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HOEFFDING SPACES AND SPECHT MODULES
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Abstract. It is proved that each Hoeffding space associated with a random permutation (or, equiva-
lently, with extractions without replacement from a finite population) carries an irreducible represen-
tation of the symmetric group, equivalent to a two-block Specht module.
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1. Introduction

Let X(m) = (X1, ..., Xm) (m ≥ 2) be a sample of random observations. According e.g. to [9], we say that
X(m) is Hoeffding-decomposable if every symmetric statistic of X(m) can be written as an orthogonal sum
of symmetric U -statistics with degenerated kernels of increasing orders. In the case where X(m) is composed
of i.i.d. random variables, Hoeffding decompositions are a classic and very powerful tool for obtaining limit
theorems, as m → ∞, for sequences of general symmetric statistics of the vectors X(m). See e.g. [12], or the
references indicated in the introduction to [9], for further discussions in this direction.

In recent years, several efforts have been made in order to provide a characterization of Hoeffding decompo-
sitions associated with exchangeable (and not necessarily independent) vectors of observations. See El-Dakkak
and Peccati [7] and Peccati [9] for some general statements; see Bloznelis [2], Bloznelis and Götze [3,4] and Zhao
and Chen [14] for a comprehensive analysis of Hoeffding decompositions associated with extractions without
replacement from a finite population.

In the present note, we are interested in building a new explicit connection between the results of [3,4,14]
and the irreducible representations of the symmetric groups Sn, n ≥ 2. In particular, our main result is the
following.

Theorem 1.1. Let 1 ≤ m ≤ n/2, and let X(m) = (X (1) , ..., X (m)) be a random vector obtained as the first
m extractions without replacement from a population of n individuals. For l = 1, ..., m, let SHl be the lth
symmetric Hoeffding space associated with X(m) (that is, SHl is the vector space of all symmetric U-statistics
with a completely degenerated kernel of order l). Then, for every l = 1, ..., m, there exists an action of Sn on
SHl, such that SHl is an irreducible representation of Sn. This representation is equivalent to a Specht module
of shape (n − l, l) .

Keywords and phrases. Exchangeability, finite population statistics, Hoeffding decompositions, irreducible representations,
random permutations, Specht modules, symmetric group.
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2 Département de Mathématiques, Université d’Évry, France. jrpycke@maths.univ-evry.fr

Article published by EDP Sciences c© EDP Sciences, SMAI 2011

http://dx.doi.org/10.1051/ps/2010022
http://www.esaim-ps.org
http://www.edpsciences.org


HOEFFDING SPACES AND SPECHT MODULES S59

We refer the reader to the forthcoming Section 2 for some basic results on the representations of the symmetric
group and two-block Specht modules. We will see that Theorem 1.1 provides de facto a new probabilistic
characterization of two-block Specht modules, as well as some original insights into the combinatorial structure
of Hoeffding spaces. Observe that the case where n/2 < m ≤ n can be reduced to the framework of present
paper by standard arguments (see for instance [3], Prop. 1). One should note that a connection between
decompositions of symmetric statistics and representations of Sn is already sketched in Diaconis’ celebrated
monograph [5]: in particular, the results of the present paper can be regarded as a probabilistic counterpart to
the spectral analysis on homogeneous spaces developed in chapters 7 and 8 of [5].

The rest of this note is organized as follows. In Section 2 we provide some background on the representations
of the symmetric group. Sections 3 and 4 focus, respectively, on uniform random permutations and Hoeffding
spaces. Section 5 contains the statements and proofs of our main results.

2. Background

For future reference, we recall that a k-block partition of the integer n ≥ 2 is a k-dimensional vector of the
type λ = (λ1, ..., λk), such that: (i) each λi is a strictly positive integer, (ii) λi ≥ λi+1, and (iii) λ1 + · · ·+λk = n.
One sometimes writes λ � n to indicate that λ is a partition of n.

