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LOCAL MARTINGALES AND FILTRATION SHRINKAGE

Hans Föllmer1 and Philip Protter2

Abstract. A general theory is developed for the projection of martingale related processes onto
smaller filtrations, to which they are not even adapted. Martingales, supermartingales, and semi-
martingales retain their nature, but the case of local martingales is more delicate, as illustrated by an
explicit case study for the inverse Bessel process. This has implications for the concept of No Free
Lunch with Vanishing Risk, in Finance.
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1. Introduction

It is a classic result, known as Stricker’s theorem, that if one considers a semimartingale in a smaller filtration
to which it is adapted then it remains a semimartingale, although the decomposition may change. Recent devel-
opments in Mathematical Finance, and especially within the theory of credit risk, has led to the consideration of
the projection of processes onto small filtrations to which they are no longer adapted. In this article we develop
a general theory of how these projections behave.

To be more precise, martingales, supermartingales, and quasimartingales all retain their nature and are of
course semimartingales in the smaller filtration. However the situation for local martingales is more delicate.
Indeed, even in the classic case of having the local martingale still adapted, Stricker observed [30] that a local
martingale need not remain a local martingale in a smaller filtration. It only gets worse when considering
optional projections onto a filtration to which the local martingale is not adapted. We establish what is in fact
true, and provide an explicit case study for projections of the inverse Bessel (3) process. Another illustrative
example is inspired by recent results in credit risk theory.

2. Filtration shrinkage

There has been much work on the expansion of filtrations (see for example Chap. 6 of [27]) but little has been
done on the converse: the shrinkage of filtrations. Perhaps the best known result in this direction is Stricker’s
theorem:

Theorem 2.1 (Stricker’s theorem). Let X be a semimartingale for a filtration G and let F be a subfiltration of
G such that X is adapted to F. Then X remains a semimartingale for F.
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One can see [30] or [23] for the original proof, or [27], p. 53 for a simpler argument. In Stricker’s theorem, one
assumes that X is adapted to the smaller filtration; one may well ask if this is true for general semimartingales
for a filtration even smaller than the natural filtration of X itself. In this paper, we show this result en passant,
but what we are really interested in, is what happens to local martingales when projected onto smaller filtrations.
We begin with a very elementary and well known result, which uses, as most of our results do, the following
caveat:

Caveat 1. If not stated otherwise, all filtrations in this paper will be assumed to satisfy the usual hypotheses1.
Note that this assumption will not be made in our discussion of local martingales viewed as measures on the
predictable σ-field.

Caveat 2. All processes X = (Xt)t≥0 under consideration for filtration shrinkage will be implicitly assumed to
possess the property that Xt ∈ L1 for all t ≥ 0.

From now on we fix a filtration G on a given probability space (Ω,G, P ) and a subfiltration F of G.

Theorem 2.2. Let X be a martingale for the filtration G. Then the optional projection of X onto F is again
a martingale, for the filtration F.

Proof. First let us observe that on a time interval [0, n] we have that (Xt)0≤t≤n is a uniformly integrable
martingale of “Class (D)”. Therefore for any F stopping time τ bounded by n we have that the optional
projection oXτ = E{Xτ |Fτ}, and hence the optional projection is well defined on [0, t] for any t ≤ n. Since n
is arbitrary, it is well defined on [0,∞). Since the optional projection of X onto F, denoted oX , at time t is a.s.
equal to E(Xt|Ft), we have that

E(oXt|Fs) = E(E(Xt|Ft)|Fs) = E(Xt|Fs)

= E(E(Xt|Gs)|Fs) = E(Xs|Fs)

= oXs. �

Theorem 2.3. Let X ≥ 0 be a supermartingale for G. Then oX is a supermartingale for F.

Proof. For the optional projection for supermartingales, we need to be a little more careful than for martingales.
However since we assume here that X is nonnegative, there is no problem (see for example [6], paragraph 43,
p. 115). After this remark, the proof is identical to that of Theorem 2.2, with equality replaced by less than or
equal. �

Our goal is to find general conditions on a local martingale for G which ensure that it is also a local martingale
for F. We first show the result for a subclass of semimartingales known as quasimartingales, which is of interest
in its own right. Theorem 2.4 extends Stricker’s theorem (Thm. 2.1), and is due to Brémaud and Yor [2].
Theorem 3.5 in turn extends Theorem 2.4 to the more general case of semimartingales. We need to recall a
standard definition:

Definition 2.1. A stochastic process X is a quasimartingale for G if

Var(X, G) = sup
τ

Varτ (X, G) < ∞,

where

Varτ (X, G) = E(
n∑

i=0

|E{Xti − Xti+1 |Gti}|)

for a finite partition τ = {t0, t1, . . . , tn}.
1See [27], p. 3 for a definition of the usual hypotheses.
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Theorem 2.4. If X is a quasimartingale for G then oX is a quasimartingale for F, where oX denotes the
optional projection of X onto F.

