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SIMULATION AND APPROXIMATION OF LÉVY-DRIVEN STOCHASTIC
DIFFERENTIAL EQUATIONS

Nicolas Fournier
1

Abstract. We consider the approximate Euler scheme for Lévy-driven stochastic differential equa-
tions. We study the rate of convergence in law of the paths. We show that when approximating the
small jumps by Gaussian variables, the convergence is much faster than when simply neglecting them.
For example, when the Lévy measure of the driving process behaves like |z|−1−αdz near 0, for some
α ∈ (1, 2), we obtain an error of order 1/

√
n with a computational cost of order nα. For a similar

error when neglecting the small jumps, see [S. Rubenthaler, Numerical simulation of the solution of
a stochastic differential equation driven by a Lévy process. Stochastic Process. Appl. 103 (2003)

311–349], the computational cost is of order nα/(2−α), which is huge when α is close to 2. In the same
spirit, we study the problem of the approximation of a Lévy-driven S.D.E. by a Brownian S.D.E. when
the Lévy process has no large jumps. Our results rely on some results of [E. Rio, Upper bounds for
minimal distances in the central limit theorem. Ann. Inst. Henri Poincaré Probab. Stat. 45 (2009)
802–817] about the central limit theorem, in the spirit of the famous paper by Komlós-Major-Tsunády
[J. Komlós, P. Major and G. Tusnády, An approximation of partial sums of independent rvs and the
sample df I. Z. Wahrsch. verw. Gebiete 32 (1975) 111–131].
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1. Introduction

Let (Zt)t≥0 be a one-dimensional square integrable Lévy process. Then for some a ∈ R, b ∈ R+ and some
measure ν on R∗ := R\{0} satisfying

∫
R∗

z2ν(dz) < ∞,

Zt = at + bBt +
∫ t

0

∫
R∗

zÑ(ds, dz), (1.1)

where (Bt)t≥0 is a standard Brownian motion, independent of a Poisson measure N(ds, dz) on [0,∞)×R∗ with
intensity measure dsν(dz) and where Ñ is its compensated Poisson measure, see Jacod-Shiryaev [10].

We consider, for some x ∈ R and some function σ : R �→ R, the S.D.E.

Xt = x +
∫ t

0

σ(Xs−)dZs. (1.2)
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Using some classical results (see e.g. Ikeda-Watanabe [5]), there is strong existence and uniqueness for (1.2)
as soon as σ is Lipschitz continuous: for any given couple (B, N), there exists an unique càdlàg adapted solution
(Xt)t≥0 to (1.2). By adapted, we mean adapted to the filtration (Ft)t≥0 generated by (B, N).

We consider two related problems in this paper. The first one deals with the numerical approximation of the
solution (Xt)t≥0. It is discussed in the next section in the case where σ is bounded and Lipschitz continuous.
We extend our study in Section 7 to the case where σ is locally Lipschitz continuous with at most linear growth,
and where the Lévy measure ν satisfies only

∫
R∗

min(z2, 1)ν(dz) < ∞.
The second problem concerns the approximation of (Xt)t≥0 by the solution to a Brownian S.D.E., when Z

has only small jumps, and is discussed in Section 3.
Our results are based on a recent work of Rio [13] that concerns the rate of convergence in the central limit

theorem, when using the quadratic Wasserstein distance. This result and its application to Lévy processes are
discussed in Section 4.

The proofs are handled in Sections 5 and 6. We give some numerical illustrations in Section 8.

2. Numerical simulation

The first goal of this paper is to study a numerical scheme to solve (1.2). The first idea is to perform an
Euler scheme (Xn

i/n)n≥0 with time-step 1/n, see Jacod [6], Jacod-Protter [9], Protter-Talay [12] for rates of
convergence. However, this is generally not a good scheme in practise, unless one knows how to simulate the
increments of the underlying Lévy process, which is the case e.g. when Z is a stable process.

We assume here that the Lévy measure ν is known explicitly: one can thus simulate random variables with
law ν(dz)1A(z)/ν(A), for any A such that ν(A) < ∞.

The first idea is to approximate the increments of Z by Δ̂n,ε
i = Zε

i/n − Zε
(i−1)/n, where Zε

t is the same Lévy
process as Z without its (compensated) jumps smaller than ε. However, Asmussen-Rosinski [1] have shown
that for a Lévy process with many small jumps, it is more convenient to approximate small jumps by some
Gaussian variables than to neglect them. We thus introduce Δn,ε

i = Δ̂n,ε
i + Un,ε

i , where Un,ε
i is Gaussian with

same mean and variance as the neglected jumps and is independent of Δ̂n,ε
i . The arguments of [1] concern only

Lévy processes and rely on explicit computations.
Let us write (X̂n,ε

[nt]/n)t≥0 (resp. (Xn,ε
[nt]/n)t≥0) for the Euler scheme using the approximate increments (Δ̂n,ε

i )i≥1

(resp. (Δn,ε
i )i≥1). They of course have a similar computational cost.

Jacod-Kurtz-Méléard-Protter [8] have computed systematically the weak error for the approximate Euler
scheme. In particular, they prove some very precise estimates of E[g(Xn,ε

[nt]/n)] −E[g(Xt)] for g smooth enough.
The obtained rate of convergence is very satisfying.

Assume now that the goal is to approximate some functional of the path of the solution (e.g. supt∈[0,T ] |Xt|).
Then we have to estimate the error between the laws of the paths of the processes (not only between the laws
of the time marginals). A common way to perform such an analysis is to introduce a suitable coupling between
the numerical scheme (Xn,ε

[nt]/n)t≥0 and the true solution (Xt)t≥0 and to estimate the (discretized) strong error
E[supt∈[0,T ] |Xn,ε

[nt]/n − X[nt]/n|2]. We refer to Jacod-Jakubowski-Mémin [7] for the speed of convergence of the
discretized process (X[nt]/n)t≥0 to the whole process (Xt)t≥0.

Rubenthaler [14] has studied the strong error when neglecting small jumps. He obtains roughly E[supt∈[0,T ] |
X̂n,ε

[nt]/n − X[nt]/n|2] � CT (n−1 +
∫
|z|≤ε z2ν(dz)) (if b �= 0). For ν very singular near 0, the obtained precision is

very low. Let us mention that in some particular cases, a more efficient method was introduced in Rubenthaler-
Wiktorsson [15].