We also write [n] = {1, ..., n} to indicate the set of the first n positive integers. Finally, given a finite set A,
we denote by SA the group of all permutations of A, and we use the shorthand notation S[n] = Sn, n ≥ 1. In
other words, when writing x ∈ SA, we mean that

x : A → A : a �→ x(a)

is a bijection from A to itself.

2.1. Some structures associated with two-block partitions

We now introduce some classic definitions and notation related to tableaux and tabloids; see Sagan [11],
Chapter 2 (from which we borrow most of our terminology and notational conventions) for any unexplained
concept or result. For the rest of the section, we fix two integers n and m, such that 1 ≤ m ≤ n/2. Observe
that n − m ≥ m, and therefore the vector (n − m, m) is a two-block partition of the integer n.

Remark 2.1. It is sometimes useful to adopt a graphical representation of tableaux and tabloids by means of
Ferrer diagrams. Since we uniquely deal with two-block tableaux and tabloids, and for the sake of brevity, in
what follows we shall not make use of this representation. See e.g. [11], Section 2.1 for a complete discussion of
this point.

The following objects will be needed in the sequel.
– A (Young) tableau t of shape (n − m, m) is a pair t =

(
i(n−m); j(m)

)
of ordered vectors of the type

i(n−m) = (i1, ..., in−m), j(m) = (jn−m+1, ..., jn) such that {i1, ..., in−m, jn−m+1, ..., jn} = [n], that is, the
union of the entries of i(n−m) and j(m) coincides with the first n integers (with no repetitions).

– The set of the columns of the tableau t =
(
i(n−m); j(m)

)
, noted {C1, ..., Cn−m}, is the collection of (i)

the ordered pairs
C1 = (i1, jn−m+1) , ..., Cm = (im, jn) (2.1)

(that is, the pairs composed of the first m entries of i(n−m) and the entries of j(m)), and (ii) the remaining
singletons of i(n−m), that is,

Cm+1 = im+1, ..., Cn−m = in−m. (2.2)

– For l = 1, ..., n, we write V (n−l,l) to indicate the class of the
(
n
l

)
subsets of [n] of size equal to l. This

slightly unusual notation has been chosen in order to stress the connection between the set V (n−l,l) and
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the Sn-modules M (n−l,l) (l ≤ m) to be defined below. The elements of V (n−l,l) are denoted by a(l),
b(l), i(l), j(l),..., and so on.

– A tabloid of shape (n − m, m) is a two-block partition of the set [n], of the type

γ = {a(n−m);b(m)} = {{a1, ..., an−m} ; {bn−m+1, ..., bn}}. (2.3)

Of course, a tabloid γ of shape (n − m, m) as in (2.3) is completely determined by the specification
of set b(m) = {bn−m+1, ..., bn} ∈ V (n−m,m); to emphasize this dependence, we shall sometimes write
γ = γ(b(m)). Note that the mapping b(m) �→ γ(b(m)) is a bijection between V (n−m,m) and the class of
all tabloids of shape (n − m, m).

– Given a tableau t =
(
i(n−m); j(m)

)
of shape (n − m, m), we write {t} = {i(n−m); j(m)} (observe the

boldface!) to indicate the tabloid defined by i(n−m) = {i1, ..., in−m} and j(m) = {jn−m+1, ..., jn}. In
other words, {t} is obtained as the two-block partition composed of the collection of the entries of i(n−m)

and the collection of the entries of j(m). With the notation introduced at the previous point, one has
that {t} = γ(j(m)).

Example 2.2. Let n = 5 and m = 2. Then, a tableau of shape (3, 2) is t =
(
i(3); j(2)

)
, where i(3) = (2, 1, 3)

and j(2) = (5, 4). The columns of t are C1 = (2, 5), C2 = (1, 4) and C3 = 3. The associated tabloid is
{t} = {i(3); j(2)}, where i(3) = {1, 2, 3} ∈ V (2,3) and j(2) = {4, 5} ∈ V (3,2).

2.2. Actions of Sn

Fix as before n ≥ 2 and 1 ≤ m ≤ n/2.