Proof. We know by Rao’s theorem that a quasimartingale is a difference of two submartingales [27], p. 118,
hence the theorem follows from Theorem 2.3. �

3. Local martingales

The notion of a local martingale was first introduced by Itô and Watanabe in [10].

Definition 3.1. A local martingale for G is a càdlàg process X adapted to the filtration G such that there
exists a sequence of stopping times (Tn)n≥1 in G increasing to ∞ a.s. such that for each n, Xt∧Tn1{Tn>0} is
a martingale for G. A sequence (Tn)n≥1 of such stopping times is called a reducing sequence or a localizing
sequence.

We will dispense with the term 1{Tn>0} throughout this paper, since we will assume all of our processes are
non random at time t = 0, hence the indicator term is not necessary.

We have the following two useful results concerning local martingales, due to Kazamaki [18].

Theorem 3.1 (Krickeberg decomposition for local martingales). Let X be a local martingale. Then ‖ X ‖1≡
supn E(|XTn |), for every reducing sequence of stopping times (Tn) with Tn < ∞ a.s. each n, and
limn→∞ Tn = ∞. If ‖ X ‖1< ∞, then there exist two positive local martingales X1 and X2 such that

X = X1 − X2 and ‖ X ‖1=‖ X1 ‖1 + ‖ X2 ‖1,

and this decomposition is unique.

Theorem 3.2. A local martingale X is a quasimartingale if and only if ‖ X ‖1< ∞.

We can use Kazamaki’s results to extend the result of Bŕemaud and Yor (Thm. 2.4) to semimartingales.
Before we do that, however, we should clarify a detail concerning optional projections. We have the following
result, which can be found in [6], p. 116. We state the result and also sketch its proof here, for the reader’s
convenience. Dellacherie and Meyer attribute the result to Chen Pei-De. Recall that optional projections exist
for any nonnegative process.

Theorem 3.3. Let X be a G measurable process, and suppose o|X | is indistinguishable from a finite valued
process, where the optional projection is taken on F ⊂ G. If we let Y =o (X+) −o (X−), then Y defines an
optional projection of X.

Proof. It is useful to note that in order to verify the hypothesis that o|X | s indistinguishable from a finite valued
process, it suffices to use Meyer’s section theorem and to check that for any stopping time τ we have that

E(|Xτ |1{τ<∞}|Fτ ) < ∞ a.s.

This in turn is equivalent to verifying that E(Xτ1{τ<∞}|Fτ ) exists. But this implies that

Yτ1{τ<∞} = E(Xτ1{τ<∞}|Fτ ) a.s.

which is formally the definition of the optional projection. That Y is uniquely so characterized follows from
another application of Meyer’s section theorem. �

The next theorem shows that if the projection of a semimartingale onto a smaller filtration exists, then the
projection is a semimartingale in the smaller filtration. The following lemma will be needed in the proof of the
theorem (and again in the proof of Thm. 3.7), so we begin with it.
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Lemma 3.4. Let X be a G measurable process, and suppose that the optional projection onto F, oX, exists. Let
T be a finite valued F stopping time. Then o(Xt∧T ) = (oX)t∧T .

Proof. Let S be a finite valued F stopping time, and let XT denote the stopped process Xt∧T , and also let
Y = XT . By replacing S with S ∧ T if necessary, we can assume without loss of generality that S ≤ T . Then

oYS = E(YS |FS) = E(XT
S |FS) = E(XT∧S |FS)

= E(XT∧S |FT |FS) = E(XT∧S |Ft∧S) (3.1)

by definition of the optional projection. On the other hand consider o(XT
S ). We have

o(XT
S ) =o (Xt∧S) = E(XT∧S |FT∧S) (3.2)

and since the two right sides of equations (3.1) and (3.2) are equal, the lemma is proved. �
Theorem 3.5. Let X be a semimartingale for G such that o|X | exists and is a finite valued process, where o|X |
denotes the optional projection of |X | onto the filtration F ⊂ G. Then oX exists by Theorem 3.3, and it is an F

semimartingale.

