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ESTIMATION FOR MISSPECIFIED ERGODIC DIFFUSION PROCESSES
FROM DISCRETE OBSERVATIONS

Masayuki Uchida1, 2 and Nakahiro Yoshida3

Abstract. The joint estimation of both drift and diffusion coefficient parameters is treated under
the situation where the data are discretely observed from an ergodic diffusion process and where the
statistical model may or may not include the true diffusion process. We consider the minimum contrast
estimator, which is equivalent to the maximum likelihood type estimator, obtained from the contrast
function based on a locally Gaussian approximation of the transition density. The asymptotic normality
of the minimum contrast estimator is proved. In particular, the rate of convergence for the minimum
contrast estimator of diffusion coefficient parameter in a misspecified model is different from the one
in the correctly specified parametric model.
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1. Introduction

Let Xt be a d-dimensional ergodic diffusion process defined by the stochastic differential equation

dXt = B(Xt)dt + S(Xt)dwt, t ∈ [0, T ], X0 = η, (1.1)

where B is an Rd-valued function defined on Rd, S is an Rd ⊗ Rr-valued function defined on Rd and w is an
r-dimensional standard Wiener process independent of X0. We consider a family of parametric models defined
by the stochastic differential equations

dXt = b(Xt, α)dt + σ(Xt, β)dwt, t ∈ [0, T ], X0 = η, (1.2)

where θ = (α, β) ∈ Θα × Θβ = Θ with Θα and Θβ being compact convex subsets of Rp and Rq, respectively.
Furthermore, b is an Rd-valued function defined on Rd × Θα and σ is an Rd ⊗ Rr-valued function defined on
Rd × Θβ . The data are discrete observations Xn = (Xtn

k
)0≤k≤n with tnk = khn, where hn is the discretization

step. We will treat asymptotics when hn → 0, nhn → ∞ and nh2
n → 0 as n → ∞.
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The parametric inference for correctly specified ergodic diffusion processes from discrete observations has
been studied by many researchers, see Prakasa Rao [14,15], Florens-Zmirou [2], Yoshida [18,19], Bibby and
Sørensen [1], Kessler [7] and references therein. Here the correctly specified diffusion model means that there
exists a true parameter value θ0 = (α0, β0) ∈ Θα × Θβ such that b(x, α0) = B(x) and [σσ�](x, β0) = [SS�](x)
for all x, where � denotes the transpose. For both the estimator α̂n of the drift parameter α and the estimator
β̂n of the diffusion coefficient parameter β in the correctly specified case of discretely observed ergodic diffusion
processes, Yoshida [18] showed that under some regularity conditions, (

√
nhn(α̂n −α0),

√
n(β̂n −β0)) converges

in distribution to a normal random variable, which means that the rate of convergence for α̂n is different from
the one for β̂n, see also Kessler [7]. On the other hand, the parameter estimation for misspecified diffusion
models has been mainly investigated for the case where the whole path X = {Xt; t ∈ [0, T ]} is observed, see
McKeague [11], Yoshida [17] and Kutoyants [9]. They proved that under some regularity conditions,

√
T (α̂T−α∗)

converges in distribution to a normal random variable, where α̂T is the maximum likelihood estimator and α∗

is the quasi-optimal parameter. Although there have been applications of parametric estimation for discretely
observed misspecified diffusion models (for example, information criteria for selecting the best model among
competing misspecified models, see Uchida and Yoshida [16]), there seems no theoretical work on discretely
observed misspecified diffusion models to the authors’ knowledge.

In this paper, we consider parametric estimation for misspecified models from the discrete observations Xn.
The contrast function based on a locally Gaussian approximation (the Euler-Maruyama approximation) is used
and we treat the following two kinds of misspecified diffusion models: (i) completely misspecified model, which
means that a family of drift functions {b(x, α), α ∈ Θα} may or may not include B(x), and for j = 1, . . . , q,
gσ,j(x) is not identically equal to zero, where gσ,j(x) = 1

2 tr
{
( ∂

∂βj
[σσ�]−1)(x, β∗) ([SS�](x) − [σσ�](x, β∗))

}
and

β∗ is a quasi-optimal parameter defined in Section 2 below, (ii) semi-misspecified model, that is, {b(x, α), α ∈
Θα} may or may not include B(x), and for j = 1, . . . , q, gσ,j(x) = 0 for all x. In both cases, we show that the
minimum contrast estimator has asymptotic normality. It is worth stating that the rate of convergence for the
diffusion coefficient estimator in the completely misspecified case turns out to be

√
nhn while the one in the

semi-misspecified case is still
√

n.
This paper is organized as follows. In Section 2, a contrast function based on a locally Gaussian approximation

to the transition density is introduced, and consistency of the minimum contrast estimator obtained from the
contrast function is stated. Moreover, for both the completely misspecified case and the semi-misspecified
case, asymptotic normality of the minimum contrast estimator is presented. Section 3 gives two examples and
simulation studies. Section 4 is devoted to the proofs of the results in Section 2. The conclusion of this paper
and the discussion on the results are given in Section 5.

2. Minimum contrast estimators

2.1. Contrast function

Let Ck,l
↑ (Rd ×Θ;Rd) denote the space of all functions f satisfying the following conditions: (i) f(x, θ) is an

Rd-valued function on Rd × Θ; (ii) f(x, θ) is continuously differentiable with respect to x up to order k for all
θ, and their derivatives up to order k are of polynomial growth in x uniformly in θ; (iii) for |n| = 0, 1, . . . , k,
∂nf(x, θ) is continuously differentiable with respect to θ up to order l for all x. Moreover, for |ν| = 1, . . . , l
and |n| = 0, 1, . . . , k, δν∂nf(x, θ) is of polynomial growth in x uniformly in θ. Here n = (n1, . . . , nd) and
ν = (ν1, . . . , νm) are multi-indices, m = dim(Θ), |n| = n1 + . . . + nd, |ν| = ν1 + . . . + νm, ∂n = ∂n1

1 · · · ∂nd

d ,
∂i = ∂/∂xi, and δν = δν1

θ1
· · · δνm

θm
, δθi = ∂/∂θi. Let Ck

↑ (Rd;Rd) be the space of all functions f satisfying that
f(x) is an Rd-valued function on Rd, f(x) is continuously differentiable with respect to x up to order k and
their derivatives up to order k are of polynomial growth in x. Let F↑(Rd) be the space of all measurable
functions f satisfying that f(x) is an R-valued function on Rd with polynomial growth in x. Let L be the
infinitesimal generator of the diffusion (1.1): L =

∑d
i=1 Bi(x)∂i + 1

2

∑d
i,j=1[SS�]ij(x)∂i∂j . Let →p and →d be

the convergence in probability and the convergence in distribution, respectively.
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In this paper, we make the following assumptions.
A1 (i) There exists L0 > 0 such that for all x, y,

|B(x) − B(y)| + |S(x) − S(y)| ≤ L0|x − y|.

(ii) B ∈ C2
↑(Rd;Rd) and S ∈ C2

↑(Rd;Rd ⊗ Rr).
(iii) There exists a unique invariant probability measure μ of Xt and for any g ∈ F↑(Rd) satisfying

∫
Rd |g(x)|μ(dx)

< ∞, as T → ∞,
1
T

∫ T

0

g(Xt) →p

∫
Rd

g(x)μ(dx).

(iv) supt E[|Xt|p] < ∞ for all p > 0.
A2 (i) There exists L1 > 0 such that for all x, y,

sup
α

|b(x, α) − b(y, α)| + sup
β

|σ(x, β) − σ(y, β)| ≤ L1|x − y|.

(ii) b ∈ C2,3
↑ (Rd × Θα;Rd) and σ ∈ C2,3

↑ (Rd × Θβ;Rd ⊗ Rr).
(iii) There exists c > 0 such that infβ det[σσ�](x, β) ≥ 1

c(1+|x|c) for all x.

