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ESTIMATION FOR MISSPECIFIED ERGODIC DIFFUSION PROCESSES
FROM DISCRETE OBSERVATIONS

MASAYUKI UCHIDA Y2 AND NAKAHIRO YOSHIDA?

Abstract. The joint estimation of both drift and diffusion coefficient parameters is treated under
the situation where the data are discretely observed from an ergodic diffusion process and where the
statistical model may or may not include the true diffusion process. We consider the minimum contrast
estimator, which is equivalent to the maximum likelihood type estimator, obtained from the contrast
function based on a locally Gaussian approximation of the transition density. The asymptotic normality
of the minimum contrast estimator is proved. In particular, the rate of convergence for the minimum
contrast estimator of diffusion coefficient parameter in a misspecified model is different from the one
in the correctly specified parametric model.
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1. INTRODUCTION

Let X; be a d-dimensional ergodic diffusion process defined by the stochastic differential equation
dX; = B(Xp)dt+ S(Xy)dw, t€][0,T], Xo=mn, (1.1)

where B is an R%valued function defined on R%, § is an R? ® R"-valued function defined on R¢ and w is an
r-dimensional standard Wiener process independent of Xy. We consider a family of parametric models defined
by the stochastic differential equations

dXt = b(Xt,O[)dt+U(Xt,6)dwt, te [O,T], X() =1, (12)

where 0 = (o, 8) € O, x O3 = O with ©, and O being compact convex subsets of R? and RY, respectively.
Furthermore, b is an R%valued function defined on R? x ©, and ¢ is an R? @ R"-valued function defined on
R? x Og. The data are discrete observations X,, = (th)ogkgn with t} = kh,, where h,, is the discretization
step. We will treat asymptotics when h,, — 0, nh,, — co and nh? — 0 as n — oc.
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The parametric inference for correctly specified ergodic diffusion processes from discrete observations has
been studied by many researchers, see Prakasa Rao [14,15], Florens-Zmirou [2], Yoshida [18,19], Bibby and
Sorensen [1], Kessler [7] and references therein. Here the correctly specified diffusion model means that there
exists a true parameter value 6y = (ao, o) € B4 X Og such that b(z,ap) = B(z) and [oc*](z, Bo) = [SS*](x)
for all =, where x denotes the transpose. For both the estimator &,, of the drift parameter « and the estimator
f3,, of the diffusion coefficient parameter 3 in the correctly specified case of discretely observed ergodic diffusion
processes, Yoshida [18] showed that under some regularity conditions, (v/nhy (&, — ao), \/ﬁ(ﬁn — o)) converges
in distribution to a normal random variable, which means that the rate of convergence for &, is different from
the one for Bn, see also Kessler [7]. On the other hand, the parameter estimation for misspecified diffusion
models has been mainly investigated for the case where the whole path X = {X;;t € [0,T]} is observed, see
McKeague [11], Yoshida [17] and Kutoyants [9]. They proved that under some regularity conditions, v/T' (a1 —a*)
converges in distribution to a normal random variable, where &7 is the maximum likelihood estimator and «o*
is the quasi-optimal parameter. Although there have been applications of parametric estimation for discretely
observed misspecified diffusion models (for example, information criteria for selecting the best model among
competing misspecified models, see Uchida and Yoshida [16]), there seems no theoretical work on discretely
observed misspecified diffusion models to the authors’ knowledge.

In this paper, we consider parametric estimation for misspecified models from the discrete observations X,,.
The contrast function based on a locally Gaussian approximation (the Euler-Maruyama approximation) is used
and we treat the following two kinds of misspecified diffusion models: (i) completely misspecified model, which
means that a family of drift functions {b(x, ), € ©,} may or may not include B(x), and for j = 1,...,q,
go,;j(2) is not identically equal to zero, where g, ;(z) = itr {(6%3_[00*]_1)(93, B*) ([SS*)(z) — [o0*](x, 6*))} and
(B is a quasi-optimal parameter defined in Section 2 below, (ii) semi-misspecified model, that is, {b(z, o), a €
©.} may or may not include B(z), and for j =1,...,q, g»;(x) = 0 for all z. In both cases, we show that the
minimum contrast estimator has asymptotic normality. It is worth stating that the rate of convergence for the
diffusion coefficient estimator in the completely misspecified case turns out to be v/nh, while the one in the
semi-misspecified case is still /n.

This paper is organized as follows. In Section 2, a contrast function based on a locally Gaussian approximation
to the transition density is introduced, and consistency of the minimum contrast estimator obtained from the
contrast function is stated. Moreover, for both the completely misspecified case and the semi-misspecified
case, asymptotic normality of the minimum contrast estimator is presented. Section 3 gives two examples and
simulation studies. Section 4 is devoted to the proofs of the results in Section 2. The conclusion of this paper
and the discussion on the results are given in Section 5.

2. MINIMUM CONTRAST ESTIMATORS

2.1. Contrast function

Let Cf ’l(Rd x ©;R?) denote the space of all functions f satisfying the following conditions: (i) f(z,6) is an
R-valued function on R? x ©; (ii) f(x,0) is continuously differentiable with respect to x up to order k for all

0, and their derivatives up to order k are of polynomial growth in z uniformly in 6; (iii) for |n| = 0,1,...,k,
O™ f(x,0) is continuously differentiable with respect to 6 up to order ! for all z. Moreover, for |v| = 1,...,1
and [n| = 0,1,...,k, 60" f(x,0) is of polynomial growth in x uniformly in 6. Here n = (ni,...,n4) and
v = (v1,...,Vy) are multi-indices, m = dim(0), n| = n1 + ...+ ng, [V| =vi+ ... + vy, 0" = 01" ---0),

0; = 0/0x;, and 6" = ' -+ -0y, 0, = 0/00;. Let Cf(Rd; R?) be the space of all functions f satisfying that
f(z) is an R%valued function on R%, f(x) is continuously differentiable with respect to = up to order k and
their derivatives up to order k are of polynomial growth in x. Let F;(R%) be the space of all measurable
functions f satisfying that f(z) is an R-valued function on R? with polynomial growth in z. Let L be the
infinitesimal generator of the diffusion (1.1): L = Z?zl Bi(x)0; + %Zf’jzl[SS*]ij (2)0;0;. Let —P and —< be
the convergence in probability and the convergence in distribution, respectively.
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In this paper, we make the following assumptions.
A1 (i) There exists Ly > 0 such that for all z,y,

[B(z) — B(y)| + [5(x) = S(y)| < Lolz —yl.