Proof. Since X is a G semimartingale, let X = M + A be a decomposition, with M a local martingale and A
a process with paths of finite variation. For the local martingale M we let (τn)n =1,2,... be a reducing sequence
of stopping times, so that (Mt∧τn)t≥0 is a uniformly integrable martingale for each n ≥ 1. Let us fix an n,
and let Mn

t ≡ Mt∧τn . Note that we have E(|Mn
∞|) = E(|Xt∧τn |) < ∞, and by Jensen’s inequality we have

‖ Mn ‖1< ∞. Therefore by Krickeberg’s decomposition we have two uniquely determined positive martingales
M1,n, M2,n such that Mn = M1,n − M2,n and ‖ Mn ‖1=‖ M1,n ‖1 + ‖ M2,n ‖1. We now take the optional
projection of each, and we have

oMn = oM1,n −oM2,n on [0, τn]. (3.3)
Since the Krickeberg decomposition is unique, and the optional projection is also uniquely defined, we can
combine equation (3.3) using that

oMn+1
t∧τn

=oMn
t∧τn

by Lemma 3.4 to define oM on [0,∞). By Theorem 3.8 we know that oM i,n is a nonnegative supermartingale
for i = 1, 2. Therefore oM is the difference of two supermartingales, whence a semimartingale. The finite
variation term A is easier: for A G optional it is a classical result due to Dellacherie that we can decompose
A into increasing, nonnegative optional processes such that At = A− − A−, and moreover |dA|t = A+

t + A−
t .

(It is of course the fact that A+ and A− can be taken optionally measurable that is due to Dellacherie; it is
due to Lebesgue that we can do this path by path for each fixed ω.) Therefore since o|X | exists and is finite
by hypothesis which implies oX is well defined by Theorem 3.3, and we have seen that oM exists and is finite
valued, by linearity we have that

oA = oX −oM

exists as well, and is uniquely defined. Since A+ is an increasing process, so also is oA+, and analogously for
A− and oA−, hence oA = oA+ −oA− is a finite variation process, and also a semimartingale. Therefore oX is a
semimartingale. �

Among many other results, Stricker [30] showed the following:

Theorem 3.6. Let X be a positive local martingale for G, and assume that X is adapted to the subfiltration
F. Then X then X is also a local martingale for F.

Corollary 3.1. If X is a local martingale for G with ‖ X ‖1< ∞, and if X is adapted to F, then X is also a
local martingale for F.

Proof. Since ‖ X ‖1< ∞ we know that X is a quasimartingale, hence a fortiori a special semimartingale, and
the result follows from Theorem 3.6. �
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It is interesting to note that when a local martingale is no longer assumed to be positive, Stricker gives an
example to show that even in the case where X is adapted to the smaller filtration, one nevertheless needs the
extra assumption that X is a special supermartingale in the smaller filtration to ensure that X remains a local
martingale in the smaller filtration.

When X is not adapted to the smaller filtration F, the situation is more complicated, as our case study for
the inverse Bessel process will show.

The next theorem is our main result in this section:

Theorem 3.7. Let X be a local martingale for the filtration G, and let oX denote the optional projection of
X onto the subfiltration F. oX is a local martingale for F if there exists a sequence of reducing stopping times
(Tn)n≥1 for X in G which are also stopping times in F. Conversely, if X is positive and oX is a local martingale
for F, then a reducing sequence of stopping times for oX in F is also a reducing sequence for X in G.

Proof. Since Mn
t = Xt∧Tn is a martingale for G, the optional projection of Mn onto F is also a martingale for

F. Since Tn is a stopping time in F, so also is t ∧ Tn. Using Lemma 3.4, we have oXt∧Tn =o Mn
t , and therefore

oXt∧Tn is a martingale for F, for each n, and we have that oX is a local martingale for F with reducing sequence
(Tn).

For the converse, suppose oX is a positive local martingale for F. Let (τn)n≥1 be a reducing sequence. Then
(τn)n≥1 are also stopping times for the filtration G, and if Yt =o Xt∧τn , then Y is a positive martingale, hence
its expectation is 1. But E(Xt∧τn) = E(oXt∧τn) = E(Yt) = E(X0) is constant, and this coupled with the
hypothesis that X is positive, gives that Xt∧τn is a martingale for G, because a positive local martingale with
constant expectation is a true martingale. �

Corollary 3.2. Let X be a local martingale for the filtration G and let E ⊂ F be a subfiltration of F ⊂ G. If
both X and the optional projection of X onto E are local martingales, then the projection of X onto F is also a
local martingale.