Remark 2.1. (i) As sufficient conditions for A1-(iii)–(iv), we make the following assumptions. A1-(iii)′:
infx det[SS�](x) > 0, A1-(iv)′: there exist f ∈ Q and positive constants c∗1 and c∗2 such that Lf ≤ −c∗1f + c∗2,
where Q =

{
f ∈ C2(Rd;R+)| lim|x|→∞

f(x)
|x|p = +∞ for all p ≥ 0

}
, and A1-(v)′: E[f(X0)] < ∞. It follows from

A1-(i)–(ii) and A1-(iii)′–(v)′ that A1-(iii)–(iv) hold true, see Meyn and Tweedie [12] and Masuda [10]; (ii)
as a sufficient condition for A1-(iv)′, we make the assumption A1-(iv)′′: (a) there exist c0, K0 > 0 such that
x�B(x) ≤ −c0|x|2 + K0 for all x. (b) There exists c1 > 0 such that

∑d
i,j=1[SS�]ij(x)λiλj ≤ c1|λ|2 for all x, λ.

Then A1-(iv)′ holds true for the case that f(x) = exp{c2|x|2} for c2 ∈ (0, c0/c1), see Gobet [4]. (iii) For another
sufficient condition for A1-(iii)–(iv), we can refer Kusuoka and Yoshida [8].

The contrast function is as follows:

un(θ) =
1
2

n∑
k=1

{
log det Ξ(Xtn

k−1
, β) +

1
hn

Δ�
k(α)Ξ−1(Xtn

k−1
, β)Δk(α)

}
,

where Ξ(x, β) = [σσ�](x, β), Δk(α) = Xtn
k
− Xtn

k−1
− hnb(Xtn

k−1
, α). Let θ̂n = (α̂n, β̂n) be a minimum contrast

estimator defined as

un(θ̂n) = inf
θ

un(θ). (2.1)

Let

D1(β) =
1
2

∫
Rd

{
log det Ξ(x, β) + tr

(
[SS�](x)Ξ−1(x, β)

)}
μ(dx),

D2(α, β) =
1
2

∫
Rd

(B(x) − b(x, α))� Ξ−1(x, β) (B(x) − b(x, α)) μ(dx).

Set θ∗ = (α∗, β∗), where α∗ and β∗ are the quasi-optimal parameters defined by β∗ = arg infβ D1(β) and
α∗ = arg infα D2(α, β∗). Suppose that θ∗ ∈ Int(Θ).

In order to obtain the consistency of θ̂n, we make the assumption as follows.
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A3 (i) For any ε > 0, inf
|β−β∗|≥ε

[D1(β) − D1(β∗)] > 0.

(ii) For any ε > 0, inf
|α−α∗|≥ε

[D2(α, β∗) − D2(α∗, β∗)] > 0.

The result of the consistency is as follows.

Proposition 2.1. Assume A1–A3. Then, θ̂n →p θ∗ as hn → 0 and nhn → ∞.

2.2. Completely misspecified case

We consider the situation where (i) a family of drift functions {b(x, α), α ∈ Θα} may or may not include
B(x), (ii) for j = 1, . . . , q, gσ,j(x) is not identically equal to zero, where

gσ,j(x) =
1
2
tr
{
(δβj Ξ

−1)(x, β∗) ([SS�](x) − Ξ(x, β∗))
}

.

In order to state the sufficient condition for the asymptotic normality of θ̂n, we set

J(θ) =

⎛
⎝
(
J ij

bb(θ)
)

i,j=1,...,p

(
J ij

bσ(θ)
)

i=1,...,p
j=1,...,q

0
(
J ij

σσ(β)
)

i,j=1,...,q

⎞
⎠ ,

where

J ij
bb(θ) =

∫
Rd

(δαib)
�Ξ−1(x, β)(δαj b)(x, α)μ(dx)

−
∫
Rd

(δαiδαj b)
�(x, α)Ξ−1(x, β) {B(x) − b(x, α)} μ(dx),

J ij
bσ(θ) = −

∫
Rd

(δαib)
�(x, α)(δβj Ξ

−1)(x, β)(B(x) − b(x, α))μ(dx),

J ij
σσ(β) =

1
2

∫
Rd

tr
(
(δβiΞ)Ξ−1(δβj Ξ)Ξ−1(x, β)

)
μ(dx)

+
1
2

∫
Rd

tr
(
(δβiδβj Ξ

−1)(x, β)([SS�](x) − Ξ(x, β))
)
μ(dx).

In addition to A1–A3, we need the following assumptions.
A4 There exist functions Gb,i, Gσ,j , ∂kGb,i, ∂kGσ,j ∈ F↑(Rd), i = 1, . . . , p, j = 1, . . . , q, k = 1, . . . , d such that

LGb,i(x) = (δαib)
�(x, α∗)Ξ−1(x, β∗) {B(x) − b(x, α∗)} ,

LGσ,j(x) = gσ,j(x).

A5 J(θ∗) is invertible.

Remark 2.2. (i) For sufficient conditions satisfying that Gb,i, Gσ,j , ∂kGb,i, ∂kGσ,j ∈ F↑(Rd) in A4, we can refer
Pardoux and Veretennikov [13]. For example, the assumptions A1-(i)–(ii), A1-(iii)′, A1-(iv)′′ in Remark 2.1
and A2 imply A4. (ii) In the case that d = r = 1 and μ(dx) = v(x)dx, under mild regularity conditions, both
∂xGb,i(x) and ∂xGσ,j(x) have the following explicit forms:

∂xGb,i(x) =
2

S(x)2v(x)

∫ x

−∞

{B(y) − b(y, α∗)}(δαib)(y, α∗)
σ2(y, β∗)

μ(dy),

∂xGσ,j(x) =
−2

S(x)2v(x)

∫ x

−∞

{S2(y) − σ2(y, β∗)}(δβj σ)(y, β∗)
σ3(y, β∗)

μ(dy).
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Let

K =

⎛
⎜⎝
(
Kij

bb

)
i,j=1,...,p

(
Kij

bσ

)
i=1,...,p
j=1,...,q(

Kij
bσ

)�

i=1,...,p
j=1,...,q

(
Kij

σσ

)
i,j=1,...,q

⎞
⎟⎠ ,

where

Kij
bb =

∫
Rd

(
(δαib)

�(x, α∗)Ξ−1(x, β∗) − (∂xGb,i)(x)
)
[SS�](x)

× ((δαj b)
�(x, α∗)Ξ−1(x, β∗) − (∂xGb,j)(x)

)�
μ(dx),

Kij
bσ =

∫
Rd

(
(δαib)

�(x, α∗)Ξ−1(x, β∗) − (∂xGb,i)(x)
)
[SS�](x)(∂xGσ,j)�(x)μ(dx),

Kij
σσ =

∫
Rd

(∂xGσ,i)(x)[SS�](x)(∂xGσ,j)�(x)μ(dx).

The result of asymptotic normality is as follows.

Theorem 2.1. Assume A1–A5. Then, as hn → 0, nhn → ∞ and nh2
n → 0,( √

nhn(α̂n − α∗)√
nhn(β̂n − β∗)

)
→d N(0, J−1(θ∗)K(J�)−1(θ∗)).

Remark 2.3. As seen from Theorem 2.1, if the asymptotic covariance matrix J−1(θ∗)K(J�)−1(θ∗) is non-
degenerate, then the rate of convergence for the estimator β̂n of the diffusion coefficient parameter β in the
completely misspecified case is

√
nhn, which is different from the one of the correctly specified parametric case.

Meanwhile, the rate of convergence for the estimator α̂n of the drift parameter α in the completely misspecified
case is the same as the one of the correctly specified parametric case. For the intuitive reason why the rate of
convergence for β̂n in the completely misspecified case is worse than the one of the correctly specified parametric
case, see Section 5 below.