(ii) B € C}(R4R) and S € C2(RGRT@RD).
(iii) There exists a unique invariant probability measure yu of X; and for any g € F;(R?) satisfying [g. |9(z)|p(dz)

< 00,as T — o0,
1 T
7 [ )= [ gt
0 R
(iv) sup, E[|X¢|P] < oo for all p > 0.

A2 (i) There exists Ly > 0 such that for all z,y,

sup [b(z, ) — by, )| + Stgp lo(z,8) — oy, )] < Lilz —yl.

(i) b € CT*(R? x O4;RY) and 0 € C7° (R x ©5; R @ RY).
(iii) There exists ¢ > 0 such that infg det[oo*]|(z, ) > m for all z.

Remark 2.1. (i) As sufficient conditions for Al-(iii)—(iv), we make the following assumptions. Al-(4i7)":
inf, det[SS*](x) > 0, Al-(iv)": there exist f € @ and positive constants ¢j and ¢} such that Lf < —cif + ¢,
where Q = {f € C?*(RY:Ry)| limyy)— oo % = +o0 for all p > O}, and Al-(v)": E[f(Xo)] < co. It follows from
Al-(7)-(i1) and Al-(éi7)’—(v)’ that Al-(éii)—(iv) hold true, see Meyn and Tweedie [12] and Masuda [10]; (ii)
as a sufficient condition for Al-(iv)’, we make the assumption Al-(iv)”: (a) there exist c¢g, Ko > 0 such that
7*B(x) < —colx|? + Ko for all 2. (b) There exists ¢; > 0 such that Zijzl[SS*]ij(x))\i)\j < c1|\? for all @, \.
Then Al-(iv)’ holds true for the case that f(z) = exp{ca|z|?} for c3 € (0,co/c1), see Gobet [4]. (iii) For another
sufficient condition for Al-(iii)—(iv), we can refer Kusuoka and Yoshida [8].

The contrast function is as follows:

n

1
un(0) = 5Z{logdetE<thlvﬂ>+

k=1

1

LAl 8 |

where E(x, 8) = [00*](z, ), Ag(a) = Xip — Xpn - — hpb(Xip ). Let 0, = (&, () be a minimum contrast
estimator defined as

Un(0n) = inf 1, (6). (2.1)
Let
1 = =1
Du(B) = 3 [ {opdet=(e.)+tr (SS0E 0. ) b uldo)
Da(nf) = 3 [ (Bla) ~be.0))* =7 e, 0) (Bla) — bla. ) (o)

Set 0* = (a*,*), where a* and §* are the quasi-optimal parameters defined by * = arginfg D;(8) and
o* = arginf, Da(«, 5*). Suppose that 8* € Int(0).
In order to obtain the consistency of 6,,, we make the assumption as follows.
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A3 (i) For any € > 0, P igf|> [D1(8) — D1(B%)] > 0.

(ii) For any € > 0, | inf|> [bQ(a;ﬁ*) — Da(a*, 3%)] > 0.
a—a*|>e

The result of the consistency is as follows.

Proposition 2.1. Assume A1-A3. Then, én —P 0* as h, — 0 and nh, — oco.

2.2. Completely misspecified case

We consider the situation where (i) a family of drift functions {b(z,«),a € ©,} may or may not include
B(z), (ii) for j =1,...,¢, go,j(x) is not identically equal to zero, where

1 —_—— * * —_
9o,5(@) = 5t {(35,5 ") (@, 87) ([5"](2) — ==, 87)) }
In order to state the sufficient condition for the asymptotic normality of én, we set

(o), , (ko).

4,j=1,...,p

0 (7i2,(8)),

,,,,,

JO) = | N7 ag=l.p N T/ AZ0
WJ=1,....q
where

T30 = [ (60b)E 0 B) (0, b))

R4

— [ (o8, (@02 (@ ) {Bla) — bl )} (),

IO = = [ (G (@006, 5w A)(Ble) — ba.)la)
) = g [ (670D @ H) )

+3 [ 0 (0n88, 57 5)(55")e) — S, 00) o),

In addition to A1-A3, we need the following assumptions.
A4 There exist functions Gy i, Go.j, OGpi, OkGoj € Fy(RY),i=1,...,p,7=1,...,q, k=1,...,d such that

LGyi(z) = (00,0)*(z, )=z, B*) {B(z) — b(x,a")},
LG, j(x) = g¢oj(2).

A5 J(0*) is invertible.