Our aim here is to prove that the strong error is much lower when using Xn,ε
[nt]/n, see Sections 2.4 and 8 below.

The main difficulty is to find a suitable coupling between the true increments (Zi/n − Z(i−1)/n)i≥1 and the
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approximate increments (Δn,ε
i )i≥1: clearly, one considers Z, then one erases its jumps smaller than ε, but how

to build the additional Gaussian variable in such a way that it is a.s. close to the erased jumps? We will use
a recent result of Rio [13], which gives some very precise rate of convergence for the standard central limit
theorem in Wasserstein distance, in the spirit of Komlós-Major-Tsunády [11].

2.1. Notation

We introduce, for ε ∈ (0, 1), k ∈ N,

Fε(ν) =
∫
|z|>ε

ν(dz), mk(ν) =
∫

R∗
|z|kν(dz), (2.1)

mk,ε(ν) =
∫
|z|≤ε

|z|kν(dz), βε(ν) =
m4,ε(ν)
m2,ε(ν)

·

Observe that we always have βε(ν) ≤ ε2 and Fε(ν) ≤ ε−2m2(ν).
For n ∈ N and t ≥ 0, we set ρn(t) = [nt]/n, where [x] is the integer part of x.

2.2. Numerical scheme

Let n ∈ N and ε ∈ (0, 1) be fixed. We introduce an i.i.d. sequence (Δn,ε
i )i≥1 of random variables, with

Δn,ε
1 = an,ε + bn,εG +

Nn,ε∑
i=1

Y ε
i , (2.2)

where an,ε = (a − ∫|z|>ε zν(dz))/n, where b2
n,ε = (b2 + m2,ε(ν))/n, where G is Gaussian with mean 0 and

variance 1, where Nn,ε is Poisson distributed with mean Fε(ν)/n and where Y ε
1 , Y ε

2 , ... are i.i.d. with law
ν(dz)1|z|>ε/Fε(ν). All these random variables are assumed to be independent. Then we introduce the scheme

Xn,ε
0 = x, Xn,ε

(i+1)/n = Xn,ε
i/n + σ(Xn,ε

i/n)Δn,ε
i+1 (i ≥ 0). (2.3)

Remark 2.1.

(i) The cost of simulation of Δn,ε
1 is of order 1 + E[Nn,ε] = 1 + Fε(ν)/n, whence that of (Xn,ε

ρn(t))t∈[0,T ] is of
order Tn(1 + Fε(ν)/n) = T (n + Fε(ν)), as in [14].

(ii) Δn,ε
i+1 has the same law as Zε

(i+1)/n −Zε
i/n + Un,ε

i , where Un,ε
i is Gaussian with same mean and variance

as
∫ (i+1)/n

i/n

∫
|z|≤ε zÑ(ds, dz) and where Zε

t = at + bBt +
∫ t

0

∫
|z|>ε zÑ(ds, dz).

(iii) The key argument of the paper is to use a suitable coupling between Un,ε
i and

∫ (i+1)/n

i/n

∫
|z|≤ε zÑ(ds, dz).

As shown in Lemma 5.2, there exists such a coupling satisfying E[|Un,ε
i −∫ (i+1)/n

i/n

∫
|z|≤ε

zÑ(ds, dz)|2] ≤
Cβε(ν). Then we will choose Δn,ε

i+1 = Zε
(i+1)/n −Zε

i/n + Un,ε
i , which thus satisfies E[|Δn,ε

i+1 − (Z(i+1)/n −
Zi/n)|2] ≤ Cβε(ν).

2.3. Main result

We may now state our main result.
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Theorem 2.2. Assume that σ : R �→ R is bounded and Lipschitz continuous. Let ε ∈ (0, 1) and n ∈ N. There
is a coupling between a solution (Xt)t≥0 to (1.2) and an approximated solution (Xn,ε

ρn(t))t≥0 as in Subsection 2.2
such that for all T > 0,

E

[
sup

t∈[0,T ]

|Xρn(t) − Xn,ε
ρn(t)|2

]
≤ CT

(
n−1 + nβε(ν)

)
,

where the constant CT depends only on T, σ, a, b, m2(ν).

The first bound n−1 is due to the time discretization (Euler scheme) and the second bound nβε(ν) is due
to the approximation of the increments of the Lévy process. As noted by Jacod [6], the first bound may be
improved if there is no Brownian motion b = 0 (but we have to work with some weaker norm).

2.4. Optimization

Choose ε = 1/n. Then recalling that βε(ν) ≤ ε2, we get

E

[
sup

t∈[0,T ]

|Xρn(t) − X
n,1/n
ρn(t) |2

]
≤ CT /n,

for a mean cost to simulate (Xn,1/n
ρn(t) )t∈[0,T ] of order T (n + F1/n(ν)).

• We always have Fε(ν) ≤ m2(ν)ε−2, so that the cost is always smaller than CTn2.

• If ν(dz)
z→0� |z|−1−αdz for some α ∈ (0, 2), then Fε(ν) � ε−α, so that the cost is of order T (n + nα).

When neglecting the small jumps, one gets, for a mean cost of order T (n + Fε(ν)),

E

[
sup

t∈[0,T ]

|Xρn(t) − X̂n,ε
ρn(t)|2

]
≤ CT (1/n + m2(ε)),

see [14]. In the case where ν(dz)
z→0� |z|−1−αdz for some α ∈ (0, 2), we have m2(ε) � ε2−α and Fε(ν) � ε−α.

Thus to get an mean squared error of order 1/n, one has to choose ε = n−1/(2−α), which yields a cost of order
T (n + nα/(2−α)). This is huge when α is close to 2.

2.5. Discussion

The computational cost to get a given precision does not explode when the Lévy measure becomes very
singular near 0. The more ν is singular at 0, the more there are jumps greater than ε, which costs many
simulations. But the more it is singular, the more the jumps smaller than ε are well-approximated by Gaussian
random variables. These two phenomena are in competition and we prove that the second one compensates
(partly) the first one.