2.3. Semi-misspecified case
In this subsection, we treat the case that (i) a family of drift functions {b(x, α), α ∈ Θα} may or may not

include B(x), (ii) for j = 1, . . . , q, gσ,j(x) = 0 for all x, where gσ,j(x) is defined in Section 2.2. We call it the
semi-misspecified case. If a family of diffusion functions {[σσ�](x, β), β ∈ Θβ} includes [SS�](x), that is, there
exists a true parameter β∗ ∈ Θβ such that [σσ�](x, β∗) = [SS�](x) for all x, then the above condition (ii) is
satisfied.

Let

J̄(θ) =

⎛
⎝
(
J ij

bb(θ)
)

i,j=1,...,p
0

0
(
J ij

σσ(β)
)

i,j=1,...,q

⎞
⎠

and

K̄ =

⎛
⎝
(
Kij

bb

)
i,j=1,...,p

0

0
(
K̄ij

σσ

)
i,j=1,...,q

⎞
⎠ ,

where
K̄ij

σσ =
1
2

∫
Rd

tr
(
(δβiΞ

−1)(x, β∗)[SS�](x)(δβj Ξ
−1)(x, β∗)[SS�](x)

)
μ(dx).

We make the following assumptions.
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A4′ There exist functions Gb,i, ∂kGb,i ∈ F↑(Rd), i = 1, . . . , p, k = 1, . . . , d such that

LGb,i(x) = (δαib)
�(x, α∗)Ξ−1(x, β∗) {B(x) − b(x, α∗)} .A5′ J̄(θ∗) is invertible.

The result of asymptotic normality is as follows.

Theorem 2.2. Assume A1–A3 and A4′–A5′. Then, as hn → 0, nhn → ∞ and nh2
n → 0,

( √
nhn(α̂n − α∗)√
n(β̂n − β∗)

)
→d N(0, J̄−1(θ∗)K̄J̄−1(θ∗)).

Remark 2.4. Following the proof of Lemma 6 below, we can show that Theorem 2.2 still holds true even if
1√
n

∑n
k=1 gσ,j(Xtn

k−1
) = op(1) for j = 1, . . . , q.

3. Examples

3.1. Completely misspecified case

As an example of the completely misspecified case, we consider the one-dimensional ergodic and stationary
diffusion process

dXt = −1
2
Xtdt + dwt, t ∈ [0, T ], X0 ∼ μ, (3.1)

where μ is the invariant distribution, μ(dx) = φ(x)dx and φ(x) = 1√
2π

e−
x2
2 . We assume the statistical model

dXt = −α(Xt − 1)dt +
β√

1 + X2
t

dwt, t ∈ [0, T ], X0 ∼ μ, (3.2)

where α, β > 0. The contrast function for (3.2) with θ = (α, β) is

un(θ) =
1
2

n∑
k=1

⎧⎪⎨
⎪⎩log

β2

1 + X2
tn
k−1

+

{
Xtn

k
− Xtn

k−1
+ hnα(Xtn

k−1
− 1)

}2

hn
β2

1+X2
tn
k−1

⎫⎪⎬
⎪⎭ ·

The quasi-optimal parameters for α and β are

β∗ = arg inf
β

∫
R

{
log

β2

1 + x2
+

1
β2

1+x2

}
μ(dx) =

√
2,

α∗ = arg inf
α

∫
R

{− 1
2x + α(x − 1)

}2

(β∗)2

1+x2

μ(dx) =
1
3
·

The minimum contrast estimators of α and β are

α̂n = −
∑n

k=1(Xtn
k−1

− 1)(Xtn
k
− Xtn

k−1
)(X2

tn
k−1

+ 1)

hn

∑n
k=1(Xtn

k−1
− 1)2(X2

tn
k−1

+ 1)
, (3.3)

β̂n =

√√√√ 1
nhn

n∑
k=1

{
Xtn

k
− Xtn

k−1
+ hnα̂n(Xtn

k−1
− 1)

}2

(X2
tn
k−1

+ 1). (3.4)
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Table 1. The mean and s.d. of the estimators for 100 000 independent simulated sample paths.
The quasi-optimal values for α and β are α∗ = 1

3 and β∗ =
√

2, respectively.

α̂n β̂n

T hn mean s.d. mean s.d.
50 1/200 0.3856 0.1212 1.4098 0.0982
70 1/200 0.3718 0.0995 1.4106 0.0832
90 1/200 0.3637 0.0865 1.4108 0.0743

Next, we calculate the asymptotic covariance matrix of θ̂n = (α̂n, β̂n). An easy computation yields that

Jbb(θ∗) =
∫
R

(x − 1)2
(β∗)2

1+x2

μ(dx) = 3,

Jbσ(θ∗) = 2
∫
R

−(x − 1)(1 + x2)
{− 1

2x + α∗(x − 1)
}

(β∗)3
μ(dx) = 0,

Jσσ(β∗) = 2
∫
R

1
(β∗)2

μ(dx) + 3
∫
R

1 + x2 − (β∗)2

(β∗)4
μ(dx) = 1.

Moreover, since

∂xGb(x) = − 2
φ(x)

∫ x

−∞

{− 1
2y + α∗(y − 1)

}
(y − 1)

(β∗)2

1+y2

φ(y)dy = −1
6
(x3 + x2 + 2x + 3),

∂xGσ(x) = − 2
φ(x)

∫ x

−∞

1 + y2 − (β∗)2

(β∗)3
φ(y)dy =

x√
2
,

one has that Kbb = 205
36 , Kbσ = − 7

6
√

2
, Kσσ = 1

2 . Thus,

J−1(θ∗)KJ−1(θ∗) =

(
205
324 − 7

18
√

2

− 7
18

√
2

1
2

)
.

Here we examine the asymptotic behaviour of the estimator θ̂n through the simulations, which were done for
each T = 50, 70, 90 and hn = 1/200. For the true model (3.1), 100 000 independent sample paths are generated
by the exact simulation, and the mean and the standard deviation (s.d.) for the estimators (3.3) and (3.4) are
computed and shown in Table 1 below.

In Table 1, β̂n is unbiased in all cases, and
√

T×(the sample s.d.) is close to the asymptotic s.d. of
√

T (β̂n−β∗),
which is equal to

√
0.5 
 0.7071 by Theorem 2.1. In special,

√
T × (the sample s.d.) 
 0.7050 when T = 90.

We see that β̂n gives good results in all cases. On the other hand, since α̂n has a bias even when T = 90, we
will need to set that T is more than 90 in order to get a good estimate of α∗.

3.2. Semi-misspecified case

We consider the two-dimensional ergodic diffusion process

dXt = −AXtdt + dwt, t ∈ [0, T ], X0 = (1,−1)�, (3.5)
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where w is a two-dimensional standard Wiener process, A =
(

1/2 1/4
1/4 1/2

)
, the invariant distribution is

μ(dx) =
√

3
4π exp{−V (x)}dx and V (x) = 1

2 (x2
1 + x1x2 + x2

2). We assume the statistical model

dXt = −αAXtdt +
√

βBdwt, t ∈ [0, T ], X0 = (1,−1)�, (3.6)

where α and β are positive constants and B =
(

1 1
1 0

)
. Note that in this example, [SS�](x) =

(
1 0
0 1

)
,

Ξ(x, β) = βB2 and Ξ−1(x, β) = 1
β C, where C =

(
1 −1
−1 2

)
.

The contrast function for (3.6) with θ = (α, β) is

un(θ) =
1
2

n∑
k=1

{
log β2 +

1
hnβ

(Xtn
k
− Xtn

k−1
+ hnαAXtn

k−1
)�C(Xtn

k
− Xtn

k−1
+ hnαAXtn

k−1
)
}

.