Remark 2.2. (i) For sufficient conditions satisfying that Gy i, Go.j, OxGb.is OxGoj € Fy (R%) in A4, we can refer
Pardoux and Veretennikov [13]. For example, the assumptions A1-(i)—(ii), Al-(iii)’, Al-(iv)” in Remark 2.1
and A2 imply A4. (ii) In the case that d = r = 1 and pu(dz) = v(x)da, under mild regularity conditions, both
0.Gy,i(z) and 0;G, j(z) have the following explicit forms:

0.Gri(z) = / LB) =N gg(jgi‘j%b)(y’“*m(dw,
S2 ﬁ* 5]'0- ,ﬁ*
%6o) = o /_oo{ O .
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Let
(K3). (52) 0
K = ’L* »»»»» p j=1,...,q
id .. ?
(Kbgr) i=1,..., P (KlZTJU)'L Jj=1,..., q
j=1,..., q
where
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Ky, = /R (0, 0)* (. 0M)ET (@, 57) = (9aG,0)(@) [S87)(2)(02 G )" () u( ),
K, = /R (092G ) (0)[S57] (2)(92 G )" () ().

The result of asymptotic normality is as follows.
Theorem 2.1. Assume A1-A5. Then, as h, — 0, nh, — oo and nh? — 0,

( Vnhp (G, — a*)

Vnhy (B — 8%)
Remark 2.3. As seen from Theorem 2.1, if the asymptotic covariance matrix J~1(6*)K(J*)~(0*) is non-
degenerate, then the rate of convergence for the estimator [, of the diffusion coefficient parameter § in the
completely misspecified case is v/nh,,, which is different from the one of the correctly specified parametric case.
Meanwhile, the rate of convergence for the estimator &,, of the drift parameter « in the completely misspecified
case is the same as the one of the correctly specified parametric case. For the intuitive reason why the rate of
convergence for 3, in the completely misspecified case is worse than the one of the correctly specified parametric
case, see Section 5 below.

) S N(0, SO K ()L (67)).

2.3. Semi-misspecified case

In this subsection, we treat the case that (i) a family of drift functions {b(z, @), € O,} may or may not
include B(z), (i) for j = 1,...,q, go;(x) = 0 for all z, where g, j(z) is defined in Section 2.2. We call it the
semi-misspecified case. If a family of diffusion functions {[occ*](x, 3), 8 € ©g} includes [SS*](x), that is, there
exists a true parameter §* € O3 such that [oo*|(z, %) = [SS*](x) for all z, then the above condition (ii) is
satisfied.

Let

- () o

J(O) = Hj=1,ep
(Jgﬂ(ﬁ))i]:1 »»»»» q
and
- (131) 0
— 7,7=1,..., P oy )
0 (Kaja)i,jzl,.nﬂ
where

R =5 [ o (052 ) 385" @) (65,2 ) (a7 ) n(do).
Rd

We make the following assumptions.
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A4 There exist functions Gy ;, O Gp; € Fy(RY),i=1,...,p, k=1,...,d such that

A5’ J(6%) is invertible.  LGbi(@) = (da,b)*(z,a")=7" (2, 67) {B(x) — b(z,a")} .
The result of asymptotic normality is as follows.

Theorem 2.2. Assume A1-A3 and A4'-A5'. Then, as h,, — 0, nh,, — oo and nh? — 0,
( Vnhy (G — o)
Vi(Bn = 57)
Remark 2.4. Following the proof of Lemma 6 below, we can show that Theorem 2.2 still holds true even if
ka 190,J(Xt;; 1) =op(l) forj=1,...,¢q

) LN, L0 R T (60°)),

3. EXAMPLES

3.1. Completely misspecified case

As an example of the completely misspecified case, we consider the one-dimensional ergodic and stationary
diffusion process

1
dX, = —5Xudt+dw, te[0,T], Xo~p, (3.1)

22

where g is the invariant distribution, p(dz) = ¢(x)de and ¢(z) = \/% e~z . We assume the statistical model

B
NiEse

where a, 8 > 0. The contrast function for (3.2) with 0 = («, 3) is

dXt = *Oé(Xt — ].)dt —+ d'LUt7 t e [O,T], Xo ~ [, (32)

2
un(0) = lzn: log 32 + {th ~ X A I X, — 1)}
! 2 k=1 1 +Xt2;:71 h" 1—f—)€z
o1

The quasi-optimal parameters for a and § are

2
g = argi%f/R {1ogﬁ— + %} p(dx) = V2,

2
1+ T
——ac—i—oz (x—1
of = argmf/ {2 )2 )} u(dz) = =
1+x2

The minimum contrast estimators of o and 3 are

. Do (Xep = D (X — th—l)(X32'71 +1) 53
&, = — , _
! I gy (Xip | — 12X +1)

1 «— ) 2
B = WZ{th — Xip A+ (X — 1)} (X2 +1). (3.4)

" k=1
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TABLE 1. The mean and s.d. of the estimators for 100 000 independent simulated sample paths.
The quasi-optimal values for o and (3 are o* = % and 3* = /2, respectively.

Qp ﬁn
T hoy, mean s.d. mean s.d.

50 | 1/200 | 0.3856 | 0.1212 | 1.4098 | 0.0982
70 | 1/200 | 0.3718 | 0.0995 | 1.4106 | 0.0832
90 | 1/200 | 0.3637 | 0.0865 | 1.4108 | 0.0743

Next, we calculate the asymptotic covariance matrix of 6, = (s Bn) An easy computation yields that

—1)?
T (07) = /R%ﬂ(df)&
1422
—(z-1(1+2*){-Ltz+a*(z-1)}
o (07 = dr) = )
Tt = 2 [ o ulda) = 0
Tool#) = 2 [ )+ [ ” *5) ()
Moreover, since
2 1 -1 1
naw) = o [ 15 “O‘(ﬁ)z B gpay= Lt 4t 20 49)
Y
2 Tol4y? - ()2 x
0.G, = dy = —,
@ = g [T o=
one has that Ky, = 2:?65,1( %,KW = % Thus,

205 T
71(9*)KJ71(9*) — ( 32$ 118\/5 ) )
18v2 2
Here we examine the asymptotic behaviour of the estimator 0, through the simulations, which were done for
each T' = 50,70,90 and h,, = 1/200. For the true model (3.1), 100 000 independent sample paths are generated
by the exact simulation, and the mean and the standard deviation (s.d.) for the estimators (3.3) and (3.4) are
computed and shown in Table 1 below.

