0.0056 1.8 0.65

103 1 0.61 0.0040 1.5 0.034 0.0097 1.1 0.12

103 10−1 0.19 0.0067 2.8 0.020 0.0087 2.1 0.12
103 10−2 0.16 0.022 2.5 0.0068 0.036 2.6 0.03

102 1 0.066 0.011 1.7 0.014 0.021 1.80 0.063

102 10−1 0.020 0.023 2.3 0.0048 0.044 3.4 0.020

102 10−2 0.018 0.033 1.6 0.0054 0.078 1.2 0.0080

risg and rish: average empirical risks related for g̃1. and h̃.
ōrg and ōrh: average oracles (empirical risks of g̃1 (resp h̃) over the empirical risk of the best estimator ĝ1,m

(resp ĥm)).
tg and th: average time of computation of g̃1 and h̃ (times in seconds).
tsim: average times of simulation of (X0, XΔ, . . . , XnΔ) (times in seconds).

-: true drift b
– –: estimation of b by quotient: b̃quot

..: estimation of b like in Comte et al. [8]: b̃pls

Figure 6. Ornstein–Uhlenbeck: estimation of b.

6. Proofs

6.1. Important lemmas

Lemma 6.1 (variance of β-mixing variables). Let us set

A =
1
n

n∑
k=1

g(XkΔ) − E (g(XkΔ)) .
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-: true drift b
– –: estimation of b by quotient: b̃quot

..: estimation of b like in Comte et al. [8]: b̃pls

Figure 7. Hyperbolic tangent: estimation of b.

Table 3. Model 4: estimation of f ′.

First estimator Second estimator
n Δ tsim risg ōrg tg rish ōrh th

104 1 6.6 0.00073 1.8 0.33 0.020 1.0 0.71
104 10−1 2.3 0.0032 4.2 0.17 0.0019 1.3 0.70
104 10−2 2.1 0.016 3.8 0.10 0.0090 1.7 0.68
103 1 0.67 0.0049 2.4 0.035 0.022 1.1 0.12
103 10−1 0.24 0.017 3.6 0.021 0.013 2.0 0.12
103 10−2 0.18 0.043 2.0 0.0071 0.094 3.5 0.035
102 1 0.071 0.048 8.1 0.014 0.041 1.6 0.065
102 10−1 0.022 0.046 1.91 0.0049 0.077 3.1 0.02
102 10−2 0.019 0.070 1.4 0.005 0.12 1.1 0.0069

risg and rish: average empirical risks related for g̃1. and h̃.
ōrg and ōrh: average oracles (empirical risks of g̃1 (resp h̃) over the empirical risk of the best estimator ĝ1,m

(resp ĥm)).
tg and th: average time of computation of g̃1 and h̃ (times in seconds).
tsim: average times of simulation of (X0, XΔ, . . . , XnΔ) (times in seconds).

If the random variables (XkΔ) are strictly stationary and β-mixing, then there exists a function B such that

E (B(X0)) ≤
+∞∑
k=1

βkΔ and E
(
B2(X0)

) ≤ +∞∑
k=1

kβkΔ
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-: true drift b
– –: estimation of b by quotient: b̃quot

..: estimation of b like in Comte et al. [8]: b̃pls

Figure 8. Square root: estimation of b.

-: true drift b
– –: estimation of b by quotient: b̃quot

..: estimation of b like in Comte et al. [8]: b̃pls

Figure 9. Model 4: estimation of b.

and, for any function g such that E
(
g2(X0)

)
< +∞,

Var (A) ≤ 4
n

E
(
B(X0)g2(X0)

)
.
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-: true drift b
– –: estimation of b by quotient: b̃quot

..: estimation of b like in Comte et al. [8]: b̃pls

Figure 10. Sine function: estimation of b.

Table 4. Ornstein-Uhlenbeck: estimation of b.

Quotient estimator Least-square estimator
n Δ risquot tquot rispls tpls

104 1 0.0022 3.6 0.089 7.3
104 10−1 0.0086 1.2 0.0049 1.7
104 10−2 0.069 0.4 0.031 0.7
103 1 0.011 0.2 0.090 0.7
103 10−1 0.061 0.06 0.022 0.3
103 10−2 0.31 0.02 0.50 0.004
102 1 0.073 0.03 0.085 0.3
102 10−1 0.25 0.01 0.34 0.003

risquot and rispls: average empirical risks for b̃quot and b̃pls.
tquot and tpls: average computation times of b̃quot and b̃pls (times in seconds).

Moreover, if the β-mixing coefficients are such that βX(k) ≤ β0e−θΔk (that is if (XkΔ) are exponentially
β-mixing), then if θΔ ≥ 1:

+∞∑
k=1

βkΔ ≤ 2β0 and
+∞∑
k=1

kβkΔ ≤ 2β0

and if Δθ ≤ 1 and nΔ → ∞:
n∑

k=1

βkΔ ≤ 2β0

Δθ
and

n∑
k=1

kβkΔ ≤ 2β0

Δ2θ2
·
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Table 5. Hyperbolic tangent: estimation of b.

Quotient estimator Least-square estimator
n Δ risquot tquot rispls tpls

104 1 0.0023 3.6 0.086 7.2

104 10−1 0.019 1.2 0.017 1.8

104 10−2 0.078 0.4 0.052 0.7

103 1 0.036 0.2 0.18 0.7

103 10−1 0.12 0.06 0.065 0.3

103 10−2 0.17 0.02 0.61 0.004

102 1 0.24 0.03 0.10 0.3

102 10−1 0.20 0.01 0.53 0.003

risquot and rispls: average empirical risks for b̃quot and b̃pls.
tquot and tpls: average computation times of b̃quot and b̃pls (times in seconds).

If the random variables (XkΔ) are arithmetically β-mixing, then:

if θΔ > 1, then
+∞∑
k=1

βkΔ ≤ 2β0 and if θ > 1,
+∞∑
k=1

kβkΔ ≤ 2β0

θ − 1

if θΔ ≤ 1, then
n∑

k=1

βkΔ ≤ 2β0

Δθ
and if θ > 1,

n∑
k=1

kβkΔ ≤ 2β0

Δ2 (θ − 1)
·

This lemma is proved in Viennet [24].

Lemma 6.2 (coupling method for the construction of independent variables). Let us consider a stationary
and β-mixing process (Xt)t≥0 observed at discrete times t = 0,Δ, . . . , nΔ. Let us set n = 2qnpn where qn =
(2l+1) ln(n)

θΔ and, for a ∈ {0, 1}, 1 ≤ k ≤ pn,

Uk,a =
(
X((2(k−1)+a)qn+1)Δ, . . . , X(2k−1+a)qnΔ

)
.