The quasi-optimal parameters for α and β are

β∗ = arg inf
β

∫
R2

{
log β2 +

3
β

}
μ(dx) =

3
2
,

α∗ = arg inf
α

∫
R2

(−Ax + αAx)�C(−Ax + αAx)μ(dx) = 1,

where we note that α∗ is the true value of α. The minimum contrast estimators of α and β are

α̂n = −
∑n

k=1 X�
tn
k−1

AC(Xtn
k
− Xtn

k−1
)

hn

∑n
k=1 X�

tn
k−1

ACAXtn
k−1

, (3.7)

β̂n =
1

2nhn

n∑
k=1

(
Xtn

k
− Xtn

k−1
+ hnα̂nAXtn

k−1

)�

C
(
Xtn

k
− Xtn

k−1
+ hnα̂nAXtn

k−1

)
. (3.8)

It is easy to see that tr
{
(δβΞ−1)(x, β∗) ([SS�](x) − Ξ(x, β∗))

}
= − 3

(β∗)2 + 2
β∗ = 0, which means that this

example is the semi-misspecified case. Furthermore, one has that

Jbb(θ∗) =
1
β∗

∫
R2

x�ACAxμ(dx) =
1

2β∗ ,

Jσσ(β∗) =
1

2(β∗)2

∫
R2

tr(C−1CC−1C)μ(dx) =
1

(β∗)2
,

Kbb =
1

(β∗)2

∫
R2

x�AC2Axμ(dx) =
1

(β∗)2
,

K̄σσ =
1

2(β∗)4

∫
R2

tr(C2)μ(dx) =
7

2(β∗)4
·

Thus, the asymptotic covariance matrix of θ̂n = (α̂n, β̂n) is

J̄−1(θ∗)K̄J̄−1(θ∗) =
(

4 0
0 7

2

)
.

For the same T and hn as the previous example, we examine the asymptotic behaviour of the estimator θ̂n

through the simulations, and the mean and the s.d. for the estimators (3.7) and (3.8) are given in Table 2
below.
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Table 2. The mean and s.d. of the estimators for 100000 independent simulated sample paths.
The true value for α is α∗ = 1 and the quasi-optimal value for β is β∗ = 3

2 .

α̂n β̂n

T hn mean s.d. mean s.d.
50 1/200 1.0697 0.2893 1.4979 0.0186
70 1/200 1.0493 0.2425 1.4979 0.0157
90 1/200 1.0406 0.2130 1.4978 0.0139

In Table 2, α̂n has a little bit bias, but α̂n gives a good performance as compared with the one of the previous
example, which may result from the fact that the drift function is correctly specified. β̂n is unbiased in all cases,
and when T = 90,

√
n× (the sample s.d.) 
 1.8648, while the asymptotic s.d. of

√
n(β̂n − β∗) is approximately

1.8708 by Theorem 2.2. The simulation result shows that β̂n works well as an estimator of β∗ in all cases.

4. Proofs

Let Gn
k−1 denote the history up to the time tnk−1. Let R be a function Θ × (0, 1] × Rd → R for which there

exists a constant C such that |R(θ, a, x)| ≤ aC(1 + |x|)C for all θ, a, x.

4.1. Proof of Proposition 2.1

In order to prove Proposition 2.1, the following lemmas are required.

Lemma 1. Under A1–A2,
(i)

E[Δi1
k (α)|Gn

k−1] = hn(Bi1(Xtn
k−1

) − bi1(Xtn
k−1

, α)) + R(θ, h2
n, Xtn

k−1
),

(ii)

E[Δi1
k (α)Δi2

k (α)|Gn
k−1] = hn[SS�]i1i2(Xtn

k−1
) + R(θ, h2

n, Xtn
k−1

),

(iii)
E[Δi1

k (α)Δi2
k (α)Δi3

k (α)|Gn
k−1] = R(θ, h2

n, Xtn
k−1

),

(iv)

E

⎡
⎣ 4∏

j=1

Δij

k (α)

∣∣∣∣∣∣ Gn
k−1

⎤
⎦ = h2

n

{
[SS�]i1i2 [SS�]i3i4(Xtn

k−1
) + [SS�]i1i3 [SS�]i2i4(Xtn

k−1
)

+[SS�]i1i4 [SS�]i2i3(Xtn
k−1

)
}

+ R(θ, h5/2
n , Xtn

k−1
).

Proof. In the same way as in the proof of Lemma 7 in Kessler [7], the Ito-Taylor expansion yields the results.
This completes the proof. �
Lemma 2. Let f ∈ C1,1

↑ (Rd × Θ;R). Under A1–A2, as hn → 0 and nhn → ∞,
(i)

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

k=1

f(Xtn
k−1

, θ) −
∫
Rd

f(x, θ)μ(dx)

∣∣∣∣∣ →p 0,

(ii)

sup
θ∈Θ

∣∣∣∣∣ 1
nhn

n∑
k=1

f(Xtn
k−1

, θ)Δl1
k (α) −

∫
Rd

f(x, θ)(B(x) − b(x, α))l1μ(dx)

∣∣∣∣∣→p 0,
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(iii)

sup
θ∈Θ

∣∣∣∣∣ 1
nhn

n∑
k=1

f(Xtn
k−1

, θ)Δl1
k (α)Δl2

k (α) −
∫
Rd

f(x, θ)[SS�]l1l2(x)μ(dx)

∣∣∣∣∣ →p 0.

Proof. (i) By the method used in the proof of Theorem 4.1 in Yoshida [17] or Lemma 8 in Kessler [7], we can
show the result.
(ii) Let Δ̄k = Xtn

k
− Xtn

k−1
− hnB(Xtn

k−1
) and ηl1

k (θ) = 1
nhn

f(Xtn
k−1

, θ)Δ̄l1
k . It is enough to prove that

sup
θ∈Θ

∣∣∣∣∣
n∑

k=1

ηl1
k (θ)

∣∣∣∣∣ →p 0. (4.1)

By Lemma 1 and 2-(i), as hn → 0 and nhn → ∞,

n∑
k=1

E
[
ηl1

k (θ)
∣∣∣Gn

k−1

]
→p 0,

n∑
k=1

E
[
(ηl1

k (θ))2
∣∣∣Gn

k−1

]
→p 0.

It follows from Lemma 9 of Genon-Catalot and Jacod [3] that
∑n

k=1 ηl1
k (θ) →p 0 for all θ. In order to prove

the tightness of
∑n

k=1 ηl1
k (·), it is sufficient to prove the following inequalities (cf. Theorem 20 in Appendix I of

Ibragimov and Has’minskii [6] or Lemma 3.1 of Yoshida [17]:

E

⎡
⎣
(

n∑
k=1

ηl1
k (θ)

)2l
⎤
⎦ ≤ C, (4.2)

E

⎡
⎣
(

n∑
k=1

ηl1
k (θ2) −

n∑
k=1

ξl1
k (θ1)

)2l
⎤
⎦ ≤ C|θ2 − θ1|2l, (4.3)

for θ, θ1, θ2 ∈ Θ, where l > (p + q)/2. We define ξl1
k,1(θ) and ξl1

k,2(θ) by

ηl1
k (θ) =

1
nhn

f(Xtn
k−1

, θ)
∫ tn

k

tn
k−1

(Bl1(Xs) − Bl1(Xtn
k−1

))ds +
1

nhn
f(Xtn

k−1
, θ)
∫ tn

k

tn
k−1

r∑
j=1

Sl1j(Xs)dwj
s

=: ξl1
k,1(θ) + ξl1

k,2(θ).

By the standard estimates, one has that

E

⎡
⎣
∣∣∣∣∣

n∑
k=1

ξl1
k,1(θ)

∣∣∣∣∣
2l
⎤
⎦ ≤ 1

nh2l
n

n∑
k=1

E

⎡
⎣
(∫ tn

k

tn
k−1

|f(Xtn
k−1

, θ)(Bl1 (Xs) − Bl1(Xtn
k−1

))|ds

)2l
⎤
⎦ ≤ C.