In Table 1, 3, is unbiased in all cases, and v/T'x (the sample s.d.) is close to the asymptotic s.d. of \/T(Bn—ﬁ*),
which is equal to v/0.5 ~ 0.7071 by Theorem 2.1. In special, /T x (the sample s.d.) ~ 0.7050 when 7' = 90.
We see that Bn gives good results in all cases. On the other hand, since &, has a bias even when T" = 90, we
will need to set that T" is more than 90 in order to get a good estimate of a*.

3.2. Semi-misspecified case

We consider the two-dimensional ergodic diffusion process

dX, = —AXdt+dw, te[0,T], Xo=(1,-1)%, (3.5)
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1/2 1/4
1/4 1/2
p(de) = }4/—3 exp{—V(z)}dz and V(z) = 3 (23 + 2125 + 2}). We assume the statistical model

where w is a two-dimensional standard Wiener process, A = ( >, the invariant distribution is

dX; = —aAX,dt+/BBdw;, te[0,T], Xo=(1,-1)%, (3.6)

" 1 1 . . 1 0
where o and (3 are positive constants and B = ( 10 > Note that in this example, [SS*]|(z) = ( 01 ),
Z(z,3) = BB% and =71 (z,8) = %C’, where C = jl _21 )

The contrast function for (3.6) with 6 = (a, ) is

l\D|H

n
Z%%ﬁ /4w&w+mmxhwx%&%+mmxhg.
k=1

The quasi-optimal parameters for o and 3 are

3 3
B = aurgi%f/R2 {logﬁQ—l—B}u(dx):g,

o = arginf/ (—Az 4+ aAx)*C(—Ax + aAx)p(dz) =1,
@ R2

where we note that a* is the true value of a. The minimum contrast estimators of o and (§ are

) Sl Xf AC(Xy — Xip ) o)
an, = — n ) .
T i Xpo ACAXy

R 1 < . * .
671 = onh Z (Xt;; — th,l + hnanAXtZ,1> C(th - Xt;CLI + hnanAXt};il)- (38)
" k=1
It is easy to see that tr {(6s=1)(x, 5*) ([9S*](z) — E(z, %))} = fﬁ + Bl* = 0, which means that this
example is the semi-misspecified case. Furthermore, one has that
Jp(0%) = i/ ¥ ACAzp(dx) = 1
bb T 5 Jre K ~9p+
Too(B7) = L/ t(C1 00 Cp(da) = ——
- 2(8*)* Jr2 (8)*
1 1
Ky = / 2* AC? Az p(dx) = ,
Ca 0 = Gy
Koy — ——3——-jf tr(C2)p(da) = —
T A e T T ()

Thus, the asymptotic covariance matrix of 6, = (Gin, Bn) is

JWmK7Wﬂ<39).

2

For the same T and h, as the previous example, we examine the asymptotic behaviour of the estimator én
through the simulations, and the mean and the s.d. for the estimators (3.7) and (3.8) are given in Table 2
below.
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TABLE 2. The mean and s.d. of the estimators for 100000 independent simulated sample paths.
The true value for v is a* = 1 and the quasi-optimal value for 3 is 8* = %

Qp Bn
T hoy, mean s.d. mean s.d.

50 | 1/200 | 1.0697 | 0.2893 | 1.4979 | 0.0186
70 | 1/200 | 1.0493 | 0.2425 | 1.4979 | 0.0157
90 | 1/200 | 1.0406 | 0.2130 | 1.4978 | 0.0139

In Table 2, &, has a little bit bias, but &, gives a good performance as compared with the one of the previous
example, which may result from the fact that the drift function is correctly specified. (3, is unbiased in all cases,
and when T' = 90, \/n x (the sample s.d.) ~ 1.8648, while the asymptotic s.d. of \/n(8, — 3*) is approximately
1.8708 by Theorem 2.2. The simulation result shows that Bn works well as an estimator of §* in all cases.

4. PROOFS

Let G , denote the history up to the time 7 ;. Let R be a function © x (0,1] x R? — R for which there
exists a constant C' such that |R(6,a,z)| < aC(1 + |2|)€ for all §,a, .

4.1. Proof of Proposition 2.1
In order to prove Proposition 2.1, the following lemmas are required.

Lemma 1. Under A1-A2,
(i) | | | 2

EIAY ()|Gi-a) = ha(B™ (Xep ) = 0" (X, @) + B(0, by Xop )
(i)

BA (@A (@)Gi1] = halSS*]"™(Xyp ) + R(0,h7, Xy ),
E[A} () AR () AF (@)|GE_1] = R(0, hyy, Xep_,),

(iv)

4
[Tav@ | ara| = n2{ISs1re[ssi(Xy )+ [S57 (557 (X, )

j=1

HSSTTH[SS ) (X, ) |+ RO B2, Xy ).
Proof. In the same way as in the proof of Lemma 7 in Kessler [7], the Ito-Taylor expansion yields the results.
This completes the proof. O

Lemma 2. Let f € CTl’l(Rd x O;R). Under A1-A2, as h,, — 0 and nh,, — oo,
(i)

1 n
sup |— X ,0) — z,0)u(dr)| =P 0,
e 5 3200~ [ ot
(i)
1 n
sup | — Xin All / (x,0)( ) — bz, @) u(dx)| =P 0,
o | S (X Al (2. 0))" ()
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(iii)