Actions on tableaux . For every x ∈ Sn and every tableaux t =
(
i(n−m); j(m)

)
, the action of x on t is defined as

follows:
xt =

(
xi(n−m); xj(m)

)
, (2.4)

where xi(n−m) = (x (i1) , ..., x (in−m)) and xj(m) = (x (jn−m+1) , ..., x (jn)).

Actions on tabloids . For every x ∈ Sn and every tabloid γ(b(m)) = {a(n−m); b(m)}, we set

xγ(b(m)) = x{{a1, ..., an−m} ; {bn−m+1, ..., bn}} (2.5)
= {{x (a1) , ..., x (an−m)} ; {x (bn−m+1) , ..., x (bn)}}.

In particular, for every tableau t, one has x {t} = {xt}.

Sn-modules. The symmetric group Sn acts on V (n−m,m) in the standard way, namely: for every x ∈ Sn and
for every j(m) = {j1, ..., jm} ∈ V (n−m,m),

xj(m) = {x (j1) , ..., x (jm)} . (2.6)

Remark 2.3. By combining the above introduced notational conventions, one sees that, for every x ∈ Sn and
for every j(m) = V (n−m,m),

xγ(j(m)) = γ(xj(m)),

that is, x transforms the tabloid generated by j(m) into the tabloid generated by xj(m). Also, if t =
(
i(n−m); j(m)

)
,

then, for every x ∈ Sn,
x {t} = {xt} = xγ(j(m)) = γ(xj(m)).
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The complex vector space of all complex-valued functions on V (n−m,m) is written L
(
V (n−m,m)

)
. Plainly, the

space L
(
V (n−m,m)

)
has dimension

(
n
m

)
, and a basis of L

(
V (n−m,m)

)
is given by the collection {1j(m) : j(m) ∈

V (n−m,m)}, where 1j(m)

(
k(m)

)
= 1 if k(m) = j(m) and 1j(m)

(
k(m)

)
= 0 otherwise. The group Sn acts on

L
(
V (n−m,m)

)
as follows: for x ∈ Sn, k(m) ∈ V (n−m,m) and f ∈ L

(
V (n−m,m)

)
,

xf
(
k(m)

)
= f

(
x−1k(m)

)
, so that, in particular, (2.7)

x1j(m) = 1xj(m) , j(m) ∈ V (n−m,m).

When endowed with the action (2.7), the set L
(
V (n−m,m)

)
carries a representation of Sn. In this case, we say

that L
(
V (n−m,m)

)
is the permutation module associated with (n − m, m), and we use the customary notation

L
(
V (n−m,m)

)
= M (n−m,m) (see [11], Sect. 2.1).

Remark 2.4. Our definition of the permutation modules M (n−m,m) slightly differs from the one given e.g.
in [11] Definition 2.1.5. Indeed, we define M (n−m,m) as the vector space spanned by all indicators of the type
1j(m) , j(m) ∈ V (n−m,m), endowed with the action (2.7), whereas in the above quoted reference M (n−m,m) is the
space of all formal linear combinations of tabloids of shape (n − m, m), endowed with the canonical extension
of the action (2.5). The two definitions are equivalent, in the sense that they give rise to two isomorphic Sn-
modules. We will see that the definition of M (n−m,m) chosen in this paper allows a more transparent connection
with the theory of U -statistics based on random permutations.

2.3. A decomposition of M (n−m,m)

We recall that the dual of Sn coincides with the set
{[

Sλ
]

: λ � n
}
, where

[
Sλ

]
is the equivalence class of all

irreducible representations of Sn that are equivalent to a Specht module of index λ (see again [11], Sect. 2.1).
For every λ � n, we will denote by χλ the character associated with the class

[
Sλ

]
, whereas Dλ is the associate

dimension. Observe that χλ ∈ Z for every λ (see e.g. [13], Sect. 13.1), and Dλ equals the number of standard
tableaux (that is, tableaux with increasing rows and columns) of shape λ. In particular D(n−1,1) = n − 1
(see [11], Sect. 2.5).