It follows from the Burkholder-Davis-Gundy inequality that

E

⎡
⎣
∣∣∣∣∣

n∑
k=1

ξl1
k,2(θ)

∣∣∣∣∣
2l
⎤
⎦ ≤ C1

(nhn)2l
E

⎡
⎣( n∑

k=1

∫ tn
k

tn
k−1

f(Xtn
k−1

, θ)2[SS�]l1l1(Xs)ds

)l
⎤
⎦ ≤ C.
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Therefore, we deduce the inequality (4.2). For the proof of (4.3), setting that B̄k−1(s) = B(Xs) − B(Xtn
k−1

)
and θ̃u = θ1 + u(θ2 − θ1), we first obtain that

E

⎡
⎣( n∑

k=1

{ξl1
k,1(θ2) − ξl1

k,1(θ1)}
)2l
⎤
⎦ ≤ 1

nh2l
n

n∑
k=1

E

⎡
⎣(∫ tn

k

tn
k−1

∣∣∣{f(Xtn
k−1

, θ2) − f(Xtn
k−1

, θ1)}B̄l1
k−1(s)

∣∣∣ ds

)2l
⎤
⎦

< C

p+q∑
j=1

|(θ2 − θ1)j |2l.

Next, the Burkholder-Davis-Gundy inequality yields that

E

⎡
⎣
(

n∑
k=1

{ξl1
k,2(θ2) − ξl1

k,2(θ1)}
)2l
⎤
⎦ ≤ 1

(nhn)2l
E

⎡
⎣
(

n∑
k=1

∫ tn
k

tn
k−1

{f(Xtn
k−1

, θ2) − f(Xtn
k−1

, θ1)}2[SS�]l1l1(Xs)ds

)l
⎤
⎦

< C

p+q∑
j=1

|(θ2 − θ1)j |2l,

which completes the proof.
(iii) Since

Δl1
k (α)Δl2

k (α) = Δ̄l1
k Δ̄l2

k + hnΔ̄l1
k (Bl2(Xtn

k−1
) − bl2(Xtn

k−1
, α))

+hnΔ̄l2
k (Bl1(Xtn

k−1
) − bl1(Xtn

k−1
, α)) (4.4)

+h2
n(Bl1(Xtn

k−1
) − bl1(Xtn

k−1
, α))(Bl2 (Xtn

k−1
) − bl2(Xtn

k−1
, α)),

it is enough to prove that

sup
θ∈Θ

∣∣∣∣∣ 1
nhn

n∑
k=1

f(Xtn
k−1

, θ)Δ̄l1
k Δ̄l2

k −
∫
Rd

f(x, θ)[SS�]l1l2(x)μ(dx)

∣∣∣∣∣ →p 0.

From Lemmas 1 and 2-(i), as hn → 0 and nhn → ∞,

n∑
k=1

E

[
1

nhn
f(Xtn

k−1
, θ)Δ̄l1

k Δ̄l2
k

∣∣∣∣ Gn
k−1

]
→p

∫
Rd

f(x, θ)[SS�]l1l2(x)μ(dx),

n∑
k=1

E

[(
1

nhn
f(Xtn

k−1
, θ)Δ̄l1

k Δ̄l2
k

)2
∣∣∣∣∣ Gn

k−1

]
→p 0.

Lemma 9 of Genon-Catalot and Jacod [3] yields that for all θ,

1
nhn

n∑
k=1

f(Xtn
k−1

, θ)Δ̄l1
k Δ̄l2

k →p

∫
Rd

f(x, θ)[SS�]l1l2(x)μ(dx).
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For tightness of the family of distributions of 1
nhn

∑n
k=1 f(Xtn

k−1
, θ)Δ̄l1

k Δ̄l2
k , one has

sup
n

E

[
sup
θ∈Θ

∣∣∣∣∣ 1
nhn

n∑
k=1

∂

∂θ
f(Xtn

k−1
, θ)Δ̄l1

k Δ̄l2
k

∣∣∣∣∣
]
≤

sup
n

E

[
1

2nhn
sup
θ∈Θ

n∑
k=1

∣∣∣∣ ∂

∂θ
f(Xtn

k−1
, θ)
∣∣∣∣E [ (Δ̄l1

k )2 + (Δ̄l2
k )2
∣∣∣Gn

k−1]
]]

< ∞.

This completes the proof. �

Lemma 3. Assume A1–A2. Then, as hn → 0 and nhn → ∞,
(i)

sup
θ∈Θ

∣∣∣∣ 1nun(α, β) − D1(β)
∣∣∣∣→p 0,

(ii)

sup
θ∈Θ

∣∣∣∣ 1
nhn

{un(α, β) − un(α∗, β)} − {D2(α, β) − D2(α∗, β)}
∣∣∣∣→p 0.

Proof. (i) Noting that

1
n

un(θ) =
1
2

n∑
k=1

⎧⎨
⎩ 1

n
log det Ξ(Xtn

k−1
, β) +

1
nhn

d∑
l1,l2=1

(Ξ−1(Xtn
k−1

, β))l1l2Δl1
k Δl2

k (α)

⎫⎬
⎭ ,

one has the result by Lemmas 2-(i) and (iii).
(ii) By setting b̄k(α∗, α) = b(Xtn

k−1
, α∗) − b(Xtn

k−1
, α),

1
nhn

{un(α, β) − un(α∗, β)} (4.5)

=
1

2nhn

n∑
k=1

d∑
l1,l2=1

(Ξ−1(Xtn
k−1

, β))l1l2
{
b̄l1
k (α∗, α)Δ̄l2

k + b̄l2
k (α∗, α)Δ̄l1

k

+hn(Bl1(Xtn
k−1

) − bl1(Xtn
k−1

, α))(Bl2 (Xtn
k−1

) − bl2(Xtn
k−1

, α))

−hn(Bl1(Xtn
k−1

) − bl1(Xtn
k−1

, α∗))(Bl2 (Xtn
k−1

) − bl2(Xtn
k−1

, α∗))
}

.

It follows from Lemma 2-(i) and (4.1) that we have the result. This completes the proof. �

Proof of Proposition 2.1. . By A3-(i), we see that if |β − β∗| ≥ ε, then D1(β) > D1(β∗) + η for some η > 0.
Thus, for any ε > 0,

P [|β̂n − β∗| ≥ ε] ≤ P
[
D1(β̂n) > D1(β∗) + η

]
≤ P

[
− 1

n
un(α̂n, β̂n) + D1(β̂n) >

η

3

]
+ P

[
1
n

un(α̂n, β̂n) − 1
n

un(α̂n, β∗) >
η

3

]

+P

[
1
n

un(α̂n, β∗) − D1(β∗) >
η

3

]

≤ 2P

[
sup

θ

∣∣∣∣ 1nun(α, β) − D1(β)
∣∣∣∣ >

η

3

]
+ P

[
un(α̂n, β̂n) > un(α̂n, β∗)

]
.
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It follows from Lemma 3-(i) and the definition of θ̂n that for any ε > 0, P [|β̂n − β∗| ≥ ε] → 0 as hn → 0 and
nhn → ∞, which completes the proof of consistency of β̂n.

Next, we will show the consistency of α̂n. Let Yn(α, β) = un(α, β) − un(α∗, β) and D(α, β) = D2(α, β) −
D2(α∗, β). Note that

sup
α

∣∣∣∣ 1
nhn

Yn(α, β̂n) − D(α, β∗)
∣∣∣∣ ≤ sup

α

∣∣∣∣ 1
nhn

{
Yn(α, β̂n) − Yn(α, β∗)

}∣∣∣∣
+ sup

α

∣∣∣∣ 1
nhn

Yn(α, β∗) − D(α, β∗)
∣∣∣∣

and it follows from (4.5), (4.1), Lemma 2-(i) and consistency of β̂n that

sup
α

∣∣∣∣ 1
nhn

{
Yn(α, β̂n) − Yn(α, β∗)

}∣∣∣∣ ≤ sup
θ

∣∣∣∣∣∣
1

nhn

n∑
k=1

d∑
l1,l2=1

(Ξ−1(Xtn
k−1

, β))l1l2
{
b̄l1
k (α∗, α)Δ̄l2

k + b̄l2
k (α∗, α)Δ̄l1

k

}∣∣∣∣∣∣
+ |β̂n − β∗| 1

n

n∑
k=1

d∑
l1,l2=1

sup
β

∣∣∣δβ(Ξ−1(Xtn
k−1

, β))l1l2
∣∣∣C(1 + |Xtn

k−1
|)C = op(1).