S Xy OA (AR ()~ [ f(a,0)[SS (@)u(dz)| — 0.

k=1 R

sup
oco | nhn

Proof. (i) By the method used in the proof of Theorem 4.1 in Yoshida [17] or Lemma 8 in Kessler [7], we can

show the result. -
(i) Let Ay = Xin — Xgp — hnB(XtLl) and 7721 0) = ﬁf(XtLl,H)AQ. It is enough to prove that

sup —P 0. (4.1)

USC)

Zn

By Lemma 1 and 2-(i), as h,, — 0 and nh,, — oo,

ZE[ 0| G| =0, SE [0 0% g, ] -7 0.

k=1

It follows from Lemma 9 of Genon-Catalot and Jacod [3] that Y, _, 77;; (#) —P 0 for all 6. In order to prove
the tightness of > _, 7721 (+), it is sufficient to prove the following inequalities (cf. Theorem 20 in Appendix I of
Ibragimov and Has’minskii [6] or Lemma 3.1 of Yoshida [17]:

N 207
(Z ! (9)> < ¢ (4.2)
k=1
n n 2l:
E ( ng (62) — Zf/ﬁl (91)> < Cloy — 6%, (4.3)
k=1 k=1

for 0,6,,02 € ©, where [ > (p + ¢q)/2. We define 521(9) and 5,2172(9) by
i

1 t 1
7721 (9) = n—hnf(Xt;;*l’o)/ (Bll (XS) — _Bl1 (Xt;;,l))ds + n—hnf(Xt;;*No)/ Z Sllj d’u}]

ty 1 e 15=1

= &) +&,5(0).

By the standard estimates, one has that

< are|(f)

n k=1 k—1

n

21
> &)

21
F(Xey_,0)(B" (Xs) — B“(thl))ld8> <C
k=1

It follows from the Burkholder-Davis-Gundy inequality that

n

> &, (0)

k=1

l
< <Z f(Xep 1,9)2[55*]l1l1(xs)ds> <C.

=17tk -1
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Therefore, we deduce the inequality (4.2). For the proof of (4.3), setting that Bj_1(s) = B(X,) — B(Xy_ )
and 0, = 0, + u(02 — 61), we first obtain that

kz{f fkl””) ]Sn;ﬁQlZE[(/{ \{f@@z1,92>—f<th1791>}B?1<5>\d8> ]

n k=1 k—1
pt+q

<C> (02— ) [*
j=1

Next, the Burkholder-Davis-Gundy inequality yields that

k=17t 1

" 21 n .
E [(Z{@iﬁmg) - «5552@1)}) ] < (nh—l)mE [(Z / {F(Xep_,,02) - f(xt;;l,en}Q[SS*]h“(Xs)ds) ]
k=1 "
ptaq )
<CY (2 =0,
j=1
which completes the proof.

(iii) Since

AP (a)APZ () = ARAR +hoAL (B2 (X ) — 02 (X, a))
+h AR (B (Xyp ) — 0" (Xpn ) (4.4)
+hy (B (Xip ) = b (Xip_ ) (B2 (Xen ) = b2 (Xip_ |, ),

it is enough to prove that

su (Xien 0 Allﬁlz —/ z,0)[SS* 12 () u(dx)| —P 0.
Heg nhn;f (38 k2K Rdf( )[ ] ( ):u( )
From Lemmas 1 and 2-(i), as h, — 0 and nh,, — oo,
SO 088 g ] o [ s oiss )

E
k=1

1 o 2
(nh (thl,e)AQAff) g,gl] —P Q.

Lemma 9 of Genon-Catalot and Jacod [3] yields that for all 6,

s Zf Xy (OMAE =7 [ 0SS @)u(da),
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For tightness of the family of distributions of —— Zk (X, )A;;Aij, one has

E f(Xer L O)AAR
il e nh Z a7 X

sup I Xy, >\E [(AQ)M(A%)Q\%_JH 3

n n 96@
This completes the proof. O
Lemma 3. Assume A1-A2. Then, as h,, — 0 and nh,, — oo,
(i)
1

sup un(a B) — D1(p ' —PQ,

0cO
(i)

1 * *
sup (a,ﬁ)—un(a 75)}’_{D2(a75)_D2(a 75)} —P 0.
oeo |1
Proof. (i) Noting that
1 1 1 R
— = =—1 111 11 Al
~un(0) = 5 > SlogdetE(Xy ., 8) + oo > (BT (X, ) PALAR (@) ¢
k=1 l1,la=1
one has the result by Lemmas 2-(i) and (iii).
(ii) By setting bx(a™,a) = b(Xsp ") = b( Xy ),
— {un(, 6) — (o, )} (45)
nh n n i .
- YD DECRIENIE {B (@ ) A + 52 (0", ) A}

k=11y,lo=1
thn (B (X ) = b (X, 0)) (B2 (Xep_ ) = b2 (Xep_ )

1

—ha(B™ (Xgp_,) = 0" (X, @) (B (Xyp_,) = b(Xyp_,,0") }

It follows from Lemma 2-(i) and (4.1) that we have the result. This completes the proof. O

Proof of Proposition 2.1. . By A3-(i), we see that if |3 — §*| > €, then Dy(8) > D1(8*) 4+ n for some n > 0.
Thus, for any € > 0,

Pl =812 < P[Di(B) > Da(8") +1]
< P |- Tun@n B4 D) > 3] P ()~ L@ 5> 7
4P | Lun(an. ) - Da(5) > 1]
< 2P |:SUP lun(a,ﬁ) _Dl(ﬁ)‘ > Q:| + P [Un(dmﬁn) > “n(dmﬁ*)} :
2] n 3
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It follows from Lemma 3-(i) and the definition of 6,, that for any € > 0, P[|3, — 3*| > ¢] — 0 as h, — 0 and
nh, — oo, which completes the proof of consistency of Bn