According to Berbee’s lemma (see Viennet [24]), there exist random variables (X∗
Δ, . . . , X

∗
nΔ) such that the

random vectors

U∗
k,a =

(
X∗

((2(k−1)+a)qn+1)Δ, . . . , X
∗
(2k−1+a)qnΔ

)
where a ∈ {0, 1}, 1 ≤ k ≤ pn

satisfy:
– for any a ∈ {0, 1} , vectors U∗

0,a, . . . , U
∗
(pn−1),a are independent;

– for any a ∈ {0, 1}, any k, 1 ≤ k ≤ pn, U∗
k,a and Uk,a have the same law;

– for any a ∈ {0, 1}, 1 ≤ k ≤ pn:

P
(
Uk,a �= U∗

k,a

) ≤ βX (qnΔ) .

Let us set
Ω∗ =

{
Uk,a = U∗

k,a, k = 1, . . . , n, a = {0, 1}} .
If the process is exponentially β-mixing, then P (Ω∗c) ≤ 2pnβX(qn) ≤ n−2l.
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Lemma 6.3 (Talagrand inequality). Let us consider some random variables X1, . . . , Xn independent and
identically distributed. Let us set gn : t ∈ B → gn(t) where B is a countable set and

gn(t) =
1
n

n∑
k=1

Ft(Xk) − E (Ft(Xk)) .

If

sup
t∈B

‖Ft‖∞ ≤M1, E

(
sup
t∈B

|gn(t)|
)

≤ H, sup
t∈B

Var (Ft(Xk)) ≤ V,

then

E

(
sup
t∈B

g2
n(t) − 12H2

)
+

≤ C

(
V

n
exp

(
−k1

nH2

V

)
+
M2

1

n2
exp

(
−k2

nH

M1

))

with k1 = 1/6, k2 = 1/(21
√

2), and C a universal constant. There exists a constant κ independent of the process
(Xt) and of the function Ft such that:

P

(
sup
t∈B

|gn(t)| ≥ 2H + λ

)
≤ 3 exp

(
−κnmin

(
λ2

2V
,
λ

7M1

))
. (6.1)

This proof is done in Lacour [14] page 156 and in Comte and Merlevède [5] page 224.

6.2. Proofs of Theorems 2.4 and 2.5

We only prove here Theorem 2.5 (the Proof of Theorem 2.4 is very similar and easier). According to
Pythagoras, we have

‖ĝj,m,N − g‖2
L2(R) = ‖gj,m,N − g‖2

L2(R) + ‖ĝj,m,N − gj,m,N‖2
L2(R) .

Let us set aλ :=
∫

R
f (j)(x)ϕλ,m(x)dx. By Assumption S2 1., aλ = (−1)j

∫
R
f(x)ϕ(j)

λ,m(x)dx. Let us set

âλ = (−1)j

n

∑n
k=1 ϕ

(j)
λ,m(XkΔ). We have

‖ĝj,m,N − gj,m,N‖2
L2(R) =

∑
λ∈Λm,N

(âλ − aλ)2

and

E

(
(âλ − aλ)2

)
= Var

(
1
n

n∑
k=1

ϕ
(j)
λ,m(XkΔ)

)
.

According to Lemma 6.1,

Var

(
1
n

n∑
k=1

ϕ
(j)
λ,m(XkΔ)

)
≤ 4
n

E

(
B(X0)

(
ϕ

(j)
λ,m(X0)

)2
)

where E (B(X0)) ≤ 2β0

(
1 ∨ 1

θΔ

)
. So, by Assumption S2 1.,

E

(
‖ĝj,m,N − gj,m,N‖2

L2(R)

)
≤ 4
n

E
(
B(X0)Ψ2

j,m(X0)
) ≤ 8β0ψj

2(2j+1)m

n

(
1 ∨ 1

θΔ

)
·



DERIVATIVES OF THE STATIONARY DENSITY 55

6.3. Proofs of Theorems 2.6 and 2.8

As previously, only Theorem 2.8 is demonstrated. Let us set

νj,n(t) =
1
n

n∑
k=1

t(j)(XkΔ) −
∫

R

t(j)(x)f(x)dx.

For any m, we have

γj,n(g̃j) + penj(m̂j) ≤ γj,n(ĝj,m,Nn) + penj(m) ≤ γj,n(gj,m,Nn) + penj(m).

As, for any t ∈ Sm,N ,

γj,n(t) = ‖t− g‖2
L2 − ‖g‖2

L2 + 2νj,n(t),
for any m ∈ N,

‖g̃j − g‖2
L2(R) ≤ ‖gj,m,Nn − g‖2

L2(R) + 2νj,n (gj,m,Nn − g̃j) + penj(m) − penj(m̂j).

According to Cauchy–Schwartz, if we set Bm,m′ =
{
t ∈ Sm,Nn + Sm′,Nn , ‖t‖2

L2(R) ≤ 1
}
, we have:

‖g̃j − g‖2
L2(R) ≤ ‖gj,m,Nn − g‖2

L2(R) +
1
4
‖g̃j − gj,m,Nn‖2

L2(R) + 4 sup
t∈Bm,m̂

νj,n (t) + penj(m) − penj(m̂j).

As ‖g̃j − gj,m,Nn‖2
L2(R) ≤ 2 ‖gj,m,Nn − g‖2

L2(R) + 2 ‖g̃j − g‖2
L2(R):

‖g̃j − g‖2
L2(R) ≤ 3 ‖gj,m,Nn − g‖2

L2(R) + 8 sup
t∈Bm̂,m

ν2
j,n (t) + penj(m) − penj(m̂j).

Let us consider a function pj(m,m′) such that 8pj(m,m′) = penj(m) + penj(m′). We have that

E : = E

(
8 sup

t∈Bm,m̂

ν2
j,n(t) + penj(m) − penj(m̂j)

)

= 8E

(
sup

t∈Bm,m̂

ν2
j,n(t) − pj(m, m̂j)

)
+ 2penj(m).

Let us use the set Ω∗ described in Lemma 6.2 where qn is defined later. Let us set, for a ∈ {0, 1}, 0 ≤ k ≤ pn−1,

U∗
k,a =

1
qn

qn∑
l=1

t(j)
(
X∗

((2k+a)qn+l)Δ

)
, Uk,a =

1
qn

qn∑
l=1

t(j)
(
X((2k+a)qn+l)Δ

)

and

ν∗j,n(t) =
1
n

n∑
k=1

t(j)(X∗
kΔ) − E

∗
(
t(j)(X∗

kΔ)
)
.

We have:

sup
t∈Bm,m̂

ν2
j,n(t) − pj(m, m̂j) ≤ sup

t∈Bm,m̂

{(
ν∗j,n(t)

)2 − pj(m, m̂j)
}

+ sup
t∈Bm,m̂

{∣∣∣ν2
j,n(t) − (

ν∗j,n(t)
)2
∣∣∣} .