Our result involves a suitable coupling between the solution (Xt)t≥0 and its approximation (Xn,ε
t )t≥0. This

might seem uninteresting in practise, since by assumption, (Xt)t≥0 is completely unknown. But this is always
the case when dealing with strong errors. In our opinion, this is just an artificial way to estimate the rate of
convergence of the paths in law, using a Wasserstein type distance. For example, our result allows us to estimate
the error when approximating E[F ((Xρn(t))t∈[0,T ])] by E[F ((Xn,ε

ρn(t))t∈[0,T ])], for any Lipschitz functional F .
Recall that Theorem 2.2 is extended in Section 7 to the case where σ is locally Lipschitz with at most linear

growth and where m2(ν) might be infinite.
Let us finally mention that the simulation algorithm can easily be adapted to the case of dimension d ≥ 2.

We believe that the result still holds. However, the result of Rio [13] is not known in the multidimensional
setting. We could use instead the results of Einmahl [3] or Zaitsev [19]. This would be much more technical.
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3. Brownian approximation

It is classical in applied sciences to approximate discontinuous phenomena by continuous ones. Here, we
examine how far the solution to (1.2) is from the solution of a continuous Brownian SDE. Let us mention some
more complicated models where such a problem occurs.

(a) The Boltzmann equation is a P.D.E. that can be related to a Poisson-driven S.D.E. (see Tanaka [16]),
while the Landau equation can be related to a Brownian S.D.E. (see Guérin [4]). In the grazing collision
limit, the Boltzmann equation is known to converge to the Landau equation (see Villani [17]). However, no
convergence rate is known.

(b) In [18], Walsh approximates a Poisson-driven stochastic heat equation by a white-noise driven S.P.D.E.
He proves some convergence results, without rate.

Here, we consider only the simple case of one-dimensional Lévy-driven S.D.E.s, but we hope that the main
ideas of our proof might apply to more complicated models.

Consider the Lévy process introduced in (1.1), consider x ∈ R, σ : R �→ R Lipschitz continuous, and the
unique solution (Xt)t≥0 to (1.2). Recall (2.1), consider a Brownian motion (Wt)t≥0 and set

Z̃t = at +
√

b2 + m2(ν)Wt, (3.1)

which has the same mean and variance as Zt. Let (X̃t)t≥0 be the unique solution to

X̃t = x +
∫ t

0

σ(X̃s−)dZ̃s. (3.2)

Theorem 3.1. Assume that σ is Lipschitz continuous and bounded. Then it is possible to couple the solutions
(Xt)t≥0 to (1.2) and (X̃t)t≥0 to (3.2) in such a way that for all p ≥ 4, all T > 0, all n ≥ 1,

E

[
sup

t∈[0,T ]

|Xt − X̃t|2
]
≤ CT,p

(
n2/p−1 + mp(ν)2/p + nm4(ν)

)
,

where CT,p depends only on p, T, σ, a, b, m2(ν).

If we only know that m4(ν) < ∞, we choose p = 4 and n = [m4(ν)−2/3]+1 to get E

[
supt∈[0,T ] |Xt − X̃t|2

]
≤

CT (m4(ν)1/3 + m4(ν)).
Consider a sequence of Lévy processes (Zε

t )t≥0 with drift a, diffusion coefficient b and Lévy measure νε,
such that z2νε(dz) tends weakly to the Dirac mass δ0(dz). Then limε→0 m2(νε) = 1, while in almost all cases,
limε→0 mp(νε) = 0 for some (or all) p > 2.

Consider the solution to Xε
t = x+

∫ t

0
σ(Xε

s−)dZε
s. Then it is well-known and easy to show that (Xε

t )t≥0 tends
in law to the solution of a Brownian S.D.E. Theorem 3.1 provides a rate of convergence (for some Wasserstein
distance). To our knowledge, it is the first result in that direction. For example, we will immediately deduce
the following corollary.

Corollary 3.2. Assume that σ is Lipschitz continuous and bounded. Assume that ν({|z| > ε}) = 0 for some
ε ∈ (0, 1]. Then it is possible to couple the solutions (Xt)t≥0 to (1.2) and (X̃t)t≥0 to (3.2) in such a way that
for all η ∈ (0, 1), all T > 0,

E

[
sup

t∈[0,T ]

|Xt − X̃t|2
]
≤ CT,ηε1−η

where CT,η depends only on η, T, σ, a, b, m2(ν).
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4. Coupling results

Consider two laws P, Q on R with finite variance. The Wasserstein distance W2 is defined by

W2
2 (P, Q) = inf

{
E
[|X − Y |2] , L(X) = P,L(Y ) = Q

}
.

With an abuse of notation, we also write W2(X, Y ) = W2(X, Q) = W2(P, Q) if L(X) = P and L(Y ) = Q. We
recall the following result of Rio [13], Theorem 4.1.

Theorem 4.1. There is an universal constant C such that for any sequence of i.i.d. random variables (Yi)i≥1

with mean 0 and variance θ2, for any n ≥ 1,

W2
2

(
1√
n

n∑
i=1

Yi,N (0, θ2)

)
≤ C

E[Y 4
1 ]

nθ2
·

Here N (0, θ2) is the Gaussian distribution with mean 0 and variance θ2. Recall now (2.1).

Corollary 4.2. Consider a pure jump centered Lévy process (Yt)t≥0 with Lévy measure μ. In other words
Yt =

∫ t

0

∫
R∗

zM̃(ds, dz), where M̃ is a compensated Poisson measure with intensity dsμ(dz). There is an
universal constant C such that

∀ t ≥ 0, W2
2 (Yt,N (0, tm2(μ))) ≤ C

m4(μ)
m2(μ)

·

Proof. Let t > 0. For n ≥ 1, i ≥ 1, write Y n
i = n1/2

∫ it/n

(i−1)t/n

∫
R∗

zM̃(ds, dz), whence Yt = n−1/2
∑n

i=1 Y n
i . The

Y n
i are i.i.d., centered, E[(Y n

1 )2] = tm2(μ), and

E[(Y n
1 )4] = n2

E

⎡⎣(∫ t/n

0

∫
R∗

z2M(ds, dz)

)2
⎤⎦

= n2
E

⎡⎣(∫ t/n

0

∫
R∗

z2M̃(ds, dz) + (t/n)m2(μ)

)2
⎤⎦

= n2
[
tm4(μ)/n + (tm2(μ)/n)2

]
= ntm4(μ) + t2m2(μ).