The next result ensures that the module M (n−m,m) is reducible. This fact is well-known (see e.g. [8],
example 14.4 (p. 52) or [5] (pp. 134–139)), and a proof is added here for the sake of completeness.

Proposition 2.5. There exists a unique decomposition of M (n−m,m) of the type

M (n−m,m) = K
(n−m,m)
0 ⊕ K

(n−m,m)
1 ⊕ · · · ⊕ K(n−m,m)

m . (2.8)

Where the vector spaces (endowed with the action of Sn described in (2.7)) K
(n−m,m)
l are such that K

(n−m,m)
0 ∈[

S(n)
]
, and K

(n−m,m)
l ∈ [

S(n−l,l)
]
, l = 1, ..., m.

Proof. It is sufficient to prove that

M (n−m,m) ∼= S(n) ⊕
m⊕

l=1

S(n−l,l),

where “ ∼= ” indicates equivalence between representations of Sn. According Young’s rule (see e.g. [11],
Thm. 2.11.2), we know that

M (n−m,m) ∼= S(n) ⊕
m⊕

l=1

Kn,l,mS(n−l,l),

where the integers Kn,l,m (known as Kostka numbers) count the number of generalized semistandard tableaux
of shape (n − l, l) and type (n − m, m). This is equivalent to saying Kn,l,m counts the ways of arranging n−m
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copies of 1 and m copies of 2 in a Ferrer diagram of shape (n − l, l), in such a way that the rows of the diagram
are weakly increasing and the columns are strictly increasing. Since there is just one way of doing this, one
infers that Kn,l,m = 1, and the proof is concluded. �

Remark 2.6. (i) (Definition of two-block Specht modules.) For the sake of completeness, we recall here the
definition of the modules S(n) and S(n−m,m), 1 ≤ m ≤ n/2. First of all, one has that S(n) = C, and therefore[
S(n)

]
is the class of representations of Sn that are equivalent to the trivial representation. Now fix 1 ≤ m ≤ n/2.

For every tableau t = (i(n−m); j(m)), define the columns C1, ..., Cn−m according to (2.1) and (2.2). Then, (a)
for every l = 1, ..., m, write κCl

for the formal operator

κCl
= Id. − (il → jl),

where (il → jl) indicates the element of Sn given by the transposition sending il to jl, and (b) define the
composed operator κt = κC1κC2 ...κCm . Then, the Specht module of shape (n − m, m) is the Sn-invariant
subspace of M (n−m,m) spanned by the elements of the type

κt1j(m) , where t =
(
i(n−m); j(m)

)
is a tableau; (2.9)

note that, in the formula (2.9), t and j(m) are related by the fact that t =
(
i(n−m); j(m)

)
, and {t} = {i(n−m); j(m)}.

(ii) Consider for instance the case n = 6 and m = 2, and select the tableau t = {(1, 2, 3, 4) ; (5, 6)}. One has
that j(2) = {5, 6},

κt = (Id. − (1 → 5)) (Id. − (2 → 6)) ,

and one deduces that an element of S(4,2) is given by

κt1j(2) = 1{5,6} − 1{1,6} − 1{5,2} + 1{1,2}.

(iii) By recurrence, one deduces from Proposition 2.5 that the dimension of K
(n−m,m)
l , and therefore of S(n−l,l),

is D(n−l,l) =
(
n
l

) − (
n

l−1

)
, l ≤ n/2.

(iv) From the previous discussion, we infer that K
(n−m,m)
0 = S(n) = C.

3. Uniform random permutations

Fix n ≥ 2. We consider a uniform random permutation X of [n]. This means that X = X (ω) is a
random element with values in Sn, defined on some finite probability space (Ω,F ,P) and such that, ∀x ∈ Sn,
P (X = x) = (n!)−1. For 1 ≤ m ≤ n/2 as before, we will write X(m) (ω) = (X (1) , ..., X (m)) (ω), and also,
for every y ∈ Sn, (Xy)(m) = {Xy(1), ..., Xy(m)}. Observe that Xy indicates the product of the deterministic
permutation y with the random permutation X . It is clear that X(m) is an exchangeable vector, having the law
of the first m extractions without replacement from the set [n] (see e.g. Aldous [1] for any unexplained notion
about exchangeability). A random variable T is called a (complex-valued) symmetric statistic of X(m) if T has
the form

T = f ({X (1) , ..., X (m)}) , for some f ∈ L
(
V (n−m,m)

)
.