According to Lemma 6.2, the random variables
(
U∗

k,0

)
are independent and identically distributed, and so are

the variables
(
U∗

k,1

)
.
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Bound of E

(
supt∈Bm,m̂

{(
ν∗j,n(t)

)2 − pj(m, m̂j)
})

. We have that

E

(
sup

t∈Bm,m̂

(
ν∗j,n(t)

)2 − pj(m, m̂j)

)
≤

∑
m′

E

(
sup

t∈Bm,m′

(
ν∗j,n(t)

)2 − pj(m,m′)

)
. (6.2)

Let us set, for a ∈ {0, 1}, 0 ≤ k ≤ pn − 1,

ν∗j,n,a(t) =
1

2pn

pn∑
k=1

U∗
k,a − E

(
U∗

k,a

)
.

We have that:
ν∗j,n(t) = ν∗j,n,0(t) + ν∗j,n,1(t).

We want to apply Lemma 6.3 to the random variables U∗
k,a. So we compute H2, V and M1 such that

sup
t∈Bm,m′

∥∥U∗
k,i

∥∥
∞ ≤M1, Var

(
U∗

k,j

) ≤ V and E

(
sup

t∈Bm,m′

(
ν∗j,n(t)

)2

)
≤ H2.

Let us denote by {ϕλ, λ ∈ Λ} an orthonormal basis of Sm,N +Sm′,N and setD = 2m+2m′
. By Assumption S2 4.,

we have
sup

t∈Bm,m′

∥∥U∗
k,a

∥∥
∞ ≤

∥∥∥t(j)(X0)
∥∥∥
∞

≤ √
ψjD

(2j+1)/2.

By Lemma 6.1:

Var
(
U∗

k,a

) ≤ 4
qn

E

((
t(j)(X0)

)2

B(X0)
)

≤ 4
qn

‖t‖∞
(

E

((
t(j)(X0)

)2
))1/2 (

E
(
B2(X0)

))1/2

≤ CD2j+1/2

(
1
qn

∨ 1
qnΔ

)
·

Besides,

E

(
sup

t∈Bm,m′

(
ν∗j,n,a(t)

)2

)
= E

⎛
⎝ sup∑

λ∈Λ α2
λ
≤1

(∑
λ∈Λ

αλν
∗
j,n,a(ϕλ)

)2

�Ω∗

⎞
⎠ ≤

∑
λ∈Λ

E

((
ν∗j,n,a (ϕλ)

)2
)

and

E

((
ν∗j,n,a (ϕλ)

)2
)

= Var

(
1
2n

pn∑
k=1

qn∑
l=1

ϕ
(j)
λ

(
X∗

((2k+a)qn+l)Δ

))
.

The random variables (X∗
kΔ) are exponentially β-mixing, so according to Lemma 6.1:

E

((
ν∗j,n,a (ϕλ)

)2
)
≤ 4
n

E

(
B(X0)

(
ϕ

(j)
λ (X0)

)2
)

where E (B(X0)) ≤ 2β0

(
1
n
∨ 1
nθΔ

)
·

Thus, by Assumption S2 4., we have:

E

(
sup

t∈Bm

(
ν∗j,n,a(t)

)2
)

≤ 4
n

E
(
B(X0)

(
Ψ2

j,m(X0) + Ψ2
j,m′(X0)

)) ≤ 16β0ψj
D(2j+1)

n

(
1 ∨ 1

θΔ

)
,
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and it follows:

E

(
sup

t∈Bm,m′

(
ν∗j,n(t)

)2

)
≤ 32β0ψj

D(2j+1)

n

(
1 ∨ 1

θΔ

)
·

Let us set

F := E

(
sup

t∈Bm,m′

(
ν2

j,n(t) − pj(m,m′)
)
�Ω∗

)
+

.

We can apply Lemma 6.3 with H2 = 32β0ψjD
(2j+1)

(
1
n ∨ 1

nθΔ

)
, M1 =

√
ψjD

(2j+1)/2 and V = cD2j . Let us set
pj(m,m′) = 12H2. We find:

F ≤ C

(
D2j+1/2

nΔ
exp

(
−cD1/2

)
+
D2j+1

p2
n

exp
(
−c pn√

nΔ

))

where c and C are two constants independents of D, n and Δ.
As D = 2m + 2m′

and 2m′ ≥ m′ for any m′ ≥ 0:

∑
m′

D2j+1/2 exp
(
−cD1/2

)
≤

∞∑
k=1

k2j+1/2 exp
(
−ck1/2

)
≤ C.

Besides, ∑
m′

D2j+1 ≤
Dj,n∑
k=1

k2j+1 ≤ D2j+2
j,n ≤ nΔ

and if there exists η > 0 such that
pn =

n

2qn
≥ (nΔ)1/2+η

, (6.3)

then:

E

((
sup

t∈Bm,m̂

(
ν∗j,n(t)

)2 − pj(m,m′)

))
+

≤ C

nΔ
·

Bound of E

(
supt∈Bm,m̂

{∣∣∣ν2
j,n(t) − (

ν∗j,n(t)
)2
∣∣∣}). We have that:

sup
t∈Bm,m̂

{∣∣∣ν2
j,n(t) − (

ν∗j,n(t)
)2
∣∣∣} ≤

∑
m′

sup
t∈Bm,m′

{∣∣∣ν2
j,n(t) − (

ν∗j,n(t)
)2
∣∣∣}

and ∣∣νj,n(t) − ν∗j,n(t)
∣∣ ≤ 1

2pn

1∑
a=0

pn∑
k=1

∣∣Uk,a − U∗
k,a

∣∣ ≤ 2
∥∥∥t(j)∥∥∥

∞

1∑
a=0

pn∑
k=1

�Uk,a 
=U∗
k,a
.

Moreover, ∣∣νj,n(t) + ν∗j,n(t)
∣∣ ≤ 1

2pn

1∑
a=0

pn∑
k=1

∣∣Uk,a + U∗
k,a

∣∣ + 2 |E (U1,0)| ≤ 4
∥∥∥t(j)∥∥∥

∞
.

Lemma 6.2 and Assumption S2 4. ensures that:

E

(
sup

t∈Bm,m′

{∣∣∣ν2
j,n(t) − (

ν∗j,n(t)
)2
∣∣∣}

)
≤ 8 sup

t∈Bm,m′

{∥∥∥t(j)∥∥∥2

∞

}
P
(
U1,0 �= U∗

1,0

) ≤ 8ψjD
2j+1
n βX (qnΔ)

then

E

(
sup

t∈Bm,m̂

{∣∣∣ν2
j,n(t) − (

ν∗j,n(t)
)2
∣∣∣}

)
≤ 8ψjD

2j+2
n βX(qnΔ).