Next, we will show the consistency of d&,. Let Y, («, ) = un(«a, 8) — un(a*, f) and D(a, 8) = Da(w, 3) —
Dy (a*, 3). Note that

sup iYn(oﬁﬁn) — D(o, 5%)

< su
o nhn P

(03

n—flln {Yn(avﬁn) - Yn(a,ﬁ*)}‘

o (0,687) — Do, )

n

+sup
«

and it follows from (4.5), (4.1), Lemma 2-(i) and consistency of 3, that

1 . 1 Tl x NRIe L Flal e N R
sup | —- {Yn(a,ﬁn) —Yn(a,ﬁ*)}‘ < sup | Z Z E N Xy, B)" {bf(a L)AL + b2 (o 704)A§cl}
« " " k=111,l2=1
1 n d
= B30 DT sup|ds(E (K, ) €O+ 1K, D = 0p(1),
k=111,la=1

Lemma 3-(ii) implies that as h,, — 0 and nh,, — oo,

LYvn(O‘aBn) - D(Ot,ﬂ*)

su
P nhy,

[e3

—P 0. (4.6)

Therefore, by the same argument as the proof of consistency of 8, for any € > 0, there exists a constant 7 > 0
such that

Pllay, —a*| > €] < P[D(an, ") > 1]

1 A 1 A
< P fsup| Yol - D087 > 3] + P [ (a6 > e 5]
a | nhny 2

From (4.6) and the definition of ,,, one has that for any € > 0, P[|a, —a*| > €] — 0 as h, — 0 and nh,, — cc.
This completes the proof. O

4.2. Proofs of Theorems 2.1 and 2.2
For the proofs of Theorems 2.1 and 2.2, we set that

L (§ B ) (0 (5 65 u)(0)
Cn(e) _ (’nhf( i ]U/ )( )>i,j=1,.--,p (nlhn( i B]u )( )) ;il’””p
(700, 05.un) 0)) i1 (5(05:08,un)(0)); 5y,

) (3 Gaboi)®) (kG dsu®)

Cn(e) = 1 LI P L j=1,....q
nvh (6aﬂ'5ﬁiun)(0) i=1,...,q (E(éﬁzéﬁgun)(e))z i1
Vha J=1,...q

i ey
j=1,...,p
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L, — (7\/W(5a’u”)(9*))z:1,m,p L, = (7W(5a’u”)(9*))i:1 ..... r |
(= (30, ua) () | (— = @,un)(0)

Jj=1,....q

and that

Lemma 4. Assume A1-A2. Then, as h,, — 0 and nh,, — oo,

(i)
sup |Cy(0) — J(6)| =" 0,
0co

(i)

sup |C,, (0) — J(0)] —* 0.
0cOe

Proof. An easy computation yields that

d

Saiboyun(0) = — > {[56,75%1)) (X )=~ (thfl,g)yl Al ()

b
Il
—

~

1=1

o (50,8 O = (18] () (X))

n d I
SoBun(®0) = =30 D [0 b) (X, 0)(55,E ) (X . 0)] " AL (),
k=110;=1
1 — -
6ﬁi5ﬁjun(9) = 52{5ﬁi5ﬁj10gdet:(Xt271a6)
k=1
—1 4 =1 2, Iy
it 0 (605,27 (X, B)) T AR ()AR(0)
ll,lgzl

It follows from Lemma 2 that as h,, — 0 and nh,, — oo, uniformly in 6,

o nl®) = = [ {(Guibo,b) (.02 0, 5)(Bla) b))

nhy,
— (00, b)* (2, )27 (2, B) (80, b) (, @) } p(da),
%éai(sﬁjunw) = [ (G ()3, = A)(B(a) - blasa) (o)
Rd

60, 05,un(6) —P 0,

n\/_
1
E(Sgi(sgjun(@) —P 5 / {(5@.‘51‘ (((5@. E)Eil(l‘, ﬂ)) + tr ((5@5@.571)5(%, ﬂ))
R4
+tr ((95,05,271) (2, A)([SS™](2) — E(z, 8))) } p(d),
which completes the proof. O

Lemma 5. Assume A1-A2 and A4. Then, as h, — 0, nh,, — oo and nh? — 0,

L, —»% N(0, K).
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Proof. In order to obtain the result, it is sufficient to show that

T
%%iun(@*) % /O (Bob)* (X, 0*)E1 (X0, B9 S(X)dun
_ﬁ/o 0.Gy o(X0)S(X2)dwr + 0y (1), (@7)
%%jun(@*) _ % /O D2 G 5 (X1)S(Xy)dwy + 0p(1). (4.8)

For the proof of (4.7), setting fi(x) = (8a,b)*(z, )= (2, 8*) and g, () = fi(x)(B(x) — b(x, a*)), one has

—;%iun(ﬂ*)

X)d
nhy, )S( Xy )dwy

/ fz Xt"
\/nhn — -t

Z tp_ )(B(Xt) = B(Xyp_))dt

nk‘lﬂ;l

it dt.
\/nh zjl/t 9.1 Xip_,)

Since it is easy to see that

1 &
nhy, Z /t" (fiXe) = fi(XtZﬂ))S(Xt)dwt = 0p(1),

Ly / " (X )(B(X) — B(Xep )t = 0(1),

1 & [
> [ (a0 — sl )it =00,

k—1

we obtain that

1
————0q,un (0"
nhy,

~—

= /fz X¢)S(Xt)

Z/ glet dt+0p()

Furthermore, by A4, LGy i(z) = gpi(x). It follows from Ito’s formula that

tr tr
Gi(Xey) — Goa(Xp ) = / (9.Gis) (X2)S(X7)duwy + / doi(X1)dt.

th—1 th—1

Therefore, using A4, one has

1 & I
\/W Z/ gb,i(Xt)dt = _ﬁ /0 (GxGM)(Xt)S(Xt)dwt + 0p(1).
n p tr—1

=1

This completes the proof of (4.7). O
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Next we will prove (4.8). Let

M, (0) = %tr{(%y.E*l(Xt;il,ﬂ)) (Ak(a)A;(a)—hn[SS*](thil))}.