Recall the fairly standard notation that for a process X , ΔXs = Xs − Xs−, the jump of X at time s.

Theorem 3.8. Let X > 0 be a local martingale relative to (P, G). Let oX be its optional projection onto
the subfiltration F. Then oX is a supermartingale. Assume that it is special, with canonical decomposition
oXt = Mt − At, that 〈M, M〉 exists, and that dAt � d〈M, M〉t with predictable density process (cs). Assume
that csΔMs > −1. Denote by Z the unique solution of

Zt = 1 +
∫ t

0

Zs−csdMs.

Since csΔMs > −1 we know that Z is a strictly positive process. Assume in addition that Z is in fact a
martingale, and that the probability measure Q, defined consistently by the density Zt on Gt for each t ≥ 0,
admits an extension to G. Then oX is a local martingale with respect to Q in the smaller filtration F.

Proof. By the predictable version of the Meyer-Girsanov theorem (cf. [27], p. 135) we have that under Q the
process

Mt −
∫ t

0

1
Zs−

d〈Z, M〉s = Mt −
∫ t

0

1
Zs−

Zs−csd〈M, M〉s

= Mt −
∫ t

0

csd〈M, M〉s
= Mt − At

is a local martingale in the filtration F. �
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Example 3.1. Suppose that, in the context of the preceding theorem, we have

|E(Xt − Xs|Gs)| ≤ K(t − s)

for any s < t. Then we also have

E(oXt −oXs|Fs) = E(E(Xt|Ft) − E(Xs|Fs)|Fs)
= E(Xt − Xs|Fs)
= E(E(Xt − Xs|Gs)|Fs)
≤ K(t − s).

It follows fairly easily that oX is special with a canonical decomposition oXt = Mt − At, and that the paths
t 
→ At are continuous a.s. Therefore [oX,oX ] = [M, M ], and it follows that 〈oX,oX〉 = 〈M, M〉. We can in
principle find A from oX itself via the Laplacian approach: define

Ah
t =

1
h

∫ t

0

(oXs − E(oXs+h|Fs)ds =
1
h

∫ t

0

(oXs − E(Xs+h|Fs)ds

and then we know that limh→0 Ah
T = AT with convergence in L1, whenever oX is in Class D. (See, e.g., [27],

p. 150.) Our Lipschitz hypothesis implies that the paths of A are absolutely continuous a.s., as well. If we
further assume d〈oX,oX〉t � dt, then we can write

At =
∫ t

0

hsds and 〈oX,oX〉t =
∫ t

0

jsds

and then

cs =
dAs

d〈oX,oX〉s =
hs

js
1{js �=0}.

Therefore letting Z solve Zt = 1 +
∫ t

0
Zs−csd(oXs + As) and assuming that Z is in fact a positive martingale,

we obtain for each finite horizon T an equivalent risk neutral measure for (oX, F), in the sense of No Free Lunch
with Vanishing Risk; cf. Delbaen and Schachermayer [5]. This sort of approach is useful in the modelling of
credit risk (see, e.g., [3], [13] and [29]).

One may ask what happens in the case of discrete time. This issue is moot in the following sense: Meyer
showed in 1972 ([22]) that all discrete time local martingales are in fact martingales, up to the usual integrability
assumption. More precisely, he proved the following result:

Theorem 3.9. Let (Xn)n∈N be a process adapted to an underlying filtration (Fn)n∈N such that X0 ∈ L1. Then
the following are equivalent:

(1) X is a local martingale;
(2) For each n one has E(|Xn+1||Fn) < ∞ a.s., and E(Xn+1|Fn) = Xn.

4. Supermartingales as measures on product space

In this section we show how the preceding results on optional projections can be derived from the identification
of quasi- and supermartingales as measures on the product space

Ω̄ = Ω × (0,∞]

endowed with the predictable σ-field; cf. [7], [8], and [21].
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Let PG and PF denote the predictable σ-fields on Ω̄ which are associated to the right-continuous filtrations
G and F ⊂ G, respectively. In this section we do not assume that the filtrations are completed, because we are
going to introduce new measures. The second component ζ(ω, t) := t will be viewed as a lifetime.