58 E. SCHMISSER

As D2j+2
j,n � nΔ, and βX (qnΔ) ≤ β0 (1 + qnΔ)−(1+θ), we want that:

(1 + qnΔ)−(1+θ) ≤ (nΔ)−2
. (6.4)

Choice of qn. The integers qn and pn = n/(2qn) have to satisfy the inequalities (6.3) and (6.4). If the process
is exponentially β-mixing, then qn = (l + 1) ln(n)/(θΔ) with l ∈ N � {0} fits. If the process is arithmetically
β-mixing, let us set qn = (nΔ)α

/Δ. According to inequalities (6.3) and (6.4), we need:

∃η > 0, α ≤ 1
2
− η and α ≥ 2

1 + θ
·

This condition can only be fulfilled if θ > 3. In that case, we can set α = 2/(1 + θ).
Collecting the results, we obtain:

E

(
‖g̃j − gj‖2

L2(R)

)
≤ C inf

m∈Mn

(
‖gj,M,Nn − gj‖2

L2(R) + penj(m)
)

+
c

n

(
1 ∨ 1

Δ

)
·

6.4. Proof of Theorems 3.4 and 3.5

We only prove Theorem 3.5. We have that Δ−1
(
X(k+1)Δ −XkΔ

)
= IkΔ + ZkΔ + b(XkΔ) (see Eq. (3.5)).

Then

Γn(t) − Γn(s) = ‖t‖2
L2(R) − ‖s‖2

L2(R) −
4
n

n∑
k=1

(IkΔ + ZkΔ + b(XkΔ)) (t(XkΔ) − s(XkΔ)) .

Moreover,

‖t− h‖2
L2(R) = ‖t‖2

L2(R) + ‖h‖2
L2(R) − 2

∫
t(x)h(x)dx = ‖t‖2

L2(R) + ‖h‖2
L2(R) − 4

∫
t(x)b(x)f(x)dx

= ‖t‖2
L2(R) + ‖h‖2

L2(R) − 4E (b(XkΔ)t(XkΔ)) .

Then
Γn(t) − Γn(s) = ‖t− h‖2

L2(R) − ‖s− h‖2
L2(R) − 2νn(t− s) − 2ρn(t− s) − 2ξn(t− s)

where

νn(t) =
2
n

n∑
k=1

E (IkΔt(XkΔ))

ρn(t) =
2
n

n∑
k=1

ZkΔt(XkΔ)

ξn(t) =
2
n

n∑
k=1

JkΔt(XkΔ) − E (JkΔt(XkΔ))

and

JkΔ = IkΔ + b(XkΔ) = Δ−1

∫ (k+1)Δ

kΔ

b(Xs)ds. (6.5)

As
Γn

(
ĥm,N

)
≤ Γn(hm,N ),

we can write∥∥∥ĥm,N − h
∥∥∥2

L2(R)
≤ ‖hm,N − h‖2

L2(R) + 2νn

(
ĥm,N − hm,N

)
+ 2ρn

(
ĥm,N − hm,N

)
+ 2ξn

(
ĥm,N − gm,N

)
.



DERIVATIVES OF THE STATIONARY DENSITY 59

According to Cauchy–Schwartz, if we set Bm =
{
t ∈ Sm,N , ‖t‖L2(R) ≤ 1

}
, we have:

∥∥∥ĥm,N − h
∥∥∥2

L2(R)
≤ ‖hm,N − h‖2

L2(R) +
1
2

∥∥∥ĥm,N − hm,N

∥∥∥2

L2(R)
+ 6 sup

t∈Bm

(
ν2

n(t) + ρ2
n(t) + ξ2n(t)

)

According to Pythagoras,
∥∥∥ĥm,N − hm,N

∥∥∥2

L2(R)
=

∥∥∥ĥm,N − h
∥∥∥2

L2(R)
− ‖hm,N − h‖2

L2(R) , so
∥∥∥ĥm,N − h

∥∥∥2

L2(R)
≤ ‖hm,N − h‖2

L2(R) + 12 sup
t∈Bm

(
ν2

n(t) + ρ2
n(t) + ζ2

n(t)
)
.

The following lemma is very useful and is proved later.

Lemma 6.4. We have that
1. E

[
I2
kΔ

∣∣FkΔ

]
= cΔ

(
1 +X2

kΔ

)
and E

[
I4
kΔ

∣∣FkΔ

] ≤ cΔ2
(
1 +X4

kΔ

)
.

2. E [ZkΔ|FkΔ] = 0, E
[
Z2

kΔ

∣∣FkΔ

] ≤ σ2
0

Δ and E
[
Z4

kΔ

∣∣FkΔ

] ≤ σ4
0

Δ2 ·
3. E

[
t4(XkΔ)b4(XkΔ)

] ≤ c ‖t‖2
∞ ‖t‖2

L2(R).

4. E
(
J2

kΔ

) ≤ c, E
(
J4

kΔ

) ≤ c and Var (JkΔt(XkΔ)) ≤ c ‖t‖2
L2(R) .

where the filtration Ft = σ
(
η, (Ws)0≤s≤t

)
is defined in Proposition 3.1 and the constant c depends on b and σ.

Then

sup
t∈Bm

ν2
n(t) = sup

t∈Bm

(
1
n

n∑
i=1

E (IkΔt(XkΔ))

)2

≤ 1
n

n∑
k=1

E
(
t2(XkΔ)E

(
I2
kΔ

∣∣FkΔ

))

≤ cΔ
n

n∑
k=1

E
(
t2(XkΔ)

(
1 +X2

kΔ

))
= cΔ

∫ +∞

−∞

(
1 + x2

)
f(x)t2(x)dx

where the constant c depends on b. By (3.3),
∥∥(1 + x2

)
f(x)

∥∥
∞ ≤ c and we have that

sup
t∈Bm

ν2
n(t) ≤ cΔ ‖t‖2

L2(R) .

As (ϕλ,m)λ∈Λm
is an orthonormal basis of Sm for the L2-norm,

sup
t∈Bm

ρ2
n(t) ≤

∑
λ∈Λm

ρ2
n(ϕλ,m).

Besides,

E
(
ρ2

n(ϕλ,m)
) ≤ 1

n2

n∑
k=1

E
(
ϕ2

λ,m(XkΔ)E
(
Z2

kΔ

∣∣FkΔ

)) ≤ σ2

nΔ
E
(
ϕ2

λ,m(X0)
)
.

So, by Assumption S4 3.,

E

(
sup

t∈Bm

ρ2
n(t)

)
≤ σ2

nΔ
E
(
Φ2

m(X0)
) ≤ φ0σ

2Dm

nΔ
·

We know that
sup

t∈Bm

ξ2n(t) ≤
∑

λ∈Λm

ξ2n(ϕλ,m).
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As

JkΔ =
1
Δ

∫ (k+1)Δ

kΔ

b(Xs)ds,

the random sequence (JkΔ, XkΔ) is stationary and β-mixing such that βJ,X(n) ≤ βX(nΔ). According to
Lemma 6.1, we have that

E
(
ξ2n (ϕλ,m)

) ≤ 4
n

E
(
B(J0, X0)J2

0ϕ
2
λ,m(X0)

)
.