In other words, a symmetric statistic is a random variable deterministically depending on the realization of
X(m) as a non-ordered set. Note that, by a slight abuse of notation, in what follows we will write f({X (1) , ...,

X (m)}) = f
(
X(m)

)
(other analogous conventions will be tacitly adopted).
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We also write L2
s

(
X(m)

)
to indicate the Hilbert space of symmetric statistics of X(m), endowed with the

inner product

〈
f1

(
X(m)

)
, f2

(
X(m)

)〉
P

= E
[
f1

(
X(m)

)
f2

(
X(m)

)]
(3.1)

=
1
n!

∑
x∈Sn

f1 (x {1, ..., m}) f2 (x {1, ..., m}) (3.2)

=
(

n

m

)−1 ∑
k(m)∈V (n−m,m)

f1

(
k(m)

)
f2

(
k(m)

)
.

Since the sum in (3.2) runs over the whole set Sn, it is clear that 〈·, ·〉P induces a Sn-invariant inner product
on M (n−m,m) given by

〈f1, f2〉(n−m,m) =
〈
f1

(
X(m)

)
, f2

(
X(m)

)〉
P

, f1, f2 ∈ M (n−m,m); (3.3)

in particular, the Sn-invariance of 〈·, ·〉(n−m,m) yields that the spaces K
(n−m,m)
i and K

(n−m,m)
j are orthogonal

with respect to 〈·, ·〉(n−m,m) for every 0 ≤ i �= j ≤ m.
With every f ∈ M (n−m,m), we associate the Sn-indexed stochastic process

Zf (x, ω) = Zf (x) := f
(
xX(m)

)
, x ∈ Sn,

and, for every λ � n, we define

Zλ
f (x, ω) = Zλ

f (x) :=
Dλ

n!

∑
g∈Sn

χλ (g) f
(
(g−1x)X(m)

)
(3.4)

fλ
(
l(m)

)
=

Dλ

n!

∑
x∈Sn

χλ (x) f
(
x−1l(m)

)
, l(m) ∈ V (n−m,m),

so that fλ
(
X(m)

)
= Zλ

f (e), where e is the identity element in Sn.
The following facts will be used in the subsequent analysis. The proofs are standard and omitted – see e.g.

the results from [10] and [13] evoked below for further details.
(a) Since (2.8) holds, fλ = 0 for every f ∈ M (n−m,m) if and only if λ is different from (n − l, l), l = 0, ..., m

(see e.g. [13], Thm. 8, Sect. 2.6) and moreover: f (n) ∈ K
(n−m,m)
0 and, for every l = 1, ..., m, f (n−l,l) ∈

K
(n−m,m)
l (as defined in (2.8)).

(b) Thanks to exchangeability, for every f ∈ M (n−m,m) the class
{
Zf , Z

(n−l,l)
f : l = 0, ..., m

}
,

has a Sn-invariant law, with respect to the canonical action of Sn on itself (i.e., x · y = xy, x, y ∈ Sn).
(c) Due to the orthogonality of isotypical spaces (see e.g. (see [6], Thm. 4.4.5, and also [10], Thm. 4–3), for

every x, y ∈ Sn, f, h ∈ M (n−m,m) and 0 ≤ i �= j ≤ m,

E
[
Z

(n−i,i)
f (x) Z

(n−j,j)
h (y)

]
= E

[
f (n−i,i)

(
xX(m)

)
h(n−j,j)

(
yX(m)

)]
(3.5)

E
[
f (n−i,i)

(
(Xx)(m)

)
h(n−j,j)

(
(Xy)(m)

)]
= 0, (3.6)

where, here and in the sequel (by a slight abuse of notation) we use the convention (n − 0, 0) = (n).
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(d) Due to [10], Theorem 4–4 and point (a) above, for every x ∈ Sn and every f ∈ M (n−m,m),