Under some regularity conditions on G of topological type (see [8]), an adapted right-continuous process X
is a quasimartingale for G if and only if there is a unique signed measure PX with finite total variation on the
predictable σ-field PG such that

PX(At × (t,∞]) = E(Xt; At) (4.1)
for any t ≥ 0 and At ∈ Gt. X is a nonnegative supermartingale iff the measure PX is nonnegative, it is a mar-
tingale iff PX(ζ < ∞) = 0, and it is a potential iff PX(ζ = ∞) = 0. Moreover, a nonnegative supermartingale
X is a local martingale if and only if there is an increasing sequence of stopping times (Tn) in G which predicts
the lifetime ζ. For X0 = 1 this means that PX is a probability measure on PG such that

PX(Tn < ζ for any n, ζ = lim
n

Tn) = 1. (4.2)

Clearly, the restriction of PX to the σ-field PF ⊂ PG takes the form

PX(At × (t,∞]) = E(oXt; At) (4.3)
for any t ≥ 0 and At ∈ Ft, and so we have

PX |PF
= P

oX .

This yields alternative proofs of Theorems 2, 3, and 4, since the properties of being concentrated on ζ = ∞, of
having finite total variation, and of being positive are obviously preserved if the measure PX is restricted to
the smaller σ-field PF. Theorem 8 follows in a similar manner: if the lifetime ζ is predicted by a sequence of
stopping times (Tn) in the subfiltration F then property (4.2) can be read as a property of the restriction of PX

to the smaller σ-field PF, i.e., as a property of P
oX , and hence as the local martingale property of the optional

projection oX .

5. A case study: the inverse Bessel process

In this section we focus on the inverse Bessel (3) process, viewed as a functional of three-dimensional Brownian
motion, and we study its optional projections onto the subfiltrations generated by one or two of the three
Brownian components. The inverse Bessel process is in fact one of the first examples of a local martingale
which appeared in the literature as soon as the notion of a local martingale had been introduced.

Let (Bt)t≥0 = (B1
t , B2

t , B3
t )t≥0 denote a standard three-dimensional Brownian motion starting at some point

x0 �= 0, say at x0 = (1, 0, 0). Then (‖ Bt ‖)t≥0 is a Bessel (3) process with initial value 1. It is well known that
the inverse Bessel process

Mt :=‖ Bt ‖−1, t ≥ 0,

is a local martingale which is localized by the stopping times

Tn = inf

{
t > 0| ‖ Bt ‖≤ 1

n

}
.

Note that M is not a martingale since (as can be seen as consequence of equation (5.2))

E(Mt) = 2Φ

(
1√
t

)
− 1 (5.1)

converges to 0 as t tends to ∞ a.s. and in L1; here and in the sequel Φ denotes the distribution function of
a N(0, 1) random variable. Thus M is a potential, but the local martingale property shows that it is not a
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potential of class (D). Much is known about the inverse Bessel process, and one can consult (as one example
among many) the recent article [25] or the classic text [28]. See also the earlier references [20] and [17] where
the inverse Bessel process is used to illustrate the fact that a uniformly integrable process is not necessarily of
class (D).

One way of checking the local martingale property is to apply Itô’s formula, first to U :=‖ B ‖ and then to
M = U−1. This yields dU = dW + U−1dt and

dM = −M2dW,

where dW := M(B, dB) defines a one-dimensional Wiener process, due to Lévy’s characterization of the Wiener
process as a continuous local martingale with quadratic variation 〈W, W 〉 = t. Each stopped process MTn∧t,
t ≥ 0, is a martingale since it is bounded by n, and the stopping times Tn converge to ∞ since any point is
polar for Brownian motion in R3. Thus we have verified that M is indeed a local martingale. Alternatively,
we can see that the inverse Bessel process is a strict local martingale as a consequence of a result of Mijatović
and Urusov [24] or alternatively of Blei and Engelbert [1]. Indeed it follows from their results that the solution
of dM = σ(M)dW is a strict local martingale if

∫∞
c

xσ−2(x)dx < ∞ for some c > 0. Since in the case of the
inverse Bessel process σ(x) = −x2, it meets this criterion and hence is a (strict) local martingale.

Instead of applying stochastic calculus, we can also argue in terms of probabilistic potential theory, as it was
done in [21]. To this end, note that the three-dimensional Green function h(x) =‖ x ‖−1 satisfies

Δh = −4πδ0

(in the distributional sense). In particular, h is harmonic on R3\{0}. Thus the process M = h(B) obtained by
observing the function h along the paths of three-dimensional Brownian motion is a bounded martingale up to
each stopping time Tn, and so it is indeed a local martingale.