Using Theorem 4.1, we get

W2
2 (Yt,N (0, tm2(μ))) ≤ C

ntm4(μ) + t2m2(μ)
ntm2(μ)

n→∞−→ C
m4(μ)
m2(μ)

,

which concludes the proof. �
This result is quite surprising at first glance: since the variances of the involved variables are tm2(μ), it would

be natural to get a bound that decreases to 0 as t decreases to 0 (and that explodes for large t). Of course, we
deduce the bound W2

2 (Yt,N (0, tm2(μ))) ≤ C min(m4(μ)/m2(μ), tm2(μ)), but this is now optimal, as shown in
the following example.

Example. Consider, for ε > 0, με = (2ε2)−1(δε+δ−ε) and the corresponding pure jump (centered) Lévy process
(Y ε

t )t≥0. It takes its values in εZ. Observe that m2(με) = 1 and m4(με) = ε2. There is c > 0 such that for all
t ≥ 0, all ε > 0, W2

2 (Y ε
t ,N (0, t)) ≥ c min(ε2, t) = c min(m4(με)/m2(με), tm2(με)). Indeed,

• if t ≤ ε2, then P(Y ε
t = 0) ≥ e−tμε(R) = e−t/ε2 ≥ 1/e, from which the lower-bound W2

2 (Y ε
t ,N (0, t)) ≥ ct =

c min(t, ε2) is easily deduced;
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• if t ≥ ε2, use that W2
2 (Y ε

t ,N (0, t)) ≥ E[minn∈Z |t1/2G − nε|2] = tE[minn∈Z |G − nεt−1/2|2], where G is
Gaussian with mean 0 and variance 1. Tedious computations show that there is c > 0 such that for any
a ∈ (0, 1], E[minn∈Z |G − na|2] ≥ (a/4)2P(G ∈ ∪n∈Z[(n + 1/4)a, (n + 3/4)a]) ≥ ca2. Hence W2

2 (Y ε
t ,N (0, t)) ≥

ct(εt−1/2)2 = cε2 = c min(t, ε2).

5. Proof of Theorem 2.2

We recall elementary results about the Euler scheme for (1.2) in Section 5.1. We introduce our coupling
in Section 5.2, which allows us to compare our scheme with the Euler scheme in Section 5.3. We conclude in
Section 5.4. We assume in the whole section that σ is bounded and Lipschitz continuous.

5.1. Euler scheme

We introduce the Euler scheme with step 1/n associated to (1.2). Let

Δn
i = Zi/n − Z(i−1)/n (i ≥ 1), (5.1)

Xn
0 = x, Xn

(i+1)/n = Xn
i/n + σ

(
Xn

i/n

)
Δn

i+1 (i ≥ 0). (5.2)

The following result is classical.

Proposition 5.1. Consider a Lévy process (Zt)t≥0 as in (1.1). For (Xt)t≥0 the solution to (1.2) and for
(Xn

i/n)i≥0 defined in (5.1)–(5.2),

E

[
sup

t∈[0,T ]

|Xρn(t) − Xn
ρn(t)|2

]
≤ CT /n,

where CT depends only on T, a, b, m2(ν) and σ.

We give a proof for the sake of completeness.

Proof. Using the Doob and Cauchy-Schwarz inequalities, we get, for 0 ≤ s ≤ t ≤ T ,

E

[
sup

u∈[s,t]

|Xu − Xs|2
]
≤ CE

[(
a

∫ t

s

|σ(Xu)|du

)2

+ sup
u∈[s,t]

(
b

∫ u

s

σ(Xv)dBv

)2

(5.3)

+ sup
u∈[s,t]

(∫ u

s

∫
R∗

σ(Xv−)zÑ(ds, dv)
)2
]

≤ CT

∫ t

s

(a2 + b2 + m2(ν))||σ||2∞dv ≤ CT (t − s).

Observe now that Xn
ρn(t) = x +

∫ ρn(t)

0 σ(Xn
ρn(s)−)dZs. Setting An

t = sup[0,t] |Xρn(s) − Xn
ρn(s)|2, we thus get

An
t = sup[0,t] |

∫ ρn(s)

0
(σ(Xu−) − σ(Xn

ρn(u)−))dZu|2. Using the same arguments as in (5.3), then the Lipschitz
property of σ and (5.3), we get

E[An
t ] ≤ CT

∫ ρn(t)

0

(a2 + b2 + m2(ν))E[(σ(Xs) − σ(Xn
ρn(s)))

2]ds

≤ CT

∫ t

0

E[(Xs − Xρn(s))2 + (Xρn(s) − Xn
ρn(s))

2]ds

≤ CT

∫ t

0

(|s − ρn(s)| + E[An
s ]) ds.
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We conclude using that |s − ρn(s)| ≤ 1/n and the Gronwall lemma. �

5.2. Coupling

We now introduce a suitable coupling between the Euler scheme (see Sect. 5.1) and our numerical scheme
(see Sect. 2.2). Recall (2.1).

Lemma 5.2. Let n ∈ N and ε > 0. There exist two coupled families of i.i.d. random variables (Δn
i )i≥1 and

(Δn,ε
i )i≥1, distributed respectively as in (5.1) and (2.2) in such a way that for each i ≥ 1,

E[(Δn
i − Δn,ε

i )2] ≤ Cβε(ν),

where C is an universal constant. Furthermore, for all ε > 0, all n ∈ N, all i ≥ 1,

E[Δn
i ] = E[Δn,ε

i ] =
a

n
, Var[Δn

i ] = Var[Δn,ε
i ] =

b2 + m2(ν)
n

·

Proof. It of course suffices to build (Δn
1 , Δn,ε

1 ) and then to take independent copies. Consider a Poisson measure
N(ds, dz) with intensity measure dsν(dz)1{|z|≤ε} on [0,∞) × {|z| ≤ ε}. Observe that

∫ t

0

∫
|z|≤ε zÑ(ds, dz) is

a centered pure jump Lévy process with Lévy measure νε(dz) = 1|z|≤εν(dz). Then we use Corollary 4.2 and
enlarge the underlying probability space if necessary: there is a Gaussian random variable Gn,ε

1 with mean 0 and
variance m2(νε)/n = m2,ε(ν)/n such that E

[
| ∫ 1/n

0

∫
|z|≤ε

zÑ(ds, dz) − Gn,ε
1 |2

]
≤ Cm4(νε)/m2(νε) = Cβε(ν).