Lemma 3-(ii) implies that as hn → 0 and nhn → ∞,

sup
α

∣∣∣∣ 1
nhn

Yn(α, β̂n) − D(α, β∗)
∣∣∣∣→p 0. (4.6)

Therefore, by the same argument as the proof of consistency of β̂n, for any ε > 0, there exists a constant η > 0
such that

P [|α̂n − α∗| ≥ ε] ≤ P [D(α̂n, β∗) > η]

≤ P

[
− 1

nhn
Yn(α̂n, β̂n) + D(α̂n, β∗) >

η

2

]
+ P

[
1

nhn
Yn(α̂n, β̂n) >

η

2

]

≤ P

[
sup

α

∣∣∣∣ 1
nhn

Yn(α, β̂n) − D(α, β∗)
∣∣∣∣ > η

2

]
+ P

[
un(α̂n, β̂n) > un(α∗, β̂n)

]
.

From (4.6) and the definition of θ̂n, one has that for any ε > 0, P [|α̂n −α∗| ≥ ε] → 0 as hn → 0 and nhn → ∞.
This completes the proof. �

4.2. Proofs of Theorems 2.1 and 2.2

For the proofs of Theorems 2.1 and 2.2, we set that

Cn(θ) =

⎛
⎝
(

1
nhn

(δαiδαj un)(θ)
)

i,j=1,...,p

(
1

nhn
(δαiδβj un)(θ)

)
i=1,...,p
j=1,...,q(

1
n (δαj δβiun)(θ)

)
i=1,...,q
j=1,...,p

(
1
n (δβiδβjun)(θ)

)
i,j=1,...,q

⎞
⎠ ,

C̄n(θ) =

⎛
⎜⎝
(

1
nhn

(δαiδαj un)(θ)
)

i,j=1,...,p

(
1

n
√

hn
(δαiδβj un)(θ)

)
i=1,...,p
j=1,...,q(

1
n
√

hn
(δαj δβiun)(θ)

)
i=1,...,q
j=1,...,p

(
1
n (δβiδβjun)(θ)

)
i,j=1,...,q

⎞
⎟⎠
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and that

Ln =

⎛
⎝
(
− 1√

nhn
(δαiun)(θ∗)

)
i=1,...,p(

−
√

hn√
n

(δβj un)(θ∗)
)

j=1,...,q

⎞
⎠ , L̄n =

⎛
⎝
(
− 1√

nhn
(δαiun)(θ∗)

)
i=1,...,p(

− 1√
n
(δβj un)(θ∗)

)
j=1,...,q

⎞
⎠ .

Lemma 4. Assume A1–A2. Then, as hn → 0 and nhn → ∞,
(i)

sup
θ∈Θ

|Cn(θ) − J(θ)| →p 0,

(ii)
sup
θ∈Θ

|C̄n(θ) − J̄(θ)| →p 0.

Proof. An easy computation yields that

δαiδαj un(θ) = −
n∑

k=1

d∑
l1=1

{[
(δαiδαj b)

�(Xtn
k−1

, α)Ξ−1(Xtn
k−1

, β)
]l1

Δl1
k (α)

−hn

[
(δαj b)

�(Xtn
k−1

, α)Ξ−1(Xtn
k−1

, β)
]l1

(δαib)
l1(Xtn

k−1
, α)
}

,

δαiδβjun(θ) = −
n∑

k=1

d∑
l1=1

[
(δαib)

�(Xtn
k−1

, α)(δβj Ξ
−1)(Xtn

k−1
, β)
]l1

Δl1
k (α),

δβiδβjun(θ) =
1
2

n∑
k=1

{
δβiδβj log det Ξ(Xtn

k−1
, β)

+h−1
n

d∑
l1,l2=1

(
δβiδβjΞ

−1(Xtn
k−1

, β)
)l1l2

Δl1
k (α)Δl2

k (α)

⎫⎬
⎭ .

It follows from Lemma 2 that as hn → 0 and nhn → ∞, uniformly in θ,

1
nhn

δαiδαj un(θ) →p −
∫
Rd

{
(δαiδαj b)

�(x, α)Ξ−1(x, β)(B(x) − b(x, α))

−(δαj b)
�(x, α)Ξ−1(x, β)(δαib)(x, α)

}
μ(dx),

1
nhn

δαiδβj un(θ) →p −
∫
Rd

(δαib)
�(x, α)(δβj Ξ

−1)(x, β)(B(x) − b(x, α))μ(dx),

1
n
√

hn

δαiδβj un(θ) →p 0,

1
n

δβiδβj un(θ) →p 1
2

∫
Rd

{
δβitr

(
(δβj Ξ)Ξ−1(x, β)

)
+ tr

(
(δβiδβj Ξ

−1)Ξ(x, β)
)

+tr
(
(δβiδβj Ξ

−1)(x, β)([SS�](x) − Ξ(x, β))
)}

μ(dx),

which completes the proof. �

Lemma 5. Assume A1–A2 and A4. Then, as hn → 0, nhn → ∞ and nh2
n → 0,

Ln →d N(0, K).
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Proof. In order to obtain the result, it is sufficient to show that

− 1√
nhn

δαiun(θ∗) =
1√
T

∫ T

0

(δαib)
�(Xt, α

∗)Ξ−1(Xt, β
∗)S(Xt)dwt

− 1√
T

∫ T

0

∂xGb,i(Xt)S(Xt)dwt + op(1), (4.7)

−
√

hn√
n

δβj un(θ∗) =
1√
T

∫ T

0

∂xGσ,j(Xt)S(Xt)dwt + op(1). (4.8)

For the proof of (4.7), setting fi(x) = (δαib)
�(x, α∗)Ξ−1(x, β∗) and gb,i(x) = fi(x)(B(x) − b(x, α∗)), one has

− 1√
nhn

δαiun(θ∗) =
1√
nhn

n∑
k=1

∫ tn
k

tn
k−1

fi(Xtn
k−1

)S(Xt)dwt

+
1√
nhn

n∑
k=1

∫ tn
k

tn
k−1

fi(Xtn
k−1

)(B(Xt) − B(Xtn
k−1

))dt

+
1√
nhn

n∑
k=1

∫ tn
k

tn
k−1

gb,i(Xtn
k−1

)dt.

Since it is easy to see that

1√
nhn

n∑
k=1

∫ tn
k

tn
k−1

(fi(Xt) − fi(Xtn
k−1

))S(Xt)dwt = op(1),

1√
nhn

n∑
k=1

∫ tn
k

tn
k−1

fi(Xtn
k−1

)(B(Xt) − B(Xtn
k−1

))dt = op(1),

1√
nhn

n∑
k=1

∫ tn
k

tn
k−1

(gb,i(Xt) − gb,i(Xtn
k−1

))dt = op(1),

we obtain that

− 1√
nhn

δαiun(θ∗) =
1√
T

∫ T

0

fi(Xt)S(Xt)dwt +
1√
nhn

n∑
k=1

∫ tn
k

tn
k−1

gb,i(Xt)dt + op(1).

Furthermore, by A4, LGb,i(x) = gb,i(x). It follows from Ito’s formula that

Gb,i(Xtn
k
) − Gb,i(Xtn

k−1
) =

∫ tk

tk−1

(∂xGb,i)(Xt)S(Xt)dwt +
∫ tk

tk−1

gb,i(Xt)dt.

Therefore, using A4, one has

1√
nhn

n∑
k=1

∫ tk

tk−1

gb,i(Xt)dt = − 1√
T

∫ T

0

(∂xGb,i)(Xt)S(Xt)dwt + op(1).

This completes the proof of (4.7). �
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Next we will prove (4.8). Let

Mj,k(θ) =
1
2
tr
{(

δβj Ξ
−1(Xtn

k−1
, β)
)(

Δk(α)Δ�
k(α) − hn[SS�](Xtn

k−1
)
)}

.