Remark 5.1. In view of equation (4.1), with X = M = h(B), the measure PM associated to the local
martingale M can be identified with Doob’s h-path process P h, i.e.,

PM (At × (t,∞]) = E(h(Xt); At) = Eh(At ∩ {ζ > t})
for t ≥ 0 and At ∈ Gt. Under P h the life time ζ is finite a.s., since M is a potential. More precisely, P h can
be viewed as a conditioning of the original Brownian motion B to go to the origin in finite time, driven by the
stochastic differential equation

dB = dBh −∇ log h(B)dt = dBh − B

||B||2 dt,

where Bh is a three-dimensional Brownian motion under P h.

We are now going to look at the optional projection N of the local martingale M onto the smaller filtrations
F generated, respectively, by the two-dimensional Brownian motion (B1, B2) and the one-dimensional Brownian
motion B1. Our aim is to check whether the supermartingale N inherits the local martingale property or not.
To this end, we compute in both cases the Doob-Meyer decomposition of N , and we also clarify the structure
of the corresponding measure PN on the predictable σ-field PF.

Note first that, in view of equation (5.1), the local martingale property is clearly lost if we take the trivial
filtration where the optional projection simply consists in taking the expectations Nt = E(Mt). In this case,
the measure PN is simply the probability measure on the positive half-line with distribution function F (t) =
1 − E(Mt).

Let us now consider the case F = σ(B1) where the subfiltration F is generated by the one-dimensional
Brownian motion B1.
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Theorem 5.1. The optional projection N of the inverse Bessel process M onto the filtration F = σ(B1) is a
supermartingale, but it is not a local martingale. More precisely:
i) The process N is a supermartingale of the form Nt = u(B1

t , t), where

u(x, t) =

√
2π

t
exp

(
x2

2t

)(
1 − Φ

(
|x|√

t

))
(5.2)

for t > 0 and u(x, 0) = x−1. The function u is space-time superharmonic on R × [0,∞) and satisfies(
1
2

∂2

∂x2
+

∂

∂t

)
u = −1

t
δ0 (5.3)

on R × (0,∞) (in the distributional sense).
ii) N is a potential of class (D) of the form

Nt = 1 +
∫ t

0

ux(B1
s , s)dB1

s −
∫ t

0

1
s
dL0

s (5.4)

= E

(∫ ∞

t

1
s
dL0

s|Ft

)
, (5.5)

where L0 denotes the local time of B1 at 0. In particular, N is a martingale up to the time that B1 hits 0, but
not a local martingale.

Proof. Since M is a nonnegative local martingale in the filtration G, it is a fortiori a supermartingale. Therefore
its projection onto the shrunken filtration F is a nonnegative supermartingale by Theorem 2.3. Let us compute
its Doob-Meyer decomposition N = Y − A where Y is a local martingale and A is a predictable increasing
process such that A0 = 0. To this end, we observe that

Nt = E(Mt|Ft)

= E(2,3){((B1
t )2 + (B2

t )2 + (B3
t )2
)− 1

2 }
= u(B1

t , t)

where E(2,3) denotes expectation with respect to the second and third coordinates; the second line is justified
by the independence of B1 with (B2, B3). The function u is clearly given by

u(x, t) =
∫ ∞

0

(
x2 + tr2

)− 1
2 re−r2/2dr.

Using the change of variables y2 = x2/t + r2 we obtain its explicit form (Eq. 5.2).
It is now straightforward to check that u is a solution of the PDE (Eq. 5.3). Applying a time-dependent

version of the Itô-Tanaka formula (see, e.g., [9]), we obtain equation (5.4). Thus N admits the Doob-Meyer
decomposition N = Y − A with

Yt = 1 +
∫ t

0

ux(B1
s , s)dB1

s , At =
∫ t

0

1
s
dL0

s.

Note that A∞ is integrable because E(At) ≤ E(Yt) ≤ Y0 = 1. Since Mt converges to 0 in L1 as t tends to ∞,
the same is true for N , and this implies

lim
t→∞Yt = A∞ =

∫ ∞

0

1
s
dL0

s in L1.
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In contrast to the local martingale M which is not of class (D), the process N = u(B1, ·) remains bounded for
t ≥ t0 in view of equation (5.2). This allows us to conclude that the local martingale Y is in fact of class (D),
and that it is given by

Yt = E

(∫ ∞

0

1
s
dL0

s|Ft

)
.