Then, as E
(
J4

0

) ≤ C and E
(
B2(J0, X0)

) ≤ c/(θ2Δ2),

E

(
sup

t∈Bm

ξ2n (t)
)

≤ 4
n

E
(
B(J0, X0)J2

0 Φ2
m(X0)

) ≤ 4φ0Dm

n
E
(
B(J0, X0)J2

0

)
≤ 4φ0Dm

n

(
E
(
B2(J0, X0)

))1/2 (
E
(
J4

0

))1/2 ≤ cDm

nθΔ
·

So

E

(∥∥∥ĥm,N − h
∥∥∥2

L2(R)

)
≤ ‖hm,N − h‖2

L2(R) + cΔ + c
Dm

nΔ

(
1
θ

+ σ2
0

)
.

Proof of Lemma 6.4. According to Proposition 3.1,

E

(
sup

s∈[0,Δ]

(b(XkΔ+s) − b(XkΔ))2l
∣∣∣FkΔ

)
≤ cΔl

(
1 +X2l

kΔ

)
,

which proves 1. Points 2. and 3. are obvious, thus we only prove 4. We know that

Var (JkΔt(XkΔ)) ≤ 2E
(
I2
kΔt

2(XkΔ)
)

+ 2Var(b(XkΔ)t(XkΔ))

and, by (3.3)

Var(b(XkΔ)t(XkΔ)) ≤
∫

R

b2(x)t2(x)f(x)dx ≤ ∥∥b2(x)f(x)
∥∥
∞ ‖t‖2

L2 ≤ C ‖t‖2
L2 .

According to Proposition 3.1, we have that

E
(
t2(XkΔ)E

(
I2
kΔ

∣∣FkΔ

)) ≤ cΔE
((

1 +X2
kΔ

)
t2(XkΔ)

)
≤ cΔ

∫ +∞

−∞

(
1 + x2

)
f(x)t2(x)dx.

By (3.3): ∫ +∞

−∞

(
1 + x2

)
f(x)t2(x)dx ≤ c ‖t‖2

L2(R) , (6.6)

which ends the proof. �
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6.5. Proofs of Theorems 3.7 and 3.9

As previously, we only demonstrate Theorem 3.9. We have:

∥∥∥h̃Nn − h
∥∥∥2

L2(R)
≤ inf

m∈Mn

‖hm,Nn − h‖2
L2(R) + 12 sup

t∈Bm̂,m

(
ν2

n (t) + ρ2
n(t) + ξ2n(t) + pen(m) − pen(m̂)

)

where Bm,m′ =
{
t ∈ Sm,Nn + Sm′,Nn , ‖t‖L2(R) ≤ 1

}
. Let us consider a function p(m,m′) such that 12p(m,m′) =

pen(m) + pen(m′). We have that

∥∥∥h̃− h
∥∥∥2

L2(R)
≤ inf

m∈Mn

‖hm,Nn − h‖2
L2(R) + 2pen(m) + 12 sup

t∈Bm̂,m

(
ν2

n (t) + ρ2
n(t) + ξ2n(t) − p(m, m̂

)
).

We already prove that supt∈Bm̂,m
ν2

n(t) ≤ cΔ. Moreover,

E

(
sup

t∈Bm̂,m

ρ2
n(t) − p(m, m̂)

)
≤

∑
m′∈Mn

E

(
sup

t∈Bm′,m
ρ2

n(t) − p(m,m′)

)

and

E

(
sup

t∈Bm̂,m

ξ2n(t) − p(m, m̂)

)
≤

∑
m′∈Mn

E

(
sup

t∈Bm′,m
ξ2n(t) − p(m,m′)

)
.

The triplet (XkΔ, ZkΔ, JkΔ) is β-mixing and its β-mixing coefficient is smaller than β0e−θt. So we can construct
a set Ω∗ like in Lemma 6.2 with

qn =
(2l + 3) ln(n)

θΔ
·

Let us set, for a = 0, 1 and 0 ≤ k ≤ pn − 1:

U∗
k,a =

1
qn

qn∑
l=1

J∗
((2k+a)qn+l)Δt

(
X∗

((2k+a)qn+l)Δ

)
and V ∗

k,a(t) =
1
qn

qn∑
l=1

Z∗
((2k+a)qn+l)Δt

(
X∗

((2k+a)qn+l)Δ

)
.

Let us set:

‖t‖2
k,a =

1
qn

qn∑
l=1

t2
(
X∗

((2k+a)qn+l)Δ

)
. (6.7)

As for the proof of Theorem 2.8, we denote D = 2m + 2m′
and we consider (ϕλ, λ ∈ Λ) a basis of Sm + Sm′ .

Let us consider the spaces

ΩZ,Λ =
{
ω, ∀k, ∀a ∈ {0, 1} , ∀λ ∈ Λ,

(
V ∗

k,a(ϕ∗
λ)
)2 ≤ 2σ2

0θ ‖ϕλ‖2
k,1

}
,

ΩJ = {ω, ∀k, |J∗
kΔ| ≤ (2l+ 1) ln(n)} and O = Ω∗ ∩ ΩZ,Λ ∩ ΩJ . (6.8)

Risk bound on O. We apply Lemma 6.3 to the variables U∗
k,a and V ∗

k,a. We have that

ρn(t) = ρn,0(t) + ρn,1(t) with ρn,a(t) =
1

2pn

pn∑
k=1

V ∗
k,a − E

(
V ∗

k,a

)

and

ξn(t) = ξn,0(t) + ξn,1(t) with ξn,a(t) =
1

2pn

pn∑
k=1

U∗
k,a − E

(
U∗

k,a

)
.
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Applying Lemma 6.3 to the variables V ∗
k,a. We have that

Var
(
V ∗

k,a�O
) ≤ 1

qn
E
(
Z2

0 t
2(X0)

)
=

1
qn

E
(
t2(X0)E

(
Z2

0

∣∣F0

)) ≤ σ2
0

qnΔ
·

Let us set B :=
{
t ∈ Sm + Sm′ , ‖t‖2

L2(R) ≤ 1
}
. By (6.8), we have that

sup
t∈B

(
V ∗

k,a(t)�O
)2 = sup∑

λ∈Λ a2
λ≤1

(∑
λ∈Λ

aλV
∗
k,a(ϕλ)�O

)2

≤
∑
λ∈Λ

(
V ∗

k,a(ϕλ)�O
)2 ≤ 2σ2

0θ
∑
λ∈Λ

‖ϕλ‖2
k,a

where the semi-norm ‖.‖k,a is defined by (6.7). So by Assumption S4 3.,

sup
t∈B

(
V ∗

k,a(t)�O
)2 ≤ 2σ2

0φ0θD where D = 2m + 2m′
.