Zf (x) = Z
(n)
f (x) +

m∑
l=1

Z
(n−l,l)
f (x) , (3.7)

where Z
(n)
f (x) = E [Zf (x)] = E

[
f

(
X(m)

)]
. In particular,

f
(
X(m)

)
= E

[
f

(
X(m)

)]
+

m∑
l=1

f (n−l,l)
(
X(m)

)
(3.8)

and therefore, for every f, h ∈ M (n−m,m),

E
[
f

(
X(m)

)
h

(
X(m)

)]
= E

[
f

(
X(m)

)]
E

[
h

(
X(m)

)]
+

m∑
l=1

E
[
f (n−l,l)

(
X(m)

)
h(n−l,l)

(
X(m)

)]
(3.9)

(e) Due to [10], Theorem 5–1, for every 0 ≤ i �= j ≤ m and f, h ∈ M (n−m,m),

∑
x∈Sn

Z
(n−i,i)
f (x, ω)Z

(n−j,j)
h (x, ω) =

∑
x∈Sn

f (n−i,i)
(
xX(m)

)
h(n−j,j)

(
xX(m)

)
= 0. (3.10)

4. Hoeffding spaces

We now define a class of subspaces of L2
s

(
X(m)

)
(the notation is the same as in [7,9]): SU0 = C, and, for

l = 1, ..., m, SUl is the vector subspace generated by the functionals of X(m) of the type

Tφ

(
X(m)

)
=

∑
{k1,...,kl}∈V (m−l,l)

φ (X (k1) , ..., X (kl)) , (4.1)

for some φ ∈ L
(
V (n−l,l)

)
. A random variable such as (4.1) is called a U -statistic based on X(m), with a

symmetric kernel φ of order l. One has that SUl ⊂ SUl+1 (see e.g. [9]) and SUm = L2
s

(
X(m)

)
. The collection of

the symmetric Hoeffding spaces associated to X(m), noted {SHl : l = 0, ..., m} is defined as follows: SH0 = SU0,
and

SHl = SUl ∩ SU⊥
l−1,

where the symbol ⊥ means orthogonality with respect to the inner product 〈·, ·〉P defined in (3.1), so that

L2
s

(
X(m)

)
=

m⊕
l=0

SHl,

where the direct sum
⊕

is again in the sense of 〈·, ·〉P.
Following [3], Section 2, we define the real coefficients

dl,j =
l−1∏
r=j

n − r

n − r − j
, l = 2, 3, ..., m, 1 ≤ j ≤ l − 1, (4.2)

dl,l = Nl,l = 1, l = 1, ..., m,

Nl,j = −
l−1∑
i=j

(
l − j

i − j

)
dl,iNi,j , l = 2, 3, ..., m, 1 ≤ j ≤ l − 1.

The following result can be proved by using the content of [3], Section 2, or as a special case of [9], Theorem 11.
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Proposition 4.1. Keep the assumptions and notation of this section. Then, for l = 1, ..., m, the following
assertions are equivalent:

(i) f
(
X(m)

) ∈ SHl;
(ii) there exists φ ∈ L

(
V (n−l,l)

)
such that

f
(
X(m)

)
=

∑
{k1,...,kl}∈V (m−l,l)

φ (X (k1) , ..., X (kl)) , (4.3)

and

E [φ (X (1) , ..., X (l)) | X (1) , ..., X (l − 1)] = 0.

Moreover, for every h
(
X(m)

) ∈ L2
s

(
X(m)

)
, the orthogonal projection of h

(
X(m)

)
on SHl, l = 1, ..., m, is

given by

proj
(
h

(
X(m)

) | SHl

)
=

∑
{k1,...,kl}∈V (m−l,l)

φ
(l)
h (X (k1) , ..., X (kl)) ,

where, for every {j1, ..., jl} ∈ V (n−l,l),

φ
(l)
h (j1, ..., jl) = dm,l

l∑
a=1

Nl,a

∑
1≤i1<...<ia≤l

E
[
h

(
X(m)

) − E
(
h

(
X(m)

)) | X (1) = ji1 , ..., X (a) = jia

]
.