Note that

1 n
5[3Jun = h_ZM]’k +Zg0] Xt;; L (4.9)

" k=1

Since it follows from Lemmas 1 and 2 that

1 < . | o
7 Y E[Mk(0)IGE ] = N S R(0,82, Xep ) —7 0,
k= Min 2
1 « L&
—— D E[Mx(0")|G;i1] = —= > R(O.h, Xy ) =70,
" k=1 n

Lemma 9 in Genon-Catalot and Jacod [3] implies that ﬁ Sohoi M;k(0%) = 0p(1). An easy estimate yields
that \/% Sy ftk ) (90,3 (Xy) — ga7j(Xt271)) dt = o0,(1). Therefore,

Vhn IR
——=0gup(0") = ——= 9o, (Xp)dt + 0p(1).
\/ﬁ 3o V nhn ; tre_1 J P
Moreover, it follows from A4 that LG, ;(x) = ¢, ;(z). By using Ito’s formula,
tr tr
Goj(Xip) — Goj(Xip_ ) = / (02Go,3)(Xe)S(X¢)dwy +/ 9o, (X¢)dt.
th—1 th—1

Thus, A4 implies that

\/iTZ / am(Xiat - Vlf /0 (0:Gorj)(X0)S(Xe)duwr + 0p(1).

k=1"1tk-1

This completes the proof of (4.8). The central limit theorem for martingale yields the result. This completes
the proof.

Lemma 6. Assume A1-A2 and A4'. Then, as h,, — 0, nh, — 0o and nh? — 0,
L, —¢ N(0, I_()

Proof. Let

Qu

1 * = l’l
& = m;(@aib) (Xip, 0" (X, B) = 0uGoal(Xey,)) Bl

mk = 2\/_h Z (6,571 (X, )

l1,lo=1

Il

(B AE - halSSTH (X))
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We first show that

1 n
- n—hnéaiun(e*) = Zlfz,k + 0p(1), (4.10)
1 n
@) = St o) (@.11)

For the proof of (4.10), we note that

— 80, Up, (07) ZZ [ O, 0)* (X 170‘*)5_1(Xt:,1,ﬁ*)}l52 + hnngai(xt’ktl)-

k=11=1 k=1
Hence,
1 n 1 n d
- 604 ne* 7 — ZX" + (anXn )Al
nhy, un(07) ;g’k nhnkzlgb te nhn;; balXip_,) k
1 &%
= - Z/ (96,i(Xe) = gp,i(Xep_))dt
nh" k=1"tk-1
1 & th k
+ Z / gb,i (X3 )dt +/ GxGM(XtLI)S(Xt)dwt
nhn k=1 tp_q te

1 [
+ nhnZ/ﬂ 8:G,i(Xep )(B(Xy) — B(Xyp ))dt.

Z [Ak|Gr_1] \/_Z R(O,h3? X ) =P 0

k=1 k=1

n ) C 'g. 9
Z [ARIGE 1] < — / (0:Gra(Xp ) (B(X0) - B(Xy,)))
"= k=1 —1

(X0 — (X )| 61y at < © ZRe,hi,Xt;,JJO-

By Lemma 9 in Genon-Catalot and Jacod [3], one has that \/% ZZZI A, — 0, which completes the proof
of (4.10).
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Next we will prove (4.11). An easy calculation together with (4.4) and (4.9) yields that

1 n
—ﬁ%un(@*) - ;mpk == — Zgg,]

By noting that g, ;(xz) = 0, it follows from Lemma 2 and (4.1

completes the proof of (4.11).
Finally, we show that

> ElEklGE ] -7 0

|E gz k|gk 1

bl bl
M= T0: 1
,_. —

b
Il

1

NE

b
Il

1

Lemmas 1 and 2 yield that

n

> EléiklGr ]

k=1

NE

>
Il
=

> El&ixniklGii]
k=1

which completes the proof of (4.12). In the same way,

g.

) 2\/_hzz(5ﬁf

X [hn&; (B(Xey ) —b(Xep ,,0%))

+ha A (B(Xap ) = b(Xyp @) + +h3 (B(Xep )

~b(Xy,, )" (B(Xy,) — b(Xey,,0%)"]

EnklGF-1] =" 0, ZE[fi,knjﬂgl?A] -0,
k=1
Z |En; 1|GE_1]]> =7 0,
n
El&i 1€ k1Gk-1] > Emikn;klGri]

n
E[Ei4IGE 1] =7 0, D ElnjlGi ] =" 0.
k=1

En;klGr_1]

ZR (0,h%, Xup ) =70,

Bl&i.klGi 17

77] k|gk 1 2
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= > p_y ik —P 0. This

(4.12)

(4.13)

(4.14)

(4.15)
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This completes the proof of (4.13). Next, setting fi , = (0a7,b)*(XtZ,a*)E_l(XtZ,ﬁ*) —0:Gpi(Xip) and Njj, =
6p,27 1 (X4p, %), one has that