This implies the second formula in part ii), and so we have identified N as the potential of class (D) generated
by the increasing process A. �
Remark 5.2. Note that the increasing process in the Doob-Meyer decomposition of N has paths which are
singular with respect to Lebesgue measure, while the local martingale term has a quadratic variation process
which is absolutely continuous. Thus from a Mathematical Finance perspective, the inverse Bessel process M
does not yield arbitrage, but its projection N onto the smaller filtration F = σ(B1) does in fact yield arbitrage
opportunities. See for example [26], pp. 180–183 for a fuller explanation of why this affects the absence or
presence of arbitrage opportunities.

Remark 5.3. In view of equations (4.3) and (5.4) the measure PN is given by

PN (At × (t,∞]) = E(Nt; At) = E

(∫ ∞

t

1
s
dL0

s; At

)

for any t ≥ 0 and At ∈ Ft. Thus PN has a natural extension

PN = P ⊗ 1
t
dL0

t

from the predictable σ-field PF to the product σ-field on Ω×(0,∞]. This description of PN admits the following
interpretation: observing only the first coordinate of Doob’s conditional Brownian motion P h = PM introduced
in Remark 5.1, we see a one-dimensional Brownian motion with time-dependent drift ∂ log u which is killed at
the rate 1

t dL0
t .

We have seen that the local martingale property is lost if we project the inverse Bessel process M onto the
subfiltration generated by only one of the three Brownian components. The situation changes if we consider the
larger subfiltration F = σ(B1, B2) generated by two of the components: since the point (0, 0) is polar for two-
dimensional Brownian motion, we do no longer have a local time appearing in the Doob-Meyer decomposition.

Theorem 5.2. The optional projection N of the inverse Bessel process M onto the filtration F = σ(B1, B2) is
a again a local martingale. More precisely:
i) The process N is a supermartingale of the form

Nt = u(B1
t , B2

t , t) (5.6)

with
u(x, y, t) =

1√
2πt

exp

(
x2 + y2

4t

)
K0

(
x2 + y2

4t

)
, (5.7)

where K0 denotes the modified Bessel function of the second kind. The function u is space-time superharmonic
on R2 × [0,∞) and space-time harmonic on (R2 − {(0, 0)})× (0,∞).
ii) N is is a local martingale which is localized by the increasing sequence of stopping times

Tn = inf

{
t > 0|(B1

t )2 + (B2
t )2 ≤ 1

n

}
(5.8)

with Tn ↗ ∞ P -a.s.
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Proof. It follows as in the preceding proof that N is given by equation (5.6) with

u(x, y, t) =
∫ ∞

−∞

(
x2 + y2 + tz2

)− 1
2 1√

2π
e−

z2
2 dz. (5.9)

This takes the explicit form described by equation (5.7). Since K0 is a solution of the Bessel equation

K
′′
n(z)z2 + K

′
n(z)z + Kn(z)(z2 − n2) = 0,

for n = 0, it is easy to check the stated properties of u. Since u is space-time harmonic outside of the origin,
and since any point is polar for two-dimensional Brownian motion, it follows that N is a local martingale which
is localized by the sequence in (Tn) in equation (5.8).

Alternatively, we can check the local martingale property directly by applying Theorem 3.7, since the se-
quence (Tn) clearly localizes the original local martingale M . This yields, without any explicit computation via
equation (5.7), space-time harmonicity of the function u in equation (5.9) outside of the origin. �

Remark 5.4. The measure PN describes a two-dimensional Brownian motion W = (B1, B2) conditioned to
go to the origin in finite time, driven by the stochastic differential equation

dW = dWu −∇ log u(W, t)dt,

where Wu is a two-dimensional Brownian motion under PN .

We conclude our discussion of the Bessel (3) process with the following example of filtration shrinkage which
is due to Jeulin and Yor [16].

Example 5.1. If B is a standard one dimensional Brownian motion starting at 0, with its natural filtration
G, then for all t ≥ 0 we define St = sups≤t Bs, and Ut = 2St − Bt. Pitman’s theorem is that U is a Bessel (3)
process. If we define F to be the natural filtration of W = (Wt)t≥0, where W is the Brownian motion given by:

Wt = Ut −
∫ t

0

1
Us

ds,

then in the filtration G, W is a semimartingale with decomposition W = V + A, where V = W − A is a
martingale, and At = 2St −

∫ t

0
U−1

s ds. That is, we have the two semimartingale decompositions:

Ut = Vt +

(
2St −

∫ t

0

1
Us

ds

)
in the filtration G;

Ut = Wt +
∫ t

0

1
Us

ds in the filtration F.