Moreover, in the previous section it is demonstrated that

E

(
sup

t∈Bm,m′
ρ2

n(t)�O

)
≤ φ0D

nΔ
·

Lemma 6.3 can be applied with H2 = φ0σ
2
0D/(nΔ), V = σ2

0q
−1
n Δ−1 and M2

1 = 2σ2
0φ0θD. We find:

E

((
sup

t∈Bm,m′
ρ2

n(t) − 12
φ0D

nΔ

)
�O

)
+

≤ C

(
1
nΔ

exp (−cD) +
D ln2(n)
n2Δ2

exp
(
− c

ln(n)

))
·

We know that
∑

m′ exp (−cD) =
∑

m′ exp
(
−c

(
2m + 2m′

))
≤ C where the constant C does not depend on m

nor on m′. Besides,
∑

m′ D ≤ D2
n. As

D2
n ≤ nΔ

ln2(n)
,

we have ∑
m′

E

((
sup

t∈Bm,m′
ρ2

n(t) − 12
φ0D

nΔ

)
�O

)
+

≤ C

nΔ
·

Applying Lemma 6.3 to the variables U∗
k,a. According to Lemma 6.1, we have that

Var
(
U∗

k,a�O
) ≤ 4

qn
E
(
J2

0 t
2 (X0)B (X0)

) ≤ 4
qn

(
E
(
J4

0 t
4 (X0)

))1/2 (
E
(
B2 (X0)

))1/2

where E
(
B2 (X0)

) ≤ 2β0/ (θΔ). Moreover, as J0 = I0 + b(X0), we have, by Lemma 6.4:

E
(
J4

0 t
4 (X0)

) ≤ cE
[
t4 (X0)

(
b4 (X0) + E

(
I4
0

∣∣F0

))]
≤ c ‖t‖2

∞ E
([

Δ2
(
1 +X4

kΔ

)
+ b4 (X0)

]
t2 (X0)

)
.

By equation (3.3):

E
(
J4

0 t
4 (X0)

) ≤ c ‖t‖2
∞

∫
R

Δ2
(
1 + x4

)
f(x)t2(x) + b4(x)f(x)t2(x)dx
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and
E
(
J4

0 t
4 (X0)

) ≤ cD.

Collecting terms, we obtain:

Var
(
U∗

k,a�O
) ≤ cD1/2

qnθΔ
= c

D1/2

ln(n)
·

Moreover, ∥∥U∗
k,a�O

∥∥
∞ ≤ ‖J0t(X0)�O‖∞ ≤ (2l + 1)D1/2 ln(n)

and we have proved in the previous section that

E

(
sup

t∈Bm,m′
ξ2n(t)�O

)
≤ 8β0φ0

D

nθΔ
·

We can apply Lemma 6.3 with M1 = CD1/2 ln(n), V = C′D1/2/ ln(n) and H2 = 8β0φ0D/(nθΔ). We find that

E

((
sup

t∈Bm,m′
ν2

n(t) − 84β0φ0
D

nθΔ

)
�O

)
+

≤ C

(
D1/2

nθΔ
exp

(
−cD1/2

)
+
D ln4(n)
n2Δ2

exp

(
−c

√
nΔ

ln2(n)

))

where the constant c is independent of D, n and Δ. We have that

∑
m′

D1/2 exp
(
−cD1/2

)
≤

∞∑
k=1

k1/2 exp
(
−ck1/2

)
< +∞.

So, if

Dj,n ≤ nΔ
ln3(n)

,

we have that ∑
m′∈Mn

E

((
sup

t∈Bm,m′
ν2

n(t) − 84β0φ0
D

nθΔ

)
�O

)
+

≤ C

nΔ
·

Risk bound on Oc. We know that

E

(
sup

t∈Bm′,m

(
ρ2

n(t) + ξ2n(t)
)
�Oc

)
≤ 2

√
P (Oc)

(
E

(
sup

t∈Bm′,m

(
ρ2

n(t) + ξ2n(t)
)2

))1/2

and
P (Oc) ≤ P (Ω∗c) + P

(
Ωc

Z,Λ

)
+ P (Ωc

J ) .
According to Lemma 6.2,

P (Ω∗c) ≤ n−2l. (6.9)
The following lemma is proved later:

Lemma 6.5.
P
(
Ωc

Z,Λ

) ≤ c

n2l
and P(Ωc

J) ≤ c

n2l
·

We have that

E

(
sup

t∈Bm′,m

(
ρ2

n(t) + ξ2n(t)
)2

)
≤ E

⎛
⎝(∑

λ∈Λ

ρ2
n(ϕλ) + ξ2n(ϕλ)

)2
⎞
⎠ .
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Besides,

ρ2
n(ϕλ) + ξ2n (ϕλ) =

(
1
n

n∑
k=1

ϕλ(XkΔ) (ZkΔ + JkΔ) − E (J0ϕλ(J0))

)2

≤ 3
n

n∑
k=1

ϕ2
λ(XkΔ)

(
Z2

kΔ + J2
kΔ

)
+ E

(
ϕ2

λ(X0)
)

E
(
J2

0

)
.

According Assumption S4 3., we know that supx

∑
λ∈Λ ϕ

2
λ(x) ≤ φ0, so:

E

(
sup

t∈Bm′,m

(
ρ2

n(t) + ξ2n(t)
)2

)
≤ 27φ2

0

1
n

n∑
k=1

[
E
(
Z4

kΔ + J4
kΔ

)
+

(
E
(
J2

kΔ

))2
]
.

By Lemma 6.4, we obtain that:

E

(
sup

t∈Bm′,m

(
ρ2

n(t) + ξ2n(t)
)2

)
≤ c

(
1 +

1
Δ2

)

where c does not not depend on m, m′, n, nor on Δ. So, by (6.9) and Lemma 6.5,

E

(
sup

t∈Bm̂′,m

(
ρ2

n(t) + ξ2n(t)
)
�Oc

)
≤ c

∑
m′

1
nlΔ

≤ Dn

nlΔ
·

As Dn ≤ nΔ, as soon as l ≥ 2:

E

(
sup

t∈Bm̂′,m

(
ρ2

n(t) + ξ2n(t)
)
�Oc

)
≤ c

n
·

Proof of Lemma 6.5.
Bound of P (Ωc

J) . We have that

P (Ωc
J) = P (∃k, |JkΔ| ≥ (2l + 3) ln(n)) ≤ nP (|J0| ≥ (2l+ 3) ln(n)) .

It is known that

P (|J0| ≥ (2l+ 3) ln(n)) ≤ n−(2l+3)
E (exp (|J0|)) .

For any m, by stationarity,

E (|J0|m) ≤ E (|b(X0)|m) ≤
∫

|b(x)|m f(x)dx.

By (3.3),

E (exp (|J0|)) ≤
∫ ∞

−∞
exp (|b(x)|) f(x)dx < c

and

P (Ωc
J) ≤ n−2l.
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Bound of P
(
Ωc

Z,Λ

)
. According to Lemma 2, page 533 of Comte et al. [8], we have that

P

((
V ∗

k,a(ϕλ)
)2 ≥ 2σ2

0θ ‖ϕλ‖2
k,a

)
≤ 2 exp (−qnΔθ) .

As qn = (2l+ 3)/(θΔ), we obtain:

P

((
V ∗

k,a(ϕλ)
)2 ≥ 2σ2

0θ ‖ϕλ‖2
k,a

)
≤ 2n−(2l+3).