S ElExtinlGl ] = —Z Z B[S (K )+ = D R, ha Xy )
k=1 k=1

k=111,lo=1

3

=7 Ky,

n d d

=D D D NN,

= 111,la=115,l4=1

X([SS*]“Z3 (Xep_ S5 ]2 (X ) + [SS]M (Xp_)[S57]2" (Xip_,))

ZR 9 hi/Q’thfl)
" k=1
—? Kiﬁa-

4>|._

n
> EmisnirlGi] =
k=1

This completes the proof of (4.14). Furthermore,

n C n d B
ZEK?,IJQIZLI] < nh )2 ZZ i,k— 1 Aiz |gk 1]
k=1 o k=11=1
1 & .
= ﬁ R(leathil) - 0;
k=1
EmilGii] < QZ Z (NP2 ) E[(AR AR + hp (B (X )G

k=1 " k=111,l2=1

1
B G@FEZR&thwJ—ﬁ&
k=1

where we used the following estimate:

E[(AL)PIGE 1] < CE[| X — Xen [*IGE ]+ R(0,h8, X4n ) < R(0, by, X )

10 L

and this completes the proof of (4.15). By using a combination of Theorems 3.2 and 3.4 in Hall and Heyde [5],
we obtain the asymptotic normality. This completes the proof. ]

Proof of Theorem 2.1. Let B(6*;p) = {0 : 16 — 0*| < p}. Since 0* € Int(O), one has that B(6*;p) C Int(©) for
sufficiently small p > 0. It follows from the Taylor expansion that

Lo a(an — o)
/0 Cnl07 100 =0 ))dt< Vil (B = 57) )1{éneB<e*;p>} = Lalio,eno -

The consistency of 0, yields that for sufficiently small p > 0, 1{97L€B(6*'p)} —P 1 as h, — 0 and nh, — oo.
Lemma 4-(i) and the continuity of J(6) imply that as h,, — 0 and nh,, — oo,

Cr(67) —P  J(0"),
sup |Cr (0" +0)—Cnr(07)] —P 0

|6]<en
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for any sequence €, of positive numbers tending to zero. By Lemma 5 together with the above estimates, it is
easy to show the result. This completes the proof. O

Proof of Theorem 2.2. In the same way as in the proof of Theorem 2.1,

! ~ * 2 * v n(OA[n - a*)
/0 (07 + (00 — 0 ))dt< (B — BY) )1{éne3<e*;p>} LInlo,en0-0y

By using the analogous argument with the the proof of Theorem 2.1, it follows from the consistency of 0,
Lemma 4-(ii) and Lemma 6 that we obtain the result. This completes the proof. t

5. CONCLUSION AND DISCUSSION

This paper treated the parametric estimation for two kinds of misspecified ergodic diffusion models: the
completely misspecified case in Section 2.2 and the semi-misspecified case in Section 2.3. For the estimation of
the semi-misspecified case based on the continuously observed data X = {X;;t € [0, 7]}, under some regularity
conditions with the assumption that Z(x, 3*) = [SS*|(z) for all z, the maximum likelihood estimator a7 has
the asymptotic normality

VT(ap —a*) =% N(0, J; (0%) Ky Tyt (67)) (5.1)

as T — oo, see McKeague [11], Yoshida [17] and Kutoyants [9]. Meanwhile, in the case of parameter estimation
with discrete observations for the correctly specified parametric case where there exists a true parameter §* =
(a*,3%) € B4 x O©g such that b(z,a*) = B(z) and [oo*]|(x, 8*) = [SS*](x) for all z, under some regularity
conditions, the minimum contrast estimator defined by (2.1) is asymptotically efficient as follows:

(%éjnﬂf)*)) -

see Yoshida [18,19] and Kessler [7]. Here we note that in the correctly specified parametric case, J(6*) is the
asymptotic Fisher information matrix, see Gobet [4]. By Theorem 2.2, we see that the minimum contrast
estimator for the semi-misspecified case has the same rate of convergence as the correctly specified parametric
case. If we take (5.1) and (5.2) into account, the rate of convergence in Theorem 2.2 seems natural.

On the other hand, as we have seen from Theorem 2.1, the rate of convergence for the estimator B, of the
diffusion coefficient parameter (3 in the completely misspecified case is different from the one given in (5.2) in
the correctly specified parametric case. This fact results from the difference between the rates of convergence
for dgun(0*), see (4.8) in the proof of Lemma 5 and (4.11) in the proof of Lemma 6. Here we note that in the
completely misspecified case,

N(0, J7H(07)), (5:2)

1 n
5[3Jun 7h_ZM],k +Zg0] Xt}; 1

" k=1
while in the semi-misspecified case,
8, (6 Z M; x(6%)

since g, ;(z) = 0. If dgu,(6*) had the same rate of convergence in both cases, then the rate of convergence
for B, in the completely misspecified case could be the same as the one in the correctly specified parametric
case. However, checking the proof of (4.8) carefully, we see that \/iﬁégjun(e*) can diverge as n — oo, which

follows from the estimates that \/ﬁ;h S, M;(6%) = O,(1) but ﬁ > ket 90.j(Xip_ ) can diverge as n — oo.



290 M. UCHIDA AND N. YOSHIDA

Because of it, the rate of convergence for [, in the completely misspecified case is worse than the one in the
correctly specified parametric case. Therefore, it does not seem that the asymptotic result of the estimator in
the completely misspecified case (Theorem 1) is trivial, in particular, for the diffusion coeflicient estimator @n
Furthermore, the difference of the rates of convergence for 3, between the completely misspecified model and
the semi-misspecified model might be available to test whether a diffusion coefficient is completely misspecified.
Our results suggest that for example we should be careful when testing a hypothesis on a volatility parameter
because the null hypothesis will be rejected in completely misspecified case if we take a critical region based on

V(B — B%).
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