Both W and V are Brownian motions in their respective filtrations. Note that dSt ⊥ dt a.s.; that is the paths
are singular. From the perspective of Mathematical Finance, U admits arbitrage in the filtration G, but does
not admit arbitrage in the smaller filtration F.
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6. Implications for finance

It is instructive to give an example from economics as to how the issue of filtration shrinkage might arise
“naturally”. The idea of this example is taken from [12]. We do not try to force this example into the inverse
Bessel format, since we give it only to yield the intuition involved. Imagine one observes (in filtration F) a stock
price of the form

dXt = σdBt + b(t, Xt)dt. (6.1)

where b is assumed to be bounded. Suppose a group of large investors decides to buy or sell the stock whenever
it crosses the level c, so as to keep the price steady at c. This could happen for example if a company spins-off a
subsidiary and supports its stock price at a given level c by buying a fraction α of shares when it falls below the
level c, and another fraction β of investors, wishing to unload the spin-off, sells the stocks when it rises above
the level c. For simplicity, assume α = β.

Let {0 = t < t1 < · · · < tn = T } be a partition of the time interval [0, T ], and suppose the stock is observed
at these times. If Xti < c and Xti+1 > c, then a sale of proportion α occurs with an assumed price impact of
α(Xti+1 − c) = α|Xti+1 − c|. If Xti > c and Xti+1 < c, then a purchase of proportion α occurs with an assumed
price impact of α(c − Xti+1) = α|Xti+1 − c|. The cumulative effect on the stock price X by such a repurchase
plan will be

n−1∑
i=1

α|Xti+1 − c|1{sign(Xti+1−c) �=sign(Xti
−c)}.

Let αLc
t denote the limit, assuming for the moment we know it exists:

αLc
t = lim

‖πn‖→0
α
∑

ti∈πn

|Xti+1 − c|1{sign(Xti+1−c) �=sign(Xti
−c)}. (6.2)

The impact of this repurchase plan yields a “new” price process:

dYt = σdBt + b(t, Xt)dt + αdLc
t . (6.3)

The next theorem gives us that the limit of equation (6.2) actually does exist:

Theorem 6.1. The process αLc
t exists as a limit in u.c.p. (uniform convergence on compact time sets, in

probability). Moreover, t → Lc
t is singular with respect to dt, a.s., and is the local time of X at the level c.

Proof. Since b is assumed bounded, by Girsanov’s theorem there exists P ∗ equivalent to P such that X is a P ∗

continuous local martingale; hence X is Brownian motion by Lévy’s theorem. Let us take σ = 1, so that X is
standard Brownian motion. Then by [9], p. 160 we have the limit (6.2) exists in u.c.p., and Lc is the local time
of X at level c. �

Therefore the observer naturally thinks there is an arbitrage opportunity provided by this behavior of the
group of large traders. But perhaps in the larger filtration G, which the observer does not see, more is happening
that renders the perceived large trader behavior to be simply the actions of traders who ultimately are price
takers rather than effectively large traders whose actions significantly affect the price. So the observer correctly
sees the local time using his limited vision in the F, but reality shows that in the larger filtration G, the perceived
arbitrage opportunity is in fact illusory.

Let us mention a second example. An approach to the modelling of credit risk that is quite current is that
of reduced form models. An attempt to relate reduced form models as simply projections of structural models
onto a smaller filtration is outlined in [11], and carried out to some extent in [3] and more generally in [13].
In this approach, it is implicit that the risk neutral measure of the original underlying process is still used for
the projected process. This is not a problem since in the papers mentioned one is dealing with martingales.
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But once the underlying is a strict local martingale, care must be taken, since if the projected process is not a
local martingale then the measure is no longer a risk neutral measure (or “equivalent martingale measure” as
they are often called). There still may exist a risk neutral measure, if one can use (for example) a procedure
such as the one indicated in Theorem 3.8. Theorem 5.2 provides an example. However this is not true in
general, as is shown in Theorem 5.1. If one is dealing with positive processes, as we are in our treatment of local
martingales, then one need not consider the seemingly more general situation of sigma martingales (see, e.g., [27]
for a definition and properties of sigma martingales), since a positive sigma martingale is a local martingale.

The issue of martingales (which behave nicely in filtration shrinkage) as opposed to local martingales (which
we have seen here need not behave nicely) is related to the existence of financial bubbles (see any of [4,14,15]
or [19]), where if the price process is a strict local martingale it can indicate the presence of a bubble.

Acknowledgements. We wish to acknowledge useful discussions on this subject with M. Emery, J. Jacod, S. Pal, and
D. Sezer. We extend them our thanks. We also wish to thank an anonymous referee for his or her close reading of a first
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