So we can write:

P (Ωc
Z) = P

(
∃a, ∃k, ∃λ, (V ∗

k,a(ϕλ)
)2 ≥ 2σ2

0θ ‖ϕλ‖2
k,a

)
≤ |Λ|nP

((
V ∗

k,a(ϕλ)
)2 ≥ 2σ2

0θ ‖ϕλ‖2
k,a

)
.

As |Λ| ≤ D ·Kn with Kn = nΔ, we have:

P (Ωc
Z) ≤ Dn(nΔ)n−2l−2 ≤ (nΔ)3/2

n2l−2 ≤ n2l. �

6.6. Proof of Theorem 4.1

This proof follows the lines of Lacour [15], Section 6.8. Let us set E =
{
ω,

∥∥∥f − f̃
∥∥∥
∞

≤ f0/2
}
.

Risk bound on E . On E , f̃ ≥ f0/2. We know that

g̃(x) =
∑

λ∈Λm̂1

(
1
n

n∑
k=1

ϕ′
λ(XkΔ)

)
ϕλ(x),

so

‖g̃‖2
L2(R) =

∑
λ∈Λm̂1

(
1
n

n∑
k=1

ϕ′
λ(XkΔ)

)2

≤
∥∥∥∥∥∥

∑
λ∈Λm̂1

(ϕ′
λ)2

∥∥∥∥∥∥
∞

≤ ψ123m̂1 .

As ‖g̃‖2
∞ ≤ ψ02m̂1 ‖g̃‖2

L2(R) and 25m̂1 ≤ nΔ,

‖g̃‖2
∞ ≤ ψ0ψ124m̂1 ≤ ψ0ψ1 (nΔ)4/5

and for nΔ large enough, ‖g̃‖2
∞ ≤ nΔf0/2 ≤ nΔ minx∈A f̃(x). So, on E , b̃ = g̃/(2f̃) and:

b̃ = bA +
(
g̃ − g

2f̂
+
g

2

(
1
f̃
− 1
f

))
·

Therefore

E

(∥∥∥b̃− bA

∥∥∥2

L2(A)
�E

)
≤ f−2

0 E

(
‖g̃ − g‖2

L2(A)

)
+ f−4

0

∥∥g2
A

∥∥
∞ E

(∥∥∥f̃ − f
∥∥∥2

L2(A)

)
.

Risk bound on Ec. As
∥∥∥b̂∥∥∥

∞
≤ nΔ, we have that

E

(∥∥∥b̃− bA

∥∥∥2

L2(A)
�Ec

)
≤

(
(nΔ)2 + ‖bA‖2

∞
)

P (Ec) .

It is known that: ∥∥∥f − f̃
∥∥∥
∞

≤ inf
m0∈M0,n

(
‖f − fm0‖∞ +

∥∥∥fm0 − f̃
∥∥∥
∞

)
.
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As f ∈ Bα
2,∞, by DeVore and Lorentz [10] page 182 and Barron et al. [2] (Lem. 12):

‖f − fm0‖∞ ≤ C2m0(−α+1/2) ≤ C ln(nΔ)−α+1/2.

So ‖f − fm0‖∞ ≤ f0/4 for n large enough, and Ec ⊆
{∥∥∥fm0 − f̃

∥∥∥
∞

≥ f0/4
}
. As fm0 and f̃ belongs to the

linear space Sm̂0 + Sm0 which satisfies Assumption S2, we have that

∥∥∥fm0 − f̃
∥∥∥2

∞
≤ ψ0 sup

m′
0∈M0,n

2m′
0∨m0

∥∥∥fm0 − f̂m′
0

∥∥∥2

L2(R)
.

We know:

∥∥∥fm0 − f̂m′
0

∥∥∥2

L2(R)
= sup

t∈Bm0,m′
0

ν2
0,n(t) where ν0,n(t) =

1
n

n∑
k=1

t(XkΔ) −
∫

R

t(x)f(x)dx.

Then

P (Ec) ≤ sup
m′

0∈M0,n

P

(
sup

t∈Bm0,m′
0

ν2
0,n(t) ≥ 2−m′

0∨m0
f2
0

16ψ0

)
·

As in Section 6.3, we use the set Ω∗. We have that

P (Ω∗c) ≤ 1
n2l

so P (Ec) ≤ P (Ec ∩ Ω∗c) + 1
n2l . Let us consider the random variables

U∗
k,1 =

1
qn

qn∑
l=1

t
(
X∗

(2(k−1)qn+l)Δ

)
and U∗

k,2 =
1
qn

qn∑
l=1

t
(
X∗

((2k−1)qn+l)Δ

)
.

The random variables
(
U∗

k,a

)
1≤k≤pn

are independent and identically distributed. It is demonstrated in Section 6.3

that

sup
t∈Bm0,m′

0

∥∥U∗
k,i

∥∥
∞ ≤

√
ψ0D

3/2, Var
(
U∗

k,j

) ≤ c and H2 := E

(
sup

t∈Bm0,m′
0

ν2
0,n(t)

)
≤ C

D

nΔ

where D = 2m0 + 2m′
0 . As, by assumption, D2 ≤ nΔ/ log2(nΔ) for n large enough, we have that

H2 = CD/(nΔ) ≤ f2
0 /64ψ0D. then

P (Ec ∩ Ω∗) ≤ sup
m′

0∈M0,n

P

(
sup

t∈Bm0,m′
0

ν2
0,n(t) ≥ 2H2 +

f2
0

64ψ0D

)
·

According to (6.1), we have that

P (Ec ∩ Ω∗) ≤ sup
m′

0∈Mn,0

exp
(
− cnΔ

ln(n)D2

)

where the constant c is independent of n and Dm. By assumption, D2 ≤ η2nΔ/ ln2(nΔ), so

P (Ec ∩ Ω∗) ≤ (nΔ)−cη2
.
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If η2 is large enough, P (Ec ∩ Ω∗) ≤ (nΔ)−3 and if l ≥ 2, we have that

E

(∥∥∥b̃− bA

∥∥∥2

L2(A)
�Ec

)
≤ 1
nΔ

which ends the proof.

Appendix A. Linear subspaces

A.1. Linear subspaces satisfying Assumptions S1 or S3

To use simple notations, we set in this section A = [0, 1].

Trigonometric polynomials

The trigonometric polynomial linear subspaces Vm = Vect {1, cos(πλx)}1≤λ≤2m satisfy Assumption S3. The
linear subspaces Sm = {sin(πλx)}1≤λ≤2m satisfy Assumption S1 for k = 0, 1.

Proof. DeVore and Lorentz [10] (Cor. 2.5, p. 205) and Barron et al. [2] (p. 120) prove that Assumption S3 is
satisfied by subspaces Vm.

Points 1. and 2. of Assumption S1 are fulfilled by the subspaces (Sm). Moreover, for any t ∈ Sm,

‖t‖2
∞ ≤ ‖t‖2

L2(A)

∥∥∥∥∥
m∑

λ=1

sin2(λx)

∥∥∥∥∥
∞

≤ Dm ‖t‖2
L2(A) .