Note that

δβj un(θ∗) =
1
hn

n∑
k=1

Mj,k(θ∗) +
n∑

k=1

gσ,j(Xtn
k−1

). (4.9)

Since it follows from Lemmas 1 and 2 that

1√
nhn

n∑
k=1

E
[
Mj,k(θ∗)|Gn

k−1

]
=

1√
nhn

n∑
k=1

R(θ, h2
n, Xtn

k−1
) →p 0,

1
nhn

n∑
k=1

E
[
Mj,k(θ∗)2|Gn

k−1

]
=

1
nhn

n∑
k=1

R(θ, h2
n, Xtn

k−1
) →p 0,

Lemma 9 in Genon-Catalot and Jacod [3] implies that 1√
nhn

∑n
k=1 Mj,k(θ∗) = op(1). An easy estimate yields

that 1√
nhn

∑n
k=1

∫ tk

tk−1

(
gσ,j(Xt) − gσ,j(Xtn

k−1
)
)

dt = op(1). Therefore,

−
√

hn√
n

δβj un(θ∗) = − 1√
nhn

n∑
k=1

∫ tk

tk−1

gσ,j(Xt)dt + op(1).

Moreover, it follows from A4 that LGσ,j(x) = gσ,j(x). By using Ito’s formula,

Gσ,j(Xtn
k
) − Gσ,j(Xtn

k−1
) =

∫ tk

tk−1

(∂xGσ,j)(Xt)S(Xt)dwt +
∫ tk

tk−1

gσ,j(Xt)dt.

Thus, A4 implies that

1√
nhn

n∑
k=1

∫ tk

tk−1

gσ,j(Xt)dt = − 1√
T

∫ T

0

(∂xGσ,j)(Xt)S(Xt)dwt + op(1).

This completes the proof of (4.8). The central limit theorem for martingale yields the result. This completes
the proof.

Lemma 6. Assume A1–A2 and A4′. Then, as hn → 0, nhn → ∞ and nh2
n → 0,

L̄n →d N(0, K̄).

Proof. Let

ξi,k =
1√
nhn

d∑
l=1

(
(δαib)

�(Xtn
k−1

, α∗)Ξ−1(Xtn
k−1

, β∗) − ∂xGb,i(Xtn
k−1

)
)l

Δ̄l
k,

ηj,k = − 1
2
√

nhn

d∑
l1,l2=1

(
δβjΞ

−1(Xtn
k−1

, β∗)
)l1l2 (

Δ̄l1
k Δ̄l2

k − hn[SS�]l1l2(Xtn
k−1

)
)

.
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We first show that

− 1√
nhn

δαiun(θ∗) =
n∑

k=1

ξi,k + op(1), (4.10)

− 1√
n

δβj un(θ∗) =
n∑

k=1

ηj,k + op(1). (4.11)

For the proof of (4.10), we note that

−δαiun(θ∗) =
n∑

k=1

d∑
l=1

[
(δαib)

�(Xtn
k−1

, α∗)Ξ−1(Xtn
k−1

, β∗)
]l

Δ̄l
k + hn

n∑
k=1

gb,i(Xtn
k−1

).

Hence,

− 1√
nhn

δαiun(θ∗) −
n∑

k=1

ξi,k =
hn√
nhn

n∑
k=1

gb,i(Xtn
k−1

) +
1√
nhn

n∑
k=1

d∑
l=1

(
∂xGb,i(Xtn

k−1
)
)l

Δ̄l
k

= − 1√
nhn

n∑
k=1

∫ tn
k

tn
k−1

(gb,i(Xt) − gb,i(Xtn
k−1

))dt

+
1√
nhn

n∑
k=1

(∫ tn
k

tn
k−1

gb,i(Xt)dt +
∫ tn

k

tn
k−1

∂xGb,i(Xtn
k−1

)S(Xt)dwt

)

+
1√
nhn

n∑
k=1

∫ tn
k

tn
k−1

∂xGb,i(Xtn
k−1

)(B(Xt) − B(Xtn
k−1

))dt.

It follows from A4′ and Ito’s formula that

− 1√
nhn

δαiun(θ∗) −
n∑

k=1

ξi,k =
1√
nhn

n∑
k=1

Ai,k + op(1),

where Ai,k =
∫ tn

k

tn
k−1

{
∂xGb,i(Xtn

k−1
)(B(Xt) − B(Xtn

k−1
)) − (gb,i(Xt) − gb,i(Xtn

k−1
))
}

dt. Moreover, one has that

1√
nhn

n∑
k=1

E[Ak|Gn
k−1] =

1√
nhn

n∑
k=1

R(θ, h3/2
n , Xtn

k−1
) →p 0,

1
nhn

n∑
k=1

E[A2
k|Gn

k−1] ≤
C

n

n∑
k=1

∫ tn
k

tn
k−1

E

[(
∂xGb,i(Xtn

k−1
)(B(Xt) − B(Xtn

k−1
))
)2

+ (gi(Xt) − gi(Xtn
k−1

))2
∣∣∣Gn

k−1

]
dt ≤ C

n

n∑
k=1

R(θ, h2
n, Xtn

k−1
) →p 0.

By Lemma 9 in Genon-Catalot and Jacod [3], one has that 1√
nhn

∑n
k=1 Ai,k → 0, which completes the proof

of (4.10).



ESTIMATION FOR MISSPECIFIED DIFFUSIONS 287

Next we will prove (4.11). An easy calculation together with (4.4) and (4.9) yields that

− 1√
n

δβjun(θ∗) −
n∑

k=1

ηj,k = − 1√
n

n∑
k=1

gσ,j(Xtn
k−1

) − 1
2
√

nhn

n∑
k=1

d∑
l1,l2=1

(
δβj Ξ

−1(Xtn
k−1

, β∗)
)l1l2

×
[
hnΔ̄l1

k (B(Xtn
k−1

) − b(Xtn
k−1

, α∗))l2

+ hnΔ̄l2
k (B(Xtn

k−1
) − b(Xtn

k−1
, α∗))l1 + +h2

n(B(Xtn
k−1

)

− b(Xtn
k−1

, α∗))l1(B(Xtn
k−1

) − b(Xtn
k−1

, α∗))l2
]
.

By noting that gσ,j(x) = 0, it follows from Lemma 2 and (4.1) that − 1√
n
δβjun(θ̄∗) −∑n

k=1 ηj,k →p 0. This
completes the proof of (4.11).

Finally, we show that

n∑
k=1

E[ξi,k|Gn
k−1] →p 0,

n∑
k=1

E[ηj,k|Gn
k−1] →p 0,

n∑
k=1

E[ξi,kηj,k|Gn
k−1] →p 0, (4.12)

n∑
k=1

|E[ξi,k|Gn
k−1]|2 →p 0,

n∑
k=1

|E[ηj,k|Gn
k−1]|2 →p 0, (4.13)

n∑
k=1

E[ξi,kξj,k|Gn
k−1] →p Kij

bb,

n∑
k=1

E[ηi,kηj,k|Gn
k−1] →p K̄ij

σσ, (4.14)

n∑
k=1

E[ξ4
i,k|Gn

k−1] →p 0,

n∑
k=1

E[η4
j,k|Gn

k−1] →p 0. (4.15)