The kernel φ of the U -statistic f
(
X(m)

)
appearing in (4.3) is said to be completely degenerated. Completely

degenerated kernels are related to the notion of weak independence in [9], Theorem 6. Note that, in the above
quoted references, the content of Proposition 4.1 is proved for real valued symmetric statistics (the extension
of such results to complex random variables is immediate: just consider separately the real and the imaginary
parts of each statistic). Formula (4.4) completely characterizes the symmetric Hoeffding spaces associated to
X(m): it can be obtained by recursively applying an appropriate version of the Möbius inversion formula (see
e.g. [11], exercise 18, Sect. 5.6), on the lattice of the subsets of [n] (see also [9], Thm. 11, for a generalization
of (4.4) to the case of Generalized Urn Sequences). In the next section we state and prove the main result of
this note, that is, that the spaces SHl, l = 1, ..., m, admit a further algebraic characterization in terms of Specht
modules.

5. Hoeffding spaces and two-blocks Specht modules

5.1. Main results and some consequences

The main achievement of this note is the following statement, which is a more precise reformulation of
Theorem 1.1, as stated in the Introduction. The proof is deferred to Section 5.2.

Theorem 5.1. Under the above notation and assumptions, for every f
(
X(m)

) ∈ L2
s

(
X(m)

)
and every l =

0, 1, ..., m, the following assertions are equivalent:

(1) f
(
X(m)

) ∈ SHl;
(2) f ∈ K

(n−m,m)
l , where the Sn-module K

(n−m,m)
l is defined through formula (2.8) (in particular, K

(n−m,m)
l

∈ [
S(n−l,l)

]
).

We now list some consequences of Theorem 5.1. They can be obtained by properly combining Proposition 4.1
with the five facts (a)–(e), as listed at the end of Section 3.
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Corollary 5.2. Under the above notation and assumptions,
(1) for every l = 1, ..., m, f ∈ M (n−m,m) and i(m) = {i1, ..., im} ∈ V (n−m,m),

f (n−l,l)
(
i(m)

)
=

D(n−l,l)

n!

∑
x∈Sn

χ(n−l,l) (x) f
(
x−1i(m)

)
(5.1)

=
∑

{i1,...,il}⊆i(m)

dm,l

l∑
a=1

Nl,a (5.2)

×
∑

1≤s1<...<sa≤l

E
[
f

(
X(m)

) − E
(
f

(
X(m)

)) | X (1) = is1 , . . . , X (a) = isa

]
,

where D(n−l,l) =
(
n
l

) − (
n

l−1

)
.

(2) for every l = 1, ..., m, every symmetric U -statistic, based on X(m) and with a completely degenerated
kernel of order l, has the form (5.1) for some f ∈ M (n−m,m). It follows that SHl is an irreducible
Sn-module, carrying a representation in

[
S(n−l,l)

]
.

For instance, by using [11], exercise 5.d (p. 87), we deduce from (5.1) that for every i(m) = {i1, ..., im} ∈
V (n−m,m) and f ∈ M (n−m,m),

n − 1
n!

∑
x∈Sn

{(number of fixed points of x) − 1} × f
(
xi(m)

)

=
m−1∏
r=1

n − r

n − r − 1

m∑
s=1

E
[
f

(
X(m)

) − E
(
f

(
X(m)

)) | X (1) = is
]
.

The next result gives an algebraic explanation of a property of degenerated U -statistics, already pointed out
– in the more general framework of Generalized Urn Sequences – in [9] (Cor. 9). Basically, it states that the
orthogonality, between two completely degenerated U -statistics of different orders, is preserved after shifting
one of the two arguments. It can be useful when determining the covariance between two U -statistics based on
two urn sequences of different lengths.