We consider a Brownian motion (Bt)t≥0 and a Poisson measure N with intensity measure dsν(dz)1{|z|>ε}
on [0,∞) × {|z| > ε}, independent of the couple (Gn,ε

1 ,
∫ 1/n

0

∫
|z|≤ε zÑ(ds, dz)) and we set

• Δn
1 := a/n + bB1/n +

∫ 1/n

0

∫
|z|≤ε zÑ(ds, dz) +

∫ 1/n

0

∫
|z|>ε zÑ(ds, dz);

• Δn,ε
1 := a/n + bB1/n + Gn,ε

1 +
∫ 1/n

0

∫
|z|>ε

zÑ(ds, dz).
Then Δn

1 has obviously the same law as Z1/n − Z0 (see (1.1) and (5.1)), while Δn,ε
1 has also the desired law

(see (2.2)). Indeed, bB1/n + Gn,ε
1 has a centered Gaussian law with variance b2/n + m2,ε(ν)/n = b2

n,ε and

a/n +
∫ 1/n

0

∫
|z|>ε zÑ(ds, dz) = an,ε +

∫ 1/n

0

∫
|z|>ε zN(ds, dz). This last integral can be represented as in (2.2).

Finally E[(Δn
1 − Δn,ε

1 )2] ≤ E

[
| ∫ 1/n

0

∫
|z|≤ε zÑ(ds, dz) − Gn,ε

1 |2
]
≤ Cβε(ν) and the mean and variance estimates

are obvious. �

5.3. Estimates

We now compare our scheme with the Euler scheme. To this end, we introduce some notation. First, we
consider the sequence (Δn

i , Δn,ε
i )i≥1 introduced in Lemma 5.2. Then we consider (Xn

i/n)i≥0 and (Xn,ε
i/n)i≥0

defined in (5.2) and (2.3). We introduce the filtration Fn,ε
i = σ(Δn

k , Δn,ε
k , k ≤ i) and the processes, for i ≥ 0

(with V n,ε
0 = 0)

Y n,ε
i = Xn

i/n − Xn,ε
i/n, V n,ε

i =
a

n

i−1∑
k=0

[σ(Xn
k/n) − σ(Xn,ε

k/n)], Mn,ε
i = Y n,ε

i − V n,ε
i .

Lemma 5.3. There is a constant C, depending only on σ, a, b, m2(ν) such that for all N ≥ 1,

E

[
sup

i=0,...,N
|Y n,ε

i |2
]
≤ Cnβε(ν)(1 + C/n)N (1 + N2/n2).

Proof. We divide the proof into four steps.
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Step 1. We prove that for all i ≥ 0, E
[|Y n,ε

i |2] ≤ Cnβε(ν)(1 + C/n)i. First,

E[|Y n,ε
i+1|2] = E[|Y n,ε

i |2] + E[(σ(Xn
i/n)Δn

i+1 − σ(Xn,ε
i/n)Δn,ε

i+1)
2]

+ 2E

[
Y n,ε

i (σ(Xn
i/n)Δn

i+1 − σ(Xn,ε
i/n)Δn,ε

i+1)
]

= E[|Y n,ε
i |2] + In,ε

i + Jn,ε
i .

Now, using Lemma 5.2 and that (Δn
i+1, Δ

n,ε
i+1) is independent of Fn,ε

i , we deduce that

Jn,ε
i =

2a

n
E

[
Y n,ε

i (σ(Xn
i/n) − σ(Xn,ε

i/n))
]
≤ C

n
E[|Y n,ε

i |2],

since σ is Lipschitz continuous. Using now the Lipschitz continuity and the boundedness of σ, together with
Lemma 5.2 and the independence of (Δn

i+1, Δ
n,ε
i+1) with respect to Fn,ε

i , we get

In,ε
i ≤ CE[|Y n,ε

i |2(Δn,ε
i+1)

2] + CE[(Δn,ε
i+1 − Δn

i+1)
2] ≤ C

n
E[|Y n,ε

i |2] + Cβε(ν).

Finally, we get

E[|Y n,ε
i+1|2] ≤ (1 + C/n)E[|Y n,ε

i |2] + Cβε(ν).

Since Y n,ε
0 = 0, this entails that E[|Y n,ε

i |2] ≤ Cβε(ν)[1 + (1 + C/n) + ... + (1 + C/n)i−1] ≤ Cnβε(ν)(1 + C/n)i.

Step 2. We check that for N ≥ 1, E[sup0,...,N |V n,ε
i |2] ≤ Cnβε(ν)(1 + C/n)NN2/n2. It suffices to use the

Lipschitz property of σ, the Cauchy-Schwarz inequality and then Step 1:

E

[
sup

1,...,N
|V n,ε

i |2
]
≤ CE

⎡⎣( 1
n

N−1∑
i=0

|Y n,ε
i |

)2
⎤⎦ ≤ C

N

n2

N−1∑
i=0

E[|Y n,ε
i |2]

≤ C
N2

n2
nβε(ν)(1 + C/n)N .

Step 3. We now verify that (Mn,ε
i )i≥0 is a (Fn,ε

i )i≥0-martingale. We have Mn,ε
i+1 − Mn,ε

i = σ(Xn
i/n)[Δn

i+1 −
a/n] − σ(Xn,ε

i/n)[Δn,ε
i+1 − a/n]. The step is finished, since the variables Δn

i+1 − a/n and Δn,ε
i+1 − a/n are centered

and independent of Fn,ε
i .

Step 4. Using the Doob inequality and then Steps 1 and 2, we get

E

[
sup

i=0,...,N
|Mn,ε

i |2
]
≤ C sup

i=0,...,N
E
[|Mn,ε

i |2]
≤ C sup

i=0,...,N
E
[|Y n,ε

i |2]+ C sup
i=0,...,N

E
[|V n,ε

i |2]
≤ Cnβε(ν)(1 + C/n)N (1 + N2/n2).

But now, since Y n,ε
i = Mn,ε

i + V n,ε
i ,

E

[
sup

i=0,...,N
|Y n,ε

i |2
]
≤ CE

[
sup

i=0,...,N
|Mn,ε

i |2
]

+ CE

[
sup

i=0,...,N
|V n,ε

i |2
]

,

which allows us to conclude. �
Let us rewrite these estimates in terms of Xn and Xn,ε.
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Lemma 5.4. Consider the sequence (Δn
i , Δn,ε

i )i≥1 introduced in Lemma 5.2 and then (Xn
i/n)i≥0 and (Xn,ε

i/n)i≥0

defined in (5.2) and (2.3). For all T ≥ 0,

E

[
sup

t∈[0,T ]

|Xn
ρn(t) − Xn,ε

ρn(t)|2
]
≤ CT nβε(ν),

where CT depends only on T, a, b, m2(ν), σ.