We have that ∥∥Ψ2
m(x)

∥∥
∞ =

∥∥∥∥∥
m∑

λ=1

λ2 cos2(λx)

∥∥∥∥∥
∞

≤ m3 = D3
m.

Besides, any function t ∈ Sm can be written
√

(2/π)
∑m

λ=1 aλ sin(λx), so

‖t′‖L2(A) =
2
π

m∑
λ=1

a2
λλ

2
∥∥cos2(λx)

∥∥2

L2(A)
=

m∑
λ=1

a2
λλ

2 ≤ m2 ‖t‖2
L2(A) .

Points 3. and 4. of Assumption S1 are satisfied. �

Piecewise polynomials

Let us set
g0(x) = �[0,1](x), g1(x) = x�[0,1](x), . . . , gr(x) = xr

�[0,1](x)

and ϕa,λ,m = 2m/2ga (2mx− λ). The linear subspaces

Vm = Vect (ϕa,λ,m, 0 ≤ a ≤ r, 0 ≤ λ ≤ 2m − 1)

satisfy Assumption S3. The linear subspaces

Sm = Vect
(
{ϕa,λ,m}0≤a≤r, 1≤λ≤2m−1 ∪ {ϕa,λ,m}l≤a≤r, λ∈{0,2m}

)
satisfy Assumption S1 for k ≤ r.
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Proof. DeVore and Lorentz [10] (Thm. 3.4 p. 362) and Barron et al. [2] (p. 120) prove that (Vm) satisfy
Assumption S3.

The linear subspaces (Sm) satisfy Points 1. and 2. of Assumption S1. Moreover, the functions ϕa,λ,m have
disjoint supports if λ �= λ′, and for any a, ‖ga‖∞ ≤ 1. So

‖t‖2
∞ ≤ ‖t‖2

L2(A)

∥∥∥∥∥
∑

λ∈Λm

r∑
a=0

(ϕa,λ,m)2
∥∥∥∥∥
∞

= ‖t‖2
L2(A)

∥∥∥∥∥
r∑

a=0

(ϕa,λ,m)2
∥∥∥∥∥
∞

≤ (r + 1)2m ‖t‖2
L2(A) .

In the same way, we obtain:

∥∥Ψ2
m(x)

∥∥
∞ =

∥∥∥∥∥
∑

λ∈Λm

r∑
a=0

(
ϕ′

a,λ,m

)2

∥∥∥∥∥
∞

=

∥∥∥∥∥
r∑

a=0

(
ϕ′

a,λ,m

)2

∥∥∥∥∥
∞

=

∥∥∥∥∥
r∑

a=0

23m (g′r (2mx− λ))2
∥∥∥∥∥
∞

≤ (r + 1)23m.

For any function t ∈ Sm,

‖t′‖2
L2(A) =

∥∥∥∥∥
∑

λ∈Λm

r∑
a=0

(
ϕ′

a,λ,m

)∥∥∥∥∥
2

L2(A)

=
∑

λ∈Λm

2m

∥∥∥∥∥
r∑

a=0

2mg′a (2mx− λ)

∥∥∥∥∥
2

L2(A)

= 22m

∥∥∥∥∥
r∑

a=0

g′a (x)

∥∥∥∥∥
2

L2(A)

≤ r(r + 1)22m.

Points 2., 3., and 4. are proved. �

Spline functions restricted to [0, 1]

Spline functions gr, where gr is the r + 1 time convolution of the indicator function of [0, 1], generates
a r-regular multi-resolution analysis of L2(R). Their supports are included in [0, r + 1] and they belong to
C r

p ∩ C r−1. Let us set ϕλ,m = 2mgr (2mx− λ)�[0,1](x). Then

Vm = Vect (ϕλ,m, λ = −r + 1, . . . , 2m)

satisfies Assumption S3 for k ≤ r and

Sm = Vect (ϕλ,m, λ = 0, . . . , 2m − r)

satisfies Assumption S2.4 for k ≤ r.

Proof. Schmisser [23] proved that the linear subspaces (Vm) satisfy Assumption S3.4. The functions gr have a
compact support: to prove that the subspaces (Sm) fulfil Assumption S1, we use the same arguments as in the
previous paragraph. �

A.2. Restricted spaces of wavelets

The properties of wavelets are defined in Meyer [20] pages 21–22 (Defs. 1 and 2).

Definition A.6. Let us consider

Sm =
{
ϕλ,m := 2m/2ϕ(2m.− λ), λ ∈ Z

}
a multi-resolution analysis of L2(R) such that (ϕλ,m)λ∈Z

is an orthonormal basis of Sm. Let us set

Sm,N =
{
ϕλ,m := 2m/2ϕ(2m.− λ), |λ| ≤ 22mN

}
and denote, for any function t ∈ L2(R), tm (resp tm,N ) its orthogonal projection over Sm (resp Sm,N ).
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Lemma A.7. If ∫ +∞

−∞
x2t2(x)dx < +∞, t ∈ L1 and sup

x∈R

(|xϕ(x)|) < +∞,

then
‖tm,N − tm‖2

L2(R) ≤
c

N
where the constant c is equal to

c =
∫ +∞

−∞
x2t2(x)dx +

1
2m

sup
x∈R

(∣∣x2ϕ2(x)
∣∣) ‖t‖2

L1(R) .

The proof is done in Comte et al. [7].
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[6] F. Comte and F. Merlevède, Super optimal rates for nonparametric density estimation via projection estimators. Stoc. Proc.
Appl. 115 (2005) 797–826.

[7] F. Comte, Y. Rozenholc and M.L. Taupin, Penalized contrast estimator for adaptive density deconvolution. Can. J. Stat. 34

(2006) 431–452.
[8] F. Comte, V. Genon-Catalot and Y. Rozenholc, Penalized nonparametric mean square estimation of the coefficients of diffusion

processes. Bernoulli 13 (2007) 514–543.
[9] A.S. Dalalyan and Y.A. Kutoyants, Asymptotically efficient estimation of the derivative of the invariant density. Stat. Inference

Stoch. Process. 6 (2003) 89–107.
[10] R.A. DeVore and G.G. Lorentz, Constructive approximation. Grundlehren der Mathematischen Wissenschaften [Fundamental

Principles of Mathematical Sciences] 303 (1993).
[11] A. Gloter, Discrete sampling of an integrated diffusion process and parameter estimation of the diffusion coefficient. ESAIM: PS

4 (2000) 205–227.
[12] E. Gobet, M. Hoffmann and M. Reiß, Nonparametric estimation of scalar diffusions based on low frequency data. Ann. Stat.

32 (2004) 2223–2253.
[13] N. Hosseinioun, H. Doosti and H.A. Niroumand, Wavelet-based estimators of the integrated squared density derivatives for

mixing sequences. Pakistan J. Stat. 25 (2009) 341–350.
[14] C. Lacour, Estimation non paramétrique adaptative pour les châınes de Markov et les châınes de Markov cachées. Ph.D.
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