Corollary 5.3. Let f, h ∈ M (n−m,m) be such that f
(
X(m)

) ∈ SHj and h
(
X(m)

) ∈ SHl for some 1 ≤ j �=
l ≤ m. Consider moreover an element k(m) = {k1, ..., km} ∈ V (n−m,m) such that, for some r = 0, ..., m,
Card

(
k(m) ∩ {1, ..., m}) = r, and note X ′

(m) = (X (k1) , ..., X (km)). Then,

E
(

f
(
X(m)

)
h

(
X ′

(m)

))
= 0.

Proof. Due to the exchangeability of the vector (X (1) , ..., X (n)), we can assume, without loss of generality,
that

k(m) = {1, ..., r, m + 1, ..., 2m− r} .

Now introduce the permutation (written as a product of translations)

y = (r + 1 → m + 1) (r + 2 → m + 2) · · · (m → 2m − r), (5.3)

and note that

E
(

f
(
X(m)

)
h

(
X ′

(m)

))
= E

(
f

(
X(m)

)
h

(
(Xy)(m)

))
,

so that the conclusion derives immediately from formula (3.6), by setting x = e and y as in (5.3). �
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5.2. Remaining proofs

The key of the proof of Theorem 5.1 is nested in the following lemma.

Lemma 5.4. Let the previous notation prevail. Then,
(1) for each l = 1, ..., m, a basis of SUl is given by the set of random variables

{
ηi(l)

(
X(m)

)
: i(l) ∈ V (n−l,l)

}
,

where, for each k(m) ∈ V (n−m,m),

ηi(l)

(
k(m)

)
=

{
1 if i(l) ⊆ k(m)

0 otherwise; (5.4)

(2) for each l = 1, ..., m, the restriction of the action (2.7) of Sn to the vector subspace of M (n−m,m)

generated by the set {ηi(l) : i(l) ∈ V (n−l,l)}, defined in (5.4), is equivalent to the action carried by the
Sn-module M (n−l,l).

Proof. Fix l = 1, ..., m, and observe that, for every i(l) ∈ V (n−l,l),

ηi(l)

(
X(m)

)
=

∑
{k1,...,kl}∈V (m−l,l)

1i(l) ({X (k1) , ..., X (kl)}) ,

so that the first part of the statement follows from the definition of SUl, and the fact that every φ ∈ V (m−l,l)

is a linear combination of functions of the type 1i(l) (·). To prove the second part, first recall that a basis of
the Sn-module M (n−l,l) is given by the set

{
1i(l) (·) : i(l) ∈ V (n−l,l)

}
, and that the action of Sn on M (n−l,l) is

completely described by the action
x1i(l) = 1xi(l) .

We can therefore construct a Sn-isomorphism between
{
ηi(l) : i(l) ∈ V (n−l,l)

}
and M (n−l,l) by linearly extending

the mapping
τ

(
ηi(l)

)
= 1i(l) , i(l) ∈ V (n−l,l),

and by observing that, for every k(m) ∈ V (n−m,m), i(l) ∈ V (n−l,l) and x ∈ Sn,

xηi(l)

(
k(m)

)
= ηi(l)

(
x−1k(m)

)
= ηxi(l)

(
k(m)

)
.

This concludes the proof. �

End of the proof of Theorem 5.1. Since SU0 = SH0 = K
(n−m,m)
0 = C, the relation between representations

M (n−l,l) ∼= S(n) ⊕ S(n−1,1) ⊕ · · · ⊕ S(n−l,l), ∀l = 1, ..., m,

along with Lemma 5.4, implies that the restriction of the action (2.7) of Sn to those f ∈ L
(
V (n−m,m)

)
such

that f
(
X(m)

) ∈ SHl is an element of
[
S(n−l,l)

]
. This yields that each one of the m + 1 summands in the

decomposition

M (n−m,m) = C ⊕
m⊕

l=1

{
f : f

(
X(m)

) ∈ SHl

}

is an irreducible Sn-submodule of M (n−m,m). Since the decomposition (2.8) of M (n−m,m) is unique, this gives

{
f : f

(
X(m)

) ∈ SHl

}
= K

(n−m,m)
l ,

as required. �
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