Proof. With the previous notation, supt∈[0,T ] |Xn
ρn(t) − Xn,ε

ρn(t)| = supi=0,...,[nT ] |Y n,ε
i |. Thus using Lemma 5.3,

we get the bound Cnβε(ν)(1 + C/n)[nT ](1 + [nT ]2/n2) ≤ Cnβε(ν)eCT (1 + T 2), which ends the proof. �

5.4. Conclusion

We finally give the

Proof of Theorem 2.2. Fix n ∈ N and ε > 0. Denote by Q(du, dv) the joint law of (Δn
1 , Δn,ε

1 ) built in Lemma 5.2
and write Q(du, dv) = Q1(du)R(u, dv), where Q1(du) is the law of Δn

1 and where R(u, dv) is the law of Δn,ε
1

conditionally to Δn
1 = u.

Consider a Lévy process (Zt)t≥0 as in (1.1) and (Xt)t≥0 the corresponding solution to (1.2). Set, for i ≥ 0,
Δn

i = Zi/n−Z(i−1)/n and consider the Euler scheme (Xn
i/n)i≥0 as in (5.2). For each i ≥ 1, let Δn,ε

i be distributed
according to R(Δn

i , dv), in such a way that (Δn,ε
i )i≥1 is an i.i.d. sequence. Finally, let (Xn,ε

i/n)i≥0 as in (2.3).
By this way, the processes (Xt)t≥0, (Xn

i/n)i≥0 and (Xn,ε
i/n)i≥0 are coupled in such a way that we may apply

Proposition 5.1 and Lemma 5.4. We get

E

[
sup

t∈[0,T ]

|Xρn(t) − Xn,ε
ρn(t)|2

]
≤ 2E

[
sup

t∈[0,T ]

|Xρn(t) − Xn
ρn(t)|2 + sup

t∈[0,T ]

|Xn
ρn(t) − Xn,ε

ρn(t)|2
]

≤ CT [n−1 + nβε(ν)].

This concludes the proof. �

6. Proofs of Theorem 3.1 and Corollary 3.2

We assume in the whole section that σ is bounded and Lipschtiz continuous. We start with a technical
lemma.

Lemma 6.1. Let (Xt)t≥0 and (X̃t)t≥0 be solutions to (1.2) and (3.2). Then for p ≥ 2, for all t0 ≥ 0, all
h ∈ (0, 1],

E

[
sup

t∈[t0,t0+h]

|Xt − Xt0 |p
]
≤ Cp(hp/2 + hmp(ν)),

E

[
sup

t∈[t0,t0+h]

|X̃t − X̃t0 |p
]
≤ Cph

p/2,

where Cp depends only on p, σ, a, b, m2(ν).

Proof. It clearly suffices to treat the case of (Xt)t≥0, because (X̃t)t≥0 solves the same equation (with ν replaced
by 0 and b replaced by b + m2(ν)). Let thus p ≥ 2.
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Using the Burkholder-Davies-Gundy inequality and the boundedness of σ, we get

E

[
sup

t∈[t0,t0+h]

|Xt − Xt0 |p
]
≤CpE

[(∫ t0+h

t0

|aσ(Xs)|ds

)p]
+ CpE

⎡⎣(∫ t0+h

t0

b2σ2(Xs)ds

)p/2
⎤⎦

+ CpE

⎡⎣(∫ t0+h

t0

∫
R∗

σ2(Xs)z2N(ds, dz)

)p/2
⎤⎦

≤Cph
p + Cph

p/2 + CpE

⎡⎣(∫ t0+h

t0

∫
R∗

z2N(ds, dz)

)p/2
⎤⎦

≤Cph
p/2 + CpE[Up/2

h ],

where Ut =
∫ t

0

∫
R∗

z2N(ds, dz). It remains to check that for t ≥ 0, E[Up/2
t ] ≤ Cp(tp/2 + tmp(ν)). But, with

Cp depending on m2(ν),

E[Up/2
t ] =

∫ t

0

ds

∫
R∗

ν(dz)E[(Us + z2)p/2 − Up/2
s ]

≤ Cp

∫ t

0

ds

∫
R∗

ν(dz)E[z2Up/2−1
s + |z|p] ≤ Cp

∫ t

0

E[Up/2−1
s ]ds + Cpmp(ν)t

≤ Cp

∫ t

0

E[Up/2
s ]ε−1ds + Cp(εp/2−1 + mp(ν))t,

for any ε > 0. Hence E[Up/2
t ] ≤ Cp(εp/2−1t+mp(ν)t)eCpt/ε by the Gronwall lemma. Choosing ε = t, we conclude

that E[Up/2
t ] ≤ Cp(tp/2 + mp(ν)t). �

Proof of Theorem 3.1. We fix n ≥ 1, T > 0 and p ≥ 4.

Step 1. Using Lemma 4.2 (see also Lem. 5.2) we deduce that we may couple two i.i.d. families (Δn
i )i≥1 and

(Δ̃n
i )i≥1, in such a way that:
• (Δn

i )i≥1 has the same law as the increments (Zi/n − Z(i−1)/n)i≥1 of the Lévy process (1.1);
• (Δ̃n

i )i≥1 has the same law as the increments (Z̃i/n − Z̃(i−1)/n)i≥1 of the Lévy process (3.1);
• for all i ≥ 1, E[(Δn

i − Δ̃n
i )2] ≤ Cm4(ν) (we allow constants to depend on m2(ν)).

Step 2. We then set Xn
0 = X̃n

0 = x and for i ≥ 1, Xn
i/n = Xn

(i−1)/n + σ(Xn
(i−1)/n)Δn

i and X̃n
i/n = X̃n

(i−1)/n +

σ(X̃n
(i−1)/n)Δ̃n

i . Using exactly the same arguments as in Lemmas 5.3 and 5.4, we deduce that E

[
supt∈[0,T ] |Xn

ρn(t)

−X̃n
ρn(t)|2

]
≤ CT nm4(ν), where CT depends only on T, σ, a, b, m2(ν).