Lemmas 1 and 2 yield that

n∑
k=1

E[ξi,k|Gn
k−1] =

1√
nhn

n∑
k=1

R(θ, h2
n, Xtn

k−1
) →p 0,

n∑
k=1

E[ηj,k|Gn
k−1] =

1
2
√

nhn

n∑
k=1

R(θ, h2
n, Xtn

k−1
) →p 0,

n∑
k=1

E[ξi,kηj,k|Gn
k−1] =

1

2nh
3/2
n

n∑
k=1

R(θ, h2
n, Xtn

k−1
) →p 0,

which completes the proof of (4.12). In the same way,

n∑
k=1

|E[ξi,k|Gn
k−1]|2 =

1
nhn

n∑
k=1

R(θ, h4
n, Xtn

k−1
) →p 0,

n∑
k=1

|E[ηj,k|Gn
k−1]|2 =

1
4nh2

n

n∑
k=1

R(θ, h4
n, Xtn

k−1
) →p 0.
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This completes the proof of (4.13). Next, setting fi,k = (∂αib)�(Xtn
k
, α∗)Ξ−1(Xtn

k
, β∗)−∂xGb,i(Xtn

k
) and Nj,k =

δβj Ξ−1(Xtn
k
, β∗), one has that

n∑
k=1

E[ξi,kξj,k|Gn
k−1] =

1
n

n∑
k=1

d∑
l1,l2=1

f l1
i,k−1f

l2
i,k−1[SS�]l1l2(Xtn

k−1
) +

1
n

n∑
k=1

R(θ, hn, Xtn
k−1

)

→p Kij
bb,

n∑
k=1

E[ηi,kηj,k|Gn
k−1] =

1
4n

n∑
k=1

d∑
l1,l2=1

d∑
l3,l4=1

N l1l2
i,k−1N

l3l4
j,k−1

×([SS�]l1l3(Xtn
k−1

)[SS�]l2l4(Xtn
k−1

) + [SS�]l1l4(Xtn
k−1

)[SS�]l2l3(Xtn
k−1

))

+
1

nh2
n

n∑
k=1

R(θ, h5/2
n , Xtn

k−1
)

→p K̄ij
σσ.

This completes the proof of (4.14). Furthermore,

n∑
k=1

E[ξ4
i,k|Gn

k−1] ≤ C

(nhn)2

n∑
k=1

d∑
l=1

(f l
i,k−1)

4E[(Δ̄l
k)4|Gn

k−1]

=
1
n2

n∑
k=1

R(θ, 1, Xtn
k−1

) →p 0,

n∑
k=1

E[η4
i,k|Gn

k−1] ≤ C

(nh2
n)2

n∑
k=1

d∑
l1,l2=1

(N l1l2
i,k−1)

4E[(Δ̄l1
k Δ̄l2

k )4 + h4
n(Ξl1l2(Xtn

k−1
))4|Gn

k−1]

=
1

(nh2
n)2

n∑
k=1

R(θ, h4
n, Xtn

k−1
) →p 0,

where we used the following estimate:

E[(Δ̄l
k)8|Gn

k−1] ≤ CE[|Xtn
k
− Xtn

k−1
|8|Gn

k−1] + R(θ, h8
n, Xtn

k−1
) ≤ R(θ, h4

n, Xtn
k−1

)

and this completes the proof of (4.15). By using a combination of Theorems 3.2 and 3.4 in Hall and Heyde [5],
we obtain the asymptotic normality. This completes the proof. �

Proof of Theorem 2.1. Let B(θ∗; ρ) = {θ : |θ − θ∗| ≤ ρ}. Since θ∗ ∈ Int(Θ), one has that B(θ∗; ρ) ⊂ Int(Θ) for
sufficiently small ρ > 0. It follows from the Taylor expansion that

∫ 1

0

Cn(θ∗ + t(θ̂n − θ∗))dt

( √
nhn(α̂n − α∗)√
nhn(β̂n − β∗)

)
1{θ̂n∈B(θ∗;ρ)} = Ln1{θ̂n∈B(θ∗;ρ)}.

The consistency of θ̂n yields that for sufficiently small ρ > 0, 1{θ̂n∈B(θ∗;ρ)} →p 1 as hn → 0 and nhn → ∞.
Lemma 4-(i) and the continuity of J(θ) imply that as hn → 0 and nhn → ∞,

Cn(θ∗) →p J(θ∗),
sup

|θ|≤εn

|Cn(θ∗ + θ) − Cn(θ∗)| →p 0
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for any sequence εn of positive numbers tending to zero. By Lemma 5 together with the above estimates, it is
easy to show the result. This completes the proof. �

Proof of Theorem 2.2. In the same way as in the proof of Theorem 2.1,

∫ 1

0

C̄n(θ∗ + t(θ̂n − θ∗))dt

( √
nhn(α̂n − α∗)√
n(β̂n − β∗)

)
1{θ̂n∈B(θ∗;ρ)} = L̄n1{θ̂n∈B(θ∗;ρ)}.

By using the analogous argument with the the proof of Theorem 2.1, it follows from the consistency of θ̂n,
Lemma 4-(ii) and Lemma 6 that we obtain the result. This completes the proof. �

5. Conclusion and discussion

This paper treated the parametric estimation for two kinds of misspecified ergodic diffusion models: the
completely misspecified case in Section 2.2 and the semi-misspecified case in Section 2.3. For the estimation of
the semi-misspecified case based on the continuously observed data X = {Xt; t ∈ [0, T ]}, under some regularity
conditions with the assumption that Ξ(x, β∗) = [SS�](x) for all x, the maximum likelihood estimator α̂T has
the asymptotic normality

√
T (α̂T − α∗) →d N(0, J−1

bb (θ∗)KbbJ
−1
bb (θ∗)) (5.1)

as T → ∞, see McKeague [11], Yoshida [17] and Kutoyants [9]. Meanwhile, in the case of parameter estimation
with discrete observations for the correctly specified parametric case where there exists a true parameter θ∗ =
(α∗, β∗) ∈ Θα × Θβ such that b(x, α∗) = B(x) and [σσ�](x, β∗) = [SS�](x) for all x, under some regularity
conditions, the minimum contrast estimator defined by (2.1) is asymptotically efficient as follows:

(√
nhn(α̂n − α∗)√
n(β̂n − β∗)

)
→d N(0, J̄−1(θ∗)), (5.2)

see Yoshida [18,19] and Kessler [7]. Here we note that in the correctly specified parametric case, J̄(θ∗) is the
asymptotic Fisher information matrix, see Gobet [4]. By Theorem 2.2, we see that the minimum contrast
estimator for the semi-misspecified case has the same rate of convergence as the correctly specified parametric
case. If we take (5.1) and (5.2) into account, the rate of convergence in Theorem 2.2 seems natural.

On the other hand, as we have seen from Theorem 2.1, the rate of convergence for the estimator β̂n of the
diffusion coefficient parameter β in the completely misspecified case is different from the one given in (5.2) in
the correctly specified parametric case. This fact results from the difference between the rates of convergence
for δβun(θ∗), see (4.8) in the proof of Lemma 5 and (4.11) in the proof of Lemma 6. Here we note that in the
completely misspecified case,

δβj un(θ∗) =
1
hn

n∑
k=1

Mj,k(θ∗) +
n∑

k=1

gσ,j(Xtn
k−1

),

while in the semi-misspecified case,

δβj un(θ∗) =
1
hn

n∑
k=1

Mj,k(θ∗)

since gσ,j(x) = 0. If δβun(θ∗) had the same rate of convergence in both cases, then the rate of convergence
for β̂n in the completely misspecified case could be the same as the one in the correctly specified parametric
case. However, checking the proof of (4.8) carefully, we see that 1√

n
δβjun(θ∗) can diverge as n → ∞, which

follows from the estimates that 1√
nhn

∑n
k=1 Mj,k(θ∗) = Op(1) but 1√

n

∑n
k=1 gσ,j(Xtn

k−1
) can diverge as n → ∞.



290 M. UCHIDA AND N. YOSHIDA

Because of it, the rate of convergence for β̂n in the completely misspecified case is worse than the one in the
correctly specified parametric case. Therefore, it does not seem that the asymptotic result of the estimator in
the completely misspecified case (Theorem 1) is trivial, in particular, for the diffusion coefficient estimator β̂n.
Furthermore, the difference of the rates of convergence for β̂n between the completely misspecified model and
the semi-misspecified model might be available to test whether a diffusion coefficient is completely misspecified.
Our results suggest that for example we should be careful when testing a hypothesis on a volatility parameter
because the null hypothesis will be rejected in completely misspecified case if we take a critical region based on√

n(β̂n − β∗).
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