Step 3. But (Xn
ρn(t))t≥0 is the Euler discretization of (1.2), while (X̃n

ρn(t))t≥0 is the Euler discretization
of (3.2). Hence using Step 2, Proposition 5.1 and a suitable coupling as in the final proof of Theorem 2.2,
E

[
supt∈[0,T ] |Xρn(t) − X̃ρn(t)|2

]
≤ CT (1/n + nm4(ν)).

Step 4. We now prove that E

[
supt∈[0,T ] |Xt − Xρn(t)|2

]
≤ CT,p(n2/p−1 + mp(ν)2/p).
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We set Γi = supt∈[i/n,(i+1)/n] |Xt − Xρn(t)| = supt∈[i/n,(i+1)/n] |Xt − Xi/n|. By Lemma 6.1, E[Γp
i ] ≤

Cp[(1/n)p/2 + mp(ν)/n]. Thus, since p ≥ 2,

E

[
sup

t∈[0,T ]

|Xt − Xρn(t)|2
]
≤ E

[
sup

1,...,[nT ]

Γ2
i

]
≤ E

[
sup

1,...,[nT ]

Γp
i

]2/p

≤ E

⎡⎣[nT ]∑
i=1

Γp
i

⎤⎦2/p

≤ CT,pn
2/p
[
(1/n)p/2 + mp(ν)/n

]2/p

,

which ends the step.
Step 5. Exactly as in Step 4, we get E

[
supt∈[0,T ] |X̃t − X̃ρn(t)|2

]
≤ CT,pn

2/p−1.

Step 6. Using Steps 3, 4 and 5, we deduce that with a suitable coupling, we have E[supt∈[0,T ] |Xt − X̃t|2] ≤
CT,p(n2/p−1 + mp(ν)2/p + n−1 + nm4(ν)). �

We conclude this section with the

Proof of Corollary 3.2. Since ν({|z| > ε}) = 0, we deduce that mp(ν) ≤ m2(ν)εp−2, for any p ≥ 2. Applying
Theorem 3.1 and choosing n = [ε−p/(p−1)], we get the bound

CT,p

(
ε(1−2/p)(p/(p−1)) + ε(p−2)(2/p) + ε2−p/(p−1)

)
≤ CT,p(ε1−1/(p−1) + ε2−4/p).

Hence for η ∈ (0, 1), it is possible to get the bound CT,ηε1−η, choosing p large enough. �

7. Generalization

The goal of this section is to generalize Theorem 2.2 by using a standard localization argument. In the
important case where the driving Lévy process behaves like a stable process, it does not hold that m2(ν) < ∞.
We want here to treat the most general case, that is

∫
R∗

min(z2, 1)ν(dz) < ∞. We will also show how to
deal with the case where σ is only locally Lipschitz continuous with at most linear growth. Of course, we can
not work in L2 any more, so that we will only prove a tightness result. This will also determine the rate of
convergence in law of the paths, but in a weaker sense.

We thus consider a general one-dimensional Lévy process with Lévy measure ν:

Zt = at + bBt +
∫ t

0

∫
[−1,1]\{0}

zÑ(ds, dz) +
∫ t

0

∫
R\[−1,1]

zN(ds, dz), (7.1)

where (Bt)t≥0 is a standard Brownian motion, independent of a Poisson measure N(ds, dz) on [0,∞) × R∗
with intensity measure dsν(dz) and where Ñ is its compensated Poisson measure. Assuming that σ is locally
Lipschitz continuous with at most linear growth, it is well-known that (1.2) has a unique càdlàg adapted strong
solution (Xt)t≥0.

For n ≥ 1 and ε ∈ (0, 1), we introduce, as in (2.2), a sequence of i.i.d. random variables (Δn,ε
i )i≥1, with

Δn,ε
1 = an,ε + bn,εG +

Nn,ε∑
i=1

Y ε
i , (7.2)

where an,ε = (a − ∫ε<|z|≤1 zν(dz))/n, where b2
n,ε = (b2 + m2,ε(ν))/n, where G is Gaussian with mean 0 and

variance 1, where Nn,ε is Poisson distributed with mean Fε(ν)/n and where Y ε
1 , Y ε

2 , ... are i.i.d. with law
ν(dz)1|z|>ε/Fε(ν). The only difference with (2.2) is the value of an,ε. Then we introduce the approximated
solution (Xn,ε

ρn(t))t≥0 as in (2.3).
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Theorem 7.1. Assume that σ : R �→ R is locally Lipschitz continuous with at most linear growth and that∫
R∗

min(z2, 1)ν(dz) < ∞. There exists, for each n ∈ N and each ε ∈ (0, 1), a coupling between a solution
(Xt)t≥0 to (1.2) and an approximated solution (Xn,ε

ρn(t))t≥0, such that for all T > 0, recall (2.1),

lim
A→∞

sup
n∈N,ε∈(0,1)

P

(
(n−1 + nβε(ν))−1/2 sup

[0,T ]

|Xρn(t) − Xn,ε
ρn(t)| ≥ A

)
= 0. (7.3)

Proof. The proof relies on a standard localization argument, and we only give the main steps. We fix the
terminal time T > 0.

Step 1. First we define, for K > 1, the Lévy process

ZK
t = at + bBt +

∫ t

0

∫
|z|≤1

zÑ(ds, dz) +
∫ t

0

∫
1≤|z|≤K

zN(ds, dz),

whose Lévy measure νK(dz) = 1{|z|≤K}ν(dz) satisfies m2(νK) < ∞. We also introduce the sequence of i.i.d.
random variables (Δn,ε,K

i )i≥1 as previously, using νK instead of ν. We denote by (XK
t )t≥0 the solution to (1.2)

with ZK instead of Z, and by (Xn,ε,K
ρn(t) )t≥0 the approximated solution with (Δn,ε,K

i )i≥1 instead of (Δn,ε
i )i≥1.

One easily checks that with a suitable coupling between (Δn,ε,K
i )i≥1 and (Δn,ε

i )i≥1,

P

(
(XK

t )t∈[0,T ] = (Xt)t∈[0,T ], (X
n,ε,K
ρn(t) )t∈[0,T ] = (Xn,ε

ρn(t))t∈[0,T ]

)
≥

P(N([0, T ]× {|z| ≥ K}) = 0) = e−Tν({|z|≥K}).

Step 2. Since σ has at most linear growth and since m2(νK) < ∞, one easily checks that

sup
n∈N,ε∈(0,1)

E

[
sup
[0,T ]

(
|XK

t |2 + |Xn,ε,K
ρn(t) |2

)]
≤ CK,T ,

where the constant CK,T possibly explodes when K increases to infinity.

Step 3. For L > 0, we introduce σL(x) = σ((x ∨ −L) ∧ L) and we denote by (XK,L
t )t≥0 and by (Xn,ε,K,L

ρn(t) )t≥0

the solutions to (1.2) and (2.3) with ZK instead of Z, (Δn,ε,K
i )i≥1 instead of (Δn,ε

i )i≥1, and with σL instead
of σ. Using Step 2 and a uniqueness argument, it is classically deduced that

P

(
(XK,L

t )t∈[0,T ] = (XK
t )t∈[0,T ], (X

n,ε,K,L
ρn(t) )t∈[0,T ] = (Xn,ε,K

ρn(t) )t∈[0,T ]

)
≥ 1 − CK,T

L2
·

Step 4. Since m2(νK) < ∞ and since σL is bounded and Lipschitz continuous, we may apply Theorem 2.2: for
each K, L, there exists a constant CK,L,T such that for all n ∈ N, all ε ∈ (0, 1), with a suitable coupling,

E

[
sup
[0,T ]

|XK,L
ρn(t) − Xn,ε,K,L

ρn(t) |2
]
≤ CK,L,T (n−1 + βε(νL)).

Since L ≥ 1 > ε, we obviously have βε(νL) = βε(ν).

Step 5. Using Steps 1, 3 and 4, we get, for all A > 0, K ≥ 1, L > 0, n ∈ N, ε ∈ (0, 1),

P

[
(n−1 + βε(νL))−1/2 sup

[0,T ]

|Xρn(t) − Xn,ε
ρn(t)| ≥ A

]
≤ 1 − e−Tν({|z|≥K}) +

CK,T

L2
+

CK,L,T

A2
·
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Consequently, for all K ≥ 1, all L > 0,

lim sup
A→∞

sup
n∈N,ε∈(0,1)

P

[
(n−1 + βε(νL))−1/2 sup

[0,T ]

|Xρn(t) − Xn,ε
ρn(t)| ≥ A

]
≤ 1 − e−Tν({|z|≥K}) +

CK,T

L2
·

Taking the limit as L → ∞ and then the limit as K → ∞, the conclusion follows. �

8. Numerical illustration

To illustrate our result, we consider the case of a stable driving Lévy process, of which the increments may
be simulated exactly, see Chambers-Mallows-Stuck [2]. We consider the Lévy process (7.1) with a = b = 0
and ν(dz) = |z|−α−1dz, for α = 1.8, and the stochastic differential equation (1.2) starting from x = 0, with
σ(y) = (1 + y2)/(1 + y4). We are interested in the law of V = supt∈[0,1] Xt.

We introduce the exact Euler scheme (Xn
i/n)i=0,...,n with time-step 1/n, which can be simulated exactly in

this particular case.
For ε > 0, we introduce the scheme (Xn,ε

i/n)i=0,...,n studied in this paper, defined by (2.2)–(2.3), and we denote

by (X̂n,ε
i/n)i=0,...,n the scheme where the jumps smaller than ε are simply neglected [14]. We also set

V n = sup
i=0,...,n

Xn
i/n, V n,ε = sup

i=0,...,n
Xn,ε

i/n, V̂ n,ε = sup
i=0,...,n

X̂n,ε
i/n.

In all the simulations, we have chosen n = 1000. Using a Monte-Carlo method (with 106 simulations) and
have estimated the density of V 1000. This density is drawn on all the figures (its shape is slightly surprising).
Next, we have performed 105 simulations of V̂ 1000,ε and V 1000,ε for different values of ε, and we have drawn a
histogram.

As we can see from the figures below, the law of V 1000,ε is really much more close to the law of V 1000 than
the law of V̂ 1000,ε.

The time (in seconds) needed for each simulation of V̂ 1000,ε and V 1000,ε is as follows:

ε = 0.1 ε = 0.01 ε = 0.001

V̂ 1000,ε 3.6 10−4 2.7 10−3 9.5 10−2

V 1000,ε 6.6 10−4 3.1 10−3 9.5 10−2

One observes that for ε very small, the additional cost to simulate V n,ε is insignificant. This is natural: the
simulation schemes of V̂ n,ε and V n,ε are the same, except that one needs to simulate additionally n Gaussian
random variables for V n,ε. Thus the additional cost does not depend on ε, and becomes insignificant when ε is
small.

It took about 66 seconds to obtain Figure 1(b), and about 9500 seconds to get Figure 1(e). Clearly, Figure 1(b)
is much more convincing. As a conclusion, it is really better to approximate the small jumps by Gaussian random
variables than to neglect them, both from a theoretical and numerical point of view.

The shape of the density of V is quite surprising. Numerical simulations with other values of α (or even with
Z replaced by a standard Brownian motion) produce similar shapes. This seems to be due to the fact σ is not
monotonous on R+. In Figure 2, we have drawn simulations with σ(y) =

√
1 + y2, for which the density of V

has a more classical shape. But in Figure 3, we have considered the oscillating case σ(y) = 1.2 + sin(4y), which
seems to produce infinitely many modes for the density of V .

Acknowledgements. I wish to thank Jean Jacod for fruitful discussions. I am also grateful to the anonymous referees for
their constructive observations.
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(a) V 1000 and V̂ 1000,0.1 (b) V 1000 and V 1000,0.1

(c) V 1000 and V̂ 1000,0.01 (d) V 1000 and V 1000,0.01

(e) V 1000 and V̂ 1000,0.001 (f) V 1000 and V 1000,0.001

Figure 1. Simulations with σ(y) = (1 + y2)/(1 + y4).

(a) V 1000 and V̂ 1000,0.01 (b) V 1000 and V 1000,0.01

Figure 2. Simulations with σ(y) =
√

1 + y2.



248 N. FOURNIER

(a) V 1000 and V̂ 1000,0.01 (b) V 1000 and V 1000,0.01

Figure 3. Simulations with σ(y) = 1.2 + sin(4y).
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[11] J. Komlós, P. Major and G. Tusnády, An approximation of partial sums of independent rvs and the sample df I. Z. Wahrsch.

verw. Gebiete 32 (1975) 111